WO2014034268A1 - Laminated board and method for manufacturing laminated board - Google Patents

Laminated board and method for manufacturing laminated board Download PDF

Info

Publication number
WO2014034268A1
WO2014034268A1 PCT/JP2013/068488 JP2013068488W WO2014034268A1 WO 2014034268 A1 WO2014034268 A1 WO 2014034268A1 JP 2013068488 W JP2013068488 W JP 2013068488W WO 2014034268 A1 WO2014034268 A1 WO 2014034268A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
layer
laminated board
single fiber
manufacturing
Prior art date
Application number
PCT/JP2013/068488
Other languages
French (fr)
Japanese (ja)
Inventor
研一 金田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2014034268A1 publication Critical patent/WO2014034268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0753Insulation
    • H05K2201/0769Anti metal-migration, e.g. avoiding tin whisker growth
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates

Definitions

  • the present invention relates to a laminate and a method for producing the laminate.
  • a printed wiring board is manufactured as follows, for example.
  • a fiber base material such as glass cloth is impregnated with a resin varnish and dried to prepare a prepreg.
  • a metal foil-clad laminate is formed by preparing one or a plurality of prepregs and then further stacking metal foils such as copper foils, followed by heating and pressing. Further, a circuit is formed on the metal foil-clad laminate to form an inner circuit board. Thereafter, the prepreg or the resin layer as described above is stacked on the surface of the inner layer circuit board, and further, a metal foil such as a copper foil is stacked, followed by heating and pressing. Then, a circuit pattern is formed on the metal foil.
  • a fiber base material formed by weaving a yarn in which a plurality of single fibers are bundled, and an insulating layer having a resin layer impregnated in the fiber base material, A laminate comprising a metal layer provided on the insulating layer, A hole is formed in the insulating layer, On the inner wall of the hole, the end of the single fiber constituting the fiber base material is exposed, The exposed end portion of the single fiber is melt-deformed and a laminated plate having an enlarged diameter is provided.
  • the laminated board of the present invention may be a printed wiring board, or may be an inner circuit board included in the printed wiring board.
  • the end part of the single fiber is melt-deformed so that the end part of the single fiber of the fiber base is expanded. Therefore, even if there is a hollow at the end of the single fiber, the hollow is crushed by melting and deforming so that the diameter of the end increases. Therefore, even if a conductive film containing metal is formed inside the hole, metal ions can be prevented from entering the insulating layer through the hollow.
  • the end of the single fiber exposed on the inner wall of the hole is enlarged, when a conductive film containing metal is formed inside the hole, the gap between the single fiber and the resin layer is formed. It is also possible to prevent metal ions from entering.
  • the manufacturing method of the laminated board mentioned above can also be provided. That is, a fiber base material formed by weaving a yarn in which a plurality of single fibers are bundled, an insulating layer having a resin layer impregnated or laminated on the fiber base material, and a metal layer provided on the insulating layer are provided.
  • a method for manufacturing a laminate Forming a hole in the insulating layer, In the step of forming the hole, The hole is formed by a laser, and the end of the single fiber of the fiber base exposed in the hole is melted and deformed to expand the diameter of the end of the single fiber exposed on the inner wall of the hole.
  • a method for producing a laminate can also be provided.
  • the present invention it is possible to provide a laminate and a method for manufacturing the laminate that can increase the insulation reliability between holes when a conductive film containing a metal is formed inside the holes.
  • the laminated board 1 of this embodiment is a printed wiring board.
  • the printed wiring board 1 includes a fiber base material 110 made of woven single fibers, an insulating layer 11 having a resin layer 112 impregnated in the fiber base material 110, and an insulating layer 11 on the insulating layer 11. And a metal layer 12 provided on the surface.
  • a hole 113 is formed in the insulating layer 11, and an end portion 111 ⁇ / b> A of the single fiber 111 constituting the fiber base 110 is exposed on the inner wall of the hole 113, and the exposed end portion 111 ⁇ / b> A of the single fiber 111 is melted. Deformed and expanded in diameter.
  • the printed wiring board 1 includes an inner layer circuit board 10, an interlayer insulating layer (build-up layer) 20 provided on each of the front and back surfaces of the inner layer circuit board 10, and an interlayer insulating layer 20. And a provided metal layer 30.
  • the inner layer circuit board 10 includes the above-described insulating layer (core layer) 11 and a metal layer 12 provided on the front and back surfaces of the insulating layer 11.
  • the insulating layer 11 includes a fiber base 110 and a resin layer 112 impregnated in the fiber base 110.
  • the insulating layer 11 is constituted by a so-called single prepreg layer.
  • the present invention is not limited to this, and the insulating layer 11 may be formed by laminating a plurality of prepregs.
  • the thickness of the insulating layer 11 is usually 10 ⁇ m or more and 600 ⁇ m or less.
  • any synthetic fiber such as glass fiber, aramid, polyester, aromatic polyester, a fluororesin, or any single fiber, such as carbon fiber and a mineral fiber, was bundled
  • a fiber woven fabric formed by weaving yarn is mentioned.
  • a glass fiber woven fabric (glass cloth) made of glass fibers is preferable because of its low thermal expansion, high rigidity, and excellent dimensional stability.
  • the glass constituting the glass cloth examples include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, UT glass, L glass, H glass, and quartz glass.
  • quartz glass is particularly preferable.
  • the end 111A exposed inside the hole 113 can be easily melted and deformed.
  • the thermal expansion coefficient of the insulating layer 11 can be reduced.
  • the glass cloth of quartz glass means that containing 99.9 wt% or more of SiO 2 .
  • the fiber base material 110 is obtained by weaving a yarn (warp yarn and weft yarn) obtained by bundling a plurality of single fibers 111 made of the materials described above.
  • the fiber base 110 is configured by plain weaving warp and weft.
  • the number of single fibers per yarn is not particularly limited, but is preferably 20 or more.
  • the number of warp yarns and weft yarns to be driven is not particularly limited, but for example, warp yarns of 40 or more / 25 mm and weft yarns of 30 or more / 25 mm are preferable.
  • the diameter of the single fiber (portion in the resin layer 112) is preferably 3 to 9 ⁇ m.
  • the resin layer 112 is thermosetting and contains a thermosetting resin.
  • a thermosetting resin any 1 or more types, such as an epoxy resin, a melamine resin, a urea resin, cyanate resin, a phenol resin, a bismaleimide compound, a benzoxazine resin, can be used.
  • an epoxy resin or a cyanate resin is preferable.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z type epoxy resin.
  • Bisphenol type epoxy resin Bisphenol type epoxy resin, phenol novolak type epoxy resin, novolac type epoxy resin such as cresol novolak type epoxy resin, biphenyl type epoxy resin, arylalkylene type epoxy resin such as phenol aralkyl type epoxy resin having biphenylene skeleton, naphthol type epoxy resin, Naphthalenediol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin, binaphthyl type epoxy resin Naphthalene type epoxy resin such as xylene resin, naphthalene aralkyl type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene type epoxy resin, containing triazine skeleton
  • epoxy resins such as epoxy resins.
  • the type of cyanate resin is not particularly limited.
  • bisphenol type cyanate resin such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, naphthalene type cyanate resin, Examples thereof include a cyclopentadiene type cyanate resin and a fluorene type cyanate resin.
  • phenol novolac type cyanate resin is preferable from the viewpoint of low thermal expansion.
  • other cyanate resins can be used alone or in combination of two or more. Those prepolymers may be used in combination.
  • the content of the thermosetting resin in the resin layer 112 is not particularly limited, but is preferably 20% by mass or more and 80% by mass or less of the entire resin layer 112. More preferably, it is 30 mass% or more and 70 mass% or less.
  • a liquid epoxy resin such as a liquid bisphenol A type epoxy resin or a bisphenol F type epoxy resin because the impregnation property to the fiber base material 110 can be improved.
  • solid bisphenol A type epoxy resin and bisphenol F type epoxy resin are used in combination, adhesion to the conductor can be improved.
  • the resin layer 112 may contain a filler.
  • the filler may be either an inorganic filler or an organic filler.
  • inorganic fillers include silicates such as talc, calcined clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, boehmite, silica and fused silica, calcium carbonate, magnesium carbonate and hydrotalcite.
  • Carbonates such as, hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, Examples thereof include borates such as calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanates such as strontium titanate and barium titanate. One of these can be used alone, or two or more can be used in combination.
  • silica is particularly preferable, and fused silica (especially spherical fused silica) is preferable in terms of excellent low thermal expansion. Its shape is crushed and spherical, but in order to reduce the melt viscosity of the thermosetting resin composition in order to ensure the impregnation of the fiber base material, there is a usage method that suits its purpose, such as using spherical silica. Adopted.
  • the organic filler include fluororesins, aramid resin fibers, core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, acrylic rubber particles, and silicone particles. One of these can be used alone, or two or more can be used in combination. Content of the filler in the resin layer 112 is 20 mass% or more and 80 mass% or less.
  • the resin composition constituting the resin layer 112 preferably contains a coupling agent.
  • the coupling agent improves the wettability of the interface between the thermosetting resin and the filler, thereby uniformly fixing the thermosetting resin and the filler to the fiber base 110, and has heat resistance, particularly moisture absorption. Later solder heat resistance can be improved.
  • Any coupling agent can be used as long as it is usually used.
  • an epoxy silane coupling agent, a cationic silane coupling agent, an amino silane coupling agent, a titanate coupling agent, and a silicone oil type coupling agent It is preferable to use one or more coupling agents selected from among the above. Thereby, the wettability with the interface of a filler can be made high, and thereby heat resistance can be improved more.
  • the phenolic curing agent can be further used for the thermosetting resin composition.
  • known or commonly used phenolic novolac resins known or commonly used phenolic novolac resins, alkylphenol novolac resins, bisphenol A novolac resins, dicyclopentadiene type phenol resins, zyloc type phenol resins, terpene modified phenol resins, polyvinylphenols, etc. Can be used in combination.
  • a curing catalyst may be used in the thermosetting resin composition as necessary.
  • a well-known thing can be used as a curing catalyst.
  • organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), triethylamine, tributylamine, diazabicyclo [2,2 , 2] tertiary amines such as octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl Imidazoles such as -4-methyl-5-hydroxyimidazole and 2-phenyl-4,5-dihydroxyimidazole, triphenylphosphine, tri-p-to
  • the content of the curing catalyst is not particularly limited, but is preferably 0.05% by mass or more, particularly preferably 0.2% by mass or more, based on the entire composition constituting the resin layer 112.
  • the resin layer 112 is made of thermoplastic resin such as phenoxy resin, polyimide resin, polyamideimide resin, polyamide resin, polyphenylene oxide resin, polyethersulfone resin, polyester resin, polyethylene resin, polystyrene resin, styrene-butadiene copolymer, styrene- Polystyrene thermoplastic elastomers such as isoprene copolymers, thermoplastic elastomers such as polyolefin thermoplastic elastomers, polyamide elastomers, polyester elastomers, and diene elastomers such as polybutadiene, epoxy modified polybutadiene, acrylic modified polybutadiene, and methacryl modified polybutadiene.
  • thermoplastic resin such as phenoxy resin, polyimide resin, polyamideimide resin, polyamide resin, polyphenylene oxide resin, polyethersulfone resin, polyester resin, polyethylene resin, polystyrene resin, styren
  • the composition constituting this insulating layer includes, as necessary, pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, ion scavengers, and the like. You may add additives other than the said component.
  • the insulating layer 11 can be obtained by making the resin composition constituting the resin layer 112 into a varnish and impregnating the fiber substrate 110.
  • the resin composition described above may be formed into a film, heated and laminated to the fiber base 110, and impregnated into the fiber base 110.
  • the metal layer 12 is an inner circuit layer, and is composed of a plurality of metal layers 121 to 123 as shown in FIG.
  • the metal layers 121 to 123 are laminated in this order.
  • the metal constituting the metal layer 12 is, for example, copper.
  • a hole 113 is formed in the inner layer circuit board 10. As shown in FIGS. 1 and 3, the hole 113 passes through the insulating layer 11 and the metal layer 121 provided on the insulating layer 11.
  • FIG. 3 is an enlarged view of the periphery of the hole 113 in FIG. 1, and the metal layers 122 and 123 are omitted.
  • a plurality of holes 113 are formed. For example, the interval between the holes 113 is not less than 100 ⁇ m and not more than 500 ⁇ m.
  • the diameter of the hole 113 is, for example, 50 ⁇ m or more and 150 ⁇ m or less. Especially, it is preferable that it is 80 micrometers or more and 120 micrometers or less from a viewpoint of melt-deforming the edge part 111A of a single fiber.
  • the hole 113 has a shape (tapered shape) having an inner surface that is inclined with respect to the thickness direction of the inner circuit board 10, for example, the diameter of the other opening is smaller than one opening of the hole 113.
  • the diameter may be continuously reduced toward the opening of the other, and after the diameter is reduced from one opening side toward the other opening side, the diameter is reduced toward the other opening side.
  • the shape may have a wide diameter. In this case, it is preferable that the maximum and minimum opening diameters are within the range of the diameter of the hole 113 described above.
  • the ends 111 ⁇ / b> A of the plurality of single fibers 111 of the fiber base 110 are exposed on the inner wall of the hole 113.
  • Each end 111 ⁇ / b> A has a larger diameter than the portion embedded in the resin layer 112 of the single fiber 111, and has a larger diameter. More specifically, the end 111A is obtained by solidifying the end of the single fiber 111 after being melted and deformed.
  • the end portion 111 ⁇ / b> A extends along the inner wall of the hole 113 and expands to have a flat shape.
  • the end 111A is in direct contact with the inner wall of the hole 113 and has, for example, a substantially circular shape.
  • the end 111A can be crushed because the end 111A is melt-deformed and expanded in diameter, that is, the end 111A is crushed. Therefore, even if the metal layers 122 and 123 are formed inside the hole 113, it is possible to suppress the metal ions from entering the inside of the insulating layer 11 through the hollow. Thereby, the insulation reliability between the holes 113 can be improved. That is, there is no hollow at the end 111A. In other words, even if a hollow (gap) is present inside the single fiber 111, a hollow communicating with the hollow is not formed at the end 111A.
  • the diameter of the end portion 111A is larger than that of the portion embedded in the resin layer 112 of the single fiber 111, the boundary portion between the portion embedded in the resin layer 112 of the single fiber 111 and the resin layer 112 It becomes difficult for metal ions to enter. This also increases the insulation reliability between the holes 113 (CAF (Conductive Anodic Filament)).
  • CAF Conduct Anodic Filament
  • the edge part 111A of the adjacent single fiber 111 does not need to contact, and as shown to FIG. 3 (B), the edge of the adjacent single fiber 111 is sufficient.
  • the portions 111A may be fused and connected. As shown in FIG.
  • the end portions 111A of the adjacent single fibers 111 are fused together, so that metal ions are formed at the boundary portion between the portion embedded in the resin layer 112 of the single fibers 111 and the resin layer 112. Can be more reliably prevented from entering. From such a viewpoint, it is particularly preferable that the end portions 111A of the single fibers exposed inside the hole 113 are all fused together. Moreover, it becomes possible to raise the intensity
  • the single fibers adjacent to each other in the direction orthogonal to the penetration direction of the hole 113 are used. More preferably, the end portions 111A of 111 are also fused. In the embodiment described later, this is the form.
  • the protruding dimension S1 from the inner wall of the hole 113 of the end 111A is, for example, 2 to 5 ⁇ m.
  • metal layers 122 and 123 are provided so as to cover the inner wall of the hole 113.
  • the metal layers 122 and 123 cover the inner wall of the hole 113 and also cover the end portion 111 ⁇ / b> A of the single fiber 111 exposed on the inner wall of the hole 113.
  • the metal layers 122 and 123 cover the entire surface of the end portion 111 ⁇ / b> A of the single fiber 111 exposed on the inner wall of the hole 113.
  • the metal layers 122 and 123 provided on the inner wall of the hole 113 constitute the metal layers 121 to 123 constituting the circuit layer provided on the surface of the insulating layer 11 and the circuit layer provided on the back surface of the insulating layer 11.
  • the metal layers 121 to 123 are electrically connected.
  • the interlayer insulating layer 20 is provided on the front and back surfaces of the inner layer circuit board 10.
  • the interlayer insulating layer 20 is made of the same resin composition as the resin layer 112 of the inner circuit board 10. However, in this embodiment, the interlayer insulation layer 20 does not include a fiber base material and is composed only of a resin layer.
  • the interlayer insulating layer 20 covers the metal layer 12 of the inner layer circuit board 10.
  • the metal layer 30 is an outer circuit layer provided on each interlayer insulating layer 20.
  • the metal layer 30 is, for example, a laminate of metal layers 31 to 33.
  • the metal constituting the metal layer 30 is, for example, copper.
  • a hole 21 is formed in the interlayer insulating layer 20.
  • the metal layer 123 is exposed on the bottom surface of the hole 21.
  • a conductor (via 34) integrated with the metal layer 33 is embedded in the hole 21.
  • the via 34 is in contact with the metal layer 123 and establishes conduction between the metal layer 12 and the metal layer 30.
  • the method for manufacturing the printed wiring board 1 of this embodiment includes a step of forming the hole 113 in the insulating layer 11.
  • the hole 113 is formed by a laser, and the end of the single fiber 111 of the fiber base 110 exposed inside the hole 113 is melted and deformed to widen the end of the single fiber 111 exposed on the inner wall of the hole 113. Diameter.
  • a method for manufacturing the printed wiring board 1 will be described in detail with reference to FIGS. First, as shown in FIG.
  • a laminated plate 40 is prepared.
  • the metal layer 121 is, for example, a copper foil, and has a thickness of 1 ⁇ m to 5 ⁇ m, for example.
  • the carrier foil A is peeled off from the metal layer 121 to obtain a metal-clad laminate 400.
  • FIG. 4C a hole 113 penetrating the metal layer 121 and the insulating layer 11 is formed.
  • the hole 113 is formed by a laser such as a gas laser such as carbon dioxide or excimer, or a solid laser such as YAG. Among these, from the viewpoint of melting and deforming the end portion of the single fiber 111, it is preferable to use a carbon dioxide laser.
  • a laser such as a gas laser such as carbon dioxide or excimer, or a solid laser such as YAG.
  • a carbon dioxide laser As a device for forming the hole 113, the device 5 shown in FIG. 9 can be used.
