WO2014030498A1 - 液体クロマトグラフ装置及び送液装置 - Google Patents

液体クロマトグラフ装置及び送液装置 Download PDF

Info

Publication number
WO2014030498A1
WO2014030498A1 PCT/JP2013/070407 JP2013070407W WO2014030498A1 WO 2014030498 A1 WO2014030498 A1 WO 2014030498A1 JP 2013070407 W JP2013070407 W JP 2013070407W WO 2014030498 A1 WO2014030498 A1 WO 2014030498A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
plunger
pressure
section
cylinder
Prior art date
Application number
PCT/JP2013/070407
Other languages
English (en)
French (fr)
Inventor
大介 秋枝
宏之 和田
福田 真人
豊明 田上
修大 塚田
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to JP2014531560A priority Critical patent/JP5887412B2/ja
Priority to DE112013003747.5T priority patent/DE112013003747T5/de
Priority to CN201380041151.5A priority patent/CN104508478B/zh
Publication of WO2014030498A1 publication Critical patent/WO2014030498A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/326Control of physical parameters of the fluid carrier of pressure or speed pumps

Definitions

  • the present invention relates to a liquid chromatograph apparatus and a liquid transfer apparatus.
  • the liquid chromatograph adds the sample to be analyzed to the solvent (eluent) sent by the liquid delivery device, separates the components of the sample in the separation column, and sends each component sent at different times with a detector such as a spectrometer It is an analyzer which detects and specifies the component of a sample.
  • liquid transfer device for liquid chromatograph there is known a method of transferring an eluting solution by a plunger reciprocating in a cylinder.
  • the separation degree of the sample to be analyzed in the separation column is improved by sending the liquid while changing the composition of the eluent using a plurality of eluents.
  • a liquid feeding system called a low pressure gradient system in which the compositions of a plurality of eluents are changed under the low pressure condition from the atmospheric pressure on the upstream side of a cylinder for liquid feeding.
  • a mechanism that changes the composition of the eluent installed on the upstream side of the liquid transfer device when the liquid transfer device starts suction (generally, the open / close time of the on-off valve connected to each eluent) Is adjusted by changing the composition of the eluent during the aspiration time, and a plurality of eluents are aspirated by the liquid delivery apparatus.
  • the composition of the eluent is changed on the upstream side of the liquid delivery apparatus, so that the mixing performance of the eluent may be lowered as the delivery pressure becomes higher.
  • Patent Document 1 proposes a method of calculating based on a prediction the time for which the pressure from the liquid delivery pressure to the atmospheric pressure is reduced and correcting the time for changing the composition of the mixing ratio.
  • each eluent has different values for physical properties such as bulk modulus. In addition, these factors may change under the influence of various conditions such as the temperature of the eluent.
  • An object of the present invention is to provide an apparatus having a low-pressure gradient method that is accurate and accurate regardless of the type and temperature of the eluent, the composition of the mixing ratio, and the pressure of liquid feeding, and a method using the apparatus.
  • a pump unit having a cylinder having a suction port and a discharge port for the eluent, and a plunger reciprocating in the cylinder, and performing suction and discharge of the eluent.
  • a valve unit for switching the types of a plurality of eluents to be sucked by the pump unit by opening and closing; a pressure sensor for detecting the pressure of the eluent discharged from the outlet of the pump unit; A control unit configured to control the pressure reduction section until the suction of the eluent is started after the plunger starts the suction operation of the plurality of eluents; After the decompression section, an actual suction section where the eluant is actually sucked is determined, and control is performed so that the opening / closing operation of the valve means is performed in the determined actual suction section.
  • the figure which shows the outline of a structure of a liquid chromatograph apparatus The figure which shows an example of a structure of the liquid feeding apparatus mounted in a liquid chromatograph apparatus.
  • the flowchart which shows the procedure of liquid feeding which concerns on embodiment of this invention.
  • FIG. 1 shows the schematic of the pressure change of a 1st cylinder, the liquid feeding state of a cylinder, a non-return valve, and the state of an on-off valve based on embodiment of this invention.
  • FIG. 2 shows the structural example of a liquid feeding apparatus different from embodiment shown in FIG. 2 .
  • FIG. 1 shows an outline of the configuration of a liquid chromatograph apparatus that performs liquid delivery by a low pressure gradient method.
  • a plurality of types of eluents stored in the plurality of containers 1a to 1d are selected by the switching device 2 having the plurality of on-off valves, and are sucked and discharged by the liquid feeding device 3.
  • the ejected eluent is sent to the switching device 2.
  • the switching device 2 can change the mixing ratio of the eluents sent from the liquid feeding device 3 by selectively switching the eluents in the containers 1a to 1d, and can change the composition ratio of the eluents.
  • the sample injection unit 4 injects a liquid sample to be analyzed into the flow path of the eluent switched by the switching device 2.
  • the injected liquid sample is separated for each component in the separation column 5. Because of differences in molecular weight, hydrophobicity, charge, etc., the time to come out of the separation column 5 differs in each component.
  • the separation column 5 may be installed in a column oven to keep the temperature constant.
  • the detector 6 detects each component coming out of the separation column 5 with a time difference.
  • FIG. 2 shows an example of the configuration of the liquid delivery device 3 shown in FIG.
  • the cam converts the rotational movement of the motor into a reciprocating movement of the plunger.
  • the rotational motion of the motor 21 is transmitted to the camshaft 17 by the belt 18, and the first plunger 13 reciprocates by the first cam 15, and the second plunger 14 reciprocates by the second cam 16.
  • the rotational speed of the camshaft 17 is recognized by the control unit 22.
  • a disk 19 provided with a slit is attached to a camshaft 17, and the sensor 20 detects the slit by a method such as optics, capacitance, magnetic lines, etc.
