WO2014032314A1 - 棕油副产品生物腐植酸及其生产方法和所用的生物腐植酸转化剂 - Google Patents

棕油副产品生物腐植酸及其生产方法和所用的生物腐植酸转化剂 Download PDF

Info

Publication number
WO2014032314A1
WO2014032314A1 PCT/CN2012/080953 CN2012080953W WO2014032314A1 WO 2014032314 A1 WO2014032314 A1 WO 2014032314A1 CN 2012080953 W CN2012080953 W CN 2012080953W WO 2014032314 A1 WO2014032314 A1 WO 2014032314A1
Authority
WO
WIPO (PCT)
Prior art keywords
humic acid
biological humic
palm oil
conversion agent
range
Prior art date
Application number
PCT/CN2012/080953
Other languages
English (en)
French (fr)
Inventor
黄谦
于家伊
Original Assignee
北京嘉博文生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京嘉博文生物科技有限公司 filed Critical 北京嘉博文生物科技有限公司
Publication of WO2014032314A1 publication Critical patent/WO2014032314A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H99/00Subject matter not provided for in other groups of this subclass, e.g. flours, kernels
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/02Other organic fertilisers from peat, brown coal, and similar vegetable deposits
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/20Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation using specific microorganisms or substances, e.g. enzymes, for activating or stimulating the treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • Palm oil by-product biological humic acid, production method thereof and biological humic acid conversion agent used Palm oil by-product biological humic acid, production method thereof and biological humic acid conversion agent used
  • the present invention relates to a method and a process for producing biohumic acid by high-temperature aerobic fermentation using palm oil by-products, and to a bio-humic acid as a by-product of the palm oil by-product produced by the method of the present invention and the production method of the present invention.
  • Acid converter Background technique
  • Oil palm is a perennial monocotyledonous plant that is a tropical woody oil crop. Oil palm's flesh and nuts are rich in oil. The oil palm fruit contains up to 50% oil. The oil palm oil yield is 2-3 times that of coconut, which is 7-8 times that of peanut oil, so it is praised as "World Oil King". Due to the high oil production and wide application of oil palm, the tropical and subtropical regions have been competing in the past 100 years. China's Hainan, Guangdong, Guangxi, Yunnan and other provinces also began to plant oil palm in 1926.
  • Oil palms are grown in tropical and subtropical regions, and palm fruit is used to process palm oil.
  • the palm fruit is separated from the fruit bunch during the processing of the palm oil, and about 2-3 tons of empty fruit bunches are produced per ton of fresh fruit bunch. It is estimated to produce an average of 4 million tons per year (dry Base) Empty fruit bunch (Ryohei TANAKA; 2001). Most of the empty fruit bunches are burned or discarded in the oil palm plantation to cover the roots of the oil palm.
  • the palm oil plant produces 31 tons of oil palm fruit bunches, producing 23 tons of empty fruit bunches and 60 tons of waste water.
  • the global oil palm land is estimated at 12.82 million hectares.
  • the compost has a large area; the odor generated during the aerobic decomposition process will pollute the environment; the quality of the compost product is not consistent, the repeatability is not good, affecting the sales of compost products; the reduction effect in the composting process is obvious, so that a large amount of organic matter is completely Degradation causes waste of organic resources.
  • the palm sulphate (sludge palm oi l, SP0) is a waste material when palm oil is extracted from palm fruit, and the main component is palm rind fiber, protein, fat, etc., and the organic matter content in the palm oil sludge (dry basis) is 84.02%, The quick-acting nitrogen content is 2.38% and the fat content is 12.01%. It is a very difficult to handle palm oil by-product. Due to the high fat content, palm oil puts a lot of pressure on the sewage treatment system, and it cannot be simply composted because the high content of fat inhibits the action of aerobic bacteria in the compost and produces aerobic decomposition during composting. Odor, polluting the environment.
  • Humic acid is a complex organic compound formed by long-term complex biochemical and geological physicochemical processes of organic matter such as plants and animals (mainly plant residues), and has strong physiological activity.
  • the humic acid produced by microbial fermentation using industrial organic waste residue and agricultural and forestry by-products is called biological humic acid.
  • biological humic acid has the same structural characteristics as ore source humic acid, and its function is similar.
  • humic acid Since the humic acid molecular chain contains a variety of reactive groups, its properties and functions are also multifaceted. Through the efforts of scientific and technological personnel in China and a large number of experiments, the five functions of humic acid were summarized: improving soil, increasing fertilizer utilization, stimulating crop growth, enhancing crop resilience, and improving product quality. Foreign academic circles also believe that humic acid plays a major role in plant nutrition, such as plant growth and stimulation substances, nutrient carrier, soil improvement and fertilizer efficiency.
  • Empty fruit bunches are good sources of organic matter and plant nutrients. They contain large amounts of potassium (2.4%) and nitrogen (0.8%), magnesium (0.2%) and phosphorus (0.1%) (Gurmit). , 1982). At the same time, the main components of the empty fruit string are: lignin 17%, cellulose 70%, and ash 1% (Ryohei TANAKA; 2001), after mixing empty fruit bunches with a small amount of palm oil, it is a good raw material for fermentative production of biological humic acid fertilizer.
  • the preparation process of biohumic acid at home and abroad is to inoculate a specific variety of microbial strains into plant culture media (such as crop straw, wood chips, bagasse and other agricultural organic wastes), and generate and extract through chemical or microbial fermentation processes.
  • plant culture media such as crop straw, wood chips, bagasse and other agricultural organic wastes
  • the fermentation time is long, generally 14-21 days, and the humic acid content is low, generally around 30-35%.
  • CN 102174583A discloses a method for producing biohumic acid by mixed fermentation, which comprises bagasse and bran as a fermentation raw material
  • CN101717722A discloses a method for producing humic acid by a microbial agent, which also produces sugar cane sugar residue.
  • CN101941851A discloses a method for preparing humic acid using kitchen waste. It can be seen that the process of producing bio-humic acid by using the palm oil by-product empty fruit string as a medium has not been reported at home and abroad. Summary of the invention
  • the present invention is to provide a method for preparing biohumic acid using palm by-product empty fruit bunches and palm oil sludge, optimizing the processing of empty fruit bunch resources, and providing a new way for the treatment of palm by-products.
  • the method for producing the biological humic acid of the present invention comprises using an empty fruit string and palm sludge as a raw material, adding a biological humic acid conversion agent suitable for a palm oil by-product, and aerobic at a high temperature range of 55-85 ° C. Fermentation.
  • the invention adopts the high-temperature aerobic rapid fermentation technology, and the palm oil by-product empty fruit string and oil stain Mud as raw material, use palm oil plant wastewater to adjust the moisture content of fermentation medium, add BGB bio-humic acid conversion agent suitable for palm oil by-product fermentation (including high-temperature aerobic microbial flora, enzymes to promote humic acid conversion and some special Organic catalysts, etc., can be obtained at a high temperature (55-85 °C) and aerobic fermentation to obtain a humic acid fertilizer with a biohumic acid content of 42%-45%. Solve the environmental pollution problem of organic waste in palm oil plant, make up for the defects of composting, and the fermentation time of biological humic acid is short.
  • BGB bio-humic acid conversion agent suitable for palm oil by-product fermentation including high-temperature aerobic microbial flora, enzymes to promote humic acid conversion and some special Organic catalysts, etc.
