WO2014030587A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2014030587A1
WO2014030587A1 PCT/JP2013/071931 JP2013071931W WO2014030587A1 WO 2014030587 A1 WO2014030587 A1 WO 2014030587A1 JP 2013071931 W JP2013071931 W JP 2013071931W WO 2014030587 A1 WO2014030587 A1 WO 2014030587A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer
aligning agent
alignment film
polyamic acid
Prior art date
Application number
PCT/JP2013/071931
Other languages
English (en)
French (fr)
Inventor
亮一 芦澤
洋一 山之内
淳彦 萬代
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2014531604A priority Critical patent/JP6330662B2/ja
Priority to KR1020157006814A priority patent/KR102143667B1/ko
Priority to CN201380053787.1A priority patent/CN104718493B/zh
Publication of WO2014030587A1 publication Critical patent/WO2014030587A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
  • the liquid crystal display element is known as a light, thin and low power consumption display device, and has been remarkably developed in recent years.
  • the liquid crystal display element is configured by sandwiching and enclosing a liquid crystal layer between a pair of substrates, and orienting liquid crystals in the liquid crystal layer in a predetermined direction between the substrates.
  • a liquid crystal responds by applying a voltage to electrodes provided on a pair of substrates, and a desired image can be displayed using an orientation change due to the response of the liquid crystal.
  • the alignment of the liquid crystal in the liquid crystal layer is realized by providing a liquid crystal alignment film having the ability to control the alignment of the liquid crystal on a pair of substrate surfaces sandwiching the liquid crystal display element.
  • the liquid crystal alignment film is formed on the outermost surface of the liquid crystal display element in contact with the liquid crystal of the pair of substrates, and has a function of aligning the liquid crystal between the substrates in a predetermined direction such as a direction parallel to the substrates. It is a member.
  • the liquid crystal alignment film is required to have a function of controlling the pretilt angle of the liquid crystal so that the liquid crystal is aligned with a pretilt angle formed with the substrate.
  • alignment control ability the ability to control the alignment of liquid crystal in the liquid crystal alignment film (hereinafter referred to as alignment control ability) can be imparted by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
  • a rubbing method has been conventionally known as an alignment treatment for a liquid crystal alignment film imparting alignment control ability.
  • the rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction).
  • This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
  • As an organic film used for the liquid crystal alignment film a polyimide organic film having excellent reliability such as heat resistance and electrical characteristics has been selected and used.
  • Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
  • a decomposition type photo-alignment method is known as a main photo-alignment method. For example, by irradiating a polyimide film with polarized ultraviolet light, utilizing the dependency of the molecular structure on the polarization direction of the absorption of ultraviolet light, causing anisotropic decomposition and aligning the liquid crystal with the remaining polyimide without decomposition. Yes (see, for example, Patent Document 1).
  • photocrosslinking type and photoisomerization type photo-alignment methods are also known. For example, using polyvinyl cinnamate, irradiating polarized ultraviolet light, causing a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light, and aligning the liquid crystal in a direction perpendicular to the polarization direction This is a method (for example, see Non-Patent Document 1).
  • the liquid crystal alignment film alignment treatment method by the photo alignment method does not require rubbing, and there is no fear of generation of dust or static electricity. Furthermore, an alignment process can be performed on a substrate of a liquid crystal display element having a concavo-convex surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.
  • unreacted groups may remain in the liquid crystal alignment film even after irradiation with light.
  • the light having a short wavelength in backlight or external light is used. Therefore, there is a problem that a defect such that an unreacted group reacts and the alignment state of the liquid crystal changes occurs.
  • Patent Document 2 for example, a short wavelength component in reflected light or backlight light from a substrate or the like is provided on the lower layer side of the liquid crystal alignment film by the photo-alignment method.
  • a technique for further providing a resin layer for attenuating the vibration is disclosed.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a liquid crystal aligning agent capable of manufacturing a liquid crystal display element with reduced alignment disorder, and the liquid crystal, regardless of a complicated manufacturing method. Another object is to provide a liquid crystal alignment film formed from an alignment agent, and further a liquid crystal display element having the liquid crystal alignment film.
  • the present invention has the following gist. 1. a first polymer that reacts with light in the wavelength range of 250-380 nm; A liquid crystal aligning agent comprising: a compound having an absorption maximum in a wavelength range of 250 to 380 nm; and at least one of a second polymer.
  • the first polymer has a photoreactive group that reacts with light, and the photoreactive group is at least one structure selected from the group consisting of a cinnamoyl structure, a coumarin structure, and a chalcone structure. 3.
  • the liquid crystal aligning agent of said 3 with which the said photoreactive group contains either of the following side chain structures.
  • the broken line represents a bonding group to the main chain of the polymer.
  • R is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (however, any hydrogen atom may be replaced by a fluorine atom), or an alkoxyl group having 1 to 10 carbon atoms (however, any A hydrogen atom may be replaced by a fluorine atom).
  • a and B each independently represent a single bond or a ring structure represented by the following formula.
  • Each T independently represents a single bond, an ether, an ester, an amide or a ketone bond.
  • S represents a single bond or an alkylene group having 1 to 10 carbon atoms. However, when S and A are both single bonds, oxygen atoms are not adjacent to each other. )
  • liquid crystal aligning agent according to any one of 1 to 6 above, wherein the first polymer is at least one polymer selected from the group consisting of polyamic acid and polyimide obtained by imidizing the polyamic acid. 8). 1 to 7, wherein the second polymer is contained, and the second polymer is at least one polymer selected from the group consisting of polyamic acid and polyimide obtained by imidizing the polyamic acid.
  • the liquid crystal aligning agent in any one.
  • a liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of 1 to 8 above, drying and firing. 10. 10. The liquid crystal alignment film as described in 9 above, wherein the firing temperature is 50 to 300 ° C. 11. 11. The liquid crystal alignment film as described in 9 or 10 above, wherein the film thickness after firing is from 5 to 300 nm. 12 12. A liquid crystal display element comprising the liquid crystal alignment film according to any one of 9 to 11 above.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film that can be used for manufacturing a liquid crystal display element with reduced alignment disorder is formed regardless of a complicated manufacturing method, and the liquid crystal having the liquid crystal alignment film
  • the display element is used as an element for a portable information terminal that displays a high-definition image as a lightweight, thin, and low power consumption display device.
  • the present inventor found that during the photo-alignment treatment of the liquid crystal alignment film, light interference occurs in the liquid crystal alignment film due to light reflection from the lower layer such as a glass substrate or an electrode, and the photo-alignment of the liquid crystal alignment film. It was confirmed that the interference caused by the reflected light in the treatment affects the ability to control the alignment of the liquid crystal alignment film, in particular, the ability to form the pretilt angle. Specifically, in the liquid crystal display element, it was confirmed that the film thickness dependency of the liquid crystal alignment film was dependent on the pretilt angle of the liquid crystal.
  • the dependency of the pretilt angle of the liquid crystal on the film thickness of the liquid crystal alignment film causes variations in the pretilt angle within the plane of one liquid crystal display element to be manufactured and between a plurality of liquid crystal display elements, and thus the display It has been found that this causes a decline in quality.
  • the interference of light that is concerned about the liquid crystal alignment film during the photo alignment process is reflected light between the layer that reflects light in the lower layer of the liquid crystal alignment film.
  • An effective method is to provide a layer that absorbs water separately.
  • providing a new layer for absorbing light increases the manufacturing process of the liquid crystal display element as described above and makes it complicated. That is, if the liquid crystal alignment film itself can be provided with a function capable of reducing the influence of reflected light without providing a new layer for absorbing light, it is an effective method for reducing light interference.
  • the present inventor conducted further research and included in the liquid crystal alignment film a material capable of attenuating the reflected light during the photo-alignment treatment, in particular, attenuates the reflected light in the lower layer portion inside the liquid crystal alignment film. It has been found that forming a layer is effective in suppressing light interference.
  • the layer that suppresses the interference of light in the liquid crystal alignment film is usually a polymer.
  • the liquid crystal alignment film, which is a polymer is formed, the phenomenon of polymer layer separation is used to prevent the light interference in the liquid crystal alignment film. It has been found that formation of a layer that suppresses the occurrence is possible. As a result, the present invention has been completed.
  • liquid crystal alignment film that is a polymer
  • layer separation is caused using a plurality of components, and a layer of a component suitable for photo-alignment is formed mainly in the upper layer portion of the formed liquid crystal alignment film
  • a layer of components effective for light absorption is formed in the lower layer portion.
  • the obtained liquid crystal alignment film is subjected to a photo-alignment treatment mainly using the upper layer portion, thereby effectively providing liquid crystal alignment.
  • the lower layer portion of the liquid crystal alignment film for example, the reflected light from the substrate or the electrode is absorbed and attenuated, and the influence of the reflected light is prevented from reaching the upper layer.
  • the liquid crystal alignment film of the present invention interference of light due to reflected light during the photo-alignment process is suppressed, a desirable photo-alignment process is realized, and the dependency on the alignment film thickness in forming the pretilt angle of the liquid crystal is reduced. Can do.
  • the liquid crystal alignment film of the present invention can be used in backlight light or external light after manufacturing the liquid crystal display element even if unreacted photoreactive groups may remain in the film after the photo-alignment treatment.
  • production of the defect that they react with the light of short wavelength, and the orientation state of a liquid crystal changes can be reduced.
  • the liquid crystal alignment film of the present invention utilizes layer separation when forming the alignment film. That is, without applying a special method, a liquid crystal alignment film having a desired structure can be formed in the same liquid crystal alignment film forming process as in the prior art. As disclosed in Patent Document 2, the liquid crystal alignment film of the present invention does not require a separate step of forming a layer for attenuating reflected light, and a liquid crystal display having a liquid crystal alignment film by a photo alignment method. The manufacturing method of the element is not complicated.
  • the liquid crystal aligning agent of the present invention includes at least one of a first polymer that reacts with light in the wavelength range of 250 to 380 nm, a compound having an absorption maximum in the wavelength range of 250 to 380 nm, and a second polymer. , And.
  • a first polymer that reacts with light in the wavelength range of 250 to 380 nm
  • a compound having an absorption maximum in the wavelength range of 250 to 380 nm and a second polymer.
  • an effective photo-alignment treatment can be performed in the liquid crystal alignment film to be formed.
  • the liquid crystal alignment film to be formed by using a compound having an absorption maximum in the wavelength range of 250 to 380 nm and / or the second polymer as components, in the liquid crystal alignment film to be formed, light from the lower layer side, for example, reflection from the substrate or the like Light can be absorbed and attenuated, and the influence of reflected light or the like can be reduced in the optical alignment treatment.
  • the content of the compound having the absorption maximum in the wavelength range of 250 to 380 nm and / or the second polymer contained in the liquid crystal aligning agent of the present invention is based on the total amount together with the first polymer.
  • the content is preferably 3 to 80% by mass, and more preferably 50 to 80% by mass.
  • the first polymer has at least one structure selected from the group consisting of a cinnamoyl structure, a coumarin structure, and a chalcone structure, which is a reactive group for light having a wavelength range of 250 to 380 nm, preferably 280 to 360 nm. It is preferable to contain a group.
  • the photoreactive group of the first polymer preferably contains any of the following side chain structures.
  • R is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (however, any hydrogen atom may be replaced by a fluorine atom), or an alkoxyl group having 1 to 10 carbon atoms (however, any A hydrogen atom may be replaced by a fluorine atom).
  • a and B each independently represent a single bond or a ring structure represented by the following formula.
  • T each independently represents a single bond, an ether, an ester, an amide, or a ketone bond.
  • S represents a single bond or an alkylene group having 1 to 10 carbon atoms. However, when S and A are both single bonds, oxygen atoms are not adjacent to each other.
