WO2014029376A1 - Verfahren zur herstellung von vektoren enthaltend ein für in seiner feedback-inhibierung gemindertes oder ausgeschaltetes enzym kodierendes gen und deren verwendung für die herstellung von aminosäuren und nukleotiden - Google Patents

Verfahren zur herstellung von vektoren enthaltend ein für in seiner feedback-inhibierung gemindertes oder ausgeschaltetes enzym kodierendes gen und deren verwendung für die herstellung von aminosäuren und nukleotiden Download PDF

Info

Publication number
WO2014029376A1
WO2014029376A1 PCT/DE2013/000416 DE2013000416W WO2014029376A1 WO 2014029376 A1 WO2014029376 A1 WO 2014029376A1 DE 2013000416 W DE2013000416 W DE 2013000416W WO 2014029376 A1 WO2014029376 A1 WO 2014029376A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
feedback
synthase
vectors
enzyme
Prior art date
Application number
PCT/DE2013/000416
Other languages
English (en)
French (fr)
Inventor
Georg SCHENDZIELORZ
Stephan Binder
Lothar Eggeling
Michael Bott
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to JP2015527791A priority Critical patent/JP2015529459A/ja
Priority to US14/422,394 priority patent/US9644226B2/en
Priority to EP13753806.2A priority patent/EP2888372A1/de
Priority to CN201380044415.2A priority patent/CN104662169A/zh
Publication of WO2014029376A1 publication Critical patent/WO2014029376A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02004Aspartate kinase (2.7.2.4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a process for the preparation of vectors containing a gene coding for an enzyme which has been reduced or eliminated in its feedback inhibition, and to the use thereof for the production of amino acids and nucleodites.
  • Amino acids are used in human medicine, in the pharmaceutical industry, in the food industry and especially in animal nutrition. It is known that amino acids are produced by fermentation of strains of coryneform bacteria, in particular Corynebacterium glutamicum, as well as enterobacteria, in particular Escherichia coli. Because of the great importance is constantly working to improve the manufacturing process. Process improvements may include fermentation measures, such as stirring and oxygen supply, or nutrient media composition, such as sugar concentration during fermentation or work-up to product form by, for example, ion exchange chromatography or the intrinsic performance characteristics of the microorganism itself affect.
  • the synthesis of amino acids in microorganisms is carried out via synthetic routes, the amino acid biosynthetic pathways or amino acid synthesis routes or synthe- ses. These synthetic pathways consist of individual steps in which the
  • Amino acid is synthesized from precursors. These precursors are made available in the central metabolism. They are, for example, pyruvate, alpha-ketoglutarate, oxaloacetate, pentose phosphate, acetylCoA, erythrose phosphate, phosphoenolpyruvate or phosphoglycerate. Furthermore, NADPH2, NH4 + and reduced tetrahydrofolate are required for the synthesis of amino acids from precursors via the synthetic pathways. The synthesis of amino acids from precursors via synthetic pathways in coryneform bacteria and enterobacteria is the Specialist known.
  • Glutamine, proline, glycine, L-arginine, L-tryptophan, L-tyrosine, L-phenylalanine, L-serine and L-cysteine The synthesis of the amino acids is particularly well studied in Escherichia coli and Corynebacterium glutamicum.
  • the synthetic pathways consist of a series of enzyme-catalyzed reactions and are tightly regulated. Particularly strict regulation takes place by means of feedback-resistant enzymes. In wild-type strains, strict regulatory mechanisms prevent the production of metabolic products beyond their own requirements, such as amino acids and their release into the medium. The construction of overproducing strains from the manufacturer's point of view of organic chemical compounds therefore requires overcoming these metabolic regulations.
  • These feedback-resistant enzymes preferentially catalyze input reactions of the synthetic pathways or branch points of the synthetic routes.
  • the regulation often takes place via the end product of the synthesis route, ie the amino acid L-alanine, L-valine, L-leucine, L-asparagines, L-aspartate, L-lysine, L-methionine, L-threonine, L-alanine.