  • the obtained humic acid product has high humic acid content and reaches the standard of coal humic acid, which can rapidly increase soil organic matter and improve Soil fertility and high temperature, aerobic fermentation are the key to the formation of biohumic acid. Excessive temperature during fermentation will cause the fermentation strain to die, but too low temperature will affect the formation of biohumic acid. Therefore, the control of fermentation temperature is to find a reasonable and economic balance point to resolve this contradiction.
  • 55-85 ⁇ is the fermentation temperature range selected by the present invention.
  • a suitable BGB biohumic acid conversion agent that is, a high temperature group mainly composed of aerobic bacteria Bacillus subtillis and Sporotrichum thermophile. It includes a variety of enzymes and metabolites such as ligninase, cellulase, protease, amylase and lipase to greatly shorten the fermentation time.
  • the BGB biohumic acid conversion agent of the present invention contains the following high temperature bacteria: Bacillus subtillis ⁇ , Baclicus lincheniformis, Geobacillus stearothermophilus, and Sporotrichum thermophile. Wait. Individual strains can be individually selected from the cryopreserved strains by conventional methods, and streaked into solid plate medium under appropriate conditions. Culture, to grow colonies, inoculate in liquid medium for shaking culture, and then inoculate in a solid medium suitable for each strain to produce enzymes, and control the fermentation conditions to fully produce the enzyme; the above four high temperature bacteria are the invention Essential for biological humic acid conversion agents. In addition to the above four high temperature bacteria, the biohumic acid conversion agent of the present invention may further contain other high temperature bacteria such as Bacillus magaterium, Lactobacillus plantarum and iSaccharomyces cerevisiae. Wait.
  • the transforming agent is capable of producing various enzymes including cellulase, hemicellulase, protease, amylase and lipase; and the applicant has found that the temperature of the enzymatic reaction of these enzymes is not only higher than the optimal temperature for microbial growth 8-15 °C, the reaction time is also much faster than the time required for the growth of microorganisms, so it plays an important role in the formation of biohumic acid, and the biggest feature of this BGB humic acid conversion agent is that it can be at high temperature (55-85 ° C, for example 55 °C-60°C range, 60°C-65°C range, 65°C-70°C range, 70°C_75°C range, 75°C_80°C range, 80°C-85°C range) Normal fermentation.
  • the biohumic acid of the present invention can be completed in a relatively short period of time under the combined action of microbial fermentation, biodegradation of the enzyme, and high temperature, aerobic chemical synthesis, generally
  • the present invention also provides a biological humic acid conversion agent comprising microorganisms such as Bacillus subtilis, Thermosporium thermophilus, Bacillus licheniformis, Bacillus stearothermophilus, including cellulase, protease, amylase, lipase, etc.
  • a biological humic acid conversion agent comprising microorganisms such as Bacillus subtilis, Thermosporium thermophilus, Bacillus licheniformis, Bacillus stearothermophilus, including cellulase, protease, amylase, lipase, etc.
  • microorganisms such as Bacillus subtilis, Thermosporium thermophilus, Bacillus licheniformis, Bacillus stearothermophilus, including cellulase, protease, amylase, lipase, etc.
  • Various enzymes such as Bacillus subtilis, Thermosporium thermophilus, Bac
  • the biohumic acid conversion agent of the present invention comprises Bacillus subtilis, Thermomyces faecalis, Bacillus licheniformis, Bacillus stearothermophilus.
  • the biohumic acid conversion agent of the present invention is prepared by mixing in a ratio of viable bacteria: (4.2-5.5): (3.8-5.1): (1.2-1.5): (1.2-1.5).
  • the biohumic acid conversion agent of the invention can be prepared into a solid form of BGB biohumic acid fermentation fungicide, and stored at 4 ° C for use; it can also be stored separately, mixed immediately, and used immediately.
  • the production method of the present application can be carried out using the apparatus disclosed in the Chinese Utility Model Patent Publication No. 200920108353. 8 entitled "Organic Waste Biochemical Processor".
  • the complete set consists of five parts: hot air circulation system, agitation system, exhaust and dust collection system, oxygen supply system, automatic lifting feeding system, and electronic control system.
  • the whole electronic control system effectively adjusts the temperature, pressure, oxygen supply, circulating air temperature, exhaust air temperature, etc. in the fermentation according to a specific process flow, so that the materials are automatically in a preset time. Complete the whole process of fermentation drying and cooling.
  • the whole fermentation process of the invention can be completed by using the biochemical processor described in the patent, and the process parameter control of the fermentation can be controlled by a computer automatic control system to provide completely aerobic fermentation conditions, and the technical indicators of the biological humic acid product are consistent and stable. Sex and repeatability.
  • Raw material processing The oil sludge and empty fruit are weighed and weighed and mixed into an organic garbage biochemical processor.
  • the material is comminuted, for example, the palm oil by-product sludge and the empty fruit bunch are pulverized to a size of 3-5 mm.
  • BGB high-temperature compound bacteria are separately subjected to solid fermentation culture, and the medium components and fermentation conditions are controlled to make the bacteria fully produce the enzyme; The ratio is mixed to obtain a biohumic acid conversion agent.
  • the biological humic acid conversion agent is composed of Bacillus subtilis, Thermomyces faecalis, Bacillus licheniformis, and Bacillus stearothermophilus.
  • the ratio of viable cells thereof is:
  • the prepared biohumic acid conversion agent is mixed with palm oil sludge and empty fruit bunch.
  • the water is added to adjust the moisture content of the material to 50-60%, and the water transfer is to make a growth environment more suitable for rapid activation of microorganisms.
  • the palm oil plant wastewater is added to control the moisture content of the entire material to be between 50 and 60%.
  • the amount of BGB biohumic acid conversion agent added can be determined by those skilled in the art based on conventional knowledge and the degree of fermentation desired.
  • the biological humic acid conversion agent is added in proportion to the material of the palm oil sludge and the empty fruit string, so that the number of viable bacteria per gram of the composite material is 1.5-2.0X10.
  • Fermentation start the biochemical processor, stir the material to be fermented evenly; then start the automatic program to effectively control the temperature of the fermentation material, the temperature of the circulating wind, the temperature of the exhaust air and the pressure in the fermentation drying chamber.
  • 55-85 ° C for example, reaching 55 ° C -60 ° C range, 60 ° C -65 ° C range, 65 ° C -70 ° C range, 70 ° C -75 ° C range, 75 ° C -80 ° C range , 80 ° C -85 ° C range; maintain constant temperature, fermentation 8-24 hours.
  • a high temperature aerobic fermentation of 10-12 hours is carried out at 75 °C.
  • the circulating fan continuously sends fresh air into the processor fermentation tank, and the equipment stirs the material at a certain speed (for example, 10-20 rpm).
  • the microorganisms get sufficient oxygen to meet the requirements of BGB biohumic acid conversion synthesis.
  • the processor sends
  • the bacteria in the yeast cell multiply, degrade organic matter, convert into their own small molecular bacterial proteins and metabolic oligosaccharides, and synthesize various enzymes required for biological humic acid, together with the enzyme contained in the BGB biohumic acid conversion agent. Complete biohumic acid conversion.
  • the high temperature of the material during the fermentation process can kill eggs and harmful microorganisms.
  • the obtained bio-humic acid can be used directly.
  • the material is then sieved and metered into biochemical humic acid powder.