  • This apparatus 5 forms a space 50 between the processing table 51 that holds the metal-clad laminate 400, a protective material 52 that protects the processing table 51 from laser irradiation, and the processing table 51 and the metal-clad laminate 400.
  • a pressing member 54 that presses and fixes the metal-clad laminate 400 against the spacer member 53.
  • the processing table 51 has a flat upper surface.
  • a plurality of suction holes 511 are formed in the processing table 51 so as to penetrate the processing table 51 on the front and back sides.
  • the lower ends of these suction holes 511 communicate with a suction source (not shown) (for example, a vacuum pump).
  • a suction source for example, a vacuum pump.
  • the spacer member 53 is a flat plate member having a certain thickness. An opening 532 is formed through the front and back of the spacer member 53. For this reason, as shown in FIG. 9, the metal-clad laminate 400 is held between the process table 51 and the metal-clad laminate 400 by holding the metal-clad laminate 400 on the process table 51 via the spacer member 53. A space facing the back surface of the plate 400 can be formed.
  • the metal-clad laminate 400 is irradiated with laser to form a through hole, so that the heat generated by the laser irradiation can be easily released through the space. Damage to the plate 400 can be suppressed. Accordingly, it is possible to prevent excessive heat energy from being applied to the end portion of the single fiber exposed inside the hole 113 and burning the end portion of the single fiber. That is, the end of the single fiber can be melted and deformed.
  • a through-hole 531 for adsorbing the metal-clad laminate 400 or the pressing member 54 through the spacer member 53 is formed through the front and back of the spacer member 53. Yes.
  • the material of the protective material 52 may be anything as long as it can protect the processing table 51 from laser irradiation, but a metal such as copper is preferable in terms of durability.
  • the thickness of the protective material 52 can be, for example, 5 ⁇ m or more and 35 ⁇ m or less.
  • the upper surface of the protective material 52 is preferably roughened. Since the upper surface is a roughened surface, the laser light can be scattered on the upper surface (the reflectance of the laser light can be reduced). Therefore, it can suppress that the back surface side of the metal-clad laminated board 400 is damaged by the reflected light from an upper surface.
  • the pressing member 54 is a flat member, and the opening 542 passes through the front and back of the pressing member 54.
  • the manufacturing apparatus 5 has a laser mask 55.
  • the laser mask 55 is formed with a laser passage hole (not shown) corresponding to the hole 113.
  • the hole 113 is formed by irradiating the metal-clad laminate 400 with laser light irradiated from a laser light source (not shown) through the laser transmission hole of the laser mask 55 and the opening 542 of the pressing member 54. Can do.
  • a hole penetrating the metal layer 121 is formed by a carbon dioxide gas laser.
  • pulse width 3 ⁇ s to 15 ⁇ s
  • energy 5 mJ to 20 mJ
  • number of shots 1 shot to 3 shots.
  • a hole penetrating the insulating layer 11 is formed while communicating with the hole penetrating the metal layer 121 by a carbon dioxide laser.
  • pulse width 3 ⁇ s to 100 ⁇ s
  • energy 3 mJ to 10 mJ
  • number of shots 1 shot to 15 shots.
  • the laser pulse width, energy, and number of shots are set as appropriate
  • the hole diameter and the insulating layer thickness are set as appropriate
  • the material of the fiber base material is selected as appropriate.
  • the exposed end portion 111A can be melt-deformed and expanded in diameter.
  • the end portion of the single fiber exposed inside the hole formed in the insulating layer was not melted and deformed, and the diameter was not enlarged.
  • the single fiber was burned off when the hole was formed by the laser. Therefore, the end portion of the single fiber has the same diameter as the single fiber portion in the resin layer.
  • catalyst nuclei are provided on the metal layer 121.
  • catalyst nuclei are provided on the entire surface of the metal layer 121 and on the inner wall surface of the hole 113.
  • the catalyst nucleus is not particularly limited.
  • a noble metal ion or palladium colloid can be used.
  • an electroless plating layer is formed using the catalyst nucleus as a nucleus.
  • a desmear process such as smear removal using a chemical solution is performed on the surface of the metal layer 121 or the hole 113. Also good.
  • the desmear treatment is not particularly limited, and is a wet method using an oxidant solution having an organic substance decomposing action, and an organic substance by irradiating a target object with an active species (plasma, radical, etc.) having a strong oxidizing action directly.
  • a known method such as a dry method such as a plasma method for removing the residue can be used.
  • Specific examples of the wet desmear treatment include a method in which the resin surface is subjected to a swelling treatment, etched by an alkali treatment, and then subjected to a neutralization treatment.
  • a metal layer 122 that is a thin electroless plating layer is formed on the inner wall of the metal layer 121 provided with catalyst nuclei and the hole 113 by electroless plating.
  • the metal layer 122 electrically connects the metal layer 121 on the front surface side of the insulating layer 11 and the metal layer 121 on the back surface side of the insulating layer 11.
  • electroless plating for example, one containing copper sulfate, formalin, complexing agent, sodium hydroxide or the like can be used.
  • it is preferable to stabilize the plating film by performing a heat treatment at 100 to 250 ° C. after the electroless plating. A heat treatment at 120 to 180 ° C.
  • the average thickness of the electroless plating layer may be a thickness that allows the next electroplating to be performed, and for example, about 0.1 to 1 ⁇ m is sufficient.
  • the inside of the hole 113 may be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
  • a resist layer B having a predetermined opening pattern is formed on the metal layer 122.
  • This opening pattern corresponds to the circuit layer pattern of the inner layer circuit board. Therefore, the resist layer B is provided so as to cover the non-circuit formation region on the metal layer 122.
  • the resist layer B is not particularly limited, and a known material can be used.
  • a photosensitive dry film is laminated on the metal layer 122, the non-circuit formation region is exposed and photocured, and the unexposed portion is dissolved and removed with a developer. The remaining cured photosensitive dry film becomes the resist layer B. It is preferable that the thickness of the resist layer B be equal to or greater than the thickness of the conductor (metal layer 123) to be subsequently plated.
  • a metal layer 123 is formed at least on the inside of the opening pattern of the resist layer B by electroplating.
  • the metal layer 123 may be provided continuously over the upper surface of the insulating layer 11, the inner wall of the hole 113, and the lower surface thereof.
  • Such electroplating is not particularly limited, but a known method used in ordinary printed wiring boards can be used. For example, in a state where the plating solution is immersed in a plating solution such as copper sulfate, an electric current is supplied to the plating solution. A method such as flowing a stream can be used.
  • the thickness of the metal layer 123 is not particularly limited as long as it can be used as a circuit conductor.
  • the thickness is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 5 to 50 ⁇ m.
  • the metal layer 123 may be a single layer or may have a multilayer structure. Although it does not specifically limit as a material of the metal layer 123, For example, copper, copper alloy, 42 alloy, nickel, iron, chromium, tungsten, gold
  • the resist layer B is removed using an alkaline stripping solution, sulfuric acid, a commercially available resist stripping solution, or the like.
  • the metal layers 121 and 122 other than the region where the metal layer 123 is formed are removed.
  • a method for removing the metal layers 121 and 122 for example, soft etching (flash etching) or the like is used.
  • flash etching flash etching
  • a conductive circuit pattern formed by laminating the metal layers 121 to 123 can be formed.
  • the inner layer circuit board 10 can be obtained.
  • the roughening treatment means performing a chemical treatment, a plasma treatment, or the like on the surface of the conductor circuit.
  • a blackening treatment using oxidation reduction or a chemical solution treatment using a known roughening solution of sulfuric acid-hydrogen peroxide system can be used.
  • the adhesiveness of the metal layer 123 and the interlayer insulation layer 20 can be improved.
  • the interlayer insulating layer 20 and the metal layer 31 with the carrier foil layer C are respectively provided on the front surface side and the back surface side of the inner layer circuit board 10.
  • a multilayer laminate is formed by subjecting the laminate in which these layers are stacked to heat and pressure treatment. Subsequently, as shown in FIG. 6C, the carrier foil layer C is peeled and removed.
  • a method for forming the hole 21 is not particularly limited. For example, a method of forming a blind via hole having a hole diameter of 100 ⁇ m or less using a gas laser such as carbon dioxide or excimer or a solid laser such as YAG is used. it can.
  • a thin electroless plating layer (metal layer 32) is formed on the metal layer 31 provided with catalyst nuclei, on the inner wall of the hole 21, and on the metal layer 123. .
  • the electroless plating layer is formed in the same manner as the above electroless plating layer.
  • the catalyst core is the same as described above.
  • desmear treatment such as smear removal with a chemical solution may be performed.
  • the thickness of the metal layer 32 may be any thickness that allows the next electroplating to be performed, and about 0.1 to 1 ⁇ m is sufficient.
  • the inside of the hole 21 (blind via hole) can be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
  • a resist layer D having an opening pattern corresponding to the conductor circuit pattern is formed on the metal layer 32.
  • the thing similar to the above-mentioned resist layer B can be used.
  • the thickness of the resist layer D is preferably set to be the same as or thicker than the thickness of the metal layer 33 to be subsequently plated.
  • a metal layer 33 as a plating layer is formed inside the opening pattern of the resist layer D.
  • the metal layer 33 and the via 34 are integrally formed by plating.
  • the metal layer 33 is formed by electroplating, the same technique as the metal layer 123 described above can be used.
  • the thickness of the metal layer 33 may be used as a circuit conductor.
  • the thickness of the metal layer 33 is preferably in the range of 1 to 100 ⁇ m, and more preferably in the range of 5 to 50 ⁇ m.
  • the resist layer D is peeled in the same manner as the resist layer B described above.
  • the metal layers 31 and 32 are removed by soft etching (flash etching) in the same manner as the metal layers 121 and 122 described above. Thereby, a conductive circuit pattern can be formed. Thus, the printed wiring board 1 is obtained.
  • the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within a scope that can achieve the object of the present invention are included in the present invention.
  • the end portion 111A of the single fiber exposed in the hole 113 of the inner layer circuit board 10 is melted and deformed to expand the diameter, but is not limited thereto.
  • the interlayer insulating layer 20 includes a resin layer similar to the inner layer circuit board 10 and a fiber base material, and melt-deforms an end portion of the single fiber exposed on the inner wall of the hole 21 of the interlayer insulating layer 20, The diameter may be larger than the diameter of the single fiber in the resin layer. By doing in this way, the insulation reliability between the holes 21 can be improved.
  • pulse width 3 ⁇ s to 15 ⁇ s
  • energy 5 mJ to 20 mJ
  • number of shots 1 shot to 3 shots.
  • the hole which penetrates an insulating layer and a fiber base material is formed with a carbon dioxide gas laser.
  • pulse width 3 ⁇ s to 100 ⁇ s
  • energy 3 mJ to 10 mJ
  • number of shots 1 shot to 15 shots.
  • the laser pulse width, energy, and number of shots are set as appropriate
  • the hole diameter and the insulating layer thickness are set as appropriate
  • the fiber base material is selected as appropriate to expose the inside of the hole. The end portion thus melted can be melt-deformed and expanded in diameter.
  • the printed wiring board does not have the inner layer circuit board 10, and includes an interlayer insulating layer including a fiber base material and a resin layer impregnated in the fiber base material, and a metal layer provided on the interlayer insulating layer;
  • the layers may be alternately stacked.
  • the laminated board of this invention was mentioned as the printed wiring board, it is not restricted to this, For example, an inner layer circuit board may be sufficient.
  • the metal layer is directly irradiated with laser to form the hole 113 (direct processing), but the method of manufacturing the hole 113 is not limited to this.
  • the metal layer at the position where the hole 113 is formed in advance may be removed by etching or the like, and then the hole 113 may be formed by conformal processing in which the insulating layer is irradiated with laser.
  • Example 1 As epoxy resin, 8.5 parts by weight of naphthalene-modified cresol novolak epoxy resin (manufactured by DIC, HP-5000), and as phenol curing agent, biphenylaralkyl type phenol resin (Maywa Kasei Co., Ltd., MEH7851-4H) 8.5 parts by weight.
  • the resin varnish was impregnated into a glass woven fabric (basis weight 77 g / m 2 , thickness 77 ⁇ m, quartz glass woven fabric manufactured by Shin-Etsu Quartz Co., Ltd., trade name SQF2116C), dried in a heating furnace at 150 ° C. for 2 minutes, and prepreg A prepreg having a varnish solid content of about 50% by weight was obtained.
  • Two sheets of the prepreg are stacked, and an ultrathin copper foil (metal layer 121) with carrier foil A is stacked and heated and pressure-molded at a pressure of 3 MPa and a temperature of 220 ° C. for 2 hours.
  • a metal-clad laminate 400 having a foil (metal layer 121) was obtained (FIG. 4A).
  • the carrier foil A of the metal-clad laminate 400 described above is peeled and removed (FIG. 4B), and as shown in FIG. 4C, through-holes (holes) having a diameter of 75 ⁇ m are formed from above the metal layer 121 by a carbon dioxide laser. 113) were opened.
  • the apparatus the apparatus 5 shown in FIG. 9 was used.
  • the interval between the holes 113 was 300 ⁇ m pitch.
  • the irradiation conditions of the carbon dioxide laser are as follows. First, a hole 113 penetrating the metal layer 121 and the insulating layer 11 was formed by a carbon dioxide gas laser.
  • FIG. 10A shows an SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end.
  • a 25 ⁇ m-thick UV photosensitive dry film (Sunfort UFG-255, manufactured by Asahi Kasei Co., Ltd.) was bonded using a hot roll laminator, and a pattern with a minimum line width / line spacing of 20/20 ⁇ m was formed.
  • a drawn glass mask manufactured by Topic
  • align the position align the position, expose with an exposure device (Ono Sokki EV-0800), develop with a sodium carbonate aqueous solution, and form a resist mask (resist layer B) (FIG. 4E).
  • electrolytic copper plating (81-HL manufactured by Okuno Pharmaceutical Co., Ltd.) is performed at 3 A / dm 2 for 25 minutes using the electroless plating layer as a power feeding layer electrode, and a copper wiring pattern (metal layer 123) having a thickness of about 20 ⁇ m.
  • a copper wiring pattern (metal layer 123) having a thickness of about 20 ⁇ m.
  • the resist mask (resist layer B) was stripped with a monoethanolamine solution (R-100, manufactured by Mitsubishi Gas Chemical Company) using a stripper (FIG. 5B).
  • the interlayer insulating layer 20 and the metal layer 31 with the carrier foil C are disposed on the front surface side and the back surface side of the inner layer circuit board 10, respectively. Pressure heat treatment was performed.
  • the interlayer insulating layer 20 has a thickness of 45 ⁇ m, and the metal layer 31 has a thickness of 3 ⁇ m.
  • the carrier foil C was peeled off, and the holes 21 were formed by a carbon dioxide laser (FIG. 6D). The diameter of the hole 21 is 80 ⁇ m.
  • a 25 ⁇ m-thick UV photosensitive dry film (Sunfort UFG-255, manufactured by Asahi Kasei Co., Ltd.) was bonded using a hot roll laminator, and a pattern with a minimum line width / line spacing of 20/20 ⁇ m was formed.
  • a drawn glass mask manufactured by Topic
  • align the position align the position, expose with an exposure device (Ono Sokki EV-0800), develop with a sodium carbonate aqueous solution, and form a resist mask (resist layer D) (FIG. 7B).
  • electrolytic copper plating (81-HL manufactured by Okuno Pharmaceutical Co., Ltd.) is performed at 3 A / dm 2 for 25 minutes using the electroless plating layer as a power feeding layer electrode, and a copper wiring pattern (metal layer 33) having a thickness of about 20 ⁇ m. Was formed (FIG. 7C).
  • the resist mask (resist layer D) was peeled off with a monoethanolamine solution (R-100, manufactured by Mitsubishi Gas Chemical Company) using a peeling machine (FIG. 8).
  • the electroless plating layer (metal layer 32) and the base copper foil (metal layer 31) (2 ⁇ m), which are power feeding layers, are flash etched (CPE-800 manufactured by Mitsubishi Gas Chemical Company, liquid temperature: 30 ° C., spray pressure: 0.23 MPa) )
  • CPE-800 manufactured by Mitsubishi Gas Chemical Company, liquid temperature: 30 ° C., spray pressure: 0.23 MPa
  • Example 2 The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment. Irradiation condition: pulse width: 10 ⁇ s, energy: 8 mJ, number of shots: 6 shots FIG. 10B shows an SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
  • Example 3 The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment. Irradiation condition: pulse width: 10 ⁇ s, energy: 10 mJ, number of shots: 2 shots FIG. 10C shows the inside of the hole 113 formed in this way as observed by SEM. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
  • Example 4 The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment. Irradiation condition: pulse width: 10 ⁇ s, energy: 10 mJ, number of shots: 4 shots FIG. 10D shows the result of SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
  • Example 5 The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment. Irradiation condition: pulse width: 10 ⁇ s, energy: 10 mJ, number of shots: 6 shots FIG. 10E shows the result of SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
  • the irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment.
  • the laser was irradiated twice with the first shot and the second shot.
  • Irradiation condition of the first shot pulse width: 10 ⁇ s, energy: 10 mJ, number of shots: 6 shots
  • Irradiation condition of the second shot pulse width: 97 ⁇ s, energy: 10 mJ, number of shots: 2 shots
  • the inside of the hole 113 formed as described above is observed by SEM. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
  • Example 7 The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment. In this example, the laser was irradiated twice with the first shot and the second shot. Irradiation condition for the first shot: pulse width 10 ⁇ s, energy: 10 mJ, number of shots: 2 shots Irradiation condition for the second shot: pulse width 97 ⁇ s, energy: 10 mJ, number of shots: 4 shots.
  • FIG. An SEM observation of the inside of the formed hole 113 is shown. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
  • the glass woven fabric in the metal-clad laminate 400 has a basis weight of 104 g / m 2 , a thickness of 92 ⁇ m, a T glass woven fabric manufactured by Nitto Boseki Co., Ltd. (composition SiO 2 : 62 to 65 wt%, Al 2 O 3 : 20 To 25 wt%, MgO: 10 to 15 wt%, trade name: WTX-116E).
  • the other points are the same as those in the first embodiment.
  • FIG. 10H shows an SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
  • the insulation reliability of the printed wiring boards obtained in Examples 1 to 8 and Comparative Example 1 was evaluated.
  • the evaluation method is as follows. With a pattern of 100 ⁇ m between walls, 10 V was applied in an environment of 130 ° C./85%, a sample after 200 hours was taken out from the test tank, and the resistance value at normal temperature and humidity was measured. In Examples 1 to 8, the resistance value was high and the insulation reliability was high. On the other hand, in Comparative Example 1, the resistance value was low and the insulation reliability was low as compared with Examples 1 to 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)