  • the main chain of the first polymer is preferably at least one selected from the group consisting of hydrocarbon, polyimide, polyamic acid, acrylate, methacrylate, maleimide, ⁇ -methylene- ⁇ -butyrolactone and siloxane.
  • the first polymer is particularly preferably at least one polymer selected from the group consisting of a polyamic acid and a polyimide obtained by imidizing the polyamic acid.
  • Polyamic acid can be usually obtained by a reaction between a diamine compound and tetracarboxylic dianhydride.
  • diamine compound 1 and the tetracarboxylic dianhydride 1 suitable for forming a polyamic acid and a polyimide that are preferable as the first polymer will be described.
  • Diamine compound 1 As the diamine compound 1, not only one type but also a plurality of types can be selected and used, and it is preferable to include one or more diamine compounds having a photoreactive group that reacts with light.
  • the photoreactive group of the diamine compound 1 is preferably a group that reacts with light in the wavelength range of 250 to 380 nm.
  • Examples of the photoreactive group include at least one group selected from the group consisting of a cinnamoyl structure, a coumarin structure, and a chalcone structure.
  • the photoreactive group of the diamine compound preferably includes any of the following side chain structures.
  • R is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (however, any hydrogen atom may be replaced by a fluorine atom), or an alkoxyl group having 1 to 10 carbon atoms (provided that And any hydrogen atom thereof may be replaced by a fluorine atom).
  • a and B each independently represent a single bond or a ring structure represented by the following formula.
  • Each T independently represents a single bond, an ether, an ester, an amide or a ketone bond.
  • S represents a single bond or an alkylene group having 1 to 10 carbon atoms. However, when S and A are both single bonds, oxygen atoms are not adjacent to each other.
  • n represents an integer of 1-18.
  • the liquid crystal alignment film of the present invention can be a vertical alignment liquid crystal alignment film.
  • the first polymer used for the formation is preferably at least one polymer selected from the group consisting of polyamic acid and polyimide obtained by imidizing the polyamic acid. Is preferably formed from a diamine component containing a side chain diamine compound.
  • the above-mentioned side chain type diamine compound is a diamine compound having at least one of an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, and a macrocyclic substituent composed thereof in the side chain. It is. Specifically, diamine compounds represented by the following formulas [DA-1] to [DA-30] can be exemplified.
  • R 6 is an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • the plurality of S 5 are each independently —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—
  • R 6 is (It is an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.)
  • R 7 is an alkyl group, alkoxy group having 1 to 22 carbon atoms, A fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 8 is an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group having 1 to 22 carbon atoms.
  • R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.
  • R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • the diamine compounds of the above formulas [DA-1] to [DA-30] can be used in combination for the purpose of supplementing the vertical alignment ability. More preferred diamines that can be used in combination are preferably formulas [DA-10] to [DA-30], more preferably formulas [DA-10] to [DA-16], from the standpoint of voltage holding ratio and residual accumulated voltage. It is a diamine compound.
  • the preferred content of these diamine compounds is not particularly limited, but is preferably 5 to 50 mol%, more preferably 5 to 30 mol%, in the diamine component for forming the first polymer.
  • preferred diamine components suitable for forming polyamic acid and polyimide include the above-mentioned diamine compounds having a photoreactive group, side chain diamine compounds, and other diamine compounds. (It may be referred to as other diamine compounds.).
  • Other diamine compounds are not particularly limited, and examples thereof include alicyclic diamines, aromatic diamines, aromatic-aliphatic diamines, heterocyclic diamines, and aliphatic diamines. Specific examples thereof are as follows.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone Examples include diamines.
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane 4,4′-diamin
  • aromatic-aliphatic diamines examples include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4 -Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) ) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4- Methylaminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopenti) ) Aniline, 3- (5-methyla
  • heterocyclic diamines examples include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diamino
  • examples thereof include carbazole, 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7 -Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diamino Examples include dodecane, 1,18-diaminoocta
  • the tetracarboxylic dianhydride to be reacted with the above-described diamine compound for obtaining a polyamic acid preferable as the first polymer is not particularly limited. Specific examples are given below.
  • Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclo
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride.
  • Tetracarboxylic dianhydride When aromatic tetracarboxylic dianhydride is used in addition to the above-mentioned tetracarboxylic dianhydride having an alicyclic structure or aliphatic structure, the liquid crystal alignment is improved and the accumulated charge of the liquid crystal cell is reduced. This is preferable. Tetracarboxylic dianhydride can be used alone or in combination of two or more depending on the liquid crystal alignment properties of the liquid crystal alignment film to be formed, such as voltage holding characteristics and accumulated charges.
  • a polyamic acid preferable as the first polymer can be obtained by a reaction between the tetracarboxylic dianhydride described above and a diamine component composed of the diamine compound described above.
  • a method for obtaining the polyamic acid as the first polymer a known synthesis method can be used.
  • tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent.
  • the reaction between the tetracarboxylic dianhydride and the diamine compound is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
  • the organic solvent used for the reaction between the tetracarboxylic dianhydride and the diamine compound is not particularly limited as long as the generated polyamic acid is soluble. Specific examples are given below.
  • organic solvents may be used alone or in combination. Further, even a solvent that does not dissolve the polyamic acid may be used by mixing with the above-mentioned organic solvent as long as the generated polyamic acid does not precipitate. Since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated and dried organic solvent to the extent possible.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent.
  • Dispersed or dissolved addition method conversely tetracarboxylic dianhydride dispersed or dissolved in organic solvent, diamine component added, tetracarboxylic dianhydride and diamine component added alternately Any of these methods may be used.
  • tetracarboxylic dianhydride or diamine component when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
  • the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2, more preferably 0.9 to 1.1. preferable. Similar to the normal polycondensation reaction, the molecular weight of the polyamic acid produced increases as the molar ratio approaches 1.0.
  • a polyimide preferable as the first polymer can be obtained by dehydrating and ring-closing (imidizing) the polyamic acid described above.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted so as to be 100% or less depending on the application and purpose.
  • Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and the method is preferably performed while removing water generated by the imidization reaction from the system.
  • Catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times of the amic acid group, preferably 3 to 30 mole times.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is easy.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • Polyamic acid ester As a 1st polymer used as the component of the liquid crystal aligning agent of this invention, it is also possible to set it as polyamic acid ester and polyamide other than the polyamic acid and polyimide which were mentioned above.
  • a method for synthesizing a preferable polyamic acid ester a method of reacting a tetracarboxylic acid diester dichloride with the above-mentioned preferable diamine compound, or a method of reacting a tetracarboxylic acid diester with the above-mentioned preferable diamine compound in the presence of a condensing agent, a base, or the like.
  • a polyamic acid ester which is a kind of polyimide precursor can be obtained.
  • a polyamic acid ester can be obtained by esterifying a carboxylic acid in an amic acid with a polymerized polyamic acid using a polymer reaction.
  • tetracarboxylic acid diester dichloride and the above-mentioned preferred diamine compound in the presence of a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 It can be synthesized by reacting for ⁇ 4 hours.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 mole times with respect to the tetracarboxylic acid diester dichloride, from the viewpoint that it can be easily removed and a high molecular weight product is easily obtained. 5 times mole is more preferable.
  • condensation polymerization reaction When the condensation polymerization reaction is performed in the presence of a condensing agent, examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, and N, N′-carbonyldioxide.
  • the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, and N, N′-carbonyldioxide.
  • Imidazole dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O— (Benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) 4-methoxymorpholium chloride - hydrate and the like can be used.
  • the reaction proceeds efficiently.
  • the Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0.1 to 1.0 mol times, more preferably 0.5 to 1.0 mol mol with respect to the tetracarboxylic acid diester.
  • the organic solvent used when polymerizing the above-described tetracarboxylic dianhydride and a preferred diamine component to obtain a polyamic acid can be used. From the solubility of the monomer and the resulting polymer, N Use of -methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. is preferred. These solvents may be used alone or in combination of two or more. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the organic solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible.
  • the total concentration of the tetracarboxylic acid diester dichloride and the diamine component in the reaction solution is preferably 1 to 30% by mass, and preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. Is more preferable.
  • the reaction is preferably performed in a nitrogen atmosphere to prevent outside air from being mixed.
  • polyamide preferable as the first polymer described above can also be synthesized in the same manner as the polyamic acid ester described above.
  • the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the polyamic acid and / or polyimide contained as the first polymer is GPC (Gel Permeation Chromatography) in consideration of the strength of the obtained coating film, workability during coating film formation, and coating film uniformity.
  • the weight average molecular weight measured by the above method is preferably from 2,000 to 1,000,000, more preferably from 5,000 to 100,000.
  • the compound and the second polymer have at least one selected from the group consisting of a cinnamoyl structure, a phenone structure, and a diphenylamine structure having an absorption maximum with respect to light having a wavelength range of 250 to 380 nm, preferably 280 to 360 nm. It preferably has a specific structure, and more preferably has at least one specific structure of a phenone structure and a diphenylamine structure.
  • having an absorption maximum means having an absorption maximum wavelength in the range of 250 to 380 nm when the UV-vis spectrum of the monomer used in the polymer of the present invention or itself is measured. There is a meaning. Specific examples of the specific structure are preferably compounds represented by the following.
  • R represents an alkyl group having 1 to 5 carbon atoms.
  • the preferred second polymer is preferably at least one polymer selected from the group consisting of polyamic acid and polyimide obtained by imidizing the polyamic acid.
  • the polyamic acid can be usually obtained by a reaction between a diamine compound and tetracarboxylic dianhydride.
  • the diamine compound and tetracarboxylic dianhydride that can be used for forming a preferable polyamic acid and polyimide as the second polymer will be described.
  • the diamine compound that can be used for forming the preferred polyamic acid and polyimide as the second polymer is not particularly limited, but alicyclic diamines, aromatic diamines, aromatic-aliphatic diamines, heterocyclic Examples include diamines and aliphatic diamines. These diamines are selected and used in combination so as to form a polymer having an absorption maximum in a wavelength range of 250 to 380 nm by reaction with tetracarboxylic dianhydride described later. Specific examples of usable diamine compounds are as follows.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone Examples include diamines.
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane 4,4′-diamin
  • aromatic-aliphatic diamines examples include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4 -Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) ) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4- Methylaminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopenti) ) Aniline, 3- (5-methyla
  • heterocyclic diamines examples include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diamino
  • examples thereof include carbazole, 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7 -Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diamino Examples include dodecane, 1,18-diaminoocta
  • 4,4′-diaminodiphenylamine and / or 4,4′-diaminobenzophenone are particularly preferably used for forming polyamic acid and polyimide. This is because the formed polyamic acid and polyimide can have a higher absorption maximum in the wavelength range of 250 to 380 nm.
  • the tetracarboxylic dianhydride that can be used for forming the polyamic acid and polyimide that are preferable as the second polymer is not particularly limited.
  • the combination is selected and used so as to form a polymer having an absorption maximum in the wavelength range of 250 to 380 nm by the reaction with the diamine compound.
  • Specific examples of tetracarboxylic dianhydrides that can be used are as follows.
  • Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclo
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride.
  • the use of aromatic tetracarboxylic dianhydride improves the liquid crystal alignment of the liquid crystal alignment film formed from the polymer formed.
  • the accumulated charge in the liquid crystal cell can be reduced, which is preferable.
  • tetracarboxylic dianhydrides in particular, pyromellitic dianhydride and / or 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride is selected to form polyamic acid and polyimide. It is preferable to use for. This is because the formed polyamic acid and polyimide can have a higher absorption maximum in the wavelength range of 250 to 380 nm.
  • a polyamic acid preferable as the second polymer can be obtained by a reaction between the tetracarboxylic dianhydride described above and a diamine component composed of the diamine compound described above.