  • biohumic acid product obtained by the method of the present invention is tested and its technical indicators are as follows:
  • the present invention also provides a biological humic acid produced by the method of the present invention, which has a total humic acid content of 43-48%, a free humic acid content of 42-45%, and an easily oxidizable organic matter content of 23- 25%; organic matter content 85-90%.
  • organic matter refers to organic matter containing vital functions.
  • Soil organic matter refers to the life-derived substances in the soil. These include soil microbes and soil animals and their secretions, as well as plant residues and plant secretions in the soil. From a chemical point of view, it is usually a general term for various carbon-containing compounds other than carbonates and carbon dioxide in the soil. Can be divided into two categories of non-specific and specific. The former is commonly known as various types of organic compounds: including proteins, lipids, carbohydrates, waxes, resins, organic acids, etc., accounting for 10 ⁇ 15% of the total soil organic matter; the latter is called humus, which accounts for the total amount of soil organic matter. 85 ⁇ 90%.
  • Humus can exist in the soil in the form of free Humic acid free and humate, and can also be gel-likely bound to mineral clay to become an important colloidal substance. Humus is not only the main source of soil nutrients, but also has an important impact on the physical, chemical and biological properties of the soil. It is one of the indicators of soil fertility.
  • the testing standard can be implemented by NY525-2012 (Ministry of Agriculture of the People's Republic of China, 2012-03-01, China Agricultural Press, 2012-06-01).
  • active soil organic matter is an organic matter that is easily oxidized and decomposed in soil. It is a part of organic matter that is highly effective in soil and easily decomposed by soil microorganisms and has a direct effect on plant nutrient supply. At present, there is a lack of uniform definition of active organic matter, and research perspectives and methods are also different, resulting in many titles. Such as LOM Labile organic matter; MBOM Microbial biomass; Light fraction organic matter (LFOM); DOM Dissolved organic matter, etc., all of which are different from active organic matter. Form of expression (Wang Qingkui, 2005). Oxidative organic matter is the main factor affecting soil organic matter content and soil fertility (Wen et al., 2009). For the detection of oxidizable organic matter, see Lefroy, RD B. Plant Soil, 1993, 155/156: 399-402.
  • the invention utilizes the palm oil by-product to produce the biological humic acid, and the adopted technical route is not the idea of waste disposal, but the idea of recycling resources, without any pollution to the environment; the utilization rate of resources reaches 98% or more;
  • the indicators of biohumic acid products meet the requirements of agricultural related standards.
  • the preparation method of the invention is short in time, and can be completed only for 8-24 hours (currently, the conventional technical method requires fermentation for 14-21 days), which can meet the demand for industrial production of biological humic acid.
  • the organic matter content of the product is high, and can reach more than 85%.
  • the prepared biological humic acid is rich in nutrients, total humic acid, free humic acid and easily oxidizable organic matter content of 43-48%, 42-45% and 23-25%, respectively, and contains nutrients such as nitrogen, phosphorus and potassium. It is especially suitable for use in fertilizers for agricultural production.
  • the biohumic acid of the present invention is produced as follows:
  • Raw materials Mix empty fruit bunches with sludge
  • BGB biohumic acid conversion agent Proportion of viable bacteria from Bacillus subtilis, Thermomyces faecalis, Bacillus licheniformis, Bacillus stearothermophilus: 4.2: 3.8: 1.2: 1.2 Mixed.
  • BGB biohumic acid conversion agent is mixed with empty fruit bunch and sludge material uniformly, added to palm oil plant wastewater, and the moisture content of the material is adjusted to 50%, and the bio-humic acid product is fermented;
  • Oil sludge 8kg
  • BGB biohumic acid conversion agent 1.0kg
  • Raw materials Crush the empty fruit bunch and sludge to 3-5mm, mix
  • BGB biohumic acid conversion agent Proportion of viable bacteria from Bacillus subtilis, Thermomyces faecalis, Bacillus licheniformis, Bacillus stearothermophilus: 5.5: 5.1: 1.5: 1.5 Made by mixing.
  • Blending and fermenting Mixing BGB biohumic acid conversion agent with empty fruit bunch and sludge material, adding to palm oil plant wastewater, adjusting the moisture content of the material to 50%, and then fermenting the biohumic acid product;
  • Oil sludge 10kg
  • BGB biological humic acid conversion agent 1.5kg ;
  • Raw materials Crush the empty fruit bunch and sludge to 3-5mm, mix
  • BGB biohumic acid conversion agent Proportion of viable bacteria from Bacillus subtilis, Thermomyces faecalis, Bacillus licheniformis, and Bacillus stearothermophilus: 4.2: 5.1: 1.2: 1.5 Mixed.
  • Blending and fermenting Mixing BGB biohumic acid conversion agent with empty fruit bunch and sludge material, adding to palm oil plant wastewater, adjusting the moisture content of the material to 60%, and then fermenting the biohumic acid product;
  • Oil sludge 16kg
  • BGB biological humic acid conversion agent 1.5kg ;
  • Raw materials Mix empty fruit bunches with sludge
  • BGB biohumic acid conversion agent Proportion of viable bacteria from Bacillus subtilis, Thermomyces faecalis, Bacillus licheniformis, Bacillus stearothermophilus: 5.5: 3.8: 1.5: 1.2 Mix, then add the proportion of viable bacteria Made of 2.0 Bacillus megaterium.
  • Blending and fermenting Mixing BGB biohumic acid conversion agent with empty fruit bunch and sludge material, adding water, adjusting the moisture content of the material to 55%, and fermenting the biological humic acid product;
  • Oil sludge 10kg
  • BGB biohumic acid conversion agent 2.0kg
  • Raw materials Mix empty fruit bunches with sludge
  • BGB biohumic acid conversion agent Proportion of viable bacteria from Bacillus subtilis, Thermomyces faecalis, Bacillus licheniformis, Bacillus stearothermophilus: 5.5: 3.8: 1.5: 1.2 Mix, then add the proportion of viable bacteria Made from 1.0 and 1.5 of Bacillus megaterium and Saccharomyces cerevisiae.
  • Blending and fermenting Mixing BGB biohumic acid conversion agent with empty fruit bunch and sludge material, adding water, adjusting the moisture content of the material to 55%, and then fermenting the biological humic acid product;
  • Oil sludge 8kg
  • BGB biological humic acid conversion agent 2.2kg ;
  • Raw materials Mix empty fruit bunches with sludge
  • BGB biohumic acid conversion agent Proportion of viable bacteria from Bacillus subtilis, Thermomyces faecalis, Bacillus licheniformis, Bacillus stearothermophilus: 5.5: 3.8: 1.5: 1.2 Mix, then add the proportion of viable bacteria Made of 1.0, 1.5, 0.5 of Bacillus megaterium, Saccharomyces cerevisiae and Lactobacillus plantarum.
  • Blending and fermenting Mix BGB biohumic acid conversion agent with empty fruit bunch and sludge material, add water, adjust the moisture content of the material to 55%, and then ferment the biohumic acid product;
  • Oil sludge 6kg
  • BGB biological humic acid conversion agent 2.5kg ;
  • the material biohumic acid product obtained in Examples 1-6 was dried at 80 ° C for 2 hours to reduce the moisture content to less than 12%, and the obtained biochemical humic acid was technically referred to as total humic acid and
  • the detection standard of free humic acid is GB/T 11957-2001.
  • the organic matter testing standard is NY525-2012.
  • the palm oil by-product prepared by the technical scheme of the present invention has high biohumic acid content and is rich in nutrients, and is suitable for fertilizers in agricultural production.
  • the palm oil by-products were subjected to multiple batch treatments, and substantially the above similar results were obtained.
  • % involved in the present invention refers to a percentage by weight unless otherwise specified.
  • the above description is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can make several improvements and retouchings without departing from the technical principles of the present invention. It should also be considered as the scope of protection of the present invention.