Abstract

This laminated board is provided with: an insulating layer (11), which has a fiber base material (110), and a resin layer (112), which is laminated on the fiber base material (110), or with which the fiber base material is impregnated; and a metal layer (12) that is provided on the insulating layer (11). The insulating layer (11) has a hole (113) formed therein, an end portion (111A) of a single fiber (111) constituting the fiber base material (110) is exposed from the inner wall of the hole (113), and an end portion (111A) of the exposed single fiber (111) is melted and deformed, and has the diameter thereof increased.

Description

積層板および積層板の製造方法Laminate and method for producing laminate
 本発明は、積層板および積層板の製造方法に関する。 The present invention relates to a laminate and a method for producing the laminate.
 従来、電子機器等には、プリント配線板が使用されている。プリント配線板は、たとえば、以下のようにして製造される。 Conventionally, printed wiring boards have been used for electronic devices. A printed wiring board is manufactured as follows, for example.
 まず、ガラスクロス等の繊維基材に樹脂ワニスを含浸し、乾燥して、プリプレグを作製する。プリプレグを一枚あるいは複数枚重ねて用意し、その後、銅箔等の金属箔をさらに重ねた後、加熱加圧成形することによって、金属箔張り積層板が形成される。さらに、金属箔張り積層板に回路形成を施して内層回路板とする。その後、この内層回路板の表面に上記のようなプリプレグあるいは、樹脂層を重ね、さらに、銅箔等の金属箔を重ねた後、加熱加圧成形する。そして、金属箔に回路パターンを形成する。 First, a fiber base material such as glass cloth is impregnated with a resin varnish and dried to prepare a prepreg. A metal foil-clad laminate is formed by preparing one or a plurality of prepregs and then further stacking metal foils such as copper foils, followed by heating and pressing. Further, a circuit is formed on the metal foil-clad laminate to form an inner circuit board. Thereafter, the prepreg or the resin layer as described above is stacked on the surface of the inner layer circuit board, and further, a metal foil such as a copper foil is stacked, followed by heating and pressing. Then, a circuit pattern is formed on the metal foil.
 プリプレグを挟んで形成された回路パターン同士を電気的に接続するためには、プリプレグに、スルーホールやビア等の孔(以下スルーホール等という)を形成し、孔内部に導体膜を設ける必要がある。
 プリプレグには、複数のスルーホール等を形成するため、スルーホール等間の絶縁信頼性が求められる。特に、近年は、スルーホール等間の間隔が狭くなっており、これに伴い、スルーホール等間の絶縁信頼性を高くすることが大きな課題となっている。
In order to electrically connect circuit patterns formed between prepregs, it is necessary to form holes such as through holes and vias (hereinafter referred to as through holes) in the prepreg and provide a conductor film inside the holes. is there.
In order to form a plurality of through holes in the prepreg, insulation reliability between the through holes and the like is required. In particular, in recent years, the interval between through-holes and the like has become narrow, and accordingly, it has become a major issue to increase the insulation reliability between the through-holes and the like.
 スルーホール等間の絶縁信頼性が損なわれる原因としては、以下のようなことが考えられる。ガラスクロス中には、ホローと呼ばれる空隙が存在する。ホローが存在する箇所にスルーホール等を形成すると、スルーホール等とホローとが連通することとなる。このスルーホール等に導電膜を形成すると、導電膜を構成する金属イオンは、ガラスクロス中に存在するホローを介して絶縁樹脂層中に移動し、スルーホール等間の絶縁信頼性が低下する。
 そこで、特許文献1に開示されているように、ガラスクロス中のホローを低減させる方法が提案されている。
The following is considered as a cause of the deterioration of the insulation reliability between through-holes and the like. In the glass cloth, there are voids called hollows. When a through hole or the like is formed at a location where a hollow exists, the through hole and the hollow communicate with each other. When a conductive film is formed in the through hole or the like, the metal ions constituting the conductive film move into the insulating resin layer through a hollow existing in the glass cloth, and the insulation reliability between the through holes or the like is lowered.
Therefore, as disclosed in Patent Document 1, a method for reducing hollows in a glass cloth has been proposed.
特開2004-149574号公報JP 2004-149574 A
 しかしながら、近年、より高い絶縁信頼性が求められており、特許文献1に開示された方法では、このような要求を満たすことが難しかった。 However, in recent years, higher insulation reliability has been demanded, and it has been difficult for the method disclosed in Patent Document 1 to satisfy such requirements.
 本発明によれば、複数本の単繊維を束ねた糸を織ってなる繊維基材およびこの繊維基材に含浸された樹脂層を有する絶縁層と、
 前記絶縁層上に設けられた金属層とを備える積層板であって、
 前記絶縁層には、孔が形成され、
 前記孔の内壁には、前記繊維基材を構成する単繊維の端部が露出し、
 露出した前記単繊維の端部は、溶融変形し、拡径している積層板が提供される。
 ここで、本発明の積層板は、プリント配線板であってもよく、また、プリント配線板に含まれる内層回路板等であってもよい。
According to the present invention, a fiber base material formed by weaving a yarn in which a plurality of single fibers are bundled, and an insulating layer having a resin layer impregnated in the fiber base material,
A laminate comprising a metal layer provided on the insulating layer,
A hole is formed in the insulating layer,
On the inner wall of the hole, the end of the single fiber constituting the fiber base material is exposed,
The exposed end portion of the single fiber is melt-deformed and a laminated plate having an enlarged diameter is provided.
Here, the laminated board of the present invention may be a printed wiring board, or may be an inner circuit board included in the printed wiring board.
 この発明によれば、繊維基材の単繊維の端部が拡径するように、単繊維の端部が溶融変形している。そのため、単繊維の端部にホローがあったとしても、端部が拡径するように溶融変形することで、前記ホローは、つぶれることとなる。従って、孔内部に金属を含む導電性の膜を形成しても、金属イオンがホローを介して絶縁層内部に侵入してしまうことを抑制することができる。
 これに加え、孔の内壁に露出した単繊維の端部は拡径しているため、孔内部に金属を含む導電性の膜を形成した場合に、単繊維と樹脂層との間の隙間に金属イオンが入り込んでしまうことも防止できる。
According to this invention, the end part of the single fiber is melt-deformed so that the end part of the single fiber of the fiber base is expanded. Therefore, even if there is a hollow at the end of the single fiber, the hollow is crushed by melting and deforming so that the diameter of the end increases. Therefore, even if a conductive film containing metal is formed inside the hole, metal ions can be prevented from entering the insulating layer through the hollow.
In addition, since the end of the single fiber exposed on the inner wall of the hole is enlarged, when a conductive film containing metal is formed inside the hole, the gap between the single fiber and the resin layer is formed. It is also possible to prevent metal ions from entering.
 また、本発明では、上述した積層板の製造方法も提供できる。
 すなわち、複数本の単繊維を束ねた糸を織ってなる繊維基材およびこの繊維基材に含浸またはラミネートされた樹脂層を有する絶縁層と、前記絶縁層上に設けられた金属層とを備える積層板の製造方法であって、
 前記絶縁層に孔を形成する工程を含み、
 前記孔を形成する工程では、
 レーザにより、前記孔を形成するとともに、前記孔内部に露出する前記繊維基材の単繊維の端部を溶融変形させて、前記孔の前記内壁に露出する前記単繊維の端部を拡径する積層板の製造方法も提供できる。
Moreover, in this invention, the manufacturing method of the laminated board mentioned above can also be provided.
That is, a fiber base material formed by weaving a yarn in which a plurality of single fibers are bundled, an insulating layer having a resin layer impregnated or laminated on the fiber base material, and a metal layer provided on the insulating layer are provided. A method for manufacturing a laminate,
Forming a hole in the insulating layer,
In the step of forming the hole,
The hole is formed by a laser, and the end of the single fiber of the fiber base exposed in the hole is melted and deformed to expand the diameter of the end of the single fiber exposed on the inner wall of the hole. A method for producing a laminate can also be provided.
 本発明によれば、孔内部に金属を含む導電性の膜を形成した際の孔間の絶縁信頼性を高めることができる積層板および積層板の製造方法を提供することができる。 According to the present invention, it is possible to provide a laminate and a method for manufacturing the laminate that can increase the insulation reliability between holes when a conductive film containing a metal is formed inside the holes.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明の一実施形態にかかる積層板を示す断面図である。 積層板の要部を示す断面図である。 積層板の要部を示す断面図である。 積層板の製造工程を示す断面図である。 積層板の製造工程を示す断面図である。 積層板の製造工程を示す断面図である。 積層板の製造工程を示す断面図である。 積層板の製造工程を示す断面図である。 製造装置を示す図である。 実施例の結果を示す図である。
The above-described object and other objects, features, and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.
It is sectional drawing which shows the laminated board concerning one Embodiment of this invention. It is sectional drawing which shows the principal part of a laminated board. It is sectional drawing which shows the principal part of a laminated board. It is sectional drawing which shows the manufacturing process of a laminated board. It is sectional drawing which shows the manufacturing process of a laminated board. It is sectional drawing which shows the manufacturing process of a laminated board. It is sectional drawing which shows the manufacturing process of a laminated board. It is sectional drawing which shows the manufacturing process of a laminated board. It is a figure which shows a manufacturing apparatus. It is a figure which shows the result of an Example.
 以下、本発明の実施形態を図面に基づいて説明する。
 図1から図9を参照して、本実施形態の概要について説明する。
 本実施形態の積層板1は、プリント配線板である。
 このプリント配線板1は、図1~3に示すように、単繊維を織ってなる繊維基材110およびこの繊維基材110に含浸された樹脂層112を有する絶縁層11と、絶縁層11上に設けられた金属層12とを備える。絶縁層11には、孔113が形成され、孔113の内壁には、繊維基材110を構成する単繊維111の端部111Aが露出し、露出した前記単繊維111の端部111Aは、溶融変形し、拡径している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The outline of the present embodiment will be described with reference to FIGS.
The laminated board 1 of this embodiment is a printed wiring board.
As shown in FIGS. 1 to 3, the printed wiring board 1 includes a fiber base material 110 made of woven single fibers, an insulating layer 11 having a resin layer 112 impregnated in the fiber base material 110, and an insulating layer 11 on the insulating layer 11. And a metal layer 12 provided on the surface. A hole 113 is formed in the insulating layer 11, and an end portion 111 </ b> A of the single fiber 111 constituting the fiber base 110 is exposed on the inner wall of the hole 113, and the exposed end portion 111 </ b> A of the single fiber 111 is melted. Deformed and expanded in diameter.
 次に、本実施形態の積層板(プリント配線板)1について詳細に説明する。
 このプリント配線板1は、図1に示すように、内層回路板10と、この内層回路板10の表裏面にそれぞれ設けられた層間絶縁層(ビルドアップ層)20と、層間絶縁層20上に設けられた金属層30とを備える。
 内層回路板10は、前述した絶縁層(コア層)11と、この絶縁層11の表裏面に設けられた金属層12とを備える。
 絶縁層11は、図2に示すように、繊維基材110と、繊維基材110に含浸された樹脂層112とを備える。なお、ここでは、いわゆるプリプレグ1層で構成される絶縁層11となっているが、これに限らず、プリプレグを複数層積層して絶縁層11を構成してもよい。絶縁層11の厚みは、通常、10μm以上、600μm以下である。
 繊維基材110としては、とくに限定されないが、例えば、ガラス繊維、アラミド、ポリエステル、芳香族ポリエステル、フッ素樹脂等のいずれかの合成繊維、カーボン繊維、鉱物繊維等のいずれかの単繊維を束ねた糸を織ってなる繊維織布が挙げられる。中でも、低熱膨張性、高剛性であり、寸法安定性に優れることから、ガラス繊維からなるガラス繊維織布(ガラスクロス)が好ましい。
Next, the laminated board (printed wiring board) 1 of this embodiment will be described in detail.
As shown in FIG. 1, the printed wiring board 1 includes an inner layer circuit board 10, an interlayer insulating layer (build-up layer) 20 provided on each of the front and back surfaces of the inner layer circuit board 10, and an interlayer insulating layer 20. And a provided metal layer 30.
The inner layer circuit board 10 includes the above-described insulating layer (core layer) 11 and a metal layer 12 provided on the front and back surfaces of the insulating layer 11.
As shown in FIG. 2, the insulating layer 11 includes a fiber base 110 and a resin layer 112 impregnated in the fiber base 110. Here, the insulating layer 11 is constituted by a so-called single prepreg layer. However, the present invention is not limited to this, and the insulating layer 11 may be formed by laminating a plurality of prepregs. The thickness of the insulating layer 11 is usually 10 μm or more and 600 μm or less.
Although it does not specifically limit as the fiber base material 110, For example, any synthetic fiber, such as glass fiber, aramid, polyester, aromatic polyester, a fluororesin, or any single fiber, such as carbon fiber and a mineral fiber, was bundled A fiber woven fabric formed by weaving yarn is mentioned. Among them, a glass fiber woven fabric (glass cloth) made of glass fibers is preferable because of its low thermal expansion, high rigidity, and excellent dimensional stability.
 ガラスクロスを構成するガラスは、例えばEガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、UTガラス、Lガラス、Hガラス、石英ガラスなどが挙げられる。これらのガラスを1種以上使用することができる。中でも石英ガラスが特に好ましい。石英ガラスのガラスクロスを使用することで、孔113内部に露出する端部111Aを溶融変形させやすくすることができる。これに加え、絶縁層11の熱膨張係数を小さくすることができる。
 ここで、石英ガラスのガラスクロスとは、SiOを99.9wt%以上含むものをいう。
 繊維基材110は、前述した材料から構成される複数本の単繊維111を束ねた糸(たて糸とよこ糸)を、織り込んだものである。たとえば、繊維基材110は、たて糸とよこ糸を平織りして構成される。
 糸1本あたりの単繊維の本数は、特に限定されないが、20本以上が好ましい。また、たて糸、よこ糸の打ち込み本数は、特に限定されないが、たとえば、たて糸40本以上/25mm、よこ糸30本以上/25mmであることが好ましい。さらに、単繊維の径(樹脂層112中の部分)は、3~9μmであることが好ましい。
Examples of the glass constituting the glass cloth include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, UT glass, L glass, H glass, and quartz glass. One or more of these glasses can be used. Of these, quartz glass is particularly preferable. By using a glass cloth made of quartz glass, the end 111A exposed inside the hole 113 can be easily melted and deformed. In addition to this, the thermal expansion coefficient of the insulating layer 11 can be reduced.
Here, the glass cloth of quartz glass means that containing 99.9 wt% or more of SiO 2 .
The fiber base material 110 is obtained by weaving a yarn (warp yarn and weft yarn) obtained by bundling a plurality of single fibers 111 made of the materials described above. For example, the fiber base 110 is configured by plain weaving warp and weft.
The number of single fibers per yarn is not particularly limited, but is preferably 20 or more. Further, the number of warp yarns and weft yarns to be driven is not particularly limited, but for example, warp yarns of 40 or more / 25 mm and weft yarns of 30 or more / 25 mm are preferable. Further, the diameter of the single fiber (portion in the resin layer 112) is preferably 3 to 9 μm.
 樹脂層112は、熱硬化性であり、熱硬化性樹脂を含む。この熱硬化性樹脂としては、特に限定されないが、たとえば、エポキシ樹脂、メラミン樹脂、ユリア樹脂、シアネート樹脂、フェノール樹脂、ビスマレイミド化合物、ベンゾオキサジン樹脂等のいずれか1種以上を使用できる。なかでも、エポキシ樹脂またはシアネート樹脂が好ましい。
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ナフチレンエーテル型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂などのナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂などのエポキシ樹脂などが挙げられる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。それらのプレポリマーを併用してもよい。
 シアネート樹脂の種類としては、とくに限定されないが、例えばノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂などのビスフェノール型シアネート樹脂、ナフタレン型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂、フルオレン型シアネート樹脂などを挙げることができる。これらの中でも、フェノールノボラック型シアネート樹脂が低熱膨張性の点から好ましい。また、更に他のシアネート樹脂を1種類あるいは2種類以上併用したりすることもできる。それらのプレポリマーを併用してもよい。
The resin layer 112 is thermosetting and contains a thermosetting resin. Although it does not specifically limit as this thermosetting resin, For example, any 1 or more types, such as an epoxy resin, a melamine resin, a urea resin, cyanate resin, a phenol resin, a bismaleimide compound, a benzoxazine resin, can be used. Among these, an epoxy resin or a cyanate resin is preferable.
Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z type epoxy resin. Bisphenol type epoxy resin, phenol novolak type epoxy resin, novolac type epoxy resin such as cresol novolak type epoxy resin, biphenyl type epoxy resin, arylalkylene type epoxy resin such as phenol aralkyl type epoxy resin having biphenylene skeleton, naphthol type epoxy resin, Naphthalenediol type epoxy resin, bifunctional or tetrafunctional epoxy type naphthalene resin, naphthylene ether type epoxy resin, binaphthyl type epoxy resin Naphthalene type epoxy resin such as xylene resin, naphthalene aralkyl type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene type epoxy resin, containing triazine skeleton Examples thereof include epoxy resins such as epoxy resins. One of these can be used alone, or two or more can be used in combination. Those prepolymers may be used in combination.
The type of cyanate resin is not particularly limited. For example, bisphenol type cyanate resin such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin, naphthalene type cyanate resin, Examples thereof include a cyclopentadiene type cyanate resin and a fluorene type cyanate resin. Among these, phenol novolac type cyanate resin is preferable from the viewpoint of low thermal expansion. Furthermore, other cyanate resins can be used alone or in combination of two or more. Those prepolymers may be used in combination.
 樹脂層112中の熱硬化性樹脂の含有量は、とくに限定されないが、樹脂層112全体の20質量%以上80質量%以下であることが好ましい。さらに好ましくは30質量%以上70質量%以下である。また、液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂などの液状のエポキシ樹脂を併用すると、繊維基材110への含浸性を向上させることができるため好ましい。また、固形のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂を併用すると、導体への密着性を向上させることができる。 The content of the thermosetting resin in the resin layer 112 is not particularly limited, but is preferably 20% by mass or more and 80% by mass or less of the entire resin layer 112. More preferably, it is 30 mass% or more and 70 mass% or less. In addition, it is preferable to use a liquid epoxy resin such as a liquid bisphenol A type epoxy resin or a bisphenol F type epoxy resin because the impregnation property to the fiber base material 110 can be improved. Moreover, when solid bisphenol A type epoxy resin and bisphenol F type epoxy resin are used in combination, adhesion to the conductor can be improved.
 また、樹脂層112は、充填材を含んでいてもよい。充填材は、無機充填材、有機充填材のいずれであってもよい。
 無機充填材としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカなどの酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物、チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩などを挙げることができる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。
The resin layer 112 may contain a filler. The filler may be either an inorganic filler or an organic filler.
Examples of inorganic fillers include silicates such as talc, calcined clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, boehmite, silica and fused silica, calcium carbonate, magnesium carbonate and hydrotalcite. Carbonates such as, hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, Examples thereof include borates such as calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanates such as strontium titanate and barium titanate. One of these can be used alone, or two or more can be used in combination.
 これらの中でも、とくにシリカが好ましく、溶融シリカ(とくに球状溶融シリカ)が低熱膨張性に優れる点で好ましい。その形状は破砕状、球状があるが、繊維基材への含浸性を確保するために熱硬化性樹脂組成物の溶融粘度を下げるには球状シリカを使うなど、その目的にあわせた使用方法が採用される。
 一方で、有機充填材としては、フッ素樹脂類,アラミド樹脂繊維、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子、シリコーン粒子などが挙げられる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。
 樹脂層112中の充填材の含有量は、20質量%以上、80質量%以下である。
Among these, silica is particularly preferable, and fused silica (especially spherical fused silica) is preferable in terms of excellent low thermal expansion. Its shape is crushed and spherical, but in order to reduce the melt viscosity of the thermosetting resin composition in order to ensure the impregnation of the fiber base material, there is a usage method that suits its purpose, such as using spherical silica. Adopted.