  • a method for obtaining the polyamic acid as the second polymer a known synthesis method can be used.
  • the first polymer described above can be obtained by the same method as described as a method for obtaining a preferable polyamic acid.
  • a polyimide preferable as the second polymer can be obtained by dehydrating and ring-closing (imidizing) the obtained polyamic acid. Specifically, it can be obtained by the same method as described as a method for obtaining a preferable polyimide as the first polymer.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and is arbitrarily adjusted so as to be 100% or less depending on the application and purpose. can do.
  • the molecular weight of the polyamic acid and / or polyimide contained as the second polymer is GPC (Gel Permeation Chromatography) in consideration of the strength of the obtained coating film, the workability during coating film formation, and the uniformity of the coating film.
  • the weight average molecular weight measured by the above method is preferably from 2,000 to 1,000,000, more preferably from 5,000 to 100,000.
  • Examples of the compound having an absorption maximum in the wavelength range of 250 to 380 nm, which is another component in the liquid crystal aligning agent of the present invention, include diamine compounds and tetracarboxylic acids that are preferred for the formation of the second polymer described above. It is preferable to use an acid dianhydride. More specifically, examples of the diamine compound include 4,4'-diaminodiphenylamine and 4,4'-diaminobenzophenone. Examples of the tetracarboxylic dianhydride include pyromellitic dianhydride and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride.
  • the liquid crystal aligning agent of the present invention comprises a first polymer that reacts with light in the wavelength range of 250 to 380 nm, a compound having an absorption maximum in the wavelength range of 250 to 380 nm, and the second polymer. It contains at least one of them.
  • the liquid crystal aligning agent is preferably prepared as a coating solution so as to be suitable for forming a liquid crystal alignment film. That is, the liquid crystal aligning agent of the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the resin component is a resin component including the first polymer and the second polymer already described.
  • the content of the resin component is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass with respect to the total amount (100% by mass) of the liquid crystal aligning agent.
  • all of the above-mentioned resin components may be the first polymer, or the first polymer and the second polymer, but other polymers are mixed. May be.
  • the content of the other polymer in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
  • Other polymers include, for example, polymers made of polyamic acid, polyimide, etc., which do not react with light in the wavelength range of 250 to 380 nm and do not have an absorption maximum in the wavelength range of 250 to 380 nm. Can be mentioned.
  • the organic solvent used for the liquid crystal aligning agent is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below.
  • the liquid crystal aligning agent of the present invention may contain components other than the above-described components such as the first polymer. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate.
  • solvents that improve film thickness uniformity and surface smoothness include the following.
  • a poor solvent may be used alone or in combination.
  • it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass based on the whole solvent so as not to significantly reduce the solubility of the entire solvent contained in the liquid crystal aligning agent. It is.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • EFTOP registered trademark
  • EF303 EF352
  • MegaFac registered trademark
  • F171, F173, R-30 above, manufactured by DIC
  • Florard FC430, FC431 above, manufactured by Sumitomo 3M
  • Asahi Guard registered trademark
  • Surflon registered trademark
  • SC101, SC102, SC103, SC104, SC105, SC106 aboveve, AGC Seimi
  • Chemical Co., Ltd. The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent.
  • Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the following phenoplast type additives are added to the liquid crystal alignment for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed. You may make it contain in an agent. Specific phenoplast additives are shown below, but are not limited to this structure.
  • the amount used is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the resin component contained in the liquid crystal aligning agent. Is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • a dielectric or conductive material may be used for the purpose of changing electrical characteristics such as dielectric constant and conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and density of the substance and, further, the liquid crystal alignment film.
  • the liquid crystal aligning agent of the present invention is applied onto a substrate and fired in the same manner as a liquid crystal aligning agent for forming a liquid crystal aligning film made of a conventional polyimide, without applying another method separately,
  • the liquid crystal alignment film of the present invention can be formed. Furthermore, by performing photo-alignment treatment by light irradiation, alignment control ability can be imparted and used for manufacturing a liquid crystal display element.
  • the substrate used for forming the liquid crystal alignment film by applying the liquid crystal aligning agent it is preferable to use a highly transparent substrate when the manufactured liquid crystal display element is a transmission type.
  • a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
  • a transparent electrode such as an ITO (Indium Tin Oxide) electrode is formed from the viewpoint of simplifying the manufacturing process.
  • an opaque object such as a silicon wafer can be used as long as it is only on one substrate, and the electrode in this case can be made of a material that reflects light such as aluminum.
  • the method for applying the liquid crystal alignment agent is not particularly limited.
  • the application method of the liquid crystal aligning agent industrially, screen printing, offset printing, flexographic printing, ink jet, and the like are common.
  • other coating methods there are methods using a dip, a roll coater, a slit coater, a spinner and the like, and these may be used according to the purpose.
  • Firing after applying the liquid crystal aligning agent on the substrate is carried out at 50 to 300 ° C., preferably 80 to 250 ° C. for 1 to 200 minutes, preferably 10 to 100 minutes by a heating means such as a hot plate.
  • the solvent which is the solvent, can be evaporated to form a coating film.
  • the thickness of the coating film formed after baking is preferably 5 to 300 nm, more preferably 10 to 100 nm.
  • the fired coating film is treated with polarized ultraviolet rays. That is, photo-alignment processing is performed by light irradiation.
  • the liquid crystal alignment film of the present invention can be imparted with alignment control ability, in particular, a pretilt angle can be formed by rubbing treatment.
  • liquid crystal display element of the present invention after obtaining the substrate with the liquid crystal alignment film on which the liquid crystal alignment film is formed from the liquid crystal aligning agent of the present invention by the above-described method, It is an element.
  • a vertical alignment (VA) mode liquid crystal display element can be provided.
  • a pair of substrates on which the liquid crystal alignment film of the present invention is formed is prepared, spacers are scattered on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, the liquid crystal is injected under reduced pressure and sealed, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed, Etc. can be illustrated.
  • the diameter of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • PMDA pyromellitic anhydride
  • BODA bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • m-PDA m-phenylenediamine
  • PCH 1,3-diamino-4- [4- (4-heptylcyclohexyl) phenoxy] benzene
  • DAM-1 (E) -2,4-diaminophenethyl 3- (4- ( 4-heptylcyclohexyl) phenyl) acrylate
  • DAM-2 N1- (4-aminophenyl) benzene-1,4-diamine
  • DAM-3 N1- (4-aminophenyl) -N1-methylbenzene-1,4-diamine
  • DAM-4 4,4'-diaminobenzophenone
  • DAM-5 4,4'-oxydianiline
  • DAM-6 3,5-diaminobenzoic acid
  • DAM-7 2,4-diaminophenethylcinnamate
  • the molecular weight of the polyimide in the synthesis example was measured as follows using a room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Science Co., Ltd. and a column (KD-803, KD-805) manufactured by Shodex.
  • GPC room temperature gel permeation chromatography
  • Example 1 CBDA (2.499 g, 12.74 mmol) and DAM-1 (6.015 g, 13.0 mmol) were mixed in NMP (48.24 g) and reacted at room temperature for 20 hours to obtain a polyamic acid solution. NMP (42.57 g) and BC (42.57 g) were added to this polyamic acid solution, diluted to 6% by mass, and stirred at room temperature for 5 hours to obtain a polyamic acid solution (A1).
  • the polyamic acid contained had a number average molecular weight of 9000 and a weight average molecular weight of 28,000.
  • the obtained polyamic acid solution (A1) can form a vertically aligned liquid crystal alignment film and can be used as a liquid crystal aligning agent. In Comparative Example 1 described later, a liquid crystal aligning agent is used. Used as (A1).
  • This reaction solution was poured into methanol (530 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 50%, the number average molecular weight was 11000, and the weight average molecular weight was 31000.
  • NMP 29.3 g was added to the obtained polyimide powder (B) (6.0 g), and dissolved by stirring at 70 ° C. for 5 hours. NMP (34.7g) and BC (30.0g) were added to this solution, and the polyimide solution (B1) was obtained by stirring.
  • the obtained polyimide solution (B1) can form a vertically aligned liquid crystal alignment film and can be used as a liquid crystal aligning agent.
  • a liquid crystal aligning agent Used as B1).
  • the polyamic acid solution (A1) (2.0 g) obtained in Synthesis Example 1 and the polyamic acid solution (C1) (8.0 g) were mixed at room temperature for 3 hours to obtain a vertically aligned liquid crystal alignment.
  • a liquid crystal aligning agent (C2) capable of forming a film was prepared.
  • the polyimide solution (B1) (2.0 g) obtained in Synthesis Example 2 and the polyamic acid solution (C1) (8.0 g) were mixed at room temperature for 3 hours to obtain a vertically aligned liquid crystal alignment film.
  • a liquid crystal aligning agent (C3) capable of forming was prepared.
  • Example 4 CBDA (2.447 g, 12.48 mmol) and DAM-3 (2.773 g, 13.0 mmol) were mixed in NMP (29.58 g) and reacted at room temperature for 20 hours to obtain a polyamic acid solution. NMP (26.1 g) and BC (26.1 g) were added to this polyamic acid solution, diluted to 6% by mass, and stirred at room temperature for 5 hours to obtain a polyamic acid solution (D1). The polyamic acid contained had a number average molecular weight of 9100 and a weight average molecular weight of 19000.
  • the polyamic acid solution (A1) (2.0 g) obtained in Synthesis Example 1 and the polyamic acid solution (D1) (8.0 g) were mixed at room temperature for 3 hours to obtain a vertically aligned liquid crystal alignment film.
  • the liquid crystal aligning agent (D2) which can form is prepared.
  • liquid crystal aligning agent (A1) 2.0 g
  • polyamic acid solution (F1) 8.0 g
  • the liquid crystal aligning agent (F2) which can do was prepared.
  • NMP (14.6 g) was added to the obtained polyimide powder (G) (3.0 g), and dissolved by stirring at 70 ° C. for 5 hours.
  • NMP (17.4g) and BC (15.0g) were added to this solution, and the polyimide solution (G1) was obtained by stirring.
  • the polyamic acid solution (A1) (2.0 g) obtained in Synthesis Example 1 and the polyimide solution (G1) (8.0 g) were mixed at room temperature for 3 hours to obtain a vertically aligned liquid crystal alignment film.
  • a liquid crystal aligning agent (G2) that can be formed was prepared.
  • CBDA (2.447 g, 12.48 mmol) and DAM-5 (2.603 g, 13.0 mmol) were mixed in NMP (28.62 g) and reacted at room temperature for 20 hours to obtain a polyamic acid solution.
  • NMP 22.38 g
  • BC 22.38 g
  • the polyamic acid contained had a number average molecular weight of 11,000 and a weight average molecular weight of 29000.
  • CBDA (2.498 g, 12.74 mmol) and DAM-6 (1.978 g, 13.0 mmol) were mixed in NMP (25.37 g) and reacted at room temperature for 20 hours to obtain a polyamic acid solution.
  • NMP 22.38 g
  • BC 22.38 g
  • the polyamic acid contained had a number average molecular weight of 11,000 and a weight average molecular weight of 28,000.
  • the liquid crystal aligning agent (C2) obtained in Synthesis Example 3 was spin-coated on the transparent electrode forming surface of a glass substrate with a transparent electrode made of an ITO film, dried on an 80 ° C. hot plate for 90 seconds, and then heated at 200 ° C. Firing was performed in a circulation oven for 30 minutes to form a liquid crystal alignment film having a thickness of 50 nm.
  • the substrate was irradiated with 20 mJ of 313 nm linearly polarized UV (ultraviolet light) having an irradiation intensity of 11.0 mW / cm.
  • the direction of the incident light was inclined by 40 ° with respect to the normal direction of the substrate.