Abstract

一种生物腐植酸的生产方法,包括利用棕榈副产品空果串和棕榈油泥为原料,添加生物腐植酸转化剂,在55-85°C条件下高温好氧发酵,生物腐植酸转化剂含有枯草芽孢杆菌、嗜热侧孢霉、地衣芽孢杆菌、嗜热脂肪芽孢杆菌。所获得的生物腐植酸的总腐植酸、游离腐植酸和易氧化有机质含量分别达到43-48%、42-45%和23-25%。

Description

棕油副产品生物腐植酸及其生产方法和所用的生物腐植酸转化剂 技术领域
本发明涉及一种利用棕油副产品通过高温好氧发酵生产生物腐 植酸的方法和工艺,本发明还涉及通过本发明方法生产获得的棕油副 产品生物腐植酸以及本发明生产方法中所用的生物腐植酸转化剂。 背景技术
油棕属多年生单子叶植物, 是热带木本油料作物。 油棕的果肉、 果仁含油丰富, 油棕果含油量高达 50%以上, 油棕亩产油量是椰子的 2-3倍, 是花生亩油量的 7-8倍, 所以被人们誉为"世界油王"。 由于 油棕的油脂产量高, 且用途广泛, 所以, 近百年来热带和亚热带地区 竞相引种, 我国海南、 广东、 广西、 云南等省区也于 1926年开始种 植油棕。
油棕树最早源自西非。 目前油棕主要产区包括马来西亚, 尼日利 亚, 印度尼西亚, 中国, 扎伊尔, 喀麦隆 (D. K. Salunkhe , 1986 ) 等。 油棕果果皮、 种仁均可搾油, 分别为棕榈油和棕榈仁油。
热带、亚热带地区多种植油棕榈, 其棕榈果是用来加工棕榈油的 原料。在棕油厂, 在棕榈油加工过程中棕榈果从果串中分离出来, 每 吨鲜果串产生约 0. 23吨空果串。 每年预计将平均产生 400万吨 (干 基) 空果串 (Ryohei TANAKA; 2001 )。 大部分空果串被焚烧或废弃在 油棕园覆盖在油棕根部。 目前, 棕油厂每处理 100吨油棕果串, 产生 23吨空果串, 及 60吨废水。 目前, 全球油棕地估计 1282万公顷, 全球棕榈油的产量达到历史最高水平,产生巨量的棕榈油副产品和废 水,加剧了对生态环境的污染。长期以来,如何科学有效处理空果串、 棕榈油泥等副产物一直困扰着棕榈油生产国和企业。
尼日利亚、马来西亚和印尼等国, 从 20世纪 80年代开始对空果 串等副产品进行处理, 目前主要集中在供热 (M. A. Ngan, 1987)、 堆月巴 (Lim, 1989; Azmi Yahya, 2009 ) 和制衆造纸技术 (Wan Rosl i and Law , 2011 ) 等几方面, 应用方面主要以供热和堆肥 (Mr 0 0. Koladel, 2005; Ogbonna, P. E., 2009 ) 为主。 不过焚烧带来了严 重的空气和环境污染。堆肥占地面积大; 有氧分解过程中产生的臭味 会污染环境; 堆肥产品质量一致性不佳, 重复性不好, 影响堆肥产品 销售; 堆肥过程中减量作用明显, 使大量有机质被完全降解而造成有 机资源浪费。
棕榈油泥(sludge palm oi l , SP0)是由棕榈果搾取棕榈油时的下 脚料, 主要成分是棕榈果皮纤维、 蛋白质、 脂肪等, 经检测棕榈油泥 中 (干基)有机质含量 84. 02%、 速效氮含量 2. 38%、 脂肪含量 12. 01%, 是一种极难处理的棕油厂副产品。 由于脂肪含量高, 棕榈油泥给污水 处理系统造成很大压力, 同时也不能对其进行简单的堆肥, 因为其中 高含量的脂肪抑制堆肥中好氧菌的作用,并使堆肥有氧分解过程中产 生臭味, 对环境造成污染。 目前, 我国肥料平均利用率较发达国家低 10-20%以上, 而且呈 逐年下降的趋势(曾宪坤, 1995; 张福锁, 2008) , 分析肥料利用率 低的根本原因在于土壤结构的破坏与有机质含量过低。另一方面, 由 于部分地区施化肥不当, 肥料利用率低等, 带来了局部生态环境污染 加剧等问题, 成为我国经济和农业发展的制约因素。 国内大量的科学 研究结果表明, 由于腐植酸具有网状的分子结构和活性官能团等, 在 提高土壤肥力,改善土壤结构和解决化肥利用率低以及其带来的农业 面源污染方面具有良好的优势和效果。
腐植酸(HA)是动植物(主要是植物残体)等有机物经过长期复 杂的生物化学及地质物理化学过程形成的一类结构复杂的有机化合 物, 具有较强的生理活性。 采用工业有机废渣、 农林业副产物经微 生物发酵制成的腐植酸称为生物腐植酸。 研究表明 (何立千, 1999) 生物腐植酸与矿源腐植酸具有相同的结构特征, 其功能也类似。
由于腐植酸分子链中含有多种活性基团,故其性质及功能也是多 方面的。经过我国科技人员的努力和大量的试验, 总结出腐植酸的五 大功效: 改良土壤、 提高化肥利用率、 剌激作物生长、 增强作物抗 逆能力、 改善产品品质。 国外学术界也认为, 腐植酸在植物营养领域 主要起植物生长剌激物质、营养元素载体、改良土壤及使肥料增效等 方面作用。
空果串是很好的有机质和植物营养来源,它含有大量的钾(2. 4%) 及氮(0. 8%)、 镁(0. 2%)和磷(0. 1%) (Gurmit, 1982 )。 同时空果串的 主要成分为: 木质素 17%、 纤维素 70%、 及灰分 1% (Ryohei TANAKA; 2001 ), 空果串与少量棕榈油泥混合后, 是很好的发酵生产生物腐殖 酸肥料的原料。
目前,国内外生产生物腐植酸的制备工艺是将特定的多种微生物 菌种接种到植物培养基(如作物秸秆、木屑、蔗渣等农业有机废弃物) 中, 通过化学或微生物发酵工艺生成并提取制成 (刘可星等, 2008 ; 叶水英, 1999 ) 。 但发酵时间长, 一般在 14-21天, 同时腐植酸含量 低, 一般在 30-35%左右。
CN 102174583A公开了一种混菌发酵生产生物腐植酸的方法, 该 方法是将蔗渣和麸皮作为发酵原料; CN101717722A 公开了一种微生 物菌剂生产腐植酸的方法,该方法同样将甘蔗制糖残渣作为腐植酸生 产原料; CN101941851A 公开了一种采用餐厨废弃物制备腐植酸的方 法。 由此可见, 国内外利用棕油副产品空果串作为培养基生产生物腐 植酸的工艺尚未见报道。 发明内容
本发明就是要提供一种采用棕榈副产品空果串和棕榈油泥来制 备生物腐植酸的方法, 优化空果串资源处理, 为棕榈副产品的处理提 供一种新的途径。
具体说, 本发明的生物腐植酸的生产方法, 包括采用空果串和棕 榈油泥为原料,加入适于棕油副产品的生物腐植酸转化剂,在 55-85 °C 范围的高温条件下好氧发酵。