  • Intermediates may also regulate, such as O-acetylserine, O-acetylhomoserine, O-succinylserine, O-succinyl homoserine or adenosylmethionine.
  • the regulation is such that, with an increased concentration of said amino acids or intermediates, the particular enzyme of the synthetic pathway or also the feedback-resistant enzymes of the synthetic pathway are inhibited.
  • accession numbers are given for sequences of the regulated feedback-resistant wiltype enzymes of E. coli and C. glutamicum.
  • the nucleotide sequences of these genes and the encoded polypeptide sequences are stored in public databases.
  • NCBI National Center for Biotechnology Information
  • accession numbers NC_003450.2 and BX927148.1 to BX927157.1 accession numbers NC_003450.2 and BX927148.1 to BX927157.1.
  • the nucleotide sequences of these genes and the encoded polypeptide sequences of E. coli are described by Blattner et al. (Science 277: 1453-1462 (1997)) and deposited in the National Center for Biotechnology Information (NCBI) databse of the National Library of Medicine (Bethesda, MD, USA) under the accession number
  • EP088424A2 Also described is a recombinant, L-phenylalanine-producing bacterium with feedback-resistant prephenate dehydrogenase (EP088424A2). Also described is a leuA allele which encodes a mutated isopropylmalate synthase and a microorganism which produces L-leucine (EP000001568776B1). A mutated acetolactate synthase with a mutation in the llvN subunit and a microorganism overproducing L-valine is described in EP07017918.9.
  • acetylglutamate synthase is an allele which has feedback resistance to arginine compared with the wild-type enzyme, and strains are described which produce more L-arginine with the allele (US Pat. No. 7,165,586 B2).
  • Mutant alleles of Phosphoribosylpyrophosphat- synthetase and methods for L-histidine formation are described (EP 1529839 A1). It is also known that the L-histidine biosynthesis enzymes encoding by hisG and hisBHAFI Thus, the ability to produce L-histidine can also be effectively increased by introducing a mutation conferring resistance to feedback inhibition in ATP phosphoribosyltransferase (Russian Patent Nos.
  • Methods of mutagenesis, selection and mutant selection are used to eliminate the control mechanisms and to improve the performance characteristics of these microorganisms. In this way, strains are obtained which are resistant to antimetabolites such.
  • B. the threonine analog alpha-amino-beta-hydroxyvaleric acid (AHV) or auxotrophic for regulatory metabolites are important and L-amino acids such.
  • B. produce L-threonine. Resistance to the tryptophan analogue 5-methyl-DL-tryptophan (5-MT), for example, distinguishes a strain which produces L-tryptophan (DE 102008040352 A1).
  • strains resistant to 4-aza-D, L-leucine or 3-hydroxy-D, L-leucine, ⁇ -2-thienylalanine, 3-hydroxyleucine, 4-azaleucine and 5,5,5-trifluoroleucine had a feedback -resistant isopropylmalate dehydrogenase (EP1568776A2, EP 1067191 A2).
  • EP1568776A2 European 1067191 A2
  • Acetolaktatsynthasen by using the inhibitors
  • lysine analogues such as S- (2-aminoethyl) -cysteine
  • methionine analogues such as alpha-methyl-methionine, ethionine, norleucine, N-acetylnorleucine, S-trifluoromethylhomocysteine, 2-amino 5-heprenoic acid, seleno-methionines, methioninesulfoxamines, methoxines, 1-
  • a major drawback of the hitherto obtaining enzymes reduced in their feedback resistance is the use of analogs, such as, for example, alpha-amino-beta-amino acids.
  • the wild-type feedback-sensitive gene of a microorganism as starting organism for example of a bacterium or a yeast, is mutagenized in vitro and ligated with a vector.
  • Vector gene bank received. This is the microorganism used for the transformation, which contains a metabolite sensor, which leads to increased metabolite concentration for the synthesis of a fluorescent protein.