  • the linearly polarized light UV was adjusted by passing a 313 nm band-pass filter through the ultraviolet light of a high-pressure mercury lamp and then passing it through a 313 nm polarizing plate.
  • the pretilt angle of the liquid crystal was measured using each of the manufactured liquid crystal cells.
  • the pretilt angle was measured by the Mueller matrix method using an “Axo Scan” manufactured by Axo Metrix. The measurement results are summarized in Table 1.
  • Example 2 Except having changed the liquid crystal aligning agent (C2) into the liquid crystal aligning agent (C3), according to the method similar to Example 1, six types of liquid crystal cells were produced and the pretilt angle was measured about each.
  • Example 3 Except having changed the liquid crystal aligning agent (C2) into the liquid crystal aligning agent (D2), according to the same method as Example 1, six types of liquid crystal cells were produced and the pretilt angle was measured about each.
  • Example 4 Except having changed the liquid crystal aligning agent (C2) into the liquid crystal aligning agent (E2), according to the same method as Example 1, 6 types of liquid crystal cells were produced and the pretilt angle was measured for each.
  • Example 5 Except having changed the liquid crystal aligning agent (C2) into the liquid crystal aligning agent (F2), according to the same method as Example 1, six types of liquid crystal cells were produced and the pretilt angle was measured about each.
  • Example 6 Except having changed the liquid crystal aligning agent (C2) into the liquid crystal aligning agent (G2), according to the same method as Example 1, six types of liquid crystal cells were produced and the pretilt angle was measured for each.
  • the measurement results of the pretilt angles of the liquid crystal cells of Examples 1 to 6 are summarized in Table 1.
  • the measurement results of the pretilt angles of the liquid crystal cells of Comparative Examples 1 to 4 are summarized in Table 2.
  • Tables 1 and 2 for each of Examples 1 to 6 and Comparative Examples 1 to 4, the amount of change in the pretilt angle ( ⁇ (degrees)) due to the film thickness of the liquid crystal alignment film is described.
  • is obtained by comparing the pretilt angles of six types of liquid crystal cells having different liquid crystal alignment film thicknesses in each of Examples 1 to 6 and Comparative Examples 1 to 4, and obtaining the maximum pretilt angle and the minimum pretilt angle. The value evaluated as.
  • FIG. 1 is a graph showing the relationship between the thickness of the alignment film of the liquid crystal cell and the pretilt angle.
  • FIG. 1 shows a phenomenon in which the pretilt angle of the liquid crystal varies by changing the film thickness of the liquid crystal alignment film of the liquid crystal cell, comparing the results of Example 6 and Comparative Example 4.
  • the photo-aligned vertical alignment liquid crystal alignment film corresponding to the prior art changes the thickness of the liquid crystal pre-tilt of the liquid crystal cell. It can be seen that the angle changes greatly. This means that UV (ultraviolet rays) at the time of photo-alignment treatment is reflected at the interface between the liquid crystal alignment film and the substrate and interferes with the surface of the liquid crystal alignment film.
  • a pretilt depending on the film thickness of the liquid crystal alignment film is obtained by mixing (blending) a material having absorption in the ultraviolet region with the liquid crystal alignment film. It can be seen that the change in corners is suppressed. The reason is that the mixed material absorbs the reflected light to suppress the interference of light on the alignment film surface.
  • Example 7 Next, using a liquid crystal cell with a liquid crystal alignment film having a thickness of 100 nm whose pretilt angle was measured in Examples 1 to 6 and Comparative Examples 1 to 4, the liquid crystal cell was placed on a backlight for a liquid crystal panel, Aging was performed for 300 hours while irradiating light from the backlight. Thereafter, the pretilt angle of each liquid crystal cell was measured in the same manner as described above, and the change ( ⁇ ) in the pretilt angle before and after aging was evaluated. The evaluation results are summarized in Table 3. In Table 3, the pretilt angle of the liquid crystal cell before aging is indicated as “pretilt angle 1”, and the pretilt angle after aging is indicated as “pretilt angle 2”.
  • a liquid crystal display element having a liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention and capable of photo-alignment treatment can be manufactured with high productivity and has excellent display characteristics. It can be suitably used as a display element for a portable information terminal such as a liquid crystal TV or a smartphone displaying a high-definition image.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 複雑な製造方法によらず、配向乱れの低減された液晶表示素子の製造に供することが可能な液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び前記液晶配向膜を有する液晶表示素子を提供する。 250~380nmの波長範囲の光で反応する第1の重合体と、250~380nmの波長範囲に吸収極大を有する化合物及び第2の重合体のうちの少なくとも1種とを含有する液晶配向剤。さらに、該液晶配向剤を用いて液晶配向膜を形成し、光配向処理を施し形成された液晶表示素子。

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられる等、目覚ましい発展を遂げている。
 液晶表示素子は、液晶層を一対の基板間に挟持して封入するとともに、液晶層の液晶を基板間で所定方向に配向させて構成される。液晶表示素子では、一対の基板上に設けられた電極への電圧印加により液晶が応答し、その液晶の応答による配向変化を利用して、所望とする画像の表示を行うことができる。
 液晶表示素子において、液晶層の液晶の配向は、それを挟持する一対の基板表面に、液晶の配向を制御する能力を備えた液晶配向膜を設けることにより実現される。すなわち、液晶配向膜は、液晶表示素子の一対の基板の液晶と接する最表面に形成され、例えば、基板に対して平行な方向等、基板間の液晶を所定方向に配向させる役割を担った構成部材である。
 さらに、液晶配向膜には、液晶を所定方向に配向させる機能に加え、液晶が基板との間でプレチルト角を形成して配向するように、液晶のプレチルト角を制御するという機能も求められることがある。
 一方、液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して、配向処理を行うことによって付与することができる。
 配向制御能を付与する液晶配向膜の配向処理としては、従来からラビング法が知られている。ラビング法とは、基板上のポリビニルアルコール、ポリアミド、ポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は簡便に、比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。そして、液晶配向膜に用いられる有機膜としては、特に、耐熱性等の信頼性や、電気的特性に優れたポリイミド系の有機膜が選択されて用いられてきた。
 しかし、有機膜である液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。
 そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。
 光配向法には様々な方法があるが、直線偏光又はコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。
 主な光配向法としては、分解型の光配向法が知られている。例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して、異方的な分解を生じさせ、分解せずに残されたポリイミドにより液晶を配向させる方法である(例えば、特許文献1を参照)。
 また、光架橋型や光異性化型の光配向法も知られている。例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせ、偏光方向と直交した方向に液晶を配向させる方法である(例えば、非特許文献1を参照)。
 以上の例のように、光配向法による液晶配向膜の配向処理方法では、ラビングを不要とし、発塵や静電気の発生の懸念が無い。さらに、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができ、工業的な生産プロセスに好適な液晶配向膜の配向処理の方法となる。
 しかし、光配向法においても、光を用いることによる特有の問題が指摘されている。
 すなわち、電極等の形成された基板上の有機膜に直線偏光又はコリメートした光を照射する場合、下層の基板等からの光の反射の影響を受け、配向処理に乱れが生じることがある。そうした配向処理の乱れは、得られる液晶表示素子の表示品位を低下させることになる。
 また、光の照射後においても液晶配向膜中に未反応基が残存することがあり、そうした液晶配向膜を用いて液晶表示素子を製造した場合、バックライト光や外光中の短波長の光により、未反応基が反応し、液晶の配向状態が変化するといった不良が発生する問題がある。
 このような光配向法における光反射の問題に対し、例えば、特許文献2では、光配向法による液晶配向膜の下層側に、例えば、基板等からの反射光やバックライト光中の短波長成分を減衰させるための樹脂層をもう一層、さらに設ける技術が開示されている。
日本特許第3893659号明細書 日本特許第4651677号明細書
M.Shadt et al., Jpn. J. Appl. Phys. 31, 2155(1992)
 しかし、液晶配向膜の下層に、さらにもう一層の樹脂層を設けることは、従来に比べて液晶表示素子の製造工程を増加させることになる。すなわち、光配向法を用いた液晶表示素子の製造方法を従来に比べて複雑なものとし、生産性の低下を招く懸念がある。
 そこで、光配向法を用いた液晶表示素子の製造においては、製造工程を複雑にすること無く、従来と同様の製造方法に従って、光の反射による配向乱れのない液晶表示素子の提供を可能とする技術が求められている。
 本発明は、以上のような点に鑑みてなされたものであり、本発明の目的は、複雑な製造方法によらず、配向乱れの低減された液晶表示素子を製造できる液晶配向剤、該液晶配向剤から形成される液晶配向膜、さらには該液晶配向膜を有する液晶表示素子を提供することである。
 本発明は、以下の要旨を有するものである。
1.250~380nmの波長範囲の光で反応する第1の重合体と、
 250~380nmの波長範囲に吸収極大を有する化合物及び第2の重合体のうちの少なくとも1種と、を含有する液晶配向剤。