On the other hand, examples of the organic filler include fluororesins, aramid resin fibers, core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, acrylic rubber particles, and silicone particles. One of these can be used alone, or two or more can be used in combination.
Content of the filler in the resin layer 112 is 20 mass% or more and 80 mass% or less.
 さらに、樹脂層112を構成する樹脂組成物は、カップリング剤を含むことが好ましい。カップリング剤は、熱硬化性樹脂と、充填材との界面の濡れ性を向上させることにより、繊維基材110に対して熱硬化性樹脂および充填材を均一に定着させ、耐熱性、とくに吸湿後の半田耐熱性を改良することができる。 Furthermore, the resin composition constituting the resin layer 112 preferably contains a coupling agent. The coupling agent improves the wettability of the interface between the thermosetting resin and the filler, thereby uniformly fixing the thermosetting resin and the filler to the fiber base 110, and has heat resistance, particularly moisture absorption. Later solder heat resistance can be improved.
 カップリング剤としては、通常用いられるものなら何でも使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。これにより、充填材の界面との濡れ性を高くすることができ、それによって耐熱性をより向上させることできる。 Any coupling agent can be used as long as it is usually used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an amino silane coupling agent, a titanate coupling agent, and a silicone oil type coupling agent. It is preferable to use one or more coupling agents selected from among the above. Thereby, the wettability with the interface of a filler can be made high, and thereby heat resistance can be improved more.
 熱硬化性樹脂組成物は、さらにフェノール系硬化剤を使用することができる。フェノール系硬化剤としてはフェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、ザイロック型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類など公知慣用のものを単独あるいは2種以上組み合わせて使用することができる。 The phenolic curing agent can be further used for the thermosetting resin composition. As the phenolic curing agent, known or commonly used phenolic novolac resins, alkylphenol novolac resins, bisphenol A novolac resins, dicyclopentadiene type phenol resins, zyloc type phenol resins, terpene modified phenol resins, polyvinylphenols, etc. Can be used in combination.
 熱硬化性樹脂組成物には、必要に応じて硬化触媒を用いてもよい。硬化触媒としては公知の物を用いることが出来る。例えばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾールなどのイミダゾール類、トリフェニルホスフィン、トリ-p-トリルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィン・トリフェニルボラン、1,2-ビス-(ジフェニルホスフィノ)エタンなどの有機リン化合物、フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸など、またはこの混合物が挙げられる。硬化触媒として、これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用したりすることもできる。 A curing catalyst may be used in the thermosetting resin composition as necessary. A well-known thing can be used as a curing catalyst. For example, organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), triethylamine, tributylamine, diazabicyclo [2,2 , 2] tertiary amines such as octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl Imidazoles such as -4-methyl-5-hydroxyimidazole and 2-phenyl-4,5-dihydroxyimidazole, triphenylphosphine, tri-p-tolylphosphine, tetraphenylphosphonium tetraphenylborate, triphenylphosphine Organic phosphorus compounds such as chlorotriphenylborane and 1,2-bis- (diphenylphosphino) ethane, phenolic compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid, salicylic acid and p-toluenesulfonic acid Or a mixture thereof. As the curing catalyst, one kind including these derivatives can be used alone, or two or more kinds including these derivatives can be used in combination.
 硬化触媒の含有量は、とくに限定されないが、樹脂層112を構成する組成物全体の0.05質量%以上が好ましく、とくに0.2質量%以上が好ましい。 The content of the curing catalyst is not particularly limited, but is preferably 0.05% by mass or more, particularly preferably 0.2% by mass or more, based on the entire composition constituting the resin layer 112.
 樹脂層112は、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリスチレン樹脂などの熱可塑性樹脂、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体などのポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマーなどの熱可塑性エラストマー、ポリブタジエン、エポキシ変性ポリブタジエン、アクリル変性ポリブタジエン、メタクリル変性ポリブタジエンなどのジエン系エラストマーを併用してもよい。これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。
 中でも、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂等の耐熱性の高分子樹脂が好ましい。これによって、プリプレグの厚み均一性に優れ、配線基板として、耐熱性、および微細配線の絶縁性に優れる。これに加え、この絶縁層を構成する組成物には、必要に応じて、顔料、染料、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤などの上記成分以外の添加物を添加してもよい。
 このような樹脂層112を構成する樹脂組成物をワニス状とし、繊維基材110に含浸させることで、絶縁層11を得ることができる。なお、前述した樹脂組成物をフィルム状とし、加熱して繊維基材110にラミネートし、繊維基材110に含浸させてもよい。
The resin layer 112 is made of thermoplastic resin such as phenoxy resin, polyimide resin, polyamideimide resin, polyamide resin, polyphenylene oxide resin, polyethersulfone resin, polyester resin, polyethylene resin, polystyrene resin, styrene-butadiene copolymer, styrene- Polystyrene thermoplastic elastomers such as isoprene copolymers, thermoplastic elastomers such as polyolefin thermoplastic elastomers, polyamide elastomers, polyester elastomers, and diene elastomers such as polybutadiene, epoxy modified polybutadiene, acrylic modified polybutadiene, and methacryl modified polybutadiene. You may use together. One of these can be used alone, or two or more can be used in combination.
Of these, heat-resistant polymer resins such as phenoxy resin, polyimide resin, polyamideimide resin, polyamide resin, polyphenylene oxide resin, and polyethersulfone resin are preferable. Thereby, the thickness uniformity of the prepreg is excellent, and as a wiring board, the heat resistance and the insulating property of the fine wiring are excellent. In addition to this, the composition constituting this insulating layer includes, as necessary, pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, ion scavengers, and the like. You may add additives other than the said component.
The insulating layer 11 can be obtained by making the resin composition constituting the resin layer 112 into a varnish and impregnating the fiber substrate 110. The resin composition described above may be formed into a film, heated and laminated to the fiber base 110, and impregnated into the fiber base 110.
 金属層12は、内層回路層であり、図1に示すように、複数の金属層121~123で構成されている。金属層121~123はこの順で積層されている。
 金属層12を構成する金属は、たとえば銅である。
 ここで、内層回路板10には、孔113が形成されている。この孔113は、図1および図3に示すように、絶縁層11および絶縁層11上に設けられた金属層121を貫通している。図3は、図1の孔113の周辺の拡大図であり、金属層122,123は省略している。また、孔113は、複数形成されており、たとえば、孔113の間隔は100μm以上、500μm以下である。また、孔113の径は、たとえば、50μm以上、150μm以下である。なかでも、単繊維の端部111Aを溶融変形させるという観点からは、80μm以上、120μm以下であることが好ましい。
 この孔113は、内層回路板10の厚さ方向に対して傾斜する内面を有する形状(テーパー形状)、たとえば、孔113の一方の開口よりも他方の開口の径が小さく、一方の開口から他方の開口に向けて径が連続的に縮径する形状であってもよく、また、一方の開口側から、他方の開口側に向けて径が縮径した後、他方の開口側に向けて径が広径するような形状であってもよい。この場合には、最大および最小の開口径が上述した孔113の径の範囲内であることが好ましい。
The metal layer 12 is an inner circuit layer, and is composed of a plurality of metal layers 121 to 123 as shown in FIG. The metal layers 121 to 123 are laminated in this order.
The metal constituting the metal layer 12 is, for example, copper.
Here, a hole 113 is formed in the inner layer circuit board 10. As shown in FIGS. 1 and 3, the hole 113 passes through the insulating layer 11 and the metal layer 121 provided on the insulating layer 11. FIG. 3 is an enlarged view of the periphery of the hole 113 in FIG. 1, and the metal layers 122 and 123 are omitted. A plurality of holes 113 are formed. For example, the interval between the holes 113 is not less than 100 μm and not more than 500 μm. The diameter of the hole 113 is, for example, 50 μm or more and 150 μm or less. Especially, it is preferable that it is 80 micrometers or more and 120 micrometers or less from a viewpoint of melt-deforming the edge part 111A of a single fiber.
The hole 113 has a shape (tapered shape) having an inner surface that is inclined with respect to the thickness direction of the inner circuit board 10, for example, the diameter of the other opening is smaller than one opening of the hole 113. The diameter may be continuously reduced toward the opening of the other, and after the diameter is reduced from one opening side toward the other opening side, the diameter is reduced toward the other opening side. The shape may have a wide diameter. In this case, it is preferable that the maximum and minimum opening diameters are within the range of the diameter of the hole 113 described above.
 孔113の内壁には、繊維基材110の複数の単繊維111の端部111Aが露出している。各端部111Aは、単繊維111の樹脂層112中に埋め込まれた部分に比べ径が大きくなっており、拡径している。より詳細に説明すると、端部111Aは、単繊維111の端部が溶融変形した後、固化したものである。端部111Aは、孔113の内壁に沿って、延在して、広がっており、扁平形状となっている。端部111Aは、孔113の内壁に直接接触しており、たとえば、略円形状となっている。 The ends 111 </ b> A of the plurality of single fibers 111 of the fiber base 110 are exposed on the inner wall of the hole 113. Each end 111 </ b> A has a larger diameter than the portion embedded in the resin layer 112 of the single fiber 111, and has a larger diameter. More specifically, the end 111A is obtained by solidifying the end of the single fiber 111 after being melted and deformed. The end portion 111 </ b> A extends along the inner wall of the hole 113 and expands to have a flat shape. The end 111A is in direct contact with the inner wall of the hole 113 and has, for example, a substantially circular shape.
 このように、端部111Aが溶融変形し、拡径する、すなわち、端部111Aがつぶれた形状となることで、端部111Aにホローがあったとしても、このホローをつぶすことができる。そのため、孔113内部に金属層122,123を形成しても、金属イオンがホローを介して絶縁層11内部に侵入してしまうことを抑制することができる。これにより、孔113間の絶縁信頼性を高めることができる。
 すなわち、端部111Aには、ホローは存在しない。言い換えると、単繊維111の内部にホロー(空隙)が存在しても、このホローに、連通するホローは端部111Aには形成されていない。
 また、背景技術の欄で説明したが、従来は、絶縁信頼性向上のためには、繊維基材を構成する単繊維中のホローの数を減らすことが考えられていた。そのため、特殊な製造方法により、繊維基材を製造する必要があった。
 これに対し、本実施形態では、孔113に露出する単繊維111の端部111Aを溶融変形させればよいので、特殊な製造方法で製造した繊維基材を使用せずとも、絶縁信頼性を向上させることができる。これにより、プリント配線板にかかるコストを低減させることが可能となる。
Thus, even if the end 111A has a hollow, the end 111A can be crushed because the end 111A is melt-deformed and expanded in diameter, that is, the end 111A is crushed. Therefore, even if the metal layers 122 and 123 are formed inside the hole 113, it is possible to suppress the metal ions from entering the inside of the insulating layer 11 through the hollow. Thereby, the insulation reliability between the holes 113 can be improved.
That is, there is no hollow at the end 111A. In other words, even if a hollow (gap) is present inside the single fiber 111, a hollow communicating with the hollow is not formed at the end 111A.
As described in the background art section, conventionally, in order to improve the insulation reliability, it has been considered to reduce the number of hollows in the single fiber constituting the fiber base material. Therefore, it was necessary to manufacture the fiber base material by a special manufacturing method.
On the other hand, in this embodiment, since the end portion 111A of the single fiber 111 exposed in the hole 113 only needs to be melted and deformed, the insulation reliability can be improved without using a fiber substrate manufactured by a special manufacturing method. Can be improved. Thereby, the cost concerning a printed wiring board can be reduced.
 さらに、端部111Aは、単繊維111の樹脂層112中に埋め込まれた部分に比べ径が大きくなっているので、単繊維111の樹脂層112に埋め込まれた部分と樹脂層112との境界部分に金属イオンが入りにくくなる。これによっても、孔113間の絶縁信頼性(耐CAF(Conductive Anodic Filament))を高めることができる。
 なお、図3(A)に示すように、隣接する単繊維111の端部111A同士が接触していなくてもよく、また、図3(B)に示すように、隣接する単繊維111の端部111A同士が融着して、接続されていてもよい。図3(B)に示すように、隣接する単繊維111の端部111A同士が融着することで、単繊維111の樹脂層112に埋め込まれた部分と樹脂層112との境界部分に金属イオンが入ってしまうことを、より確実に防止できる。このような観点からは、特に、孔113内部に露出する単繊維の端部111A同士がすべて、融着していることが好ましい。
 また、隣接する単繊維111の端部111A同士が融着することで、繊維基材110の強度を高めることも可能となる。
 図3(B)では孔113の貫通方向に沿って隣接する単繊維111の端部111A同士が融着しているがこれに加えて、孔113の貫通方向と直交する方向に隣接する単繊維111の端部111A同士も融着することがより好ましい。後述する実施例においては、このような形態となっている。
 なお、端部111Aの孔113内壁からの突出寸法S1(積層板1の積層方向と直交する方向の厚さ)は、たとえば、2~5μmである。
Furthermore, since the diameter of the end portion 111A is larger than that of the portion embedded in the resin layer 112 of the single fiber 111, the boundary portion between the portion embedded in the resin layer 112 of the single fiber 111 and the resin layer 112 It becomes difficult for metal ions to enter. This also increases the insulation reliability between the holes 113 (CAF (Conductive Anodic Filament)).
In addition, as shown to FIG. 3 (A), the edge part 111A of the adjacent single fiber 111 does not need to contact, and as shown to FIG. 3 (B), the edge of the adjacent single fiber 111 is sufficient. The portions 111A may be fused and connected. As shown in FIG. 3B, the end portions 111A of the adjacent single fibers 111 are fused together, so that metal ions are formed at the boundary portion between the portion embedded in the resin layer 112 of the single fibers 111 and the resin layer 112. Can be more reliably prevented from entering. From such a viewpoint, it is particularly preferable that the end portions 111A of the single fibers exposed inside the hole 113 are all fused together.
Moreover, it becomes possible to raise the intensity | strength of the fiber base material 110 because the edge part 111A of the adjacent single fiber 111 fuse | melts.
In FIG. 3 (B), the end portions 111A of the single fibers 111 adjacent to each other along the penetration direction of the hole 113 are fused together. In addition, the single fibers adjacent to each other in the direction orthogonal to the penetration direction of the hole 113 are used. More preferably, the end portions 111A of 111 are also fused. In the embodiment described later, this is the form.
The protruding dimension S1 from the inner wall of the hole 113 of the end 111A (thickness in the direction orthogonal to the laminating direction of the laminated plate 1) is, for example, 2 to 5 μm.
 なお、図1に示すように、孔113の内壁を覆うように、金属層122、123が設けられている。金属層122,123は、孔113の内壁を覆うとともに、孔113の内壁に露出した単繊維111の端部111Aをも被覆している。本実施形態では、金属層122,123は、孔113の内壁に露出した単繊維111の端部111Aの全面を被覆している。孔113の内壁に設けられた金属層122,123は、絶縁層11の表面に設けられた回路層を構成する金属層121~123と、絶縁層11の裏面に設けられた回路層を構成する金属層121~123の導通をとっている。 As shown in FIG. 1, metal layers 122 and 123 are provided so as to cover the inner wall of the hole 113. The metal layers 122 and 123 cover the inner wall of the hole 113 and also cover the end portion 111 </ b> A of the single fiber 111 exposed on the inner wall of the hole 113. In the present embodiment, the metal layers 122 and 123 cover the entire surface of the end portion 111 </ b> A of the single fiber 111 exposed on the inner wall of the hole 113. The metal layers 122 and 123 provided on the inner wall of the hole 113 constitute the metal layers 121 to 123 constituting the circuit layer provided on the surface of the insulating layer 11 and the circuit layer provided on the back surface of the insulating layer 11. The metal layers 121 to 123 are electrically connected.
 前述したように、内層回路板10の表裏面には、層間絶縁層20が設けられている。この層間絶縁層20は、内層回路板10の樹脂層112と同様の樹脂組成物で構成されている。ただし、本実施形態では、層間絶縁層20は、繊維基材を含まず、樹脂層のみからなる。
 層間絶縁層20は、内層回路板10の金属層12を被覆している。
 金属層30は、各層間絶縁層20上に設けられた外層の回路層である。金属層30は、たとえば、金属層31~33が積層されたものである。金属層30を構成する金属は、たとえば銅である。
 層間絶縁層20には、孔21が形成されている。この孔21の底面には、金属層123が露出している。孔21内部には、金属層33と一体化した導電体(ビア34)が埋め込まれている。ビア34は、金属層123に接触し、金属層12と、金属層30との導通をとっている。
As described above, the interlayer insulating layer 20 is provided on the front and back surfaces of the inner layer circuit board 10. The interlayer insulating layer 20 is made of the same resin composition as the resin layer 112 of the inner circuit board 10. However, in this embodiment, the interlayer insulation layer 20 does not include a fiber base material and is composed only of a resin layer.
The interlayer insulating layer 20 covers the metal layer 12 of the inner layer circuit board 10.
The metal layer 30 is an outer circuit layer provided on each interlayer insulating layer 20. The metal layer 30 is, for example, a laminate of metal layers 31 to 33. The metal constituting the metal layer 30 is, for example, copper.
A hole 21 is formed in the interlayer insulating layer 20. The metal layer 123 is exposed on the bottom surface of the hole 21. A conductor (via 34) integrated with the metal layer 33 is embedded in the hole 21. The via 34 is in contact with the metal layer 123 and establishes conduction between the metal layer 12 and the metal layer 30.
 次に、このようなプリント配線板1の製造方法について説明する。
 はじめに、プリント配線板1の製造方法の概要について説明する。
 本実施形態のプリント配線板1の製造方法は、絶縁層11に孔113を形成する工程を含む。孔113を形成する前記工程では、
 レーザにより、前記孔113を形成するとともに、前記孔113内部に露出する繊維基材110の単繊維111の端部を溶融変形させて、孔113の内壁に露出する単繊維111の端部を拡径する。
 次に、図4~図7を参照して、プリント配線板1の製造方法について、詳細に説明する。
 はじめに、図4(A)に示すように、絶縁層11と、この絶縁層11の表裏面に設けられた金属層121と、金属層121を被覆するキャリア箔Aとを有するキャリア箔付き金属張積層板40を用意する。ここで、金属層121は、たとえば、銅箔であり、たとえば、1μm~5μmの厚みである。
 次に、図4(B)に示すように、キャリア箔Aを金属層121からはがし、金属張積層板400とする。
 その後、図4(C)に示すように、金属層121、絶縁層11を貫通する孔113を形成する。このとき、炭酸ガスやエキシマ等の気体レーザやYAG等の固体レーザ等のレーザにより、孔113を形成する。なかでも、単繊維111の端部を溶融変形させるという観点からは、炭酸ガスレーザを使用することが好ましい。
 この孔113を形成する装置としては、図9に示す装置5を使用できる。この装置5は、金属張積層板400を保持する加工テーブル51と、加工テーブル51をレーザ照射から保護する保護材52と、加工テーブル51と金属張積層板400との間に空間50を形成するためのスペーサ部材53と、金属張積層板400をスペーサ部材53に対して押し付けて固定する押付部材54と、を有している。
Next, a method for manufacturing such a printed wiring board 1 will be described.
First, an outline of a method for manufacturing the printed wiring board 1 will be described.
The method for manufacturing the printed wiring board 1 of this embodiment includes a step of forming the hole 113 in the insulating layer 11. In the step of forming the hole 113,
The hole 113 is formed by a laser, and the end of the single fiber 111 of the fiber base 110 exposed inside the hole 113 is melted and deformed to widen the end of the single fiber 111 exposed on the inner wall of the hole 113. Diameter.
Next, a method for manufacturing the printed wiring board 1 will be described in detail with reference to FIGS.
First, as shown in FIG. 4A, a metal foil with a carrier foil having an insulating layer 11, a metal layer 121 provided on the front and back surfaces of the insulating layer 11, and a carrier foil A covering the metal layer 121. A laminated plate 40 is prepared. Here, the metal layer 121 is, for example, a copper foil, and has a thickness of 1 μm to 5 μm, for example.
Next, as shown in FIG. 4B, the carrier foil A is peeled off from the metal layer 121 to obtain a metal-clad laminate 400.
After that, as shown in FIG. 4C, a hole 113 penetrating the metal layer 121 and the insulating layer 11 is formed. At this time, the hole 113 is formed by a laser such as a gas laser such as carbon dioxide or excimer, or a solid laser such as YAG. Among these, from the viewpoint of melting and deforming the end portion of the single fiber 111, it is preferable to use a carbon dioxide laser.
As a device for forming the hole 113, the device 5 shown in FIG. 9 can be used. This apparatus 5 forms a space 50 between the processing table 51 that holds the metal-clad laminate 400, a protective material 52 that protects the processing table 51 from laser irradiation, and the processing table 51 and the metal-clad laminate 400. And a pressing member 54 that presses and fixes the metal-clad laminate 400 against the spacer member 53.