  • microorganisms with the highest fluorescence are selected, and their vectors are isolated. It is also possible to select microorganisms which have a fluorescence caused by the metabolite sensor, which is increased in comparison to the starting organism containing the wild-type gene.
  • the vectors isolated by this method contain genes that code for enzymes that are degraded or switched off in their feedback inhibition. These genes contained in the vectors which code for enzymes which are switched off or reduced in their feedback inhibition can be used according to methods known to those skilled in the art for the production of amino acids, nucleotides or intermediates. By way of example, the following method steps known to the person skilled in the art can be carried out for this purpose.
  • genes encoding enzymes that are degraded or inactivated in their feedback inhibition can be introduced into the production strain on the vector, which is then capable of better producing the desired product.
  • genes coding for enzymes that are degraded or inactivated in their feedback inhibition can be incorporated into vectors that are already included in the pro serve the desired product and lead to an additional increase in product formation.
  • the genes coding for enzymes that are degraded or depressed in their feedback inhibition can be introduced into the chromosome of the production strain, which is then capable of better producing the desired product.
  • a feedback-sensitive gene in the sense of the invention is to be understood as meaning a deoxyribonucleic acid which codes for an enzyme which is feedback-inhibited. It does not matter whether the feedback inhibition is due to the product formed or to an intermediate formed during production.
  • wild-type within the meaning of the invention, a gene or a gene from a strain to understand that has not yet been modified with the inventive method or has already undergone a modification of the invention, and its coding enzyme activity is to be further increased It may be a naturally occurring gene or a gene from a strain that has been genetically modified, and that or the starting material for the mutagenesis carried out according to the invention serves.
  • the mutagenization can be carried out preferably by non-directional methods, such as by a faulty polymerase chain reaction, which are known in the art.
  • the starting organism from which the gene to be altered is derived can be any microorganism containing a gene for a protein which is feedback-regulated, for example, a bacterium such as Corynebacterium Enterobacterium or a yeast, such as Saccharomyces cerevisiae.
  • a bacterium such as Corynebacterium Enterobacterium or a yeast, such as Saccharomyces cerevisiae.
  • Corynebacterium glutamicum or an E. coli can be used as the starting organism.
  • amino acid sequences of the feedback-controlled enzymes disclosed in Table 1 and the nucleic acid sequences of the genes coding for them as starting materials for the method according to the invention also comprise according to the invention those sequences which have a homology (at the amino acid level) or identity (at the nucleic acid level, excluding the natural degeneration). greater than 70%, preferably 80%, more preferably 85% (in 90% (also with respect to the polypeptides), preferably greater than 91%, 92%, 93% or 94%, more preferably greater than 95% or 96% and particularly preferably greater than 97%, 98% or 99% (with respect to both types of sequences) to one of these sequences, provided that the function and purpose of such a sequence is maintained.
  • nucleic acid sequences encoding polypeptides includes all sequences that appear possible in accordance with the degeneracy of the genetic code. The same applies to all other possible genes or enzymes which are to be modified according to the invention and which are not listed in Table 1.
  • nucleic acid sequences of the coding genes for feedback-sensitive enzymes disclosed in Table 1 according to the invention also comprise nucleic acid sequences which hybridize with those indicated. Instructions for hybridization can be found, inter alia, in the handbook "The DIG System Users Guide for Filter Hybridization” by Boehringer Mannheim GmbH (Mannheim, Germany, 1993) and by Liebl et al. (International Journal of Systematic Bacteriology 41: 255-260 (1991)).
  • the hybridization takes place under stringent conditions, that is, only hybrids are formed in which the probe, for example the nucleotide sequence complementary to the gene, and the target sequence, ie the polynucleotides treated with the probe, are at least 70% identical.
  • the stringency of the hybridization including the washing steps is influenced or determined by varying the buffer composition, the temperature and the salt concentration.
  • the hybridization reaction is generally performed at relatively low stringency compared to the washing steps (Hybaid Hybridization Guide, Hybaid Limited, Teddington, UK, 1996).
  • a buffer corresponding to 5xSSC buffer at a temperature of about 50 ° C - 68 ° C can be used.