  • the rotational speed of the camshaft 17 can be detected.
  • the pipe downstream of the second cylinder 11 is provided with a pressure sensor 12 for measuring the pressure in the pipe, and the value of the pressure in the pipe measured by the pressure sensor 12 is sent to the control unit 22.
  • the control unit 22 controls the number of rotations of the motor 21 according to the value of the pressure in the pipe, and the number of rotations of the camshaft 17 is measured by the sensor 20 described above and sent to the control unit 22. The speed is adjusted.
  • the plurality installed in the switching device 2 in the section where the inlet side check valve 8 in the suction operation section of the first cylinder 9 is open.
  • the on-off valves 7a to 7d perform the on-off operation.
  • the control unit 22 changes the mixing ratio by adjusting the opening and closing times and timings of the on-off valves 7a to 7d corresponding to the corresponding eluent to realize various composition ratios of the eluent.
  • FIG. 4 is a part of a block diagram of a control unit (data processing apparatus) 22 according to the embodiment of the present invention.
  • the data processing apparatus 22 also includes an arithmetic processing unit (for example, a CPU) as an arithmetic unit for executing various programs, and a storage for storing various data including the program.
  • a storage device as means is provided, and an input / output operation processing device for performing input / output control such as data and instructions to each device.
  • the data processing device 22 includes an input unit 24, an operation unit 25, a storage unit 26, a liquid transfer control unit 27, and an output unit 28.
  • the input unit 24 sets the number of pulses S offset in the pressure reduction section and the number of pulses S R in the actual suction section in the calculation section 25 in addition to setting conditions (for example, flow rate, mixing ratio, time etc.) related to control of the liquid delivery device 3.
  • setting conditions for example, flow rate, mixing ratio, time etc.
  • a variety of information for example, plunger movement distance l, cylinder volume V ALL , diameter of plunger d, number of pulses in suction section S S , liquid transfer pressure
  • a variety of information for example, plunger movement distance l, cylinder volume V ALL , diameter of plunger d, number of pulses in suction section S S , liquid transfer pressure
  • the suction section is the entire section in which the first plunger 13 is performing suction operation
  • the pressure reducing section is the pressure in the cylinder reduced to atmospheric pressure after the first plunger 13 starts the suction operation
  • the section until the inlet side check valve 8 is opened, the actual suction section is the section where the eluant is actually sucked.
  • the calculation unit 25 performs calculations based on the information input from the input unit 24 based on calculation formulas described later. Specifically, determining the number of pulses S offset decompression section by the pulse number S offset acquisition unit of the vacuum section, the pulse number S R acquisition of real absorption zone the number of pulses S R of real absorption sections respectively.
  • Storage unit 26 is a portion where information input via the input unit 24, and the pulse number S offset decompression section determined by the arithmetic unit 25, the pulse number S R of real absorption section is stored.
  • Liquid feed control section 27 the pulse number S offset decompression section stored in the storage unit 26, on the basis of the pulse number S R of real absorption section is a portion for controlling the feeding device 3. Specifically, an instruction is given to control the operation of the pump unit 23 and the on-off valve 7.
  • the output device 28 outputs a control signal to the liquid delivery device 3 based on the instruction acquired from the fluid delivery control unit 27.
  • FIG. 3 is a graph showing an example of pressure change in the suction section in the liquid sending step of the liquid sending device.
  • the horizontal axis indicates the number of pulses (n) of the motor 21 required for the operation of the plunger, and the vertical axis indicates the value (MPa) of the pressure detected by the pressure sensor 12.
  • S s represents the number of pulses in the suction section
  • S offset represents the number of pulses in the pressure reduction section
  • S R represents the number of pulses in the actual suction section.
  • FIG. 5 is an operation flow of the liquid delivery device 3 according to the embodiment of the present invention.
  • FIG. 7 shows a schematic view of the pressure change of the first cylinder 9 and an example of the operation state of the suction side check valve, the discharge side check valve and the on-off valve in the liquid feeding process. Further, FIG. 7 also shows an example of the pressure change of the suction section shown in FIG. 3 and the open / close timing of the open / close valve at that time.
  • Liquid transfer control according to the present embodiment will be described based on FIGS. 3, 5, and 7.
  • the inside of the first cylinder 9 is filled with the elution liquid by the suction operation of the first plunger 13, and when the filling is completed (S505), the pushing operation of the first plunger 13 is then started (S506).
  • the discharge check valve 10 is opened (S509), and the second plunger 14 of the second cylinder 11 is the first plunger.
  • the suction operation is performed in synchronization with the push-in operation 13 and the inside of the second cylinder 11 is filled with the eluent (S510).
  • FIG. 6 is a flowchart showing the operation procedure according to the embodiment of the present invention and the processing of the data processing apparatus 110 accompanying it.
  • the ⁇ 1> inlet side check valve 8 is closed (S503), and ⁇ 2> after the pushing operation of the first plunger 13 is started. (S506), ⁇ 3>
  • the pressure in the first cylinder 9 reaches the pressure P of the eluent discharged from the second cylinder 11 (S508), ⁇ 4> until the discharge side check valve 10 is opened (S509)
  • the movement distance l C of the required first plunger 13 is measured (S601).
  • the moving distance l C at this time is measured by the input unit 24 of the data processing device 22.
  • the input unit 24 of the data processing device 22 For example, when using a stepping motor, it can be obtained from the number of pulses.