2.前記化合物及び第2の重合体のうちの少なくとも1種の含有量が、前記第1の重合体と併せた合計の含有量の3~80質量%である、上記1に記載の液晶配向剤。
3.前記第1の重合体は、前記光に反応する光反応性基を有し、該光反応性基がシンナモイル構造、クマリン構造及びカルコン構造からなる群より選択された少なくとも1種の構造である、上記1又は2に記載の液晶配向剤。
4.前記光反応性基が、下記の側鎖構造のうちのいずれかを含む、上記3に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000004
(破線は重合体の主鎖への結合基を表す。
 Rは、水素原子、炭素原子数1~10のアルキル基(ただし、その任意の水素原子はフッ素原子に置き換わっていてもよい。)、又は炭素原子数1~10アルコキシル基(ただし、その任意の水素原子はフッ素原子に置き換わっていてもよい。)を表す。
 A及びBは、それぞれ独立に、単結合又は下記式に示す環構造を表す。
Figure JPOXMLDOC01-appb-C000005
 Tは、それぞれ独立に、単結合、エーテル、エステル、アミド又はケトン結合を表す。Sは、単結合又は炭素原子数1~10のアルキレン基を表す。
 ただし、SとAが共に単結合の場合、酸素原子は隣り合うことはない。)
5.前記化合物及び前記第2の重合体は、特定構造を有し、該特定構造がフェノン構造及びジフェニルアミン構造のうちの少なくとも1種である、上記1~4のいずれかに記載の液晶配向剤。
6.前記特定構造が、下記式の構造である、上記5に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000006
(Rは、炭素原子数1~5のアルキル基を表す。)
7.前記第1の重合体が、ポリアミック酸及び該ポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体である、上記1~6のいずれかに記載の液晶配向剤。
8.前記第2の重合体を含有し、該第2の重合体が、ポリアミック酸及び該ポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体である、上記1~7のいずれかに記載の液晶配向剤。
9.上記1~8のいずれかに記載の液晶配向剤塗布し、乾燥し、焼成して得られることを特徴とする液晶配向膜。
10.前記焼成の温度が、50~300℃である、上記9に記載の液晶配向膜。
11.焼成後の膜厚が、5~300nmである、上記9又は10に記載の液晶配向膜。
12.上記9~11のいずれかに記載の液晶配向膜を有することを特徴とする液晶表示素子。
 本発明の液晶配向剤を用いることにより、複雑な製造方法によらず、配向乱れの低減された液晶表示素子を製造に供することが可能な液晶配向膜が形成され、該液晶配向膜を有する液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして、高精細な画像を表示する携帯用情報端末用の素子として利用される。
液晶セルの配向膜の膜厚とプレチルト角の関係を示すグラフである。
 本発明者は、液晶配向膜の光配向処理時において、ガラス基板や電極等、その下層からの光反射の影響により、液晶配向膜中で光の干渉が起こること、及び液晶配向膜の光配向処理での反射光による干渉は、液晶配向膜への配向制御能の付与、特に、プレチルト角を形成する性能に影響を与えることを確認した。具体的には、液晶表示素子において、液晶のプレチルト角に対して液晶配向膜の膜厚依存性があることを確認した。
 このような液晶のプレチルト角の液晶配向膜の膜厚依存性は、製造する一の液晶表示素子の面内、及び、複数の液晶表示素子間において、プレチルト角のバラつきを生じさせ、ひいては、表示品位を低下させる原因となることがわかった。
 光配向処理時に液晶配向膜で懸念される光の干渉は、例えば、上述した特許文献2に開示されているように、液晶配向膜の下層において、光を反射する層との間に、反射光を吸収する層を別に設ける方法が効果的である。
 しかし、光吸収のための層を新たに設けることは、上述したように、液晶表示素子の製造工程を増加させ、複雑なものとする。すなわち、新たな光吸収のための層を設けること無く、液晶配向膜自体に反射光の影響を低減できる機能を付与することができれば、光の干渉の低減化にとって有効な方法となる。
 本発明者は、さらに研究を行い、液晶配向膜中に、光配向処理時の反射光を減衰させることができる材料を含有させること、特に、液晶配向膜内部の下層部分に反射光を減衰させる層を形成することが、光の干渉の抑制に有効であることを見出した。
 さらに、液晶配向膜中の光の干渉を抑える層は、通常は重合体である液晶配向膜の形成時において、ポリマーの層分離の現象を利用することで、液晶配向膜の中に光の干渉を抑える層の形成が可能であることを見出した。その結果、本発明を完成するに至った。
 すなわち、重合体である液晶配向膜の形成時に、複数種の成分を用いて層分離を生じさせ、形成された液晶配向膜の主に上層部分に光配向に好適な成分の層を形成し、下層部分に光の吸収に有効な成分の層を形成する。
 得られた液晶配向膜は、主に上層部分を用いた光配向処理が施されて、有効に液晶配向の付与が実現される。一方、液晶配向膜の下層部分においては、例えば、基板や電極からの反射光を吸収して減衰させ、その反射光の影響が上層に及ぶことを抑制する。その結果、本発明の液晶配向膜では、光配向処理時の反射光による光の干渉が抑えられ、望ましい光配向処理が実現されて、液晶のプレチルト角形成における配向膜厚依存性を低減することができる。
 また、本発明の液晶配向膜は、光配向処理の後に、膜中に未反応の光反応性基が残存することがあっても、液晶表示素子の製造後、バックライト光や外光中の短波長の光により、それらが反応し、液晶の配向状態が変化するといった不良の発生を低減することができる。
 本発明の液晶配向膜は、上述したように、配向膜形成時における層分離を利用するものである。すなわち、特別な方法を適用すること無く、従来と同様に、一の液晶配向膜の形成工程で、所望とする構造の液晶配向膜を形成することができる。
 本発明の液晶配向膜は、特許文献2に開示されているように、反射光を減衰させるための層を形成する別の工程を設ける必要がなく、光配向法による液晶配向膜を有する液晶表示素子の製造方法を複雑なものとすることがない。
<液晶配向剤>
 本発明の液晶配向剤は、250~380nmの波長範囲の光で反応する第1の重合体と、250~380nmの波長範囲に吸収極大を有する化合物及び第2の重合体のうちの少なくとも1種、とを含有する。
 第1の重合体を成分に用いることで、形成される液晶配向膜においては、有効な光配向処理を可能とする。
 さらに、250~380nmの波長範囲に吸収極大を有する化合物及び/又は第2の重合体を成分として用いることにより、形成される液晶配向膜において、下層側からの光、例えば、基板等からの反射光を吸収して減衰させることができ、光配向処理において、反射光等が与える影響を低減することができる。
 本発明の液晶配向剤に含有される250~380nmの波長範囲に吸収極大を有する化合物及び/又は第2の重合体の含有量は、第1の重合体と併せた合計の量に対して、3~80質量%とすることが好ましく、50~80質量%がより好ましい。
 〔250~380nmの波長範囲の光で反応する第1の重合体〕
 第1の重合体は、波長範囲が250~380nm、好ましくは280~360nmの光に対する反応性基である、シンナモイル構造、クマリン構造及びカルコン構造からなる群より選択された少なくとも1種の構造を有する基を含有することが好ましい。具体的には、第1の重合体の有する光反応性基が、下記の側鎖構造のうちのいずれかを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式中、破線は重合体の主鎖への結合基を表す。
 Rは、水素原子、炭素原子数1~10のアルキル基(ただし、その任意の水素原子はフッ素原子に置き換わっていてもよい。)、又は炭素原子数1~10アルコキシル基(ただし、その任意の水素原子はフッ素原子に置き換わっていてもよい。)を表す。
 A及びBは、それぞれ独立に、単結合又は下記式に示す環構造を表す。
Figure JPOXMLDOC01-appb-C000008
 Tは、それぞれ独立に、単結合、エーテル、エステル、アミド又はケトン結合を表す。Sは、単結合又は炭素原子数1~10のアルキレン基を表す。ただし、SとAが共に単結合の場合、酸素原子は隣り合うことはない。
 第1の重合体の主鎖は、炭化水素、ポリイミド、ポリアミック酸、アクリレート、メタクリレート、マレイミド、α-メチレン-γ-ブチロラクトン及びシロキサンからなる群から選択される少なくとも1種であることが好ましい。
 第1の重合体は、特に、ポリアミック酸及びそのポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体であることが好ましい。そうすることで、耐熱性や電気的特性に優れた高信頼性の液晶配向膜を形成することができる。
 ポリアミック酸は、通常、ジアミン化合物とテトラカルボン酸二無水物との反応によって得ることができる。以下、第1の重合体として好ましいポリアミック酸及びポリイミドの形成に好適なジアミン化合物1及びテトラカルボン酸二無水物1について説明する。
〔ジアミン化合物1〕
 ジアミン化合物1としては1種のみではなく、複数種を選択して用いることが可能であり、光に反応する光反応性基を有するジアミン化合物を1種以上含んで用いることが好ましい。
 ジアミン化合物1の光反応性基は、250~380nmの波長範囲の光で反応する基であることが好ましい。光反応性基としては、シンナモイル構造、クマリン構造及びカルコン構造からなる群より選択された少なくとも1種の基を挙げることができる。
 具体的には、ジアミン化合物の有する光反応性基は、下記の側鎖構造のうちのいずれかを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式中、Rは、水素原子又は炭素原子数1~10のアルキル基(ただし、その任意の水素原子はフッ素原子に置き換わっていてもよい。)、又は炭素原子数1~10アルコキシル基(ただし、その任意の水素原子はフッ素原子に置き換わっていてもよい。)を表す。
 A及びBは、それぞれ独立に、単結合又は下記式に示す環構造を表す。
Figure JPOXMLDOC01-appb-C000010
 Tは、それぞれ独立に、単結合、エーテル、エステル、アミド又はケトン結合を表す。Sは、単結合又は炭素原子数1~10のアルキレン基を表す。ただし、SとAが共に単結合の場合、酸素原子は隣り合うことはない。
 以下に、光反応性基を有するジアミン化合物の好ましい例を示す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 尚、上記各式で例示されたジアミン化合物のC2n+1部分において、nは1~18の整数を表す。
 本発明の液晶配向膜は、垂直配向性の液晶配向膜とすることができる。
 その形成に用いられる第1の重合体は、上述したように、ポリアミック酸及びそのポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体であることが好ましく、該ポリアミック酸は、側鎖型のジアミン化合物を含むジアミン成分から形成されたものであることが好ましい。
 上述した側鎖型のジアミン化合物とは、側鎖に、アルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環及びそれらからなる大環状置換体のうちの少なくとも1種を有するジアミン化合物である。
 具体的には、下記の式[DA-1]~[DA-30]で示されるジアミン化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000030
(Rは、炭素数1~22の、アルキル基又はフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000031
(複数あるSは、それぞれ独立に、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-であり、Rは炭素数1~22の、アルキル基又はフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000032
(Sは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-であり、Rは炭素数1~22の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000033
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-であり、Rは炭素数1~22の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000034
(Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure JPOXMLDOC01-appb-C000035
(R10は炭素数3~12のアルキル基であり、1,4-シクロへキシレンのシス-トランス異性は、それぞれトランス体である。)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 上述した光反応性基を有するジアミン化合物と同時に、垂直配向能を補う目的で、上記式[DA-1]~[DA-30]のジアミン化合物を併用させることもできる。併用できるより好ましいジアミンとしては、電圧保持率や残留蓄積電圧などの点から、式[DA-10]~[DA-30]が好ましく、さらに好ましくは式[DA-10]~[DA-16]のジアミン化合物である。
 これらのジアミン化合物の好ましい含有量は、特に限定はされないが、第1の重合体を形成するためのジアミン成分中、5~50モル%が好ましく、より好ましくは5~30モル%である。
 上述の第1の重合体として、好ましいポリアミック酸及びポリイミドの形成に好適なジアミン成分には、上述した光反応性基を有するジアミン化合物や、側鎖型のジアミン化合物の他、それら以外のジアミン化合物(その他のジアミン化合物と称することがある。)を含有することも可能である。その他のジアミン化合物は、特に限定されないが、脂環式ジアミン類、芳香族ジアミン類、芳香族-脂肪族ジアミン類、複素環式ジアミン類、脂肪族ジアミン類等を挙げることができる。その具体例は、以下の通りである。
 脂環式ジアミン類の例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。
 芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカン等が挙げられる。
 芳香族-脂肪族ジアミン類の例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミン等が挙げられる。
 複素環式ジアミン類の例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾール等が挙げられる。
 脂肪族ジアミン類の例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルヘプタン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタン等が挙げられる。
〔テトラカルボン酸二無水物1〕
 第1の重合体として好ましいポリアミック酸を得るための、上述したジアミン化合物と反応させるテトラカルボン酸二無水物は特に限定されない。その具体例を以下に挙げる。
 脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等が挙げられる。
 芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物等が挙げられる。
 上述した脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。
 テトラカルボン酸二無水物は、形成される液晶配向膜の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用することができる。
〔ポリアミック酸1〕
 第1の重合体として好ましいポリアミック酸は、上述したテトラカルボン酸二無水物と、上述したジアミン化合物からなるジアミン成分との反応により得ることができる。
 第1の重合体としてのポリアミック酸を得る方法は、公知の合成手法を用いることができる。一般的には、テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。
 テトラカルボン酸二無水物とジアミン化合物との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 テトラカルボン酸二無水物とジアミン化合物との反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。
 これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
 有機溶媒中の水分は、重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、使用する有機溶媒は、可能な程度に脱水乾燥されたものを用いることが好ましい。