  • probes can also hybridize with polynucleotides having less than 70% identity to the sequence of the probe. Such hybrids are less stable and are removed by washing under stringent conditions.
  • This can be done, for example, by sinking the salt concentration to 2xSSC and optionally subsequently 0.5xSSC (The DIG System User's Guide for Filter Hybridization, Boehringer Mannheim, Mannheim, Germany, 1995) can be achieved, with a temperature of about 50 ° C - 68 ° C, about 52 ° C - 68 ° C, about 54 ° C - 68 ° C, about 56 ° C - 68 ° C, about 58 ° C - 68 ° C, about 60 ° C - 68 ° C, about 62 ° C - 68 ° C, about 64 ° C - 68 ° C, about 66 ° C - 68 ° C is set.
  • the washing steps are carried out at temperatures of about 62 ° C - 68 ° C, preferably from 64 ° C - 68 ° C or about 66 ° C - 68 ° C, more preferably from about 66 ° C - 68 ° C. , It may be possible to lower the salt concentration to a concentration corresponding to 0.2xSSC or 0.1xSSC. By gradually increasing the hybridization temperature in steps of about 1-2 ° C. from 50 ° C.
  • polynucleotide fragments which code for feedback-sensitive enzymes, for example at least 70% or at least 80% or at least 90% to 95% % or at least 96% to 98% or at least 99% identity to the sequence of the probe used.
  • Further instructions for hybridization are available on the market in the form of so-called kits (eg DIG Easy Hyb from Roche Diagnostics GmbH, Mannheim, Germany, Catalog No. 1603558).
  • kits eg DIG Easy Hyb from Roche Diagnostics GmbH, Mannheim, Germany, Catalog No. 1603558.
  • other amino acid sequences not mentioned in Table 1 and genes coding for them can also be used as starting material for the modified feedback-resistant genes according to the invention.
  • vectors all known plasmid bodies, transposons, insertion elements or phages can be used as raw material into which the mutagenized genes were inserted.
  • vectors derived from pACYC184 Bartolome et al., Gene 102, 75-78 (1991)
  • pTrc99A Amann et al .: Gene 69: 301-315 (1988)
  • pSC101 Vocke and Bastia, Proceedings of the National Academy of Sciences USA 80 (21): 6557-6561 (1983)).
  • Such genetic systems are described, for example, in the patents US Pat. Nos. 4,822,738, 5,804,414 and 5,804414.
  • vectors such as pZ1, pXZ10142, pEKEx2, pEKEx3, or pEC-t19mob2 (cited in the "Handbook of Corynebacterium glutamicum” (Ed .: L. Eggeling and M. Bott)) which are used for the method according to the invention can also be used.
  • metabolite sensors known metabolite sensors such as pSenLys, pSenArg, pSenSer, pSenOAS or pJC1-lrp-brnF-eyfp can be used.
  • the metabolite sensor comprises a gene sequence encoding an autofluorescent protein, wherein the expression of the autofluorescent protein is dependent upon the intracellular concentration of a particular metabolite.
  • the control of the expression of the coding for the autofluorescent protein gene sequence depending on the intracellular concentration of the particular metabolite at the level of transcription.
  • more or less ger mRNA formed which can be trans- lated in the ribosomes to form the Autofluoreszenzproteins.
  • the microorganism used for transformation can be any mirtoorganism.
  • bacteria, yeasts or enterobacteria for example E. coli, Corynebacterium glutamicum or Saccharomyces cerevisiae can be mentioned.
  • the microorganism used for the transformation is a microorganism containing a metabolite sensor which, at a metabolite concentration higher than the metabolite concentration present in the starting organism, leads to the synthesis of a fluorescent protein.
  • the vectors containing genes coding for in their feedback Inihibitation degraded or switched off enzymes can be introduced. These can be obtained directly from the selection by means of metabolite sensors.