  • the displacement distance l offset of the plunger 13 to reduce the pressure dV, V d , dV C , the plunger 13 movement distance l c of the compression step, and the plunger 13 movement distance l d of the liquid feeding step Is required.
  • S offset is expressed by the following equation using the above equation and the pulse number conversion coefficient k.
  • the number of pulses S R in the actual suction section is obtained from the following formula from the number of pulses S offset calculated based on the above equation (2) and the number of pulses S S in the suction section.
  • the control unit 22 performs the above calculation, the number of pulses S R in the real suction section obtained here, by adjusting the opening and closing times and timing of the opening and closing valves 7a ⁇ 7d (S605), precisely and accurately It is possible to realize a good mixing ratio.
  • the configuration of the liquid delivery device 3 shown in FIG. 2 is controlled by the pressure measured by the pressure sensor 12 connected to the second cylinder 11.
  • the invention can be applied to a liquid delivery apparatus in which a pressure sensor is added between the inlet side check valve 8 and the discharge side check valve 10.
  • the pressure in the first cylinder 9 can be directly measured by the added pressure sensor, so that the first cylinder 9 compresses more accurately from the atmospheric pressure to the pressure at which the second cylinder 11 feeds liquid. It is possible to send liquid with small pressure pulsation.
  • FIG. 2 shows a series type liquid transfer apparatus in which two cylinders are connected in series
  • a parallel type liquid transfer in which two cylinders are connected in parallel
  • the low pressure gradient liquid transfer method is applicable to a device or a liquid transfer device in which each cylinder has a motor and a plunger is driven independently, regardless of the drive method of the liquid transfer device.
  • FIG. 8 shows an example of a liquid feeding apparatus characterized in that each cylinder has an independent drive unit and a motor and the plunger is driven independently, unlike the embodiment shown in FIG. In this example, the rotational movement of the motor is converted into a linear movement by the linear movement drive unit connected to the motor to drive the plunger.
  • the rotational motions of the motors 42 and 43 are transmitted to the linear motion drive units 38 and 39, and the plungers 34 and 35 reciprocate by the reciprocating motion of the linear motion drive units.
  • a ball screw is mentioned, for example.
  • the moving direction of each plunger is determined by the rotation direction of the connected motor, and the moving distance of the plunger is recognized by the number of rotations of the motor. In particular, when a stepping motor is used, the moving distance of the plunger can be counted as the number of pulses.
  • the positions of the plungers 34 and 35 are recognized by the control unit 44 using the detection plates 36 and 37 provided in the linear drive units 38 and 39 and the sensors 40 and 41 detecting by methods such as optics, capacitance, and magnetic lines of force. Ru. Unlike the detection method shown in the present embodiment, the position and the movement distance of the plunger can also be recognized by using a rotary encoder or the like.
  • the pipe downstream of the second cylinder 32 is provided with a pressure sensor 33 that measures the pressure in the pipe, and the value of the pressure in the pipe measured by the pressure sensor 33 is sent to the control unit 44.
  • the control unit 44 controls the number of rotations of each motor according to the value of pressure in the pipe and the flow rate of liquid feed, and adjusts the moving distance and moving speed of the plunger.
  • FIG. 9 shows an example of a liquid feeding apparatus characterized in that the cylinders are connected in parallel, unlike the embodiment shown in FIG.
  • the switching device 2 having the switching valves 7a to 7d upstream of the branch point 45 for supplying the solvent to the first cylinder 47 and the second cylinder 50 is used. It needs to be installed.
  • each connected cylinder is characterized by having a suction, compression and discharge process of a solvent.
  • the second cylinder 50 alone discharges to the downstream system, and the second cylinder 50 finishes the compression process of the suctioned solvent from the solvent suction Until the first cylinder 47 alone discharges to the downstream system.
  • the control unit 62 adjusts the open / close time and timing of the open valves 7a to 7d, and changes the mixing ratio to change the composition ratio of the eluent.
  • the pushing operation of the first plunger 53 is started and the generated fluid flow closes the inlet-side check valve 46 and the eluant in the first cylinder 47 is compressed. .
  • the second cylinder 50 continuing the liquid delivery decelerates while compensating for the discharge of the first cylinder 47 so that the pressure fluctuation does not occur so that the delivery liquid flow rate becomes constant.
  • the opening / closing operation of the on-off valves 7a to 7d is adjusted using the calculated S 1R and S 1offset .
  • the discharge side check valve 51 of the second cylinder 50 is closed by the fluid flow generated by the discharge from the first cylinder 47, and the single discharge by the first cylinder 47 is shifted. Do. In the discharge section of the first cylinder 47, the second cylinder 50 performs suction of the solvent by the suction operation and compression to the pressure for sending the suctioned solvent.
  • first cylinder 47 continuing the liquid feeding is decelerated while compensating for the discharge of the second cylinder 50 so that the pressure fluctuation does not occur so that the liquid feeding flow rate becomes constant.
  • the compression ratio V2P of the second cylinder 50 is calculated as in the first cylinder.
  • the on / off valve is controlled using the number of pulses of the plunger in each of the suction section, the pressure reduction section, and the actual suction section, but the application target of the present invention is not limited to this. For example, it is also possible to perform control based on time (sec) in consideration of the moving speed of the plunger.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 溶離液の種類や温度、混合比、送液圧力に関わらず、正確かつ高精度な低圧グラジエント方式を有する送液装置及び液体クロマトグラフ装置を提供する。 溶離液の吸引口と吐出口を有するシリンダと、前記シリンダ内を往復運動するプランジャと、を有し、吸入口と吐出口を有するシリンダと、前記シリンダ内を往復運動するプランジャと、を有し、前記溶離液の吸引、吐出を行うポンプ部と、前記ポンプ部が吸引する複数の溶離液の種類を開閉動作によって切り替える弁手段と、前記ポンプ部の吐出口から吐出される溶離液の圧力を検出する圧力センサと、前記弁手段の開閉動作を制御する制御部と、を有し、前記制御部は、当該複数の溶離液を吸引するときに前記プランジャが吸引動作を開始する吐出圧力から、前記溶離液が吸引され始めるまでの減圧区間と、前記減圧区間ののちに、前記溶離液が実際に吸引されている実吸引区間と、を求め、前記弁手段の開閉動作が、当該求めた実吸引区間内において行われるように制御する。