本发明采用高温好氧快速发酵技术,以棕油副产品空果串和油污 泥为原料, 利用棕油厂废水调节发酵培养基水分含量, 加入适用于棕 油副产品发酵的 BGB生物腐植酸转化剂 (包括高温好氧微生物菌群、 促进腐植酸转化的酶及某些特殊的有机催化剂等) , 经高温 ( 55-85 °C ) 、 好氧发酵, 可以得到生物腐植酸含量 42%-45%的腐植 酸肥料。解决棕榈油厂有机废弃物环境污染问题,弥补了堆肥的缺陷, 同时生物腐植酸发酵时间短, 得到的生物腐植酸产品腐植酸含量高, 达到煤炭腐植酸的标准, 能快速增加土壤有机质、提高土壤肥力和作 高温、好氧发酵是生物腐植酸形成的关键。发酵过程中温度过高 会使发酵菌种死亡, 但温度过低会影响生物腐植酸的形成, 因此发酵 温度的控制就是要找到一个解决这一矛盾的合理的、 经济的平衡点。 经过研究, 55-85 Ό是本发明选取的发酵温度范围。
为达到这一发酵温度范围,就需选用合适的 BGB生物腐植酸转化 剂, 即以好氧菌枯草芽孢杆菌 ( Bacillus subtillis ) 和嗜热侧孢霉 (Sporotrichum thermophile ) 为主的高温菌群, 还包括木质素酶、 纤 维素酶、 蛋白酶、 淀粉酶及脂肪酶等多种酶和代谢产物, 以便大大缩 短发酵时间。
本发明的 BGB生物腐植酸转化剂含有以下高温菌种:枯草芽孢杆 菌 {Bacillus subtillis^) 、 地衣芽孢杆菌 {Baclicus lincheniformis ) ^ 嗜 热脂肪芽孢杆菌 ί Geobacillus stearothermophilus ) , 嗜热侧孢霉 Sporotrichum thermophile ) 等。 各个菌种可单独地按常规方法从低 温保存的菌种中挑取菌种划线接种到固体平板培养基,于合适条件下 培养, 待长出菌落, 再接种于液体培养基进行振荡培养, 然后接种于 适合各菌种产酶的固体培养基中, 控制发酵条件使其充分产酶; 上述 四种高温菌种是本发明生物腐植酸转化剂中所必须的。除上述四种高 温菌种外, 本发明的生物腐植酸转化剂中还可以含有其他高温菌种, 例如巨大芽孢杆菌 {Bacillus magaterium )、植物乳杆菌 {Lactobacillus plantarum ) 及酉良酒酵母 iSaccharomyces cerevisiae) 等。
此转化剂能够产生包括纤维素酶、 半纤维素酶、 蛋白酶、 淀粉酶 及脂肪酶等多种酶;且申请人检测发现这些酶酶促反应的温度不仅比 微生物生长最适温度高 8-15°C, 反应时间也远远快于微生物的生长 所需时间, 因此对生物腐植酸形成起重要作用, 并且此 BGB腐植酸转 化剂最大的特点是可在高温 (55-85°C, 例如 55°C-60°C范围, 60°C -65°C范围, 65°C-70°C范围、 70°C_75°C范围、 75°C_80°C范围、 80°C -85°C范围) 下正常发酵。 在微生物发酵、 酶的生化降解及高温、 充 分好氧的化学合成的共同作用下,本发明的生物腐植酸可以在较短时 间内完成, 一般在 8-24小时完成。
因此,本发明还提供一种生物腐植酸转化剂,含有枯草芽孢杆菌、 嗜热侧孢霉、 地衣芽孢杆菌、 嗜热脂肪芽孢杆菌等微生物, 包含纤维 素酶、 蛋白酶、 淀粉酶及脂肪酶等各种酶类。
在一个优选的方案中,本发明的生物腐植酸转化剂由枯草芽孢杆 菌、 嗜热侧孢霉、 地衣芽孢杆菌、 嗜热脂肪芽孢杆菌组成。
在一个首选的方案中,本发明的生物腐植酸转化剂由以活菌数比 例: (4.2-5.5): (3.8-5.1): (1.2-1.5): (1.2-1.5), 混合制成。 本发明的生物腐植酸转化剂可制成固体形态的 BGB 生物腐植酸 发酵菌剂, 于 4°C保存备用; 也可单独保存, 即时混合、 即时使用。
在一个具体的实施方案中, 本申请的生产方法, 可以使用申请号 为 200920108353. 8发明名称为 《有机垃圾生化处理机》 的中国实用 新型发明专利中公开的设备来实施。该整套设备共由五部分构成: 热 风循环系统、 搅拌系统、 排风和集尘系统、 补氧系统、 自动提升喂料 系统、 及电控系统。 整个电控系统在程序控制下, 对发酵内的温度、 压力、 补氧量、 循环风温度、 排风温度等, 按特定的工艺流程, 进行 有效调节, 使得物料在预设的时间内, 自动完成发酵干燥和冷却的全 过程。
利用该专利中记载的生化处理机可以完成本发明的整个发酵过 程, 发酵的工艺参数控制可以使用计算机自动化控制体系, 提供完全 好氧的发酵条件, 保证生物腐植酸产品技术指标具有一致性、稳定性 和可重复性。
本发明将结合这个具体的实施方案,对本发明的发酵棕油副产品 生产生物腐植酸具体过程进行进一歩描述:
( 1 ) 原材料处理: 将油污泥和空果串过磅计量, 混合后装入有 机垃圾生化处理机。
优选,将物料粉碎,例如将棕油副产品油泥和空果串粉碎至 3-5mm 大小。
( 2 ) 生物腐植酸转化剂混合: BGB高温复合菌分别进行固体发 酵培养, 控制培养基组分和发酵条件, 使菌群充分产酶; 将培养物按 比例混合得到生物腐植酸转化剂。
优选, 生物腐植酸转化剂由枯草芽孢杆菌、 嗜热侧孢霉、 地衣芽 孢杆菌、 嗜热脂肪芽孢杆菌组成, 首先, 它们的活菌数比例:
(4.2-5.5): (3.8-5.1): (1.2-1.5): (1.2-1.5), 混合制成。
将制备好的生物腐植酸转化剂与棕榈油泥和空果串混合。
优选, 在混合之后, 加水调节物料含水率至 50-60%, 调水是使 形成更加适宜微生物快速激活的生长环境。
优选, 添加棕榈油厂废水, 使整个物料的含水率控制在 50-60% 之间。
BGB生物腐植酸转化剂的添加量可以是本领域技术人员根据常规 知识和所需发酵程度测定得到的。
优选, 按每公斤棕榈油泥和空果串的物料比例添加 20-50g生物 腐植酸转化剂, 使得每克物料含复合菌活菌数 1.5-2.0X10
(3) 发酵: 启动生化处理机, 将待发酵物料搅拌均匀; 然后启 动自动程序, 对发酵物料的温度、循环风的温度、 排风的温度和发酵 干燥室内的压力的有效控制, 使物料达到 55-85°C,例如达到 55°C -60°C范围, 60°C-65°C范围, 65°C-70°C范围、 70°C_75°C范围、 75°C -80°C范围、 80°C-85°C范围; 保持恒温, 发酵 8-24小时。 在一个最 佳的选择方案中, 在 75°C条件下进行 10-12小时的高温好氧发酵。