  • the genes coding for enzymes which have been reduced or blocked in their feedback inhibition are introduced into other vectors which already serve to produce the desired product, these can be vectors already used to produce the desired product already contain genes that improve the production characteristics of the micro-organism used for production.
  • the genes coding for enzymes encoded in their feedback inhibition or inactivated are introduced into the chromosome of the production strain, which is then capable of better producing the desired product, the insertion can be performed by any method known to those skilled in the art take place anywhere in the chromosome.
  • the method according to the invention can be used for the provision of any enzyme of interest and the deoxyribonucleic acid coding therefor, either completely removing the inhibition or at least reducing its feedback inhibition.
  • the enzymes mentioned in Table 1 and any deoxyribonucleic acid coding for them may be mentioned as materials to be changed according to the invention.
  • the production of amino acids and their derivatives, nucleotides or intermediates of synthetic routes as products can be improved over the prior art.
  • the process according to the invention makes it possible to produce amino acids and derivatives thereof, nucleotides or intermediates of synthetic routes which were not or only to a small extent produced by the corresponding microorganisms prior to the modification according to the invention.
  • nucleic acids and enzymes obtained by the method of the invention can be used for the preparation of these desired products and are more active in their function.
  • the invention relates to alleles of genes which encode enzymes which are reduced or eliminated in their feedback inhibition compared to the wild form and which are obtained by means of metabola sensors, the wild-type alleles being plasmid-encoded, which after in vitro mutagenesis are microorganisms, preferably coryneform bacteria and enterobacteria - Rien are introduced, which contain the metabolite sensor, and individual cells are generated or isolated, which is recognized as a cell containing an enzyme no longer regulated.
  • Metabolite sensors allow the direct detection of increased intracellular amino acid concentrations in single cells of coryneform bacteria, such as Corynebacterium glutamicum and in enterobacteria, such as Escherichia coli (WO201 1138006). Furthermore, metabolite sensors allow the detection of increased intracellular amino acid concentrations of L-valine, L-leucine, L-asparagine, L-lysine, L-methionine, L-threonine, L-isoleucine, L-histidine, L-glutamate, L-glutamine, proline , L-arginine, L-tryptophan, L-tyrosine, L-phenylalanine, L-serine and L-cysteine, most preferably those of L-histidine, L-arginine, L-lysine, L-leucine.
  • Metabolisensoren also allow the detection of elevated concentrations of intermediates such as intermediates of the amino acid or nucleotide synthesis, such as O-acetylserine, O-acetylhomoserine, cystathionine, orotidine-5 'phosphate, 5- Phosphoribosyldiphosphat, or inosine-5'-phosphate ,
  • intermediates of the amino acid or nucleotide synthesis such as O-acetylserine, O-acetylhomoserine, cystathionine, orotidine-5 'phosphate, 5- Phosphoribosyldiphosphat, or inosine-5'-phosphate
  • the process for obtaining the enzymes modified according to the invention is characterized in that the genes or alleles cancel or inhibit their feedback inhibition. should be reduced vector coded, preferably plasmid encoded present, and are not chromosomally encoded.
  • the genes or alleles of the enzymes which are to be modified according to the invention are, in particular, the amino acid synthesis routes leuA.ilvN, ilvB.ilvl, ilvH, argA.trpD, trpE, asnA, asnB.pyrB, pyrl, lysC, metL, thrA, hisG, carA, carB, tyrA, pheA, cysK, cysM, serA, aroG, dapA, gdh, gltB, gltD, glnA, proB, metE, metX, metA.metL, gnd, zwf, thrA, metH
  • the peptides to reduce or eliminate their feedback inhibition according to the invention also include those which are at least 90 to 95%, especially 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% % or 99% identical to the polypeptides of the enzymes LeuA, llvN, IIvB, IM, IlvH, ArgA, TrpD, TrpE, AsnA, AsnB, PyrB, Pyrl, LysC, MetL, ThrA, HisG, CarA, CarB, TyrA, PheA, CysK, CysM, SerA, AroG, DapA, Gdh, GltB, Gnd, Zwf, OpcA, GltD, GlnA, ProB, MetE,
  • This invention also relates to the nucleotide sequences ilvN, ilvB.ilvl, ilvH, argA, trpD, trpE, asnA, asnB, pyrB, pyrl, lysC, metL, thrA, hisG, carA, carB, tyrA, pheA, cysK, cysM, serA, aroG, dapA, gdh, gltB, gltD, glnA, proB, metE, metX, metA, metL, gnd, zwf, thrA, metH, prs, pheA, tyrA, proC, prs, cysE, ilvA, tyrB, preferably lysC , hisG, argB, cysE and leuA, and those sequences which are at least 70%, preferably 80%, more
  • in vitro mutagenesis is preferably carried out with the aid of a defective polymerase chain reaction (PCR) and an amplification technique.