Description

液体クロマトグラフ装置及び送液装置
 本発明は、液体クロマトグラフ装置及び送液装置に関する。
 液体クロマトグラフは、送液装置により送液される溶媒(溶離液)に分析対象試料を加え、分離カラムで試料の成分分離を行い、異なる時間で送られる各成分を分光計等の検出器で検出して、試料の成分を特定する分析装置である。
 液体クロマトグラフの送液装置の一例として、シリンダ内で往復運動するプランジャにより溶離液の送液を行う方式が知られている。
 上記のような装置を用いた液体クロマトグラフの送液においては、複数の溶離液を用いて溶離液の組成を変化させながら送液することで、分析対象試料の分離カラムでの分離度が向上し、分析時間の短縮をはかることができるグラジエント送液システムがある。
 本システムには、送液を行うシリンダの上流側での大気圧から低圧条件下で複数の溶離液の組成を変化させる低圧グラジエント方式と呼ばれる送液方式がある。低圧グラジエント方式では、送液装置が吸引を開始した際に、送液装置上流側に設置された溶離液の組成を変化させる機構(一般的には各溶離液に接続された開閉弁の開閉時間を調整する)が吸引時間の間に溶離液の組成を変化させ、送液装置に複数の溶離液を吸引させることで実現される。
 このように、低圧グラジエント方式では送液装置の上流側で溶離液の組成を変更していることから、送液圧力が高くなるにつれて溶離液の混合性能が低下することがある。
 これは、溶離液の吐出を終了したシリンダ内のプランジャが吸引動作を開始した際、シリンダ内の圧力が大気圧まで減圧されるまでの間は溶離液がシリンダ内に吸引されないことにより、混合比の組成を変化させる時間と実吸引時間に差が出てしまうことが原因である。このような溶離液の混合比の精度は、最終的な分析結果にも影響を及ぼすこととなる。
 特許文献1では、送液圧力から大気圧まで減圧される時間を予測に基づいて算出し、混合比の組成を変化させる時間を補正する方法が提案されている。
特許第3172429号公報
 送液する溶離液の種類は多種多様であり、各々の溶離液は、体積弾性係数等の物性値について、異なる値を有する。また、溶離液の温度等といった種々の条件による影響を受け、これらの因子は変化することがある。
 しかしながら、特許文献1に開示された方法においては、送液圧力の情報にのみ基づいて混合比の補正を行っているため、取り扱う溶離液の種類、及びその性質については何ら考慮されていない。従って本方法では、溶離液の種類や混合比、及びその他の事情によって、その体積弾性係数等の特性に変化が生じた場合には対処することができない。
 本発明は、溶離液の種類や温度、混合比の組成、送液圧力に関わらず正確かつ高精度な低圧グラジエント方式を有する装置、及び当該装置を用いた方法を提供することを目的とする。
 上記目的を達成するための一態様として、溶離液の吸入口と吐出口を有するシリンダと、前記シリンダ内を往復運動するプランジャと、を有し、前記溶離液の吸引、吐出を行うポンプ部と、前記ポンプ部が吸引する複数の溶離液の種類を開閉動作によって切り替える弁手段と、前記ポンプ部の吐出口から吐出される溶離液の圧力を検出する圧力センサと、前記弁手段の開閉動作を制御する制御部と、を有する装置であって、前記制御部は、前記プランジャが当該複数の溶離液の吸引動作を開始したのち、前記溶離液の吸引が開始されるまでの減圧区間と、前記減圧区間ののちに、前記溶離液が実際に吸引されている実吸引区間と、を求め、前記弁手段の開閉動作が、当該求めた実吸引区間内において行われるように制御することを特徴とする装置を提供する。
 上記一態様によれば、溶離液の種類や、その温度、混合比の組成、及び送液圧力等に関わらず、正確かつ高精度な低圧グラジエント方式による送液を実現することができる。
液体クロマトグラフ装置の構成の概略を示す図。 液体クロマトグラフ装置に搭載される送液装置の構成の一例を示す図。 送液装置の吸引区間の圧力変化の一例を示すグラフ。 本発明の実施の形態に係る制御ユニット(データ処理装置)22の構成の一部を示す図。 本発明の実施の形態に係る送液の手順を示すフローチャート。 本発明の実施の形態に係る操作手順とそれに伴うデータ処理装置110の処理を示すフローチャート。 本発明の実施の形態に係る、第1シリンダの圧力変化の概略図とシリンダの送液状態と逆止弁、開閉弁の状態を示す図。 図2に示した実施形態とは異なる送液装置の構成例を示す図。 図2、図8に示した実施形態とは異なる送液装置の構成例を示す図。
 図1は、低圧グラジエント方式による送液を行う液体クロマトグラフ装置の構成の概略を示す。
 本装置では、複数の容器1a~1dに収納された複数の種類の溶離液が、複数の開閉弁を有する切換装置2により選択され、送液装置3により吸引、吐出される。吐出された溶離液は、切換装置2へ送液される。
 切換装置2は、容器1a~1dの溶離液を選択的に切り替えることで、送液装置3から送液される溶離液の混合比を変化させ、溶離液の組成比を変えることができる。
 試料注入部4は、切換装置2によって切り換えられた溶離液の流路中に、分析対象である液体試料を注入する。
 注入された液体試料は、分離カラム5にて成分ごとに分離される。分子量や疎水性、電荷等の違いにより、分離カラム5から出てくる時間は各成分において異なる。
 分離カラム5は、温度を一定に保つためにカラムオーブン内に設置される場合もある。
 検出器6は、時間差を生じて分離カラム5から出てきた各成分を検出する。
 図2は、図1に示した送液装置3の構成の一例を示している。
 本構成では、プランジャとシリンダからなる2つのポンプユニットを直列に接続し、シリーズ方式による送液を採用している。
 各々のポンプユニットにおいては、カムにより、モータの回転運動をプランジャの往復運動に変換している。
 モータ21の回転動作は、ベルト18によってカムシャフト17へ伝達され、第1カム15により第1プランジャ13が往復動作し、第2カム16により第2プランジャ14が往復動作する。
 カムシャフト17の回転数は、制御ユニット22にて認識される。
 この認識の仕方については種々の方法があるが、例えばカムシャフト17にスリットを設けた円板19を取り付け、センサ20で、光学、静電容量、磁力線などの方法でスリットを検知することで、カムシャフト17の回転数を検知することができる。
 第2シリンダ11の下流の配管には、配管内の圧力を計測する圧力センサ12が設けられ、この圧力センサ12で計測された配管内の圧力の値が制御ユニット22へ送られる。
 制御ユニット22は、この配管内の圧力の値に応じて、モータ21の回転数を制御し、カムシャフト17の回転数は前述したセンサ20で計測されて制御ユニット22へ送られ、モータ21の回転数が調整される。
 複数の溶離液の混合比を時間とともに徐々に変化させる低圧グラジエント方式では、第1シリンダ9の吸引動作区間内の入口側逆止弁8が開放している区間において切換装置2に設置された複数の開閉弁7a~7dが開閉動作を行う。
 制御ユニット22は、該当する溶離液に対応する開閉弁7a~7dの開閉時間とタイミングを調整することにより混合比を変化させ、様々な溶離液の組成比率を実現させる。