发酵期间循环风机不断将新鲜空气送入处理机发酵池中,同时设 备以一定的转速 (例如 10-20转 /分钟) 搅拌物料。 使微生物得到充 足的氧气, 达到适合 BGB生物腐植酸转化合成要求。 同时, 处理机发 酵池内的菌体大量繁殖, 降解有机质, 转化为自身的小分子菌体蛋白 和代谢寡糖, 并合成生物腐植酸所需的各种酶, 与 BGB生物腐植酸转 化剂中所含的酶一起完成生物腐植酸转化。物料在发酵过程中的高温 能杀灭虫卵及有害微生物。
( 4 ) 后加工: 发酵之后, 获得的生物腐植酸可以直接使用。 为 使方便以产品形成存在, 优选将上述发酵好的物料干燥, 使水分减少 至物料含水率在 12%或更低, 获得生物腐植酸产品。 再对物料进行筛 分、 计量成生化腐植酸原粉。
通过本发明方法所得到的生物腐植酸产品经检测得到其技术指 标如下表所示:
表 1
Figure imgf000010_0001
( d表示以干基计) 因此, 本发明还提供一种本发明方法生产的生物腐植酸, 其总腐 植酸含量 43-48%、 游离腐植酸含量 42-45% , 易氧化有机质含量 23-25%; 有机质含量 85-90%。
其中, 有机质 (Organic matter) 是指含有生命机能的有机物质。 土壤有机质泛指土壤中来源于生命的物质。包括土壤微生物和土壤动 物及其分泌物以及土体中植物残体和植物分泌物。 从化学物质角度, 通常指土壤中除碳酸盐和二氧化碳以外的各种含碳化合物的总称。可 分为非特异性的和特异性的两大类。前者即通常熟知的各类有机化合 物:包括蛋白质、 脂类、 碳水化合物、 蜡、 树脂、 有机酸等, 占土壤 有机质总量的 10〜15 %;后者称为腐殖质,占土壤有机质总量的 85〜 90 %。 腐殖质在土壤中可以呈游离的腐殖酸 (Humic acid free)和腐殖 酸盐类状态存在, 也可以呈凝胶状与矿质粘粒紧密结合, 成为重要的 胶体物质。 腐殖质不仅是土壤养分的主要来源, 而且对土壤的物理、 化学、生物学性质都有重要影响, 是土壤肥力指标之一。其检测标准 可采用 NY525-2012 (中华人民共和国农业部, 2012-03-01发布, 中国农业出版社出版发行, 2012-06-01实施。)
Blair (1995) 等指出土壤活性有机质(Active soil organic matter) 是土壤中易氧化分解的有机质, 是土壤中有效性高, 易被土壤微生物 分解利用, 对植物养分供应有直接作用的那部分有机质。 目前活性有 机质缺乏统一的定义, 研究角度和方法也有所不同, 产生了许多的 称谓。 如易氧化有机质 (LOM Labile organic matter) ; 生物量有机 质 (MBOM Microbial biomass); 轻组有机质 (LFOM, Light fraction organic matter ); 溶角军有机质 ( DOM Dissolved organic matter ) 等, 都是活性有机质的不同表现形式 (王清奎, 2005 )。 易氧化有机质是 影响土壤有机质含量和土壤肥力的主要因素 (文炯等, 2009)。 易氧 化有机质的检测方法可参见 Lefroy, R D B. Plant Soil , 1993, 155/156:399-402。
本发明的技术方案具有如下有益效果:
1、 用棕油副产品生产生物腐植酸, 是腐植酸的新来源, 该发明 技术使不可再生的煤炭腐植酸变为可再生的生物腐植酸,对腐植酸行 业的可持续发展和解决能源短缺将做出重要的贡献,也是今后腐植酸 行业主要的发展方向和趋势。
目前对棕油副产品空果串资源化利用的几种方式如焚烧和堆肥 都不同程度地存在诸如占用土地、 资源浪费和对环境的二次污染问 题, 而棕油废水的处理也需很大的经济投入。本发明利用棕油副产品 生产生物腐植酸, 采用的工艺技术路线不是废弃物处理的思路, 而是 对资源循环利用的思想, 对环境没有任何的污染; 对资源的利用率达 到 98%以上; 且生物腐植酸产品的指标符合农业相关标准要求。
2、 填补国内利用棕油副产品生产生物腐植酸的技术空白, 为棕 油副产品的资源化利用提供了新的方法和工艺、 技术路线。
3、 本发明的制备方法耗时短, 仅 8-24小时(目前常规的技术方 法需发酵 14-21天)就可完成,可满足生物腐植酸产业化生产的需求。
4、 经本发明的技术方案处理后产品有机质含量高, 可达到 85% 以上。 同时, 制备得到的生物腐植酸营养丰富, 总腐植酸、 游离腐植 酸和易氧化有机质含量分别达到 43-48%、 42-45%和 23-25%; 且含有 氮、 磷、 钾等营养元素, 特别适合用于农业生产中的肥料。 具体实施方式 下面结合实施例, 对本发明的具体实施方式作进一歩详细描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。 实施例 1:
按下述方法生产本发明的生物腐植酸:
1) 原料: 将空果串和油泥混合;
2) BGB 生物腐植酸转化剂: 由枯草芽孢杆菌、 嗜热侧孢霉、 地 衣芽孢杆菌、 嗜热脂肪芽孢杆菌的活菌数比例: 4.2: 3.8: 1.2: 1.2 混合制成。
3) 掺混并发酵: 将 BGB生物腐植酸转化剂与空果串和油泥物料 混合均匀, 加入棕油厂废水, 调节物料含水率至 50%, 发酵得生物腐 植酸产品; 其中:
油污泥: 8kg;
空果串: 42kg;
BGB生物腐植酸转化剂: 1.0kg
发酵时间: 12小时;
发酵温度: 75°C。 实施例 2:
1) 原料: 将空果串和油泥粉碎至 3-5mm,混合;
2) BGB 生物腐植酸转化剂: 由枯草芽孢杆菌、 嗜热侧孢霉、 地 衣芽孢杆菌、 嗜热脂肪芽孢杆菌的活菌数比例: 5.5: 5.1: 1.5: 1.5 混合制成。
3) 掺混并发酵: 将 BGB生物腐植酸转化剂与空果串和油泥物料 混合均匀, 加入棕油厂废水, 调节物料含水率至 50%, 然后发酵得生 物腐植酸产品; 其中:
油污泥: 10kg;
空果串: 40kg;
BGB生物腐植酸转化剂: 1.5kg;
发酵时间: 24小时;
发酵温度: 60°C。 实施例 3:
1) 原料: 将空果串和油泥粉碎至 3-5mm,混合;
2) BGB 生物腐植酸转化剂: 由枯草芽孢杆菌、 嗜热侧孢霉、 地 衣芽孢杆菌、 嗜热脂肪芽孢杆菌的活菌数比例: 4.2: 5.1: 1.2: 1.5 混合制成。