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液に、ジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いても良い。また、テトラカルボン酸二無水物又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、さらに個別に反応させた低分子量体を混合反応させて高分子量体としても良い。
 重合温度は、-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。
 また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度が、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 上述の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は0.8~1.2であることが好ましく、0.9~1.1がより好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
〔ポリイミド1〕
 第1の重合体として好ましいポリイミドは、上述したポリアミック酸を脱水閉環(イミド化)させて得ることができる。
 好ましいポリイミドとしては、アミック酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて100%以下となるように、任意に調整することができる。
 ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。
 塩基性触媒の量は、アミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の1~50モル倍、好ましくは3~30モル倍である。
 塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができ、中でもピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると、反応終了後の精製が容易となるので好ましい。
 触媒イミド化によるイミド化率は、触媒量、反応温度、反応時間を調節することにより制御することができる。
〔ポリアミック酸エステル〕
 本発明の液晶配向剤の成分となる第1の重合体としては、上述したポリアミック酸やポリイミドの他、ポリアミック酸エステルやポリアミドとすることも可能である。
 好ましいポリアミック酸エステルを合成する方法としては、テトラカルボン酸ジエステルジクロリドと上述した好ましいジアミン化合物との反応や、テトラカルボン酸ジエステルと上述した好ましいジアミン化合物を縮合剤、塩基などの存在下、反応させる方法がある。これらの方法により、ポリイミドの前駆体の一種であるポリアミック酸エステルを得ることができる。
 また、予め重合したポリアミック酸を、高分子反応を利用して、アミック酸中のカルボン酸をエステル化することでも、ポリアミック酸エステルを得ることができる。
 具体的には、テトラカルボン酸ジエステルジクロリドと上述した好ましいジアミン化合物とを塩基と有機溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分間~24時間、好ましくは1~4時間反応させることによって合成することができる。
 塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4モル倍であることが好ましく、2.5~3.5倍モルがより好ましい。
 縮合剤の存在下で縮重合反応を行なう場合、縮合剤としては、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリド n-水和物等が使用できる。
 また、縮合剤を用いる方法において、ルイス酸を添加剤として加えると、反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量は、テトラカルボン酸ジエステルに対して0.1~1.0モル倍であることが好ましく、0.5~1.0倍モルがより好ましい。
 有機溶媒としては、上述した、テトラカルボン酸二無水物と好ましいジアミン成分とを重合してポリアミック酸を得る際に用いられる有機溶媒が使用できるが、モノマー及び得られる重合体の溶解性から、N-メチル-2-ピロリドン、γ-ブチロラクトン等の使用が好ましい。これらの溶媒は、1種又は2種以上を混合して用いてもよい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる有機溶媒は、できるだけ脱水されていることが好ましい。
 テトラカルボン酸ジエステルジクロリドとジアミン成分の反応溶液中での合計濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 さらに、反応は窒素雰囲気中で行ない、外気の混入を防ぐのが好ましい。
〔ポリアミド〕
 上述した第1の重合体として好ましいポリアミドも、上述したポリアミック酸エステルと同様にして合成することができる。
〔重合体の回収〕
 ポリアミック酸及びポリイミド等の反応溶液から、生成したポリアミック酸及びポリイミド等を回収する場合には、反応溶液を貧溶媒に投入して、重合体を沈殿させれば良い。 沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水等を挙げることができる。
 沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 第1の重合体として含有されるポリアミック酸及び/又はポリイミドの分子量は、得られる塗膜の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~100000である。
〔250~380nmの波長範囲に吸収極大を有する化合物及び第2の重合体〕
 かかる化合物及び第2の重合体は、波長範囲が250~380nm、好ましくは280~360nmの光に対して吸収極大を有する、シンナモイル構造、フェノン構造及びジフェニルアミン構造からなる群から選ばれる少なくとも1種の特定構造を有することが好ましく、特に、フェノン構造及びジフェニルアミン構造のうちの少なくとも1種の特定構造を有することがより好ましい。なお、本発明において、吸収極大を有するとは、本発明の重合体に用いるモノマー若しくはそのもののUV-visスペクトルを測定したときに、250~380nmの範囲に吸収極大波長を有していることを意味するものある。
 上記の特定構造の具体例としては、下記で表わされる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000039
(Rは、炭素原子数1~5のアルキル基を表す。)
 特に、好ましい第2の重合体としては、ポリアミック酸及びそのポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体であることが好ましい。そうすることで、耐熱性や電気的特性に優れた高信頼性の液晶配向膜を形成することができる。
 ポリアミック酸は、上述したように、通常、ジアミン化合物とテトラカルボン酸二無水物との反応によって得ることができる。
 以下、第2の重合体として、好ましいポリアミック酸及びポリイミドの形成に用いることができるジアミン化合物及びテトラカルボン酸二無水物について説明する。
〔ジアミン化合物2〕
 第2の重合体として、好ましいポリアミック酸及びポリイミドの形成に用いることができるジアミン化合物は、特に限定されないが、脂環式ジアミン類、芳香族ジアミン類、芳香族-脂肪族ジアミン類、複素環式ジアミン類、脂肪族ジアミン類等を挙げることができる。これらのジアミン類は、後述するテトラカルボン酸二無水物との反応により、250~380nmの波長範囲に吸収極大を有する重合体を形成するように、その組み合わせが選択されて用いられる。使用可能なジアミン化合物の具体例を挙げると、以下の通りである。
 脂環式ジアミン類の例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。
 芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカン等が挙げられる。
 芳香族-脂肪族ジアミン類の例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミン等が挙げられる。
 複素環式ジアミン類の例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾール等が挙げられる。
 脂肪族ジアミン類の例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルヘプタン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタン等が挙げられる。
 上記したジアミン化合物の中で、特に、4,4‘-ジアミノジフェニルアミン及び/又は4,4’-ジアミノベンゾフェノンを選択し、ポリアミック酸及びポリイミドの形成に用いることが好ましい。形成されるポリアミック酸及びポリイミドにおいて、250~380nmの波長範囲に、より高い吸収極大を有することができるためである。
〔テトラカルボン酸二無水物2〕
 第2の重合体として好ましいポリアミック酸及びポリイミドの形成に用いることができるテトラカルボン酸二無水物は、特に限定されない。上述したジアミン化合物との反応により、250~380nmの波長範囲に吸収極大を有する重合体を形成するように、その組み合わせが選択されて用いられる。使用可能なテトラカルボン酸二無水物の具体例を挙げると、以下の通りである。
 脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等が挙げられる。
 芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物等が挙げられる。
 上述した脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、形成される重合体からなる液晶配向膜の液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。
 上記したテトラカルボン酸二無水物の中で、特に、ピロメリット酸二無水物及び/又は3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物を選択し、ポリアミック酸及びポリイミドの形成に用いることが好ましい。形成されるポリアミック酸及びポリイミドにおいて、250~380nmの波長範囲に、より高い吸収極大を有することができるためである。
〔ポリアミック酸2及びポリイミド2〕
 第2の重合体として好ましいポリアミック酸は、上述したテトラカルボン酸二無水物と、上述したジアミン化合物からなるジアミン成分との反応により得ることができる。
 第2の重合体としてのポリアミック酸を得る方法としては、公知の合成手法を用いることができる。例えば、上述した第1の重合体として、好ましいポリアミック酸を得る方法として説明したのと同様の方法により得ることができる。
 また、第2の重合体として好ましいポリイミドは、得られたポリアミック酸を脱水閉環(イミド化)させて得ることができる。具体的には、上述した第1の重合体として、好ましいポリイミドを得る方法として説明したのと同様の方法で得ることができる。
 第2の重合体として好ましいポリイミドにおいて、アミック酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて100%以下となるように、任意に調整することができる。
 第2の重合体として含有されるポリアミック酸及び/又はポリイミドの分子量は、得られる塗膜の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~100000である。
 本発明の液晶配向剤中のもう一つの成分である、250~380nmの波長範囲に吸収極大を有する化合物にとしては、上述した第2の重合体の形成に好ましいとされたジアミン化合物及びテトラカルボン酸二無水物を用いることが好ましい。より具体的には、ジアミン化合物として、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノベンゾフェノン等を挙げることができる。また、テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物等を挙げることができる。
〔液晶配向剤の調製〕
 本発明の液晶配向剤は、上述したように、250~380nmの波長範囲の光で反応する第1の重合体と、250~380nmの波長範囲に吸収極大を有する化合物及び第2の重合体のうちの少なくとも1種とを含有して構成される。当該液晶配向剤は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。
 すなわち、本発明の液晶配向剤は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、樹脂成分とは、既に説明した第1の重合体及び第2の重合体等を含む樹脂成分である。
 樹脂成分の含有量は、液晶配向剤の全量(100質量%)に対して、1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。
 液晶配向剤において、前述の樹脂成分は、全てが第1の重合体か、あるいは第1の重合体及び第2の重合体であってもよいが、それら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5~15質量%、好ましくは1~10質量%である。
 他の重合体としては、例えば、ポリアミック酸、ポリイミド等からなり、250~380nmの波長範囲の光で反応することが無く、また、250~380nmの波長範囲に吸収極大を有しない重合体等が挙げられる。
 液晶配向剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
 本発明の液晶配向剤は、第1の重合体等の上記した成分以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等である。
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。
 これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。
 貧溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。
 具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R-30(以上、DIC社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有される樹脂成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。
 さらに、基板と液晶配向膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系の添加剤を、液晶配向剤中に含有させても良い。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。
Figure JPOXMLDOC01-appb-C000040
 基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向剤に含有される樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 本発明の液晶配向剤には、上述したものの他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。
<液晶配向膜及び液晶表示素子>
 本発明の液晶配向剤は、従来のポリイミドからなる液晶配向膜を形成するための液晶配向剤と同様に、基板上に塗布し、焼成を行うことで、別にその他の方法を適用すること無く、本発明の液晶配向膜を形成することができる。さらに、光照射による光配向処理を施すことで配向制御能を付与することができ、液晶表示素子の製造に用いることができる。
 液晶配向剤を塗布して液晶配向膜を形成する際に用いる基板としては、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、又はアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。また、液晶表示素子における液晶駆動のため、ITO(Indium Tin Oxide:酸化インジウム錫)電極等の透明電極が形成された基板を用いることが、製造プロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハ等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料から構成することができる。