 図4は、本発明の実施の形態に係る制御ユニット(データ処理装置)22の構成図の一部である。なお、ここで図示したもの以外にも、データ処理装置22は、各種プログラムを実行するための演算手段としての演算処理装置(例えば、CPU)と、当該プログラムをはじめ各種データを記憶するための記憶手段としての記憶装置と、各装置へのデータ及び指示等の入出力制御を行うための入出力演算処理装置を備えている。
 図4において、データ処理装置22は、入力部24と、演算部25と、記憶部26と、送液制御部27と、出力部28を備えている。
 入力部24は、送液装置3の制御に係る設定条件(例えば、流量、混合比、時間等)のほか、演算部25において、減圧区間のパルス数Soffset、実吸引区間のパルス数SRを取得するために要する各種の情報(例えば、プランジャ移動距離l、シリンダの容積VALL、プランジャの径d、吸引区間のパルス数SS、送液圧力)が外部から入力される部分である。
 ここで、吸引区間とは第1プランジャ13が吸引動作を行っている区間全体、減圧区間とは第1プランジャ13が吸引動作を開始してからシリンダ内の送液圧力が大気圧まで減圧し、入口側逆止弁8が開放されるまでの区間、実吸引区間とは溶離液が実際に吸引される区間のことである。
 上記の入力方法としては、例えば、入力装置24による入力のほかに、これらの情報が記憶された記憶メディアを介した入力、他のコンピュータとネットワークを介した通信によるもの等がある。
 演算部25は、入力部24より入力された情報をもとに、後述する演算式に基づいてそれぞれ演算を行う。具体的には、減圧区間のパルス数Soffset取得部により減圧区間のパルス数Soffsetを、実吸引区間のパルス数SR取得部により実吸引区間のパルス数SRをそれぞれ求める。
 記憶部26は、入力部24を介して入力された情報、及び演算部25により求められた減圧区間のパルス数Soffset、実吸引区間のパルス数SRが記憶される部分である。
 送液制御部27は、記憶部26に記憶された減圧区間のパルス数Soffset、実吸引区間のパルス数SRに基づいて、送液装置3の制御を行う部分である。具体的には、ポンプ部23、開閉弁7の動作を制御するように指示を与える。
 出力装置28は、送液制御部27より取得した指示に基づいて送液装置3へ制御信号を出力する。
 図3は送液装置の送液工程における吸引区間の圧力変化の一例を示すグラフである。横軸はプランジャの動作に要するモータ21のパルス数(n)、縦軸は圧力センサ12が検出する圧力の値(MPa)を示す。
 ここで、Ssは吸引区間におけるパルス数、Soffsetは減圧区間おけるパルス数、SRは実吸引区間におけるパルス数をそれぞれ示している。
 図5は、本発明の実施の形態に係る送液装置3の動作フローである。
 図7は第1シリンダ9の圧力変化の概略図と送液工程における吸引側逆止弁、吐出側逆止弁と開閉弁の動作状態の一例を示している。また、図7では、図3で示した吸引区間の圧力変化とその時の開閉弁の開閉タイミングの一例についても示している。第1プランジャ13の吸引動作開始と共に開閉弁の開閉制御を開始した場合、第1シリンダ9の減圧区間で開放状態となっている開閉弁に接続された溶媒は、第1シリンダ9が大気圧まで減圧されていない為に吸引されない。
 図3、図5、及び図7に基づいて、本実施の形態に係る送液制御について説明する。
 まず、第1プランジャ13の吸引動作が開始されると(S501)、それに伴って第1シリンダ9内の送液圧力が大気圧まで減圧され(S502)、入口側逆止弁8が開放される(S503)。これにより、実際に溶離液の吸引が始まる(S504)。
 第1プランジャ13の吸引動作により、第1シリンダ9内が溶離液で満たされ、充填が完了すると(S505)、次に第1プランジャ13の押し込み動作が開始される(S506)。
 第1プランジャ13の押し込み動作により生じる流体の動き(や圧力変化)に伴い入口側逆止弁8が閉鎖されると(S507)、第1シリンダ9内の溶離液が圧縮され第1シリンダ9内が加圧される(S508)。
 第1シリンダ9内の圧力が、第2シリンダ11から吐出される溶離液の圧力に達すると吐出側逆止弁10が開き(S509)、第2シリンダ11の第2プランジャ14が、第1プランジャ13の押し込み動作に同期して吸引動作を行い、第2シリンダ11内を溶離液で満たす(S510)。
 第2シリンダ11内が溶離液で満たされ、充填が完了すると(S511)、次に第2プランジャ14の押し込み動作が開始される(S512)。
 第2プランジャ14の押し込み動作により生じる流体の流れにより、吐出側逆止弁10が閉鎖されると(S513)、第2シリンダ11の内部の溶離液が吐出される(S514)。
 ここで、図6は、本発明の実施の形態に係る操作手順とそれに伴うデータ処理装置110の処理を示すフローチャートである。
 まず図5に示した吸引工程の終了後に開始される送液工程において、〈1〉入口側逆止弁8が閉鎖し(S503)、〈2〉第1プランジャ13の押し込み動作が開始されてから(S506)、〈3〉第1シリンダ9内の圧力が第2シリンダ11から吐出される溶離液の圧力Pに達し(S508)、〈4〉吐出側逆止弁10が開くまで(S509)に要した第1プランジャ13の移動距離lC計測する(S601)。
 この時の移動距離lC はデータ処理装置22の入力部24により計測され、例えばステッピングモータを使用している場合はパルス数から求められる。またロータリーエンコーダ等を使用し圧縮工程のプランジャ移動距離をモータの回転数から求めることもできる。
 ここで吸引開始時に大気圧まで減圧する際の体積の増加量dVは、吸引開始時のシリンダ容量V0、シリンダ1の吐出体積Vd、シリンダ1の圧縮体積dVCを用いて式(1)に基づいて求められる。
Figure JPOXMLDOC01-appb-I000001
 ここで、dV、Vd、dVCを減圧するまでのプランジャ13の移動距離loffset、圧縮工程のプランジャ13移動距離lC、送液工程のプランジャ13移動距離ldで置換えると式(2)が求められる。
Figure JPOXMLDOC01-appb-I000002
Soffsetは上記式とパルス数変換係数kを用いると下記式で表わされる。
Figure JPOXMLDOC01-appb-I000003
 次に上記式(2)に基づいて求めたパルス数Soffsetと吸引区間におけるパルス数SSから実吸引区間におけるパルス数SRが下記式より求められる。
Figure JPOXMLDOC01-appb-I000004
 前記制御ユニット22は、上記の演算を行い、ここで求められた実吸引区間におけるパルス数SRにおいて、開閉弁7a~7dの開閉時間とタイミングを調整することにより(S605)、正確かつ高精度な混合比を実現することが可能になる。
 図2に示された送液装置3の構成では、第2シリンダ11に接続された圧力センサ12により測定される圧力により制御されている。
 別の態様として、入口側逆止弁8と吐出側逆止弁10の間に圧力センサを追加した送液装置においても適応することができる。この実施例では追加した圧力センサにより第1シリンダ9内の圧力を直接測定することができるため、第1シリンダ9が大気圧から第2シリンダ11が送液する圧力までより正確に圧縮することにより圧力脈動の小さい送液が可能になる。