  • PCR polymerase chain reaction
  • the gene to be mutated is subjected to a PCR using a polymerase which, depending on the conditions of the reaction, incorporates individual nucleotides incorrectly into the wild-type into the synthesized genes (Tindali, KR and TA Kunkel, Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry, 1988. 27 (16): p. 6008-13).
  • a common variant of this method involves the use of manganese (II) ions or nucleotide analogues in the PCR approach (Cadwell R. C et al., (1992) PCR Methods Appl. 2: 28-33., / Lung DW et al. (1989) Techniques 1: 11-15).
  • These mutation introduction techniques are referred to as "error-prone PCR (epPCR)" (Labrou NE, Random Mutagenesis Methods for In Vitro Directed Enzyme Evolution, Curr Protein Pept., 2010; 11: 91-100).
  • the mutations can be, for example, point mutations, eg substitutions, deletions or insertions by the polymerase can be generated.
  • the mutation rate is between 1-40 mutations per 1 kb, preferably 1-5 mutations per 1 kb.
  • the vectors preferably plasmids which contain the mutations obtained in accordance with the invention in genes of the enzymes are subsequently introduced by transformation into a microorganism, such as E. coli, C. glutamicum or Saccharomyces cerevisiae.
  • transformation encompasses all methods for the transfer of polynucleotides, in particular DNA, into a desired microorganism. These include, inter alia, the use of isolated DNA in transformation, electrotransformation or electroporation, transmission by cell contact as in conjugation or the transfer of DNA by means of particle bombardment.
  • individual transformed cells are identified in the cell suspension with increased intracellular concentration of metabolites compared to the wild form of the metabolite detectable by the metabolite by detection of the intracellular fluorescence.
  • the cell suspension is exposed to electromagnetic radiation in that frequency which excites the autofluorescence protein of the metabolite sensor to emit light.
  • Preferred autofluorescent proteins are proteins which are read from gene sequences which are fluorescent for proteins of the genus Aequora, such as the Green Fluorescent Protein (GFP), and variants thereof which fluoresce in another wavelength range (eg Yellow Fluorescent Protein, YFP; Blue Fluorescent Protein, BFP, Cyan Fluorescent Protein, CFP) or whose fluorescence is enhanced (enhanced GFP or EGFP, or EYFP, EBFP or ECFP) encode.
  • GFP Green Fluorescent Protein
  • YFP Yellow Fluorescent Protein
  • BFP Blue Fluorescent Protein
  • CFP Cyan Fluorescent Protein
  • gene sequences can also be used which are suitable for other autofluorescent proteins, e.g. DsRed, HcRed,
  • the particularly preferred autofluorescent protein is EYFP or the gene coding for it.
  • FACS fluorescence activated cell sorting
  • HT-FACS high througput fluorescence activated cell sorting
  • the invention relates to the use of feedback-resistant enzymes obtained in this way, or to enzymes reduced in their feedback sensitivity and to the genes coding for them for improving the performance of microorganisms.
  • This is done by the vectors obtained by the method, for which, by way of example but not limitation, plasmids are listed below, which code for feedback-resistant enzymes or reduced in their feedback sensitivity enzymes are introduced directly into the microorganism.
  • the plasmids are isolated by known methods and the microorganism to be improved is transformed with these plasmids.