 本発明の液晶配向膜の形成において、液晶配向剤の塗布方法は特に限定されない。液晶配向剤の塗布法として、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット等が一般的である。その他の塗布方法としては、ディップ、ロールコータ、スリットコータ、スピンナ等を用いる方法があり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後の焼成は、ホットプレート等の加熱手段により50~300℃、好ましくは80~250℃で、1~200分、好ましくは10~100分行い、例えば、有機溶媒である溶媒を蒸発させて、塗膜を形成させることができる。
 焼成後に形成される塗膜の厚みは、厚すぎると液晶表示素子に用いられた場合に、その消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合がある。したがって、焼成後の塗膜の厚みは、好ましくは5~300nm、より好ましくは10~100nmである。
 液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜を偏光紫外線照射で処理する。すなわち、光照射により光配向処理を行う。
 尚、本発明の液晶配向膜は、ラビング処理によっても配向制御能の付与、特に、プレチルト角の形成が可能である。
 本発明の液晶表示素子は、上述の方法により、本発明の液晶配向剤から、液晶配向膜の形成された液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。例えば、垂直配向(VA)モードの液晶表示素子を提供することができる。
 液晶セル作製の一例を挙げるならば、本発明の液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このときのスペーサの径は、好ましくは1~30μm、より好ましくは2~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明はこれらに限定して解釈されるものではない。
 実施例及び比較例で使用する主な化合物の略号及び構造は以下のとおりである。
 (テトラカルボン酸二無水物)
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
PMDA:ピロメリット酸無水物
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 (ジアミン)
m-PDA:m-フェニレンジアミン
PCH:1,3-ジアミノ-4-[4-(4-ヘプチルシクロヘキシル)フェノキシ]ベンゼン
DAM-1:(E)-2,4-ジアミノフェネチル 3-(4-(4-ヘプチルシクロヘキシル)フェニル)アクリレート 
Figure JPOXMLDOC01-appb-C000041
DAM-2:N1-(4-アミノフェニル)ベンゼン-1,4-ジアミン
Figure JPOXMLDOC01-appb-C000042
DAM-3:N1-(4-アミノフェニル)-N1-メチルベンゼン-1,4-ジアミン
Figure JPOXMLDOC01-appb-C000043
DAM-4:4,4’-ジアミノベンゾフェノン
Figure JPOXMLDOC01-appb-C000044
 DAM-5:4,4’-オキシジアニリン
Figure JPOXMLDOC01-appb-C000045
DAM-6:3,5-ジアミノ安息香酸
Figure JPOXMLDOC01-appb-C000046
DAM-7:2,4-ジアミノフェネチルシンナメート
Figure JPOXMLDOC01-appb-C000047
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
[分子量測定]
 合成例におけるポリイミドの分子量は、センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000000、150000、100000、及び30000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12000、4000、及び1000)。
<合成例1>
 CBDA(2.499g、12.74mmol)、及びDAM-1(6.015g、13.0mmol)をNMP(48.24g)中で混合し、室温で20時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(42.57g)、及びBC(42.57g)を加え6質量%に希釈し、室温で5時間攪拌することにより、ポリアミック酸溶液(A1)を得た。含有されるポリアミック酸の数平均分子量は9000であり、重量平均分子量は28000であった。尚、得られたポリアミック酸溶液(A1)は、垂直配向性の液晶配向膜の形成が可能であって、液晶配向剤としての使用が可能であり、後述する比較例1においては、液晶配向剤(A1)として用いられる。
<合成例2>
 BODA(1.626g、6.24mmol)、及びDAM-1(6.015g、13.0mmol)をNMP(37.68g)中で混合し、80℃で5時間反応させた後、CBDA(1.224g、6.24mmol)とNMP(12.56g)を加え、40℃で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(58.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.91g)、及びピリジン(2.02g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(530ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(B)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は11000であり、重量平均分子量は31000であった。
 得られたポリイミド粉末(B)(6.0g)にNMP(29.3g)を加え、70℃にて5時間攪拌して溶解させた。この溶液にNMP(34.7g)、及びBC(30.0g)を加え、攪拌することによりポリイミド溶液(B1)を得た。尚、得られたポリイミド溶液(B1)は、垂直配向性の液晶配向膜の形成が可能であって、液晶配向剤としての使用が可能であり、後述する比較例2においては、液晶配向剤(B1)として用いられる。
<合成例3>
 CBDA(2.447g、12.48mmol)、及びDAM-2(2.59g、13.0mmol)をNMP(28.55g)中で混合し、室温で20時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(25.19g)、及びBC(25.19g)を加え6質量%に希釈し、室温で5時間攪拌することにより、ポリアミック酸溶液(C1)を得た。含有されるポリアミック酸の数平均分子量は8700であり、重量平均分子量は18000であった。
 次に、合成例1で得られたポリアミック酸溶液(A1)(2.0g)と、このポリアミック酸溶液(C1)(8.0g)とを室温で3時間混合し、垂直配向性の液晶配向膜の形成が可能な液晶配向剤(C2)を調製した。
 また、合成例2で得られたポリイミド溶液(B1)(2.0g)と、このポリアミック酸溶液(C1)(8.0g)とを室温で3時間混合し、垂直配向性の液晶配向膜の形成が可能な液晶配向剤(C3)を調製した。
<合成例4>
 CBDA(2.447g、12.48mmol)、及びDAM-3(2.773g、13.0mmol)をNMP(29.58g)中で混合し、室温で20時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(26.1g)、及びBC(26.1g)を加え6質量%に希釈し、室温で5時間攪拌することにより、ポリアミック酸溶液(D1)を得た。含有されるポリアミック酸の数平均分子量は9100であり、重量平均分子量は19000であった。
 次いで、合成例1で得られたポリアミック酸溶液(A1)(2.0g)と、このポリアミック酸溶液(D1)(8.0g)とを室温で3時間混合し、垂直配向性の液晶配向膜の形成が可能な液晶配向剤(D2)を調製した。
<合成例5>
 CBDA(2.447g、12.48mmol)、及びDAM-4(2.759g、13.0mmol)をNMP(29.5g)中で混合し、室温で20時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(26.0g)、及びBC(26.0g)を加え6質量%に希釈し、室温で5時間攪拌することにより、ポリアミック酸溶液(E1)を得た。含有されるポリアミック酸の数平均分子量は10500であり、重量平均分子量は26000であった。
 次いで、合成例1で得られたポリアミック酸溶液(A1)(2.0g)と、このポリアミック酸溶液(E1)(8.0g)を室温で3時間混合し、垂直配向性の液晶配向膜の形成が可能な液晶配向剤(E2)を調製した。
<合成例6>
 CBDA(2.498g、12.74mmol)、及びDAM-7(3.670g、13.0mmol)をNMP(34.96g)中で混合し、室温で20時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(30.84g)、及びBC(30.84g)を加え6質量%に希釈し、室温で5時間攪拌することにより、ポリアミック酸溶液(F1)を得た。含有されるポリアミック酸の数平均分子量は10800であり、重量平均分子量は23000であった。
 次いで、合成例1で得られた液晶配向剤(A1)(2.0g)とポリアミック酸溶液(F1)(8.0g)とを室温で3時間混合し、垂直配向性の液晶配向膜の形成が可能な液晶配向剤(F2)を調製した。
<合成例7>
 BODA(2.439g、9.75mmol)、DAM-2(1.295g、6.5mmol)、m-PDA(0.422g、3.9mmol)、及びPCH(0.990g、2.6mmol)をNMP(16.1g)中で混合し、80℃で5時間反応させた後、CBDA(0.535g、2.7mmol)とNMP(8.05g)を加え、40℃で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(36.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.31g)、及びピリジン(1.95g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(350ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(G)を得た。このポリイミドのイミド化率は76%であり、数平均分子量は14000であり、重量平均分子量は46000であった。
 得られたポリイミド粉末(G)(3.0g)にNMP(14.6g)を加え、70℃にて5時間攪拌して溶解させた。この溶液にNMP(17.4g)、及びBC(15.0g)を加え、攪拌することによりポリイミド溶液(G1)を得た。
 次いで、合成例1で得られたポリアミック酸溶液(A1)(2.0g)と、このポリイミド溶液(G1)(8.0g)とを室温で3時間混合し、垂直配向性の液晶配向膜の形成が可能な液晶配向剤(G2)を調製した。
<比較合成例1>
 CBDA(2.447g、12.48mmol)、及びDAM-5(2.603g、13.0mmol)をNMP(28.62g)中で混合し、室温で20時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(22.38g)、及びBC(22.38g)を加え6質量%に希釈し、室温で5時間攪拌することにより、ポリアミック酸溶液(H1)を得た。含有されるポリアミック酸の数平均分子量は11000であり、重量平均分子量は29000であった。
 次いで、合成例1で得られたポリアミック酸溶液(A1)(2.0g)と、ポリアミック酸溶液(H1)(8.0g)とを室温で3時間混合し、垂直配向性の液晶配向膜の形成が可能な液晶配向剤(H2)を調製した。
<比較合成例2>
 CBDA(2.498g、12.74mmol)、及びDAM-6(1.978g、13.0mmol)をNMP(25.37g)中で混合し、室温で20時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液にNMP(22.38g)、及びBC(22.38g)を加え6質量%に希釈し、室温で5時間攪拌することにより、ポリアミック酸溶液(I1)を得た。含有されるポリアミック酸の数平均分子量は11000であり、重量平均分子量は28000であった。
 次いで、合成例1で得られたポリアミック酸溶液(A1)(2.0g)と、このポリアミック酸溶液(I1)(8.0g)とを室温で3時間混合し、垂直配向性の液晶配向膜の形成が可能な液晶配向剤(I2)を調製した。
<実施例1>
 合成例3で得られた液晶配向剤(C2)を用いて、下記に示すような手順で液晶セルの作製を行った。
[液晶セルの作製]
 合成例3で得られた液晶配向剤(C2)を、ITO膜からなる透明電極付きガラス基板の透明電極形成面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚50nmの液晶配向膜を形成した。
 この基板に対して、照射強度11.0mW/cmの313nmの直線偏光UV(紫外線)を20mJ照射した。入射光線の方向は基板法線方向に対して40°傾斜させた。直線偏光UVは、高圧水銀ランプの紫外光に313nmのバンドパスフィルタを通した後、313nmの偏光板を通すことで調整した。
 上記の製造方法による基板を2枚用意し、一方の基板の液晶配向膜上に6μmのビーズスペーサを散布した後、その上からシール剤を印刷した。次いで、2枚の基板の液晶配向面を対向させ、各基板への直線偏光UVの光軸の投影方向が逆平行となるように圧着し、150℃で105分かけてシール剤(協立化学社製、XN-1500T)を熱硬化させた。こうして作製された空セルに、誘電異方性が負であるネガ型液晶(メルク社製、MLC-6608)を減圧注入法によって注入し、垂直配向型の液晶セルを作製した。
 同様の製造方法により、液晶配向膜の膜厚が、70nm、100nm、120nm、150nm、及び200nmとそれぞれ異なる以外は、同様の構造の5種類の垂直配向型の液晶セルを作製し、以下の評価に使用した。
[プレチルト角の評価]
 作製された各液晶セルを用い、液晶のプレチルト角を測定した。プレチルト角の測定は、Axo Metrix社製の「Axo Scan」を用いてミューラーマトリックス法により測定した。測定結果は、表1にまとめて示した。
<実施例2>
 液晶配向剤(C2)を液晶配向剤(C3)に変更した以外は、実施例1と同様の方法に従い、6種類の液晶セルを作製し、それぞれについてプレチルト角の測定を行なった。
<実施例3>
 液晶配向剤(C2)を液晶配向剤(D2)に変更した以外は、実施例1と同様の方法に従い、6種類の液晶セルを作製し、それぞれについてプレチルト角の測定を行なった。
<実施例4>
 液晶配向剤(C2)を液晶配向剤(E2)に変更した以外は、実施例1と同様の方法に従い、6種類の液晶セルを作製し、それぞれについてプレチルト角の測定を行なった。
<実施例5>
 液晶配向剤(C2)を液晶配向剤(F2)に変更した以外は、実施例1と同様の方法に従い、6種類の液晶セルを作製し、それぞれについてプレチルト角の測定を行なった。
<実施例6>
 液晶配向剤(C2)を液晶配向剤(G2)に変更した以外は、実施例1と同様の方法に従い、6種類の液晶セルを作製し、それぞれについてプレチルト角の測定を行なった。
<比較例1>
 ポリアミック酸溶液(A1)を液晶配向剤(A1)として用い、液晶配向剤(C2)をその液晶配向剤(A1)に変更した以外は、実施例1と同様の方法に従い、6種類の液晶セルを作製し、それぞれについてプレチルト角の測定を行なった。
<比較例2>
 ポリイミド溶液(B1)を液晶配向剤(B1)として用い、液晶配向剤(C2)を液晶配向剤(B1)に変更した以外は、実施例1と同様の方法に従い、6種類の液晶セルを作製し、それぞれについてプレチルト角の測定を行なった。
<比較例3>
 液晶配向剤(C2)を液晶配向剤(H2)に変更した以外は、実施例1と同様の方法に従い、6種類の液晶セルを作製し、それぞれについてプレチルト角の測定を行なった。
<比較例4>
 液晶配向剤(C2)を液晶配向剤(I2)に変更した以外は、実施例1と同様の方法に従い、6種類の液晶セルを作製し、それぞれについてプレチルト角の測定を行なった。
 実施例1~6の各液晶セルのプレチルト角の測定結果は、表1にまとめて示した。また、比較例1~4の各液晶セルのプレチルト角の測定結果は、表2にまとめて示した。
 表1及び2においては、実施例1~6及び比較例1~4のそれぞれについて、液晶配向膜の膜厚によるプレチルト角の変化量(Δφ(度))を記載した。
 Δφは、実施例1~6及び比較例1~4のそれぞれにおいて、液晶配向膜の膜厚の異なる6種類の液晶セルのプレチルト角を比較し、最大プレチルト角と最小プレチルト角を求め、その差として評価された値である。
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
 図1は、液晶セルの配向膜の膜厚とプレチルト角の関係を示すグラフである。