3) 掺混并发酵: 将 BGB生物腐植酸转化剂与空果串和油泥物料 混合均匀, 加入棕油厂废水, 调节物料含水率至 60%, 然后发酵得生 物腐植酸产品; 其中:
油污泥: 16kg;
空果串: 44kg;
BGB生物腐植酸转化剂: 1.5kg;
发酵时间: 8小时; 发酵温度: 80°C。 实施例 4:
1) 原料: 将空果串和油泥混合;
2) BGB 生物腐植酸转化剂: 由枯草芽孢杆菌、 嗜热侧孢霉、 地 衣芽孢杆菌、嗜热脂肪芽孢杆菌的活菌数比例: 5.5: 3.8: 1.5: 1.2 混合, 再加入活菌数比例为 2.0的巨大芽胞杆菌制成。
3) 掺混并发酵: 将 BGB生物腐植酸转化剂与空果串和油泥物料 混合均匀, 加水, 调节物料含水率至 55%, 发酵得生物腐植酸产品; 其中:
油污泥: 10kg;
空果串: 40kg;
BGB生物腐植酸转化剂: 2.0kg;
发酵时间: 12小时;
发酵温度: 65°C。 实施例 5:
1) 原料: 将空果串和油泥混合;
2) BGB 生物腐植酸转化剂: 由枯草芽孢杆菌、 嗜热侧孢霉、 地 衣芽孢杆菌、 嗜热脂肪芽孢杆菌的活菌数比例: 5.5: 3.8: 1.5: 1.2 混合, 再加入活菌数比例为 1.0、 1.5的巨大芽胞杆菌和酿酒酵母制 成。 3) 掺混并发酵: 将 BGB生物腐植酸转化剂与空果串和油泥物料 混合均匀, 加水, 调节物料含水率至 55%, 然后发酵得生物腐植酸产 品; 其中:
油污泥: 8kg;
空果串: 42kg;
BGB生物腐植酸转化剂: 2.2kg;
发酵时间: 16小时;
发酵温度: 70°C。 实施例 6:
1) 原料: 将空果串和油泥混合;
2) BGB 生物腐植酸转化剂: 由枯草芽孢杆菌、 嗜热侧孢霉、 地 衣芽孢杆菌、 嗜热脂肪芽孢杆菌的活菌数比例: 5.5: 3.8: 1.5: 1.2 混合, 再加入活菌数比例为 1.0、 1.5、 0.5的巨大芽胞杆菌、 酿酒酵 母和植物乳杆菌制成。
3) 掺混并发酵: 将 BGB生物腐植酸转化剂与空果串和油泥物料 混合均匀, 加水, 调节物料含水率至 55%, 然后发酵得生物腐植酸产 品; 其中:
油污泥: 6kg;
空果串: 44kg;
BGB生物腐植酸转化剂: 2.5kg;
发酵时间: 24小时; 发酵温度: 55 °C。 实施例 7
将实施例 1-6所得的物料生物腐植酸产品在 80°C下烘干 2小时, 使水分减少至物料含水率低于 12%, 对所得的生化腐植酸进行技术指 其中, 总腐植酸和游离腐植酸检测标准为 GB/T 11957-2001。 中 华人民共和国国家质量监督检验检疫总局, 2001-11-12 发布, 2002-08-01实施。
有机质检测标准为 NY525-2012。 中华人民共和国农业部, 2012-03-01发布, 中国农业出版社出版发行, 2012-06-01实施。
易氧化有机质的检测方法见 (Lefroy, R D B. Plant Soil, 1993, 155/156 : 399-402 ) 。
上述实施例得到的生物腐植酸的技术指标检测如下表所示:
表 2
Figure imgf000017_0001
(d表示以干基计) 由以上实施例可以看出,棕油副产品经本发明的技术方案制备得 到的产品生物腐植酸含量高, 营养丰富, 适用于农业生产中的肥料。
按照本发明方法对棕油副产品进行了多批次处理,均获得了以上 基本类似的结果。
本发明中涉及的% 如无特殊说明外, 均指的是重量百分比。 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领 域的普通技术人员来说, 在不脱离本发明技术原理的前提下, 还可以 做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利 要求 书
1、 一种生物腐植酸转化剂, 含有枯草芽孢杆菌、 嗜热侧孢霉、 地衣 芽孢杆菌、 嗜热脂肪芽孢杆菌。
2、 权利要求 1的生物腐植酸转化剂, 其特征在于由枯草芽孢杆菌、 嗜热侧孢霉、 地衣芽孢杆菌、 嗜热脂肪芽孢杆菌以活菌数比例: (4.2-5.5): (3.8-5.1): (1.2-1.5): (1.2-1.5), 混合制成。
3、 一种生物腐植酸的生产方法, 其特征在于, 该方法包括采用空果 串和棕榈油泥为原料, 加入权利要求 1所述的生物腐植酸转化剂, 在 高温条件下好氧发酵, 其中所说的高温是指 55-85Ό范围, 例如在 55°C-60°C范围, 60°C-65°C范围, 65°C_70°C范围、 70°C_75°C范围、 75°C-80°C范围、 80°C-85°C范围条件下。
4、权利要求 3的方法,其特征在于,将棕榈油泥和空果串粉碎至 3-5mm 大小。
5、 权利要求 3或 4的方法, 其特征在于, 所述的生物腐植酸转化剂 由枯草芽孢杆菌、 嗜热侧孢霉、 地衣芽孢杆菌、 嗜热脂肪芽孢杆菌的 活菌数比例: (4.2-5.5): (3.8-5.1): (1.2-1.5): (1.2-1.5), 混合 制成。
6、 权利要求 3-5任一项的方法, 其特征在于, 将生物腐植酸转化剂 与棕榈油泥和空果串混合后, 加入棕油厂废水, 调节物料含水率至 50-60%
7、权利要求 3-6任一项的方法, 其特征在于, 每 kg棕榈油泥和空果 串的物料中添加生物腐植酸转化剂 20-50g, 使其每克培养物含复合 菌活菌数 1. 5-2. 0 X 10
8、 权利要求 3-7任一项的方法, 其特征在于, 所述的高温好氧发酵 是在 75 °C条件下发酵 10-12小时。
9、 权利要求 3-7任一项的方法, 其特征在于, 还包括将发酵得到的 物料干燥至含水率小于等于 12%, 获得生物腐植酸产品。
10、通过权利要求 9方法生产的生物腐植酸, 其特征在于, 其总腐植 酸、 游离腐植酸和易氧化有机质含量分别达到 43-48%、 42-45%和 23-25%; 有机质含量达 85-90%。
PCT/CN2012/080953 2012-08-29 2012-09-04 棕油副产品生物腐植酸及其生产方法和所用的生物腐植酸转化剂 WO2014032314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012103109257A CN102816723B (zh) 2012-08-29 2012-08-29 棕油副产品生物腐植酸及其生产方法和所用的生物腐植酸转化剂
CN201210310925.7 2012-08-29