 加工テーブル51は、その上面が平坦に形成されている。加工テーブル51には、複数の吸着孔511が、該加工テーブル51を表裏に貫通して形成されている。これら吸着孔511の下端部は、図示しない吸引源(例えば真空ポンプ)と連通している。この吸引源によって吸引を行うことにより、吸着孔511を介して、保護材52、スペーサ部材53、金属張積層板400及び押付部材54を加工テーブル51に対して吸着保持できるようになっている。 The processing table 51 has a flat upper surface. A plurality of suction holes 511 are formed in the processing table 51 so as to penetrate the processing table 51 on the front and back sides. The lower ends of these suction holes 511 communicate with a suction source (not shown) (for example, a vacuum pump). By performing suction with this suction source, the protective material 52, the spacer member 53, the metal-clad laminate 400 and the pressing member 54 can be sucked and held with respect to the processing table 51 through the suction holes 511.
 スペーサ部材53は、ある程度の厚みを有する平板状の部材である。開口部532が、スペーサ部材53の表裏を貫通して形成されている。
 このため、図9に示すように、スペーサ部材53を介して加工テーブル51上に金属張積層板400を保持することによって、加工テーブル51と、金属張積層板400との間に、金属張積層板400の裏面に面する空間を形成することができる。
The spacer member 53 is a flat plate member having a certain thickness. An opening 532 is formed through the front and back of the spacer member 53.
For this reason, as shown in FIG. 9, the metal-clad laminate 400 is held between the process table 51 and the metal-clad laminate 400 by holding the metal-clad laminate 400 on the process table 51 via the spacer member 53. A space facing the back surface of the plate 400 can be formed.
 このように空間を形成した状態で、金属張積層板400にレーザを照射して貫通孔を形成することにより、レーザ照射により発生する熱を空間を介して容易に逃がすことができ、金属張積層板400の損傷を抑制することができる。これにより、孔113内部に露出した単繊維の端部に過剰な熱エネルギーがかかり、単繊維の端部が焼き切れてしまうことが防止できる。すなわち、単繊維の端部を溶融変形させることができる。 With the space formed in this way, the metal-clad laminate 400 is irradiated with laser to form a through hole, so that the heat generated by the laser irradiation can be easily released through the space. Damage to the plate 400 can be suppressed. Accordingly, it is possible to prevent excessive heat energy from being applied to the end portion of the single fiber exposed inside the hole 113 and burning the end portion of the single fiber. That is, the end of the single fiber can be melted and deformed.
 スペーサ部材53には、開口部532の他に、該スペーサ部材53を通して金属張積層板400又は押付部材54を吸着するための貫通孔531が、該スペーサ部材53の表裏を貫通して形成されている。 In the spacer member 53, in addition to the opening 532, a through-hole 531 for adsorbing the metal-clad laminate 400 or the pressing member 54 through the spacer member 53 is formed through the front and back of the spacer member 53. Yes.
 保護材52の材質は、加工テーブル51をレーザ照射から保護できるものであれば何でも良いが、耐久性などの面から、銅などの金属が好ましい。保護材52の厚さは、例えば、5μm以上35μm以下とすることができる。 The material of the protective material 52 may be anything as long as it can protect the processing table 51 from laser irradiation, but a metal such as copper is preferable in terms of durability. The thickness of the protective material 52 can be, for example, 5 μm or more and 35 μm or less.
 保護材52の上面は、粗化されていることが好ましい。上面が粗化面となっていることにより、上面にてレーザ光を散乱させることができる(レーザ光の反射率を低減することができる)。よって、上面からの反射光により金属張積層板400の裏面側が損傷してしまうことを抑制できる。 The upper surface of the protective material 52 is preferably roughened. Since the upper surface is a roughened surface, the laser light can be scattered on the upper surface (the reflectance of the laser light can be reduced). Therefore, it can suppress that the back surface side of the metal-clad laminated board 400 is damaged by the reflected light from an upper surface.
 押付部材54は、平板状の部材であり、開口部542が、押付部材54の表裏を貫通している。さらに、製造装置5は、レーザマスク55を有している。このレーザマスク55には、孔113と対応するレーザ通過孔(図示略)が形成されている。そして、図示しないレーザ光源から照射されたレーザ光を、レーザマスク55のレーザ透過孔及び押付部材54の開口部542を介して、金属張積層板400に照射することにより、孔113を形成することができる。
 この装置5を使用して、炭酸ガスレーザにより金属層121を貫通する孔を形成する。このとき、たとえば、パルス幅:3μs~15μs、エネルギー:5mJ以上20mJ以下、ショット数:1ショット以上、3ショット以下とする。その後、炭酸ガスレーザにより、金属層121を貫通する前記孔に連通するとともに、絶縁層11を貫通する孔を形成する。たとえば、パルス幅:3μs~100μs、エネルギー:3mJ以上10mJ以下、ショット数:1ショット以上15ショット以下とする。
 このように、レーザのパルス幅、エネルギー、ショット数を適宜設定するとともに、孔の径、絶縁層の厚みを適宜設定し、さらに、繊維基材の材料を適宜選定することで、孔113内部に露出した端部111Aを溶融変形し、拡径させることができる。
 なお、従来のプリント配線板においては、絶縁層に形成された孔の内部に露出した単繊維の端部は、溶融変形せず、拡径していなかった。従来は、単繊維の端部を溶融変形し、拡径することは想定されていなかったため、レーザにより孔を形成する際に、単繊維を焼き飛ばしていた。そのため、単繊維の端部は、樹脂層中の単繊維の部分と同じ径となっていた。
The pressing member 54 is a flat member, and the opening 542 passes through the front and back of the pressing member 54. Further, the manufacturing apparatus 5 has a laser mask 55. The laser mask 55 is formed with a laser passage hole (not shown) corresponding to the hole 113. The hole 113 is formed by irradiating the metal-clad laminate 400 with laser light irradiated from a laser light source (not shown) through the laser transmission hole of the laser mask 55 and the opening 542 of the pressing member 54. Can do.
Using this apparatus 5, a hole penetrating the metal layer 121 is formed by a carbon dioxide gas laser. At this time, for example, pulse width: 3 μs to 15 μs, energy: 5 mJ to 20 mJ, number of shots: 1 shot to 3 shots. Thereafter, a hole penetrating the insulating layer 11 is formed while communicating with the hole penetrating the metal layer 121 by a carbon dioxide laser. For example, pulse width: 3 μs to 100 μs, energy: 3 mJ to 10 mJ, number of shots: 1 shot to 15 shots.
As described above, the laser pulse width, energy, and number of shots are set as appropriate, the hole diameter and the insulating layer thickness are set as appropriate, and the material of the fiber base material is selected as appropriate. The exposed end portion 111A can be melt-deformed and expanded in diameter.
In the conventional printed wiring board, the end portion of the single fiber exposed inside the hole formed in the insulating layer was not melted and deformed, and the diameter was not enlarged. Conventionally, since it was not assumed that the end portion of the single fiber is melt-deformed and expanded in diameter, the single fiber was burned off when the hole was formed by the laser. Therefore, the end portion of the single fiber has the same diameter as the single fiber portion in the resin layer.
 その後、金属層121上に触媒核を付与する。本実施形態では、金属層121の全面上および孔113の内壁面上に触媒核を付与する。この触媒核としては、特に限定されないが、例えば、貴金属イオンやパラジウムコロイドを用いることができる。その後、この触媒核を核として無電解めっき層を形成するが、この無電解めっき処理前に、金属層121や孔113の表面上に対して、例えば薬液によるスミア除去等のデスミア処理を行っても良い。デスミア処理としては、特に限定されず、有機物分解作用を有する酸化剤溶液等を使用した湿式法、及び対象物となるものに直接酸化作用の強い活性種(プラズマ、ラジカル等)を照射して有機物残渣を除去するプラズマ法等の乾式法等の公知の方法を用いることができる。湿式法のデスミア処理としては、具体的には、樹脂表面の膨潤処理を施した後、アルカリ処理によりエッチングを行い、続いて中和処理を行う方法等が挙げられる。 Thereafter, catalyst nuclei are provided on the metal layer 121. In the present embodiment, catalyst nuclei are provided on the entire surface of the metal layer 121 and on the inner wall surface of the hole 113. The catalyst nucleus is not particularly limited. For example, a noble metal ion or palladium colloid can be used. Thereafter, an electroless plating layer is formed using the catalyst nucleus as a nucleus. Before the electroless plating process, a desmear process such as smear removal using a chemical solution is performed on the surface of the metal layer 121 or the hole 113. Also good. The desmear treatment is not particularly limited, and is a wet method using an oxidant solution having an organic substance decomposing action, and an organic substance by irradiating a target object with an active species (plasma, radical, etc.) having a strong oxidizing action directly. A known method such as a dry method such as a plasma method for removing the residue can be used. Specific examples of the wet desmear treatment include a method in which the resin surface is subjected to a swelling treatment, etched by an alkali treatment, and then subjected to a neutralization treatment.
 次いで、図4(D)に示すように、触媒核を付与した金属層121や孔113の内壁上に、無電解めっき処理により薄層の無電解めっき層である金属層122を形成する。この金属層122は、絶縁層11の表面側の金属層121と絶縁層11の裏面側の金属層121とを電気的に接続している。無電解めっきには、例えば、硫酸銅、ホルマリン、錯化剤、水酸化ナトリウム等を含むものを用いる事ができる。なお、無電解めっき後に、100~250℃の加熱処理を施し、めっき被膜を安定化させることが好ましい。120~180℃の加熱処理が酸化を抑制できる被膜を形成できる点で、特に好ましい。また、無電解めっき層の平均厚さは、次の電気めっきを行うことができる厚さであればよく、例えば、0.1~1μm程度で十分である。また、孔113の内部は、導電ペースト、又は絶縁ペーストを充填してもよいし、電気パターンめっきで充填してもよい。 Next, as shown in FIG. 4D, a metal layer 122 that is a thin electroless plating layer is formed on the inner wall of the metal layer 121 provided with catalyst nuclei and the hole 113 by electroless plating. The metal layer 122 electrically connects the metal layer 121 on the front surface side of the insulating layer 11 and the metal layer 121 on the back surface side of the insulating layer 11. For electroless plating, for example, one containing copper sulfate, formalin, complexing agent, sodium hydroxide or the like can be used. In addition, it is preferable to stabilize the plating film by performing a heat treatment at 100 to 250 ° C. after the electroless plating. A heat treatment at 120 to 180 ° C. is particularly preferable in that a film capable of suppressing oxidation can be formed. Further, the average thickness of the electroless plating layer may be a thickness that allows the next electroplating to be performed, and for example, about 0.1 to 1 μm is sufficient. Further, the inside of the hole 113 may be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
 次いで、図4(E)に示すように、金属層122上に所定の開口パターンを有するレジスト層Bを形成する。この開口パターンは、内層回路板の回路層のパターンに相当する。このため、レジスト層Bは金属層122上の非回路形成領域を覆うように設けられている。レジスト層Bとしては、特に限定されず、公知の材料を用いることができる。レジスト層Bを形成するには、例えば、金属層122上に感光性ドライフィルムを積層し、非回路形成領域を露光して光硬化させ、未露光部を現像液で溶解、除去する。なお、残存する硬化した感光性ドライフィルムが、レジスト層Bとなる。レジスト層Bの厚さは、その後めっきする導体(金属層123)の厚さと同程度かより厚い膜厚にするのが好適である。 Next, as shown in FIG. 4E, a resist layer B having a predetermined opening pattern is formed on the metal layer 122. This opening pattern corresponds to the circuit layer pattern of the inner layer circuit board. Therefore, the resist layer B is provided so as to cover the non-circuit formation region on the metal layer 122. The resist layer B is not particularly limited, and a known material can be used. In order to form the resist layer B, for example, a photosensitive dry film is laminated on the metal layer 122, the non-circuit formation region is exposed and photocured, and the unexposed portion is dissolved and removed with a developer. The remaining cured photosensitive dry film becomes the resist layer B. It is preferable that the thickness of the resist layer B be equal to or greater than the thickness of the conductor (metal layer 123) to be subsequently plated.
 次いで、図5(A)に示すように、少なくともレジスト層Bの開口パターン内部上に、電気めっき処理により金属層123を形成する。本実施の形態では、絶縁層11の上面、孔113の内壁及びその下面に亘って、連続して金属層123が設けられていてもよい。こうした電気めっきとしては、特に限定されないが、通常のプリント配線板で用いられる公知の方法を使用することができ、例えば、硫酸銅等のめっき液中に浸漬させた状態で、かかるめっき液に電流を流す等の方法を使用することができる。金属層123の厚さは、特に限定されないが、回路導体として使用できればよく、例えば、1~100μmの範囲であることが好ましく、5~50μmの範囲であることがより好ましい。金属層123は単層でもよく多層構造を有していてもよい。金属層123の材料としては、特に限定されないが、例えば、銅、銅合金、42合金、ニッケル、鉄、クロム、タングステン、金、半田などのいずれかを用いることができる、 Next, as shown in FIG. 5A, a metal layer 123 is formed at least on the inside of the opening pattern of the resist layer B by electroplating. In the present embodiment, the metal layer 123 may be provided continuously over the upper surface of the insulating layer 11, the inner wall of the hole 113, and the lower surface thereof. Such electroplating is not particularly limited, but a known method used in ordinary printed wiring boards can be used. For example, in a state where the plating solution is immersed in a plating solution such as copper sulfate, an electric current is supplied to the plating solution. A method such as flowing a stream can be used. The thickness of the metal layer 123 is not particularly limited as long as it can be used as a circuit conductor. For example, the thickness is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm. The metal layer 123 may be a single layer or may have a multilayer structure. Although it does not specifically limit as a material of the metal layer 123, For example, copper, copper alloy, 42 alloy, nickel, iron, chromium, tungsten, gold | metal | money, solder, etc. can be used,
 次いで、図5(B)に示すように、アルカリ性剥離液や硫酸又は市販のレジスト剥離液等を用いてレジスト層Bを除去する。 Next, as shown in FIG. 5B, the resist layer B is removed using an alkaline stripping solution, sulfuric acid, a commercially available resist stripping solution, or the like.
 次いで、図5(C)に示すように、金属層123が形成されている領域以外の金属層121,122を除去する。この金属層121,122を除去する手法は、例えば、ソフトエッチング(フラッシュエッチング)等を用いる。これにより、金属層121~123が積層して構成される導電回路のパターンを形成することができる。以上により、内層回路板10を得ることができる。 Next, as shown in FIG. 5C, the metal layers 121 and 122 other than the region where the metal layer 123 is formed are removed. As a method for removing the metal layers 121 and 122, for example, soft etching (flash etching) or the like is used. As a result, a conductive circuit pattern formed by laminating the metal layers 121 to 123 can be formed. Thus, the inner layer circuit board 10 can be obtained.
 次に、内層回路板10の金属層123に対して、粗化処理を施す。ここで、粗化処理とは、導体回路表面に薬液処理、およびプラズマ処理等を実施することを意味する。粗化処理としては、例えば、酸化還元を利用した黒化処理、または、硫酸-過酸化水素系の公知の粗化液を利用した薬液処理等を用いることができる。これにより、金属層123と、層間絶縁層20との密着性を向上させることができる。
 その後、図6(A)に示すように、内層回路板10の表面側および裏面側に、それぞれ、層間絶縁層20、及びキャリア箔層C付き金属層31(キャリア箔付き極薄銅箔)を配置する。次いで、図6(B)に示すように、これらを重ねた積層体を加熱加圧処理することにより、多層積層板を形成する。続いて、図6(C)に示すように、キャリア箔層Cを剥離除去する。
Next, a roughening process is performed on the metal layer 123 of the inner layer circuit board 10. Here, the roughening treatment means performing a chemical treatment, a plasma treatment, or the like on the surface of the conductor circuit. As the roughening treatment, for example, a blackening treatment using oxidation reduction or a chemical solution treatment using a known roughening solution of sulfuric acid-hydrogen peroxide system can be used. Thereby, the adhesiveness of the metal layer 123 and the interlayer insulation layer 20 can be improved.
Thereafter, as shown in FIG. 6A, the interlayer insulating layer 20 and the metal layer 31 with the carrier foil layer C (ultra-thin copper foil with carrier foil) are respectively provided on the front surface side and the back surface side of the inner layer circuit board 10. Deploy. Next, as shown in FIG. 6B, a multilayer laminate is formed by subjecting the laminate in which these layers are stacked to heat and pressure treatment. Subsequently, as shown in FIG. 6C, the carrier foil layer C is peeled and removed.
 次いで、図6(D)に示すように、層間絶縁層20および金属層31の一部を除去して孔21を形成する。孔21の底面においては、金属層123の表面の一部が露出している。この孔21を形成する手法としては、特に限定されないが、例えば、炭酸ガスやエキシマ等の気体レーザやYAG等の固体レーザを用いて、孔径100μm以下のブラインドビアホールを形成する手法などを用いることができる。 Next, as shown in FIG. 6D, a part of the interlayer insulating layer 20 and the metal layer 31 is removed to form a hole 21. A part of the surface of the metal layer 123 is exposed at the bottom surface of the hole 21. A method for forming the hole 21 is not particularly limited. For example, a method of forming a blind via hole having a hole diameter of 100 μm or less using a gas laser such as carbon dioxide or excimer or a solid laser such as YAG is used. it can.
 次いで、図7(A)に示すように、触媒核を付与した金属層31上、孔21の内壁上、及び金属層123上に、薄層の無電解めっき層(金属層32)を形成する。無電解めっき層は、前述の無電解めっき層と同様にして形成する。また、触媒核も前述したものと同様である。この無電解めっき前には、前述の通り、薬液によるスミア除去等のデスミア処理を行ってもよい。また、金属層32の厚さは、次の電気めっきを行うことができる厚さであればよく、0.1~1μm程度で十分である。また、孔21(ブラインドビアホール)の内部は、導電ペースト、あるいは、絶縁ペーストを充填することもでき、電気パターンめっきで充填しておいてもよい。 Next, as shown in FIG. 7A, a thin electroless plating layer (metal layer 32) is formed on the metal layer 31 provided with catalyst nuclei, on the inner wall of the hole 21, and on the metal layer 123. . The electroless plating layer is formed in the same manner as the above electroless plating layer. The catalyst core is the same as described above. Before this electroless plating, as described above, desmear treatment such as smear removal with a chemical solution may be performed. Further, the thickness of the metal layer 32 may be any thickness that allows the next electroplating to be performed, and about 0.1 to 1 μm is sufficient. Further, the inside of the hole 21 (blind via hole) can be filled with a conductive paste or an insulating paste, or may be filled with electric pattern plating.
 次いで、図7(B)に示すように、金属層32上に、導体回路パターンに相当する開口パターンを有するレジスト層Dを形成する。このレジスト層Dとしては、前述のレジスト層Bと同様のものを用いることができる。レジスト層Dの厚さは、その後めっきする金属層33の厚さと同程度かより厚い膜厚にするのが好適である。 Next, as shown in FIG. 7B, a resist layer D having an opening pattern corresponding to the conductor circuit pattern is formed on the metal layer 32. As this resist layer D, the thing similar to the above-mentioned resist layer B can be used. The thickness of the resist layer D is preferably set to be the same as or thicker than the thickness of the metal layer 33 to be subsequently plated.
 次いで、図7(C)に示すように、レジスト層Dの開口パターン内部にめっき層である金属層33を形成する。ここでは、金属層33とビア34とは、めっきにより、一体的に形成される。金属層33は電気めっきにより形成されるが、前述の金属層123と同様の手法を用いることができる。この金属層33の厚さは、回路導体として使用できればよく、例えば、1~100μmの範囲である事が好ましく、5~50μmの範囲である事がより好ましい。 Next, as shown in FIG. 7C, a metal layer 33 as a plating layer is formed inside the opening pattern of the resist layer D. Here, the metal layer 33 and the via 34 are integrally formed by plating. Although the metal layer 33 is formed by electroplating, the same technique as the metal layer 123 described above can be used. The thickness of the metal layer 33 may be used as a circuit conductor. For example, the thickness of the metal layer 33 is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm.
 次いで、図8に示すように、前述のレジスト層Bと同様にして、レジスト層Dの剥離を行う。次いで、前述の金属層121,122と同様にして、金属層31,32をソフトエッチング(フラッシュエッチング)により除去する。これにより、導電回路パターンを形成することができる。以上により、プリント配線板1が得られる。 Next, as shown in FIG. 8, the resist layer D is peeled in the same manner as the resist layer B described above. Next, the metal layers 31 and 32 are removed by soft etching (flash etching) in the same manner as the metal layers 121 and 122 described above. Thereby, a conductive circuit pattern can be formed. Thus, the printed wiring board 1 is obtained.
 なお、本発明は前記の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 たとえば、前記実施形態では、内層回路板10の孔113に露出する単繊維の端部111Aが溶融変形し、拡径していたが、これに限られるものではない。たとえば、層間絶縁層20を、内層回路板10と同様の樹脂層と、繊維基材とを備えるものとし、層間絶縁層20の孔21内壁に露出した単繊維の端部を溶融変形させて、樹脂層中の単繊維の径よりも径が大きいものとしてもよい。このようにすることで、孔21間の絶縁信頼性を高めることができる。
 たとえば、パルス幅:3μs~15μs、エネルギー:5mJ以上20mJ以下、ショット数:1ショット以上、3ショット以下とする。その後、炭酸ガスレーザにより、絶縁層および繊維基材を貫通する孔を形成する。たとえば、パルス幅:3μs~100μs、エネルギー:3mJ以上10mJ以下、ショット数:1ショット以上15ショット以下とする。
 このように、レーザのパルス幅、エネルギー、ショット数を適宜設定するとともに、孔の径、絶縁層の厚みを適宜設定し、さらに、繊維基材の材料を適宜選定することで、孔内部に露出した端部を溶融変形し、拡径させることができる。
 また、この場合、プリント配線板は、内層回路板10を有さず、繊維基材およびこの繊維基材に含浸された樹脂層を備える層間絶縁層と、層間絶縁層上に設けられる金属層と、交互に積層することで、構成されていてもよい。
The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within a scope that can achieve the object of the present invention are included in the present invention.