 図1では、液晶セルの液晶配向膜の膜厚を変化させることによって、液晶のプレチルト角が変動する現象を、実施例6と比較例4との結果を比較して示している。
 表2及び図1の比較例4において示されるように、従来技術に対応する、光配向処理された垂直配向性の液晶配向膜は、その膜厚が変化することで、液晶セルの液晶のプレチルト角が大きく変化することがわかる。これは液晶配向膜と基板との界面で、光配向処理時のUV(紫外線)が反射し、液晶配向膜の表面で干渉していることを意味する。
 また、表1及び図1中の実施例6のグラフにおいて示されるように、液晶配向膜に紫外領域に吸収を持つような材料を混合(ブレンド)することで、液晶配向膜の膜厚によるプレチルト角の変化が抑えられていることがわかる。その理由は、混在した材料が反射光を吸収することで、配向膜表面での光の干渉が抑えているためである。
 <実施例7>
 次に、実施例1~6及び比較例1~4でプレチルト角の測定された、液晶配向膜の膜厚が100nmの液晶セルを用い、該液晶セルを液晶パネル用のバックライト上に置き、バックライトからの光を照射しながら300時間のエージングを行った。その後、各液晶セルについて、上記と同様にプレチルト角を測定し、エージング前後でのプレチルト角の変化(Δθ)を評価した。評価結果は、表3にまとめて示した。
 尚、表3中、エージング前の液晶セルのプレチルト角を「プレチルト角1」として示し、エージング後のプレチルト角を「プレチルト角2」として示した。
Figure JPOXMLDOC01-appb-T000050
 表3の評価結果から、比較例1~4では、バックライト光の影響により、エージングの前後で、プレチルト角が高い値へと大きく変化することがわかった。これは配向処理時の偏光UVで反応できなかった未反応の光反応性基が、バックライト光によって徐々に光反応を起こし、その結果、液晶配向膜表面の異方性が徐々に低下しているためであると解される。
 一方、実施例1~6の紫外領域に吸収を有する材料をブレンドした液晶配向剤を用いた液晶セルでは、バックライト光によるプレチルト角の変化が抑制されていることが確認された。これは液晶配向剤にブレンドされた紫外領域に吸収を有する材料が、バックライトから発生する紫外線を吸収し、その結果、配向制御能に関与する未反応の光反応性基が反応しにくくなった効果を示すものと解される。
 本発明の液晶配向剤を用いて形成され、光配向処理が可能な液晶配向膜を有する液晶表示素子は、高生産性での製造が可能であり、優れた表示特性を有することから、大型の液晶TVや、高精細な画像を表示するスマートフォン等の携帯用情報端末用の表示素子として好適に用いることができる。
 なお、2012年8月21日に出願された日本特許出願2012-182104号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1.  250~380nmの波長範囲の光で反応する第1の重合体と、
     250~380nmの波長範囲に吸収極大を有する化合物及び第2の重合体のうちの少なくとも1種と、を含有することを特徴とする液晶配向剤。
  2.  前記化合物及び第2の重合体のうちの少なくとも1種の含有量が、前記第1の重合体と併せた合計の含有量の3~80質量%である、請求項1に記載の液晶配向剤。
  3.  前記第1の重合体は、前記光に反応する光反応性基を有し、該光反応性基がシンナモイル構造、クマリン構造及びカルコン構造からなる群より選択された少なくとも1種の構造である、請求項1又は2に記載の液晶配向剤。
  4.  前記光反応性基が、下記の側鎖構造のうちのいずれかを含む、請求項3に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001

    (破線は重合体の主鎖への結合基を表す。
     Rは、水素原子、炭素原子数1~10のアルキル基(ただし、その任意の水素原子はフッ素原子に置き換わっていてもよい)、又は炭素原子数1~10アルコキシル基(ただし、その任意の水素原子はフッ素原子に置き換わっていてもよい。)を表す。
     A及びBは、それぞれ独立に、単結合又は下記式に示す環構造を表す。
    Figure JPOXMLDOC01-appb-C000002

     Tは、それぞれ独立に、単結合、エーテル、エステル、アミド又はケトン結合を表す。Sは、単結合又は炭素原子数1~10のアルキレン基を表す。
     ただし、SとAが共に単結合の場合、酸素原子は隣り合うことはない。)
  5.  前記化合物及び前記第2の重合体は、フェノン構造及びジフェニルアミン構造のうちの少なくとも1種の特定構造を有する、請求項1~4のいずれか1項に記載の液晶配向剤。
  6.  前記特定構造が、下記式の構造である、請求項5に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (Rは、炭素原子数1~5のアルキル基を表す。)
  7.  前記第1の重合体が、ポリアミック酸及び該ポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体である、請求項1~6のいずれか1項に記載の液晶配向剤。
  8.  前記第2の重合体を含有し、該第2の重合体が、ポリアミック酸及び該ポリアミック酸をイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つの重合体である、請求項1~7のいずれか1項に記載の液晶配向剤。
  9.  請求項1~8のいずれか1項に記載の液晶配向剤を塗布し、乾燥し、焼成して得られることを特徴とする液晶配向膜。
  10.  前記焼成の温度が、50~300℃である、請求項9に記載の液晶配向膜。
  11.  焼成後の膜厚が、5~300nmである、請求項9又は10に記載の液晶配向膜。
  12.  請求項9~11のいずれか1項に記載の液晶配向膜を有することを特徴とする液晶表示素子。
PCT/JP2013/071931 2012-08-21 2013-08-14 液晶配向剤、液晶配向膜及び液晶表示素子 WO2014030587A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014531604A JP6330662B2 (ja) 2012-08-21 2013-08-14 液晶配向剤、液晶配向膜及び液晶表示素子
KR1020157006814A KR102143667B1 (ko) 2012-08-21 2013-08-14 액정 배향제, 액정 배향막 및 액정 표시 소자
CN201380053787.1A CN104718493B (zh) 2012-08-21 2013-08-14 液晶取向剂、液晶取向膜和液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-182104 2012-08-21
JP2012182104 2012-08-21

Publications (1)

Publication Number Publication Date
WO2014030587A1 true WO2014030587A1 (ja) 2014-02-27

Family

ID=50149896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071931 WO2014030587A1 (ja) 2012-08-21 2013-08-14 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6330662B2 (ja)
KR (1) KR102143667B1 (ja)
CN (1) CN104718493B (ja)
TW (1) TWI601787B (ja)
WO (1) WO2014030587A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010084A1 (ja) * 2014-07-18 2016-01-21 日産化学工業株式会社 光配向用の液晶配向剤、液晶配向膜、及び液晶表示素子
US20200081398A1 (en) * 2018-09-06 2020-03-12 Facebook Technologies, Llc Photosensitive polymers for volume holography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230031467A (ko) 2021-08-27 2023-03-07 정태우 영상매체 중개 플랫폼 및 그 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980440A (ja) * 1995-09-13 1997-03-28 Japan Synthetic Rubber Co Ltd 液晶配向膜の製造方法及び液晶表示素子
JP2001166307A (ja) * 1999-12-08 2001-06-22 Sharp Corp 液晶配向層材料およびそれを用いた液晶表示装置ならびにその製造方法
JP4052307B2 (ja) * 2002-08-29 2008-02-27 日産化学工業株式会社 液晶配向剤およびそれを用いた液晶表示素子
JP2011100099A (ja) * 2009-10-06 2011-05-19 Jsr Corp 液晶配向剤、液晶配向膜の製造方法および液晶表示素子
WO2011098461A1 (en) * 2010-02-12 2011-08-18 Rolic Ag Photoaligning material with lateral substitution
JP2012093642A (ja) * 2010-10-28 2012-05-17 Nissan Chem Ind Ltd 液晶配向剤、液晶配向膜、及び液晶表示素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
US5731405A (en) * 1996-03-29 1998-03-24 Alliant Techsystems Inc. Process and materials for inducing pre-tilt in liquid crystals and liquid crystal displays
JP2950824B2 (ja) * 1997-10-01 1999-09-20 松下電器産業株式会社 液晶配向膜とその製造方法およびそれを用いた液晶表示装置とその製造方法
TWI351428B (en) * 2004-02-12 2011-11-01 Chisso Corp Liquid crystal oriented agent, oriented film and l
US7679703B2 (en) 2005-09-30 2010-03-16 Sharp Kabushiki Kaisha Liquid crystal display unit
CN101050367A (zh) * 2007-05-10 2007-10-10 四川大学 一种聚酰亚胺液晶取向剂的制备方法
WO2012002511A1 (ja) * 2010-06-30 2012-01-05 日産化学工業株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
JP2012155311A (ja) * 2011-01-05 2012-08-16 Jnc Corp 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP5966329B2 (ja) * 2011-03-30 2016-08-10 Jsr株式会社 液晶表示素子の製造方法
JP5975227B2 (ja) * 2011-03-31 2016-08-23 日産化学工業株式会社 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
CN103562785B (zh) * 2011-03-31 2016-02-10 日产化学工业株式会社 液晶取向剂、液晶取向膜、液晶显示元件及液晶显示元件的制造方法以及聚合性化合物
CN103702970B (zh) * 2011-08-02 2018-10-19 罗利克有限公司 光配向材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980440A (ja) * 1995-09-13 1997-03-28 Japan Synthetic Rubber Co Ltd 液晶配向膜の製造方法及び液晶表示素子
JP2001166307A (ja) * 1999-12-08 2001-06-22 Sharp Corp 液晶配向層材料およびそれを用いた液晶表示装置ならびにその製造方法
JP4052307B2 (ja) * 2002-08-29 2008-02-27 日産化学工業株式会社 液晶配向剤およびそれを用いた液晶表示素子
JP2011100099A (ja) * 2009-10-06 2011-05-19 Jsr Corp 液晶配向剤、液晶配向膜の製造方法および液晶表示素子
WO2011098461A1 (en) * 2010-02-12 2011-08-18 Rolic Ag Photoaligning material with lateral substitution
JP2012093642A (ja) * 2010-10-28 2012-05-17 Nissan Chem Ind Ltd 液晶配向剤、液晶配向膜、及び液晶表示素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010084A1 (ja) * 2014-07-18 2016-01-21 日産化学工業株式会社 光配向用の液晶配向剤、液晶配向膜、及び液晶表示素子
US20200081398A1 (en) * 2018-09-06 2020-03-12 Facebook Technologies, Llc Photosensitive polymers for volume holography

Also Published As

Publication number Publication date
KR20150046157A (ko) 2015-04-29
KR102143667B1 (ko) 2020-08-11
JPWO2014030587A1 (ja) 2016-07-28
CN104718493B (zh) 2018-08-07
CN104718493A (zh) 2015-06-17
TW201425472A (zh) 2014-07-01
JP6330662B2 (ja) 2018-05-30
TWI601787B (zh) 2017-10-11

Similar Documents

Publication Publication Date Title
JP5257548B2 (ja) 液晶表示素子および液晶配向剤
JP6314827B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6635272B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
TWI793067B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
KR102184058B1 (ko) 중합체, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
JP6083388B2 (ja) 液晶配向剤の製造方法
JP5900328B2 (ja) 液晶配向剤、それを用いた液晶配向膜及び液晶表示素子
JP6206187B2 (ja) 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子
JP6146576B2 (ja) 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子
JP7081488B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JPWO2011155576A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6330662B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
KR102469387B1 (ko) 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
WO2014092170A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6143014B2 (ja) 重合体、液晶配向剤、液晶配向膜及び液晶表示素子並びにジアミン
WO2012161329A1 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157006814

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13831414

Country of ref document: EP

Kind code of ref document: A1