  • transformation encompasses all methods for the transfer of polynucleotides, in particular DNA, into a desired bacterium. These include, inter alia, the use of isolated DNA in transformation, electrotransformation or electroporation, transmission by cell contact, as in conjugation, or the transfer of DNA by means of particle bombardment.
  • the genes obtained by the method which code for feedback-resistant enzymes or in their feedback sensitivity reduced enzymes, first introduced into other plasmids, for example, already contain additional genes that already improve the performance of the microorganism, or which also contain an origin of replication which allows the replication of the plasmid in the microorganism to be improved.
  • plasmids are known to those of skill in the art, such as, for example, plasmid vectors which can be replicated in Enterobacteriaceae, e.g. from pA-
  • CYC184-derived cloning vectors Bartolome et al., Gene 102: 75-78 (1991)
  • pTrc99A Amann et al., Gene 69: 301-315 (1988)
  • pSC101 derivatives Vocke and Bastia, Proceedings of the National Academy of Sciences USA 80 (21): 6557-6561 (1983)) or plasmids that replicate in Corynebacteria and related organisms and in the Handbook of Corynebacterium glutamicum (Eds.
  • the genes obtained by the method which codes for feedback-resistant enzymes or enzymes reduced in their feedback sensitivity, are introduced into the genome of the microorganism to be improved. This is for example from Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) or in WO03 / 040373.
  • the gene is cloned into a plasmid vector that can not replicate in the host whose performance characteristics are to be improved.
  • vectors examples include pSUP301 (Simon et al., Bio / Technology 1, 784-791 (1983)), pK18mob or pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega Corporation , Madison, WI, USA), pCR2.1-TOPO (Shuman (1994), Journal of Biological Chemistry 269: 32678-84, US-A 5,487,993), pCR® Blunt (Invitrogen, Groningen, The Netherlands, Bernard et al.
  • the resulting strain contains a copy of the heterologous gene, including the plasmid vector, at the desired locus of the chromosome of, for example, Corynebacterium glutamicum or E.
  • the invention relates to enzymes which are reduced or switched off in their feedback ligation and to the genes coding therefor which lead to an increased intracellular concentration of a particular metabolite, in particular amino acids such as L-valine, L-leucine, L-asparagine, L-lysine, L-methionine, L-threonine, L-isoleucine, L-histidine, L-glutamate, L- Glutamine, proline, L-arginine, L-tryptophan, L-tyrosine, L-phenylalanine, L-serine and L-cysteine.
  • amino acids such as L-valine, L-leucine, L-asparagine, L-lysine, L-methionine, L-threonine, L-isoleucine, L-histidine, L-glutamate, L- Glutamine, proline, L-arginine, L-tryptophan, L-tyrosine, L
  • the invention relates in particular to enzymes of L-lysine synthesis and in particular to feedback-resistant aspartate kinases which lead to L-lysine.
  • the subject of the invention in its feedback Inihb ist diminished or switched off enzymes and the coding genes that lead to an increased concentration of Inter mediaten the amino acid or nucleotide synthesis, such as O-acetylserine, O-acetyl homoserine, cystathionine, orotidine-5 ' Phosphate, 5-phosphoribosyl diphosphate or inosine 5'-phosphate.
  • SEQ. ID. NO. 26 which in nucleotide positions 476, 1010, 1021, as in SEQ. ID. NO. 27, with amino acid substitutions at positions 159, 337, 341 and SEQ. ID. NO. 28 can be obtained.
  • only one of the nucleotide and amino acid exchanges may be present per allele and enzyme, or else several, namely up to seven, as shown in SEQ. ID. NO. 25, or SEQ. ID. NO. 26 indicated.
  • the invention does not include mutations which are known from the prior art mentioned below, such as the mutation lysC A279T which is described in the application JP 1994062866-A (Sequence 1) or also lysC A279V from JP 1994261766-A (Sequence 3), lysC S301F from JP 1994261766-A (Sequence 4), lysC T308