For example, in the above-described embodiment, the end portion 111A of the single fiber exposed in the hole 113 of the inner layer circuit board 10 is melted and deformed to expand the diameter, but is not limited thereto. For example, the interlayer insulating layer 20 includes a resin layer similar to the inner layer circuit board 10 and a fiber base material, and melt-deforms an end portion of the single fiber exposed on the inner wall of the hole 21 of the interlayer insulating layer 20, The diameter may be larger than the diameter of the single fiber in the resin layer. By doing in this way, the insulation reliability between the holes 21 can be improved.
For example, pulse width: 3 μs to 15 μs, energy: 5 mJ to 20 mJ, number of shots: 1 shot to 3 shots. Then, the hole which penetrates an insulating layer and a fiber base material is formed with a carbon dioxide gas laser. For example, pulse width: 3 μs to 100 μs, energy: 3 mJ to 10 mJ, number of shots: 1 shot to 15 shots.
In this way, the laser pulse width, energy, and number of shots are set as appropriate, the hole diameter and the insulating layer thickness are set as appropriate, and the fiber base material is selected as appropriate to expose the inside of the hole. The end portion thus melted can be melt-deformed and expanded in diameter.
Further, in this case, the printed wiring board does not have the inner layer circuit board 10, and includes an interlayer insulating layer including a fiber base material and a resin layer impregnated in the fiber base material, and a metal layer provided on the interlayer insulating layer; Alternatively, the layers may be alternately stacked.
 また、前記実施形態では、本発明の積層板をプリント配線板であるとしたが、これに限らず、たとえば、内層回路板であってもよい。
 さらに、前記実施形態では、孔113を形成する際に、金属層に直接レーザを照射して孔113を形成した(ダイレクト加工)が、孔113の製造方法はこれに限られるものではない。予め孔113を形成する位置の金属層をエッチング等で除去し、その後、絶縁層にレーザを照射するコンフォーマル加工で、孔113を形成してもよい。
Moreover, in the said embodiment, although the laminated board of this invention was mentioned as the printed wiring board, it is not restricted to this, For example, an inner layer circuit board may be sufficient.
Further, in the embodiment, when forming the hole 113, the metal layer is directly irradiated with laser to form the hole 113 (direct processing), but the method of manufacturing the hole 113 is not limited to this. The metal layer at the position where the hole 113 is formed in advance may be removed by etching or the like, and then the hole 113 may be formed by conformal processing in which the insulating layer is irradiated with laser.
 次に、本発明の実施例について説明する。
(実施例1)
 エポキシ樹脂として、ナフタレン変性クレゾールノボラックエポキシ樹脂(DIC社製、HP-5000)8.5重量部、フェノール硬化剤として、ビフェニルアラルキル型フェノール樹脂(明和化成株式会社、MEH7851-4H)8.5重量部、フェノールノボラック型シアネート樹脂(LONZA社製、Primaset PT-30)17重量部、球状溶融シリカ(アドマテックス社製、SO-25R、平均粒径0.5μm)65.5重量部、エポキシシラン(信越化学工業社製、KBM-403)0.5重量部を、メチルエチルケトンに混合溶解させた。次いで、高速撹拌装置を用い撹拌して不揮発分70重量%となるように調整し、樹脂ワニスを調製した。
 前記樹脂ワニスをガラス織布(坪量77g/m、厚さ77μm、信越石英株式会社製石英ガラス織布、商品名SQF2116C)に含浸し、150℃の加熱炉で2分間乾燥して、プリプレグ中のワニス固形分が約50重量%のプリプレグを得た。
 前記プリプレグ2枚重ね、キャリア箔A付き極薄銅箔(金属層121)を重ねて、圧力3MPa、温度220℃で2時間加熱加圧成形し、厚さ0.20mmの絶縁層11両面に銅箔(金属層121)を有する金属張積層板400を得た(図4(A))。
Next, examples of the present invention will be described.
(Example 1)
As epoxy resin, 8.5 parts by weight of naphthalene-modified cresol novolak epoxy resin (manufactured by DIC, HP-5000), and as phenol curing agent, biphenylaralkyl type phenol resin (Maywa Kasei Co., Ltd., MEH7851-4H) 8.5 parts by weight. , 17 parts by weight of a phenol novolac type cyanate resin (manufactured by LONZA, Primaset PT-30), 65.5 parts by weight of spherical fused silica (manufactured by Admatechs, SO-25R, average particle size 0.5 μm), epoxy silane (Shin-Etsu) 0.5 parts by weight of KBM-403) manufactured by Chemical Industry Co., Ltd. was mixed and dissolved in methyl ethyl ketone. Subsequently, it stirred using the high-speed stirring apparatus and adjusted so that it might become 70 weight% of non volatile matters, and the resin varnish was prepared.
The resin varnish was impregnated into a glass woven fabric (basis weight 77 g / m 2 , thickness 77 μm, quartz glass woven fabric manufactured by Shin-Etsu Quartz Co., Ltd., trade name SQF2116C), dried in a heating furnace at 150 ° C. for 2 minutes, and prepreg A prepreg having a varnish solid content of about 50% by weight was obtained.
Two sheets of the prepreg are stacked, and an ultrathin copper foil (metal layer 121) with carrier foil A is stacked and heated and pressure-molded at a pressure of 3 MPa and a temperature of 220 ° C. for 2 hours. A metal-clad laminate 400 having a foil (metal layer 121) was obtained (FIG. 4A).
(プリント配線板)
 前述した金属張積層板400のキャリア箔Aを剥離除去し(図4(B))、図4(C)に示すように、金属層121上から炭酸ガスレーザにより、直径75μmの貫通スルーホール(孔113)を複数開けた。装置としては、図9に示した装置5を使用した。孔113間の間隔は300μmピッチであった。炭酸ガスレーザの照射条件は、以下の通りである。
 まず、炭酸ガスレーザにより金属層121および絶縁層11を貫通する孔113を形成した。炭酸ガスレーザの照射条件はパルス幅:10μs、エネルギー:8mJ、ショット数:4ショットである。
 図10(A)にこのようにして形成された孔113の内部をSEM観察したものを示す。単繊維の端部が溶融変形しており、拡径していることがわかる。ここでは、隣接する端部同士が融着して接続されていることがわかる。また、端部には、ホローがないことが確認された。
(Printed wiring board)
The carrier foil A of the metal-clad laminate 400 described above is peeled and removed (FIG. 4B), and as shown in FIG. 4C, through-holes (holes) having a diameter of 75 μm are formed from above the metal layer 121 by a carbon dioxide laser. 113) were opened. As the apparatus, the apparatus 5 shown in FIG. 9 was used. The interval between the holes 113 was 300 μm pitch. The irradiation conditions of the carbon dioxide laser are as follows.
First, a hole 113 penetrating the metal layer 121 and the insulating layer 11 was formed by a carbon dioxide gas laser. The irradiation conditions of the carbon dioxide laser are a pulse width: 10 μs, energy: 8 mJ, and number of shots: 4 shots.
FIG. 10A shows an SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end.
 その後、過マンガン酸カリウム60g/Lと水酸化ナトリウム45g/Lの水溶液に、液温80℃で2分間浸漬し、デスミア処理した。
 その後、パラジウム溶液(上村工業社製、MAT-2B/MAT-2A)に液温55℃で5分間浸漬し、触媒付与し、上村工業社製、スルカップPEA-6Aを使用し、液温36℃で15分間浸漬し、無電解めっき層(金属層122)を0.7μm形成した(図4(D))。
 この無電解めっき層の表面に、厚さ25μmの紫外線感光性ドライフィルム(旭化成社製、サンフォートUFG-255)をホットロールラミネーターにより貼り合わせ、最小線幅/線間が20/20μmのパターンが描画されたガラスマスク(トピック社製)を使用して、位置を合わせ、露光装置(小野測器EV-0800)にて露光、炭酸ソーダ水溶液にて現像し、レジストマスク(レジスト層B)を形成した(図4(E))。次に、無電解めっき層を給電層電極として、電解銅めっき(奥野製薬社製81-HL)を3A/dm、25分間行って、厚さ約20μmの銅配線のパターン(金属層123)を形成した(図5(A))。次に、剥離機を用いて、モノエタノールアミン溶液(三菱ガス化学社製R-100)により、前記レジストマスク(レジスト層B)を剥離した(図5(B))。そして給電層である無電解めっき層(金属層122)及び下地銅箔(金属層121)(2μm)をフラッシュエッチング(三菱ガス化学社製 CPE-800、液温:30℃、スプレー圧0.23MPa)で180秒間処理することにより除去して、L/S=20/20μmのパターンを形成し(パターン状エッチング)、内層回路板10得た(図5(C))。
Then, it was immersed in an aqueous solution of potassium permanganate 60 g / L and sodium hydroxide 45 g / L at a liquid temperature of 80 ° C. for 2 minutes for desmear treatment.
Thereafter, it was dipped in a palladium solution (MAT-2B / MAT-2A, manufactured by Uemura Kogyo Co., Ltd.) at a liquid temperature of 55 ° C. for 5 minutes to give a catalyst, and Urumura Kogyo Co., Ltd., Sulcup PEA-6A was used. Was immersed for 15 minutes to form 0.7 μm of an electroless plating layer (metal layer 122) (FIG. 4D).
On the surface of this electroless plating layer, a 25 μm-thick UV photosensitive dry film (Sunfort UFG-255, manufactured by Asahi Kasei Co., Ltd.) was bonded using a hot roll laminator, and a pattern with a minimum line width / line spacing of 20/20 μm was formed. Using a drawn glass mask (manufactured by Topic), align the position, expose with an exposure device (Ono Sokki EV-0800), develop with a sodium carbonate aqueous solution, and form a resist mask (resist layer B) (FIG. 4E). Next, electrolytic copper plating (81-HL manufactured by Okuno Pharmaceutical Co., Ltd.) is performed at 3 A / dm 2 for 25 minutes using the electroless plating layer as a power feeding layer electrode, and a copper wiring pattern (metal layer 123) having a thickness of about 20 μm. Was formed (FIG. 5A). Next, the resist mask (resist layer B) was stripped with a monoethanolamine solution (R-100, manufactured by Mitsubishi Gas Chemical Company) using a stripper (FIG. 5B). Then, the electroless plating layer (metal layer 122) and the base copper foil (metal layer 121) (2 μm), which are power supply layers, are flash etched (CPE-800 manufactured by Mitsubishi Gas Chemical Company, liquid temperature: 30 ° C., spray pressure: 0.23 MPa). ) For 180 seconds to form a pattern of L / S = 20/20 μm (patterned etching) to obtain an inner layer circuit board 10 (FIG. 5C).
 その後、前記実施形態と同様に、内層回路板10の表面側および裏面側に、それぞれ、層間絶縁層20、及びキャリア箔C付き金属層31(キャリア箔付き極薄金属箔)を配置し、加圧加熱処理した。層間絶縁層20の厚みは45μmであり、金属層31の厚みは3μmである。
 さらに、前記実施形態と同様に、キャリア箔Cをはがし、炭酸ガスレーザにより、孔21を形成した(図6(D))。孔21の径は、80μmである。その後、過マンガン酸カリウム60g/Lと水酸化ナトリウム45g/Lの水溶液に、液温80℃で2分間浸漬し、デスミア処理した。
 その後、パラジウム溶液(上村工業社製、MAT-2B/MAT-2A)に液温55℃で5分間浸漬し、触媒付与し、上村工業社製、スルカップPEA-6Aを使用し、液温36℃で15分間浸漬し、無電解めっき層(金属層32)を0.5μm形成した(図7(A))。
 この無電解めっき層の表面に、厚さ25μmの紫外線感光性ドライフィルム(旭化成社製、サンフォートUFG-255)をホットロールラミネーターにより貼り合わせ、最小線幅/線間が20/20μmのパターンが描画されたガラスマスク(トピック社製)を使用して、位置を合わせ、露光装置(小野測器EV-0800)にて露光、炭酸ソーダ水溶液にて現像し、レジストマスク(レジスト層D)を形成した(図7(B))。次に、無電解めっき層を給電層電極として、電解銅めっき(奥野製薬社製81-HL)を3A/dm、25分間行って、厚さ約20μmの銅配線のパターン(金属層33)を形成した(図7(C))。次に、剥離機を用いて、モノエタノールアミン溶液(三菱ガス化学社製R-100)により、前記レジストマスク(レジスト層D)を剥離した(図8)。そして給電層である無電解めっき層(金属層32)及び下地銅箔(金属層31)(2μm)をフラッシュエッチング(三菱ガス化学社製 CPE-800、液温:30℃、スプレー圧0.23MPa)で180秒間処理することにより除去して、L/S=20/20μmのパターンを形成(パターン状エッチング)した。(図1)。
Thereafter, as in the above-described embodiment, the interlayer insulating layer 20 and the metal layer 31 with the carrier foil C (ultra-thin metal foil with the carrier foil) are disposed on the front surface side and the back surface side of the inner layer circuit board 10, respectively. Pressure heat treatment was performed. The interlayer insulating layer 20 has a thickness of 45 μm, and the metal layer 31 has a thickness of 3 μm.
Furthermore, as in the above embodiment, the carrier foil C was peeled off, and the holes 21 were formed by a carbon dioxide laser (FIG. 6D). The diameter of the hole 21 is 80 μm. Then, it was immersed in an aqueous solution of potassium permanganate 60 g / L and sodium hydroxide 45 g / L at a liquid temperature of 80 ° C. for 2 minutes for desmear treatment.
Thereafter, it was dipped in a palladium solution (MAT-2B / MAT-2A, manufactured by Uemura Kogyo Co., Ltd.) at a liquid temperature of 55 ° C. for 5 minutes to give a catalyst, and Urumura Kogyo Co., Ltd., Sulcup PEA-6A was used. Was immersed for 15 minutes to form an electroless plating layer (metal layer 32) of 0.5 μm (FIG. 7A).
On the surface of this electroless plating layer, a 25 μm-thick UV photosensitive dry film (Sunfort UFG-255, manufactured by Asahi Kasei Co., Ltd.) was bonded using a hot roll laminator, and a pattern with a minimum line width / line spacing of 20/20 μm was formed. Using a drawn glass mask (manufactured by Topic), align the position, expose with an exposure device (Ono Sokki EV-0800), develop with a sodium carbonate aqueous solution, and form a resist mask (resist layer D) (FIG. 7B). Next, electrolytic copper plating (81-HL manufactured by Okuno Pharmaceutical Co., Ltd.) is performed at 3 A / dm 2 for 25 minutes using the electroless plating layer as a power feeding layer electrode, and a copper wiring pattern (metal layer 33) having a thickness of about 20 μm. Was formed (FIG. 7C). Next, the resist mask (resist layer D) was peeled off with a monoethanolamine solution (R-100, manufactured by Mitsubishi Gas Chemical Company) using a peeling machine (FIG. 8). Then, the electroless plating layer (metal layer 32) and the base copper foil (metal layer 31) (2 μm), which are power feeding layers, are flash etched (CPE-800 manufactured by Mitsubishi Gas Chemical Company, liquid temperature: 30 ° C., spray pressure: 0.23 MPa) ) For 180 seconds to form a pattern of L / S = 20/20 μm (pattern etching). (FIG. 1).
(実施例2)
 金属張積層板400に孔113を形成する際の、炭酸ガスレーザの照射条件を以下のようにした。他の点は、実施例1と同じである。
 照射条件:パルス幅:10μs、エネルギー:8mJ、ショット数:6ショット
 図10(B)にこのようにして形成された孔113の内部をSEM観察したものを示す。単繊維の端部が溶融変形しており、拡径していることがわかる。ここでは、隣接する端部同士が融着して接続されていることがわかる。また、単繊維の端部には、ホローがないことが確認された。
(Example 2)
The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment.
Irradiation condition: pulse width: 10 μs, energy: 8 mJ, number of shots: 6 shots FIG. 10B shows an SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
(実施例3)
 金属張積層板400に孔113を形成する際の、炭酸ガスレーザの照射条件を以下のようにした。他の点は、実施例1と同じである。
 照射条件:パルス幅:10μs、エネルギー:10mJ、ショット数:2ショット
 図10(C)にこのようにして形成された孔113の内部をSEM観察したものを示す。単繊維の端部が溶融変形しており、拡径していることがわかる。ここでは、隣接する端部同士が融着して接続されていることがわかる。また、単繊維の端部には、ホローがないことが確認された。
(Example 3)
The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment.
Irradiation condition: pulse width: 10 μs, energy: 10 mJ, number of shots: 2 shots FIG. 10C shows the inside of the hole 113 formed in this way as observed by SEM. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
(実施例4)
 金属張積層板400に孔113を形成する際の、炭酸ガスレーザの照射条件を以下のようにした。他の点は、実施例1と同じである。
 照射条件:パルス幅:10μs、エネルギー:10mJ、ショット数:4ショット
 図10(D)にこのようにして形成された孔113の内部をSEM観察したものを示す。単繊維の端部が溶融変形しており、拡径していることがわかる。ここでは、隣接する端部同士が融着して接続されていることがわかる。また、単繊維の端部には、ホローがないことが確認された。
Example 4
The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment.
Irradiation condition: pulse width: 10 μs, energy: 10 mJ, number of shots: 4 shots FIG. 10D shows the result of SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
(実施例5)
 金属張積層板400に孔113を形成する際の、炭酸ガスレーザの照射条件を以下のようにした。他の点は、実施例1と同じである。
 照射条件:パルス幅:10μs、エネルギー:10mJ、ショット数:6ショット
 図10(E)にこのようにして形成された孔113の内部をSEM観察したものを示す。単繊維の端部が溶融変形しており、拡径していることがわかる。ここでは、隣接する端部同士が融着して接続されていることがわかる。また、単繊維の端部には、ホローがないことが確認された。
(Example 5)
The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment.
Irradiation condition: pulse width: 10 μs, energy: 10 mJ, number of shots: 6 shots FIG. 10E shows the result of SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
(実施例6)
 金属張積層板400に孔113を形成する際の、炭酸ガスレーザの照射条件を以下のようにした。他の点は、実施例1と同じである。
 この実施例では、レーザを第一ショットと、第二ショットの2回でレーザを照射した。
 第一ショットの照射条件:パルス幅:10μs、エネルギー:10mJ、ショット数:6ショット
 第二ショットの照射条件:パルス幅:97μs、エネルギー:10mJ、ショット数:2ショット
 図10(F)にこのようにして形成された孔113の内部をSEM観察したものを示す。単繊維の端部が溶融変形しており、拡径していることがわかる。ここでは、隣接する端部同士が融着して接続されていることがわかる。また、単繊維の端部には、ホローがないことが確認された。
(Example 6)
The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment.
In this example, the laser was irradiated twice with the first shot and the second shot.
Irradiation condition of the first shot: pulse width: 10 μs, energy: 10 mJ, number of shots: 6 shots Irradiation condition of the second shot: pulse width: 97 μs, energy: 10 mJ, number of shots: 2 shots As shown in FIG. The inside of the hole 113 formed as described above is observed by SEM. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
(実施例7)
 金属張積層板400に孔113を形成する際の、炭酸ガスレーザの照射条件を以下のようにした。他の点は、実施例1と同じである。
 この実施例では、レーザを第一ショットと、第二ショットの2回でレーザを照射した。
 第一ショットの照射条件:パルス幅10μs、エネルギー:10mJ、ショット数:2ショット
 第二ショットの照射条件:パルス幅97μs、エネルギー:10mJ、ショット数:4ショット
 図10(G)にこのようにして形成された孔113の内部をSEM観察したものを示す。単繊維の端部が溶融変形しており、拡径していることがわかる。ここでは、隣接する端部同士が融着して接続されていることがわかる。また、単繊維の端部には、ホローがないことが確認された。
(Example 7)
The irradiation conditions of the carbon dioxide laser when forming the hole 113 in the metal-clad laminate 400 were as follows. The other points are the same as those in the first embodiment.
In this example, the laser was irradiated twice with the first shot and the second shot.
Irradiation condition for the first shot: pulse width 10 μs, energy: 10 mJ, number of shots: 2 shots Irradiation condition for the second shot: pulse width 97 μs, energy: 10 mJ, number of shots: 4 shots FIG. An SEM observation of the inside of the formed hole 113 is shown. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
(実施例8)
 金属張積層板400中のガラス織布を、坪量:104g/m、厚さ:92μm、日東紡績株式会社製Tガラス織布(組成SiO:62~65wt%、Al:20~25wt%、MgO:10~15wt%、商品名:WTX-116E)とした。他の点は、実施例1と同じである。
 図10(H)にこのようにして形成された孔113の内部をSEM観察したものを示す。単繊維の端部が溶融変形しており、拡径していることがわかる。ここでは、隣接する端部同士が融着して接続されていることがわかる。また、単繊維の端部には、ホローがないことが確認された。
(Example 8)
The glass woven fabric in the metal-clad laminate 400 has a basis weight of 104 g / m 2 , a thickness of 92 μm, a T glass woven fabric manufactured by Nitto Boseki Co., Ltd. (composition SiO 2 : 62 to 65 wt%, Al 2 O 3 : 20 To 25 wt%, MgO: 10 to 15 wt%, trade name: WTX-116E). The other points are the same as those in the first embodiment.
FIG. 10H shows an SEM observation of the inside of the hole 113 formed in this way. It can be seen that the end of the single fiber is melt deformed and expanded in diameter. Here, it can be seen that adjacent ends are fused and connected. Moreover, it was confirmed that there is no hollow at the end of the single fiber.
(比較例1)
 金属積層板400に孔を形成する際、装置として、スペーサ部材53、保護材52を有さないものを使用した。加工テーブル51上に金属積層板400を載せ、金属積層板400の下面全面が加工テーブル51に接触していた。
 また、炭酸レーザの照射条件をパルス幅:10μs、エネルギー:3mJ、ショット数:3ショットとした。
 他の点は、実施例8と同様である。
 孔内部を観察したところ、単繊維の端部が焼き切れており、溶融変形していなかった。単繊維の端部の径は、他の部分と同じであった。さらに、単繊維の端部にホローがあることがわかった。
(Comparative Example 1)
When forming a hole in the metal laminated plate 400, a device without the spacer member 53 and the protective material 52 was used. The metal laminate 400 was placed on the processing table 51, and the entire lower surface of the metal laminate 400 was in contact with the processing table 51.
The irradiation conditions of the carbonic acid laser were set to pulse width: 10 μs, energy: 3 mJ, and number of shots: 3 shots.
Other points are the same as in the eighth embodiment.
When the inside of the hole was observed, the ends of the single fibers were burned out and were not melted and deformed. The diameter of the end of the single fiber was the same as the other parts. Furthermore, it was found that there was a hollow at the end of the single fiber.
(評価)
 実施例1~8、比較例1で得られたプリント配線板の絶縁信頼性の評価を行なった。
 評価方法は以下の通りである。
 壁間100μmのパターンで、130℃/85%環境下で10V印加させ、200時間後のサンプルを試験槽から取り出し、常温常湿下での抵抗値を測定した。
 実施例1~8では、抵抗値が高く、絶縁信頼性が高いものとなった。これに対し、比較例1では、実施例1から8に比べ、抵抗値が低く絶縁信頼性が低いものとなった。
(Evaluation)
The insulation reliability of the printed wiring boards obtained in Examples 1 to 8 and Comparative Example 1 was evaluated.
The evaluation method is as follows.
With a pattern of 100 μm between walls, 10 V was applied in an environment of 130 ° C./85%, a sample after 200 hours was taken out from the test tank, and the resistance value at normal temperature and humidity was measured.
In Examples 1 to 8, the resistance value was high and the insulation reliability was high. On the other hand, in Comparative Example 1, the resistance value was low and the insulation reliability was low as compared with Examples 1 to 8.
 この出願は、2012年8月30日に出願された日本出願特願2012-189452号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-189452 filed on August 30, 2012, the entire disclosure of which is incorporated herein.