Publications (1)

Publication Number Publication Date
WO2014032314A1 true WO2014032314A1 (zh) 2014-03-06

Family

ID=47301176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080953 WO2014032314A1 (zh) 2012-08-29 2012-09-04 棕油副产品生物腐植酸及其生产方法和所用的生物腐植酸转化剂

Country Status (3)

Country Link
CN (1) CN102816723B (zh)
MY (1) MY174083A (zh)
WO (1) WO2014032314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831200A (zh) * 2021-10-25 2021-12-24 北京嘉博文生物科技有限公司 一种酸性土壤改良剂及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626608A (zh) * 2013-11-06 2014-03-12 北京博文合众生物科技有限公司 利用猪粪制备生物腐植酸肥料的技术与工艺
WO2016064358A1 (en) * 2014-10-24 2016-04-28 Bi̇o Ha Us Bi̇yoteknoloji̇ Maki̇na Paz. Ltd. Şti. Method for conversion of organic substances and biological activator
CN110616246A (zh) * 2019-10-11 2019-12-27 北京大伟嘉生物技术股份有限公司 一种提高黄腐酸钠含量的发酵方法及其微生物菌剂
CN116283413A (zh) * 2023-03-23 2023-06-23 荆州市保平环保科技有限公司 一种植物底油处理方法及虾稻营养料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381375A (en) * 1976-12-25 1978-07-18 Rei Tech Inc Method for ploughing straws into paddy fields or uplands
CN101696393A (zh) * 2009-09-30 2010-04-21 江苏食品职业技术学院 一种复合菌剂及接种于堆肥增进快速腐熟的方法
CN101717722A (zh) * 2009-11-30 2010-06-02 中国农业科学院农业环境与可持续发展研究所 微生物菌剂及其制备方法和生产生物腐植酸的方法
CN101941851A (zh) * 2010-08-31 2011-01-12 北京嘉博文生物科技有限公司 采用餐厨废弃物制备生化腐植酸的技术与工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381375A (en) * 1976-12-25 1978-07-18 Rei Tech Inc Method for ploughing straws into paddy fields or uplands
CN101696393A (zh) * 2009-09-30 2010-04-21 江苏食品职业技术学院 一种复合菌剂及接种于堆肥增进快速腐熟的方法
CN101717722A (zh) * 2009-11-30 2010-06-02 中国农业科学院农业环境与可持续发展研究所 微生物菌剂及其制备方法和生产生物腐植酸的方法
CN101941851A (zh) * 2010-08-31 2011-01-12 北京嘉博文生物科技有限公司 采用餐厨废弃物制备生化腐植酸的技术与工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BENZ, M. ET AL.: "Humic Acid Reduction by Propionibacterium freudenreichii and Other Fermenting Bacteria", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 64, no. 11, 30 November 1998 (1998-11-30), pages 4507 - 4512 *
HE, LIN ET AL.: "Application of a new microbial agent for fast degradating straw in agricultural pro-duction", HUMIC ACID, no. 4, 31 December 2002 (2002-12-31), pages 25 - 28 *
YE, SHUIYING ET AL.: "Studes and Manufacture of Biochemically-Humic Acid Fertilizer", REVIEW OF CHINA AGRICULTURAL SCIENCE AND TECHNOLOGY, 31 December 1999 (1999-12-31), pages 76 - 77 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831200A (zh) * 2021-10-25 2021-12-24 北京嘉博文生物科技有限公司 一种酸性土壤改良剂及其制备方法

Also Published As

Publication number Publication date
CN102816723A (zh) 2012-12-12
MY174083A (en) 2020-03-09
CN102816723B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
CN104926541B (zh) 一种联合麸皮秸秆酒糟海藻混菌发酵高效生物有机肥的生产工艺
CN102206102B (zh) 利用稻草生产黄腐酸的方法
CN100387551C (zh) 一种以陈旧生活垃圾为原料生产活性营养肥的方法
CN101704691B (zh) 一种竹渣有机肥料及其制备方法
CN104370582B (zh) 一种有机垃圾无臭好氧堆肥方法
CN108002871A (zh) 一种厨余垃圾制作绿化用肥料的方法
CN103756941A (zh) 一种微生物复合菌剂及其处理方法和应用
CN101100401B (zh) 一种有机复合钾肥及其生产方法
WO2009070966A1 (en) Microorganisms, microbial phosphate fertilizers and methods for preparing such microbial phosphate fertilizers
CN106187341B (zh) 养殖排泄物三级发酵方法
CN105948853B (zh) 一种以菌渣为基底的有机肥垛式发酵方法
CN105948841B (zh) 一种以菌渣为基底的有机肥槽式发酵方法
CN106278526A (zh) 一种微生物有机肥的制备方法
CN103172428A (zh) 一种规模化畜禽粪便制备生物有机肥生产方法
CN102701838B (zh) 以造纸污泥为原料的生物有机肥及其制备方法
CN102851318A (zh) 一种利用烟梗发酵联产沼气和栽培基质的资源化方法
CN109851450A (zh) 一种煤炭废弃物的微生物降解方法和应用
CN111793656A (zh) 一种农业有机废弃物的处理方法
CN108623344A (zh) 一种有机肥及其制备方法和应用
WO2014032314A1 (zh) 棕油副产品生物腐植酸及其生产方法和所用的生物腐植酸转化剂
CN109835881A (zh) 一种改性生物炭、生物炭基有机肥及其制备方法及其应用
CN104230401A (zh) 一种厨余垃圾的处理方法
CN102173897A (zh) 农业固废好氧高温水解发酵处理利用方法
CN107216188A (zh) 一种污泥好氧堆肥生物促进剂及使用方法
CN103980011A (zh) 一种利用生活垃圾制备液态生物有机肥的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/06/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12883823

Country of ref document: EP

Kind code of ref document: A1