 図2に示された本実施例の送液装置3の概要図では、2つのシリンダを直列に接続したシリーズ型送液装置を示しているが、2つのシリンダを並列に接続したパラレル型送液装置や、各シリンダがそれぞれモータを有しプランジャが独立して駆動することを特徴とする送液装置においても、送液装置の駆動方式に関わらず、低圧グラジエント送液方式について適用可能である。以下にこれらの実施形態について説明する。
 図8は図2で示した実施例とは異なり、各シリンダが独立した駆動部とモータを有し、プランジャが独立して駆動することを特徴とする送液装置の一例を示している。この例ではモータの回転運動がモータと接続した直動駆動部により直動運動に変換されプランジャを駆動させる。
 モータ42,43の回転運動は、直動駆動部38,39に伝達され直動駆動部の往復運動によりプランジャ34,35が往復運動する。この直動駆動部として、例えばボールねじが挙げられる。
 各プランジャの移動方向は接続されたモータの回転方向で決定し、プランジャの移動距離はモータの回転数で認識される。特にステッピングモータを使用した場合はプランジャの移動距離はパルス数としてカウントすることができる。
 プランジャ34,35の位置は直動駆動部38,39に設けられた検知板36,37と光学、静電容量、磁力線などの方法で検知するセンサ40,41を用いて制御ユニット44により認識される。本実施例で示した検知方法とは異なり、ロータリーエンコーダ等を用いることでプランジャの位置や移動距離を認識することもできる。
 第2シリンダ32の下流の配管には、配管内の圧力を計測する圧力センサ33が設けられ、この圧力センサ33で計測された配管内の圧力の値が制御ユニット44へ送られる。
 制御ユニット44は、この配管内の圧力の値や送液流量に応じて、各モータの回転数を制御し、プランジャの移動距離と移動速度を調整する。
 図8に示した送液装置の低圧グラジエント方式においても、第1シリンダの吸引動作区間内の入口側逆止弁が開放している区間において切換装置2に設置された複数の開閉弁7a~7dが開閉動作を行う。本方式に関しても、本発明を適用することで混合比精度の改善が期待される。
 図9は図2で示した実施例とは異なり、各シリンダを並列に接続した事を特徴とする送液装置の一例を示している。
 図9で示した送液装置にて低圧グラジエントを適用する場合、第1シリンダ47、第2シリンダ50へ溶媒を供給する分岐点45よりも上流側に切換え弁7a~7dを有する切換装置2を設置する必要がある。
 各シリンダをパラレル(並列)方式に接続した送液装置では、接続された各シリンダが溶媒の吸引、圧縮、吐出工程を有することを特徴とする。
 第1シリンダ47の溶媒吸引から吸引した溶媒の圧縮工程を終えるまでは、第2シリンダ50が単独で下流のシステムへ吐出を行い、第2シリンダ50が溶媒吸引から吸引した溶媒の圧縮工程を終えるまでは、第1シリンダ47が単独で下流のシステムへ吐出を行う。
 第1シリンダ47の吸引工程では第1プランジャ53の引き込み動作により第1シリンダ47内の圧力が大気圧まで減圧され、入口側逆止弁46が開放されると同時に溶媒の充填が開始される。入口側逆止弁46が開放している区間において、制御ユニット62は開放弁7a~7dの開閉時間とタイミングを調整し、混合比を変化させることで溶離液の組成比を変化させる。
 第1シリンダ47内が溶媒で充填された後に、第1プランジャ53の押し込み動作が開始され発生した流体流れにより入口側逆止弁46が閉鎖し、第1シリンダ47内の溶離液が圧縮される。
 第1シリンダ47内の圧力が、圧力センサ52で検知される第2シリンダ50が送液する圧力まで圧縮されると、吐出側逆止弁48が開放され第1シリンダ47による送液が開始される。
 また送液を続けている第2シリンダ50は送液流量が一定になるように、圧力変動が発生しないように、第1シリンダ47の吐出を補償しながら減速する。
 この時、入口側逆止弁46が閉鎖してから、第1シリンダ47内が第2シリンダ50の吐出圧力まで圧縮され吐出側逆止弁48が開放されるまでの第1プランジャ53の移動距離l1を計測し、上記式(1)、(2)に基づいて第1シリンダ47の減圧区間におけるパルス数S1offsetと実吸引区間におけるパルス数S1Rを算出する。
 算出されたS1R、S1offsetを用いて、第1シリンダ47の次の吸引工程において開閉弁7a~7dの開閉動作を調整する。
 第2シリンダ50の第2プランジャ54が停止すると、第2シリンダ50の吐出側逆止弁51は第1シリンダ47からの吐出により生じる流体流れにより閉鎖し、第1シリンダ47による単独吐出へと移行する。第1シリンダ47の吐出区間において、第2シリンダ50は吸引動作による溶媒の吸引と、吸引した溶媒の送液圧力までの圧縮を行う。
 第2シリンダ50内の圧力が、圧力センサ52で検知される第1シリンダ47が送液する圧力まで圧縮されると、吐出側逆止弁51が開放され第2シリンダ50による送液が開始される。
 また送液を続けている第1シリンダ47は送液流量が一定になるように、圧力変動が発生しないように、第2シリンダ50の吐出を補償しながら減速する。
 この時、第1シリンダ同様に第2シリンダ50の圧縮率V2Pを算出する。
 入口側逆止弁49が閉鎖してから、第2シリンダ50内が第1シリンダの吐出圧力まで圧縮され吐出側逆止弁51が開放されるまでの第2プランジャ54の移動距離l2を計測し、上記式(1)、(2)に基づいて第2シリンダ50の減圧区間におけるパルス数S2offsetと実吸引区間におけるパルス数S2Rを算出する。
 算出された圧縮率V2Pと式(2)及び(3)から算出されるS2R、S2offsetを用いて、第2シリンダ50の次の吸引工程において開閉弁7a~7dの開閉動作を調整する。
 各シリンダを並列に接続した送液装置では上記駆動サイクルを繰り返すことで、圧力変動の小さい送液を実現する。
各シリンダの圧縮工程で制御ユニットより算出されるプランジャ移動距離lと、プランジャ移動距離lから算出される減圧区間と実吸引区間に基づいて各シリンダの吸引工程時の切換え弁の切換時間を調整することで本発明を適応することができる。
 なお、上記の実施形態においては、吸引区間、減圧区間、実吸引区間のそれぞれにおけるプランジャのパルス数を用いて開閉弁の制御を行う場合について説明したが、本発明の適用対象はこれに限られず、例えば、プランジャの移動速度を考慮して、時間(sec)を基準とした制御を行うことも可能である。
1 容器(溶離液)
2 切換装置
3 送液装置
4 試料注入部
5 分離カラム
6 検出器
7 開閉弁
8、29、46、49 入口側逆止弁
9、30、47 第1シリンダ
10、31、48、51 吐出側逆止弁
11、32、50 第2シリンダ
12、33、52 圧力センサ
13、34、53 第1プランジャ
14、35、54 第2プランジャ
15、55 第1カム
16、56 第2カム
17、57 カムシャフト
18、58 ベルト
19、59 円板
20、60 センサ
21、61 モータ
22、44、62 制御ユニット(データ処理装置)
23 ポンプ部
24 入力部
25 演算部
26 記憶部
27 送液制御部
28 出力部
36、37 検知板
38 第1直動駆動部
39 第2直動駆動部
40 第1センサ
41 第2センサ
42 第1モータ
43 第2モータ
45 分岐部