Claims (14)

  1.  複数本の単繊維を束ねた糸を織ってなる繊維基材およびこの繊維基材に含浸された樹脂層を有する絶縁層と、
     前記絶縁層上に設けられた金属層とを備える積層板であって、
     前記絶縁層には、孔が形成され、
     前記孔の内壁には、前記繊維基材を構成する単繊維の端部が露出し、
     露出した前記単繊維の端部は、溶融変形し、拡径している積層板。
    A fiber base material formed by weaving a yarn in which a plurality of single fibers are bundled, and an insulating layer having a resin layer impregnated in the fiber base;
    A laminate comprising a metal layer provided on the insulating layer,
    A hole is formed in the insulating layer,
    On the inner wall of the hole, the end of the single fiber constituting the fiber base material is exposed,
    The exposed end portion of the monofilament is melt-deformed and expanded in diameter.
  2.  請求項1に記載の積層板において、
     前記孔の内壁には、複数の前記単繊維の端部が露出し、隣接する前記単繊維の端部同士が融着している積層板。
    The laminate according to claim 1,
    The laminated board which the edge part of the said several single fiber is exposed to the inner wall of the said hole, and the edge parts of the said adjacent single fiber are fuse | melted.
  3.  請求項1または2に記載の積層板において、
     前記孔の内壁に露出する前記単繊維の端部には、前記単繊維内部に存在する空隙に連通する孔が形成されていない積層板。
    In the laminated board of Claim 1 or 2,
    The laminated board in which the hole connected to the space | gap which exists in the said single fiber is not formed in the edge part of the said single fiber exposed to the inner wall of the said hole.
  4.  請求項1乃至3のいずれか1項に記載の積層板において、
     前記繊維基材はガラスクロスである積層板。
    In the laminated board of any one of Claims 1 thru | or 3,
    The laminated board whose said fiber base material is a glass cloth.
  5.  請求項4に記載の積層板において、
     前記ガラスクロスは、石英ガラスで構成されている積層板。
    In the laminated board of Claim 4,
    The glass cloth is a laminated plate made of quartz glass.
  6.  請求項1乃至5のいずれか1項に記載の積層板において、
     前記孔内部には、前記単繊維の端部を被覆する導電性膜が形成され、
     当該積層板は、プリント配線板である積層板。
    In the laminated board of any one of Claims 1 thru | or 5,
    Inside the hole is formed a conductive film covering the end of the single fiber,
    The laminate is a laminate that is a printed wiring board.
  7.  請求項6に記載の積層板において、
     前記絶縁層は、コア層であり、
     前記孔は、前記絶縁層および前記金属層を貫通する貫通孔であり、
     前記コア層の表裏面には、ビルドアップ層が設けられている積層板。
    The laminate according to claim 6, wherein
    The insulating layer is a core layer;
    The hole is a through-hole penetrating the insulating layer and the metal layer;
    A laminated board in which build-up layers are provided on the front and back surfaces of the core layer.
  8.  複数本の単繊維を束ねた糸を織ってなる繊維基材およびこの繊維基材に含浸またはラミネートされた樹脂層を有する絶縁層と、前記絶縁層上に設けられた金属層とを備える積層板の製造方法であって、
     前記絶縁層に孔を形成する工程を含み、
     前記孔を形成する工程では、
     レーザにより、前記孔を形成するとともに、前記孔内部に露出する前記繊維基材の単繊維の端部を溶融変形させて、前記孔の内壁に露出する前記単繊維の端部を拡径する積層板の製造方法。
    A laminate comprising: a fiber base material formed by weaving a yarn in which a plurality of single fibers are bundled; an insulating layer having a resin layer impregnated or laminated on the fiber base material; and a metal layer provided on the insulating layer A manufacturing method of
    Forming a hole in the insulating layer,
    In the step of forming the hole,
    Lamination that forms the hole by laser and melts and deforms the end of the single fiber of the fiber base exposed in the hole to expand the diameter of the end of the single fiber exposed on the inner wall of the hole A manufacturing method of a board.
  9.  請求項8に記載の積層板の製造方法において、
     前記孔の内壁に、複数の前記単繊維の端部を露出させ、隣接する前記単繊維の端部同士を融着させる積層板の製造方法。
    In the manufacturing method of the laminated board of Claim 8,
    The manufacturing method of the laminated board which exposes the edge part of the said several single fiber to the inner wall of the said hole, and fuse | melts the edge part of the said adjacent single fiber.
  10.  請求項8または9に記載の積層板の製造方法において、
     前記孔の内壁に露出する前記単繊維の端部には、前記単繊維内部に存在する空隙に連通する孔を形成させない積層板の製造方法。
    In the manufacturing method of the laminated board of Claim 8 or 9,
    The manufacturing method of the laminated board which does not form the hole connected to the space | gap which exists in the said single fiber in the edge part of the said single fiber exposed to the inner wall of the said hole.
  11.  請求項8乃至10のいずれかに1項に記載の積層板の製造方法において、
     前記繊維基材はガラスクロスである積層板の製造方法。
    In the manufacturing method of the laminated board of any one of Claims 8 thru | or 10,
    The manufacturing method of the laminated board whose said fiber base material is a glass cloth.
  12.  請求項11に記載の積層板の製造方法において、
     前記ガラスクロスは、石英ガラスで構成されている積層板の製造方法。
    In the manufacturing method of the laminated board of Claim 11,
    The said glass cloth is a manufacturing method of the laminated board comprised by the quartz glass.
  13.  請求項8乃至12のいずれか1項に記載の積層板の製造方法において、
     前記孔内部には、前記単繊維の端部を被覆する導電性膜を形成させ、
     当該積層板は、プリント配線板である積層板の製造方法。
    In the manufacturing method of the laminated board of any one of Claims 8 thru | or 12,
    In the hole, a conductive film that covers the end of the single fiber is formed,
    The said laminated board is a manufacturing method of the laminated board which is a printed wiring board.
  14.  請求項13に記載の積層板の製造方法において、
     前記絶縁層は、コア層であり、
     前記孔は、前記絶縁層および前記金属層を貫通する貫通孔であり、
     前記コア層の表裏面には、ビルドアップ層が設けられている積層板の製造方法。
    In the manufacturing method of the laminated board of Claim 13,
    The insulating layer is a core layer;
    The hole is a through-hole penetrating the insulating layer and the metal layer;
    The manufacturing method of the laminated board by which the buildup layer is provided in the front and back of the said core layer.
PCT/JP2013/068488 2012-08-30 2013-07-05 Laminated board and method for manufacturing laminated board WO2014034268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012189452A JP2014046493A (en) 2012-08-30 2012-08-30 Laminate and production method of laminate
JP2012-189452 2012-08-30