Claims (14)

  1.  溶離液の吸入口と吐出口を有するシリンダと、前記シリンダ内を往復運動するプランジャと、を有し、前記溶離液の吸引、吐出を行う送液ポンプと、
     前記送液ポンプが吸引する複数の溶離液の種類を開閉動作によって切り替える弁手段と、
     前記送液ポンプの吐出口から吐出される溶離液の圧力を検出する圧力センサと、
     当該吐出された溶離液の流路中に液体試料を注入するオートサンプラと、
     当該注入された液体試料を成分ごとに分離するカラムと、
     当該分離された各成分を成分ごとに検出する検出器と、
     前記弁手段の開閉動作を制御する制御部と、を有する液体クロマトグラフ装置であって、
     前記制御部は、
     前記プランジャが当該複数の溶離液の吸引動作を開始したのち、前記溶離液の吸引が開始されるまでの減圧区間と、
     前記減圧区間ののちに、前記溶離液が実際に吸引されている実吸引区間と、を求め、
     前記弁手段の開閉動作が、当該求めた実吸引区間内において行われるように制御することを特徴とする液体クロマトグラフ装置。
  2.  請求項1に記載された液体クロマトグラフ装置において、
     前記制御部は、前記プランジャが前記溶離液の圧縮動作を開始してから、当該吸引した溶離液を吐出するまでに要する前記プランジャの移動距離に基づいて、
     前記プランジャが、前記減圧区間に要するパルス数と、前記実吸引区間に要するパルス数と、を求めることを特徴とする液体クロマトグラフ装置。
  3.  請求項1に記載された液体クロマトグラフ装置において、
     前記制御部は、前記プランジャが前記溶離液の圧縮動作を開始してから、当該吸引した溶離液を吐出するまでに要する前記プランジャの移動距離に基づいて、
     前記プランジャが、前記減圧区間に移動する距離と、前記実吸引区間に移動する距離と、を求めることを特徴とする液体クロマトグラフ装置。
  4.  請求項1に記載された液体クロマトグラフ装置において、
     前記制御部は、
     前記実吸引区間内において、当該吸引される溶離液の混合比を変化させるように、前記弁手段の開閉動作を制御することを特徴とする液体クロマトグラフ装置。
  5.  請求項1に記載された液体クロマトグラフ装置において、
     前記シリンダ内の圧力を検出する圧力センサをさらに備え、
     前記制御部は、
     前記シリンダ内の圧力を検出する圧力センサから検出される第1の圧力値と、
     前記ポンプの吐出口から吐出される溶離液の圧力を検出する圧力センサから検出される第2の圧力値と、に基づいて、
     当該溶離液の送液を制御することを特徴とする液体クロマトグラフ。
  6.  請求項5に記載された液体クロマトグラフ装置において、
     前記制御部は、
     前記プランジャが前記溶離液の圧縮動作を開始してから、当該吸引した溶離液を吐出するまでに要する前記プランジャの移動距離に基づいて、
     前記プランジャが、前記減圧区間に要するパルス数と、前記実吸引区間に要するパルス数と、を求めることを特徴とする液体クロマトグラフ装置。
  7.  請求項5に記載された液体クロマトグラフ装置において、
     前記制御部は、
     前記プランジャが前記溶離液の圧縮動作を開始してから、当該吸引した溶離液を吐出するまでに要する前記プランジャの移動距離に基づいて、
     前記プランジャが、前記減圧区間に移動する距離と、前記実吸引区間に移動する距離と、を求めることを特徴とする液体クロマトグラフ装置。
  8.  溶離液の吸引口と吐出口を有するシリンダと、前記シリンダ内を往復運動するプランジャと、を有し、吸入口と吐出口を有するシリンダと、前記シリンダ内を往復運動するプランジャと、を有し、前記溶離液の吸引、吐出を行うポンプ部と、
     前記ポンプ部が吸引する複数の溶離液の種類を開閉動作によって切り替える弁手段と、
     前記ポンプ部の吐出口から吐出される溶離液の圧力を検出する圧力センサと、
     前記弁手段の開閉動作を制御する制御部と、を有する送液装置であって、
     前記制御部は、
     当該複数の溶離液を吸引するときに前記プランジャが吸引動作を開始する吐出圧力から、前記溶離液が吸引され始めるまでの減圧区間と、
     前記減圧区間ののちに、前記溶離液が実際に吸引されている実吸引区間と、を求め、
     前記弁手段の開閉動作が、当該求めた実吸引区間内において行われるように制御することを特徴とする送液装置。
  9.  請求項8に記載された送液装置において、
     前記制御部は、前記プランジャが前記溶離液の圧縮動作を開始してから、当該吸引した溶離液を吐出するまでに要する前記プランジャの移動距離に基づいて、
     前記プランジャが、前記減圧区間に要するパルス数と、前記実吸引区間に要するパルス数と、を求めることを特徴とする送液装置。
  10.  請求項8に記載された送液装置において、
     前記制御部は、前記プランジャが前記溶離液の圧縮動作を開始してから、当該吸引した溶離液を吐出するまでに要する前記プランジャの移動距離に基づいて、
     前記プランジャが、前記減圧区間に移動する距離と、前記実吸引区間に移動する距離と、を求めることを特徴とする送液装置。
  11.  請求項8に記載された送液装置において、
     前記制御部は、前記実吸引区間内において、当該吸引される溶離液の混合比を変化させるように、前記弁手段の開閉動作を制御することを特徴とする送液装置。
  12.  請求項8に記載された送液装置において、
     前記シリンダ内の圧力を検出する圧力センサをさらに備え、
     前記制御部は、
     前記シリンダ内の圧力を検出する圧力センサから検出される第1の圧力値と、
     前記ポンプ部の吐出口から吐出される溶離液の圧力を検出する圧力センサから検出される第2の圧力値と、に基づいて、
     当該溶離液の送液を制御することを特徴とする送液装置。
  13.  請求項10に記載された送液装置において、
     前記制御部は、
     前記プランジャが前記溶離液の圧縮動作を開始してから、当該吸引した溶離液を吐出するまでに要する前記プランジャの移動距離に基づいて、
     前記プランジャが、前記減圧区間に要するパルス数と、前記実吸引区間に要するパルス数と、を求めることを特徴とする送液装置。
  14.  請求項10に記載された液体クロマトグラフ装置において、
     前記制御部は、
     前記プランジャが前記溶離液の圧縮動作を開始してから、当該吸引した溶離液を吐出するまでに要する前記プランジャの移動距離に基づいて、
     前記プランジャが、前記減圧区間に移動する距離と、前記実吸引区間に移動する距離と、を求めることを特徴とする送液装置。
PCT/JP2013/070407 2012-08-23 2013-07-29 液体クロマトグラフ装置及び送液装置 WO2014030498A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014531560A JP5887412B2 (ja) 2012-08-23 2013-07-29 液体クロマトグラフ装置及び送液装置
DE112013003747.5T DE112013003747T5 (de) 2012-08-23 2013-07-29 Flüssigkeitschromatographiegerät und Flüssigkeitsabgabegerät
CN201380041151.5A CN104508478B (zh) 2012-08-23 2013-07-29 液体色谱仪装置以及送液装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-183738 2012-08-23
JP2012183738 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030498A1 true WO2014030498A1 (ja) 2014-02-27

Family

ID=50149808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070407 WO2014030498A1 (ja) 2012-08-23 2013-07-29 液体クロマトグラフ装置及び送液装置

Country Status (4)

Country Link
JP (1) JP5887412B2 (ja)
CN (1) CN104508478B (ja)
DE (1) DE112013003747T5 (ja)
WO (1) WO2014030498A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082437A (ja) * 2017-10-31 2019-05-30 アークレイ株式会社 送液方法
CN115166119A (zh) * 2022-06-30 2022-10-11 鲲鹏仪器(大连)有限公司 一种高效液相色谱仪的高精度低压梯度方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107632057A (zh) * 2017-10-31 2018-01-26 苏州市苏测检测技术有限公司 食品快速连续检测装置
CN108217913A (zh) * 2018-02-05 2018-06-29 苏州思上环保科技有限公司 一种污水灭菌装置
JP7186113B2 (ja) * 2019-03-01 2022-12-08 株式会社日立ハイテク 送液ポンプ、液体クロマトグラフ装置
CN115190942A (zh) * 2020-03-24 2022-10-14 株式会社日立高新技术 送液装置以及送液方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101747A (ja) * 1986-09-17 1988-05-06 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 液体クロマトグラフ
JPH0777521A (ja) * 1993-09-07 1995-03-20 Shimadzu Corp 液体クロマトグラフ
JPH11344480A (ja) * 1998-06-01 1999-12-14 Shimadzu Corp 液体クロマトグラフ
JP3172429B2 (ja) * 1996-03-29 2001-06-04 株式会社日立製作所 液体クロマトグラフ
JP2009180617A (ja) * 2008-01-31 2009-08-13 Hitachi High-Technologies Corp 送液装置及びそれを有する分析装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2195474B (en) * 1986-09-17 1991-01-23 Philips Electronic Associated Liquid chromatograph
JP3783303B2 (ja) * 1996-10-29 2006-06-07 株式会社島津製作所 プランジャ型送液ポンプ
EP2107241A3 (en) * 2008-04-02 2010-06-09 Flux Instruments AG A Piston Pump Having a Force Sensor and a Method for Controlling Said Pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101747A (ja) * 1986-09-17 1988-05-06 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 液体クロマトグラフ
JPH0777521A (ja) * 1993-09-07 1995-03-20 Shimadzu Corp 液体クロマトグラフ
JP3172429B2 (ja) * 1996-03-29 2001-06-04 株式会社日立製作所 液体クロマトグラフ
JPH11344480A (ja) * 1998-06-01 1999-12-14 Shimadzu Corp 液体クロマトグラフ
JP2009180617A (ja) * 2008-01-31 2009-08-13 Hitachi High-Technologies Corp 送液装置及びそれを有する分析装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082437A (ja) * 2017-10-31 2019-05-30 アークレイ株式会社 送液方法
JP7011921B2 (ja) 2017-10-31 2022-02-10 アークレイ株式会社 送液方法
CN115166119A (zh) * 2022-06-30 2022-10-11 鲲鹏仪器(大连)有限公司 一种高效液相色谱仪的高精度低压梯度方法

Also Published As

Publication number Publication date
CN104508478A (zh) 2015-04-08
CN104508478B (zh) 2016-08-24
DE112013003747T5 (de) 2015-08-20
JP5887412B2 (ja) 2016-03-16
JPWO2014030498A1 (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
WO2014030498A1 (ja) 液体クロマトグラフ装置及び送液装置
US10876525B2 (en) Liquid feed device, liquid feed control method for liquid feed device, and liquid feed control program for liquid feed device
JP5624825B2 (ja) 液体クロマトグラフ用ポンプ、および液体クロマトグラフ
JP4502629B2 (ja) 高圧往復ポンプおよびその制御
CN1737372B (zh) 液体输送系统
JP5049808B2 (ja) 送液装置及びそれを有する分析装置
US7588423B2 (en) Pump for liquid chromatograph
US20080047611A1 (en) Fluid pump having low pressure metering and high pressure delivering
US20120198919A1 (en) Liquid supply with optimized switching between different solvents
JP3172429B2 (ja) 液体クロマトグラフ
JP5155937B2 (ja) 送液装置および液体クロマトグラフ装置
US20080101970A1 (en) Pumping apparatus having a varying phase relationship between reciprocating piston motions
JP2009053098A (ja) 送液装置、液体クロマトグラフ、および送液装置の運転方法
WO2003079000A1 (fr) Systeme de pompe de dosage de liquide a gradient, et chromatographe en phase liquide
US9459239B2 (en) Intake monitoring for accurate proportioning
JP4732960B2 (ja) グラジェント送液方法及び装置
US9759694B2 (en) Liquid chromatograph apparatus and liquid chromatograph analysis method
US20200278329A1 (en) Liquid feeding device and fluid chromatograph
WO2017094097A1 (ja) 送液装置
CN108167171B (zh) 一种输液泵压力脉动自动校正的控制方法
JP2012031817A (ja) 送液ポンプ及び送液装置
WO2006087037A1 (en) Fluid pump having high pressure metering and high pressure delivering
CN115166119A (zh) 一种高效液相色谱仪的高精度低压梯度方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531560

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013003747

Country of ref document: DE

Ref document number: 1120130037475

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830510

Country of ref document: EP

Kind code of ref document: A1