Publications (1)

Publication Number Publication Date
WO2014034268A1 true WO2014034268A1 (en) 2014-03-06

Family

ID=50183090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068488 WO2014034268A1 (en) 2012-08-30 2013-07-05 Laminated board and method for manufacturing laminated board

Country Status (3)

Country Link
JP (1) JP2014046493A (en)
TW (1) TW201408479A (en)
WO (1) WO2014034268A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022011534A (en) * 2020-06-30 2022-01-17 信越化学工業株式会社 Low dielectric resin substrate
US11613102B2 (en) 2018-02-22 2023-03-28 Sekisui Chemical Co., Ltd. Laminate sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6724296B2 (en) * 2015-05-22 2020-07-15 住友ベークライト株式会社 Prepreg, resin substrate, metal-clad laminate, printed wiring board, and semiconductor device
CN107087341B (en) * 2016-01-28 2019-03-08 庆鼎精密电子(淮安)有限公司 Circuit board and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846321A (en) * 1994-07-28 1996-02-16 Yazaki Corp Perforation processing of printed board and method of mounting component
JP2001068818A (en) * 1999-08-31 2001-03-16 Kyocera Corp Wiring board and its manufacture
JP2002314254A (en) * 2001-04-11 2002-10-25 Toppan Printing Co Ltd Multilayer printed wiring board and its manufacturing method
JP2004288795A (en) * 2003-03-20 2004-10-14 Tdk Corp Electronic component and method for manufacturing same
JP2007227809A (en) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd Circuit board, and method for manufacturing circuit board
JP2009070921A (en) * 2007-09-11 2009-04-02 Sumitomo Bakelite Co Ltd Insulative resin sheet containing glass woven fabric, laminate sheet, multilayer printed wiring board, and semiconductor device
JP2010278414A (en) * 2009-04-27 2010-12-09 Shin-Etsu Chemical Co Ltd Material for wiring board, laminated board, multilayer board, and wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846321A (en) * 1994-07-28 1996-02-16 Yazaki Corp Perforation processing of printed board and method of mounting component
JP2001068818A (en) * 1999-08-31 2001-03-16 Kyocera Corp Wiring board and its manufacture
JP2002314254A (en) * 2001-04-11 2002-10-25 Toppan Printing Co Ltd Multilayer printed wiring board and its manufacturing method
JP2004288795A (en) * 2003-03-20 2004-10-14 Tdk Corp Electronic component and method for manufacturing same
JP2007227809A (en) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd Circuit board, and method for manufacturing circuit board
JP2009070921A (en) * 2007-09-11 2009-04-02 Sumitomo Bakelite Co Ltd Insulative resin sheet containing glass woven fabric, laminate sheet, multilayer printed wiring board, and semiconductor device
JP2010278414A (en) * 2009-04-27 2010-12-09 Shin-Etsu Chemical Co Ltd Material for wiring board, laminated board, multilayer board, and wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613102B2 (en) 2018-02-22 2023-03-28 Sekisui Chemical Co., Ltd. Laminate sheet
TWI811303B (en) * 2018-02-22 2023-08-11 日商積水化學工業股份有限公司 laminate
JP2022011534A (en) * 2020-06-30 2022-01-17 信越化学工業株式会社 Low dielectric resin substrate
US11802192B2 (en) 2020-06-30 2023-10-31 Shin-Etsu Chemical Co., Ltd. Low dielectric resin substrate
JP7478044B2 (en) 2020-06-30 2024-05-02 信越化学工業株式会社 Low dielectric resin substrate

Also Published As

Publication number Publication date
JP2014046493A (en) 2014-03-17
TW201408479A (en) 2014-03-01

Similar Documents

Publication Publication Date Title
KR101570331B1 (en) Multilayer printed wiring board
KR102576010B1 (en) Manufacturing method of multilayer printed wiring board, metal foil with adhesive layer, metal clad laminated board, multilayer printed wiring board
JP6383519B2 (en) Printed wiring board and manufacturing method
JP5892157B2 (en) Printed circuit board, method for manufacturing printed circuit board, and semiconductor device
JP5282487B2 (en) Multilayer printed wiring board manufacturing method, multilayer printed wiring board, and semiconductor device
WO2014034268A1 (en) Laminated board and method for manufacturing laminated board
JP2010258415A (en) Composite body, method of manufacturing the same, and semiconductor device
US20220051958A1 (en) Method for producing package substrate for mounting semiconductor device
JP5515225B2 (en) Multilayer printed wiring board and semiconductor device
WO2014192421A1 (en) Printed wiring board and semiconductor device
JP2011099072A (en) Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP6528352B2 (en) Method of manufacturing laminated board, method of manufacturing printed wiring board
JP4840303B2 (en) Insulated resin sheet with glass fiber woven fabric, laminated board, multilayer printed wiring board, and semiconductor device
JP2009067852A (en) Insulation resin sheet impregnated with glass fiber woven fabric, laminated plate, multilayered printed wiring board, and semiconductor device
US11990349B2 (en) Method for producing package substrate for loading semiconductor device
JP2011023428A (en) Method for manufacturing composite, and composite
JP5378954B2 (en) Prepreg and multilayer printed wiring boards
JP2011254026A (en) Method of producing composite and composite
JP2011216892A (en) Insulative resin sheet containing glass woven fabric, laminate plate, multilayer printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832015

Country of ref document: EP

Kind code of ref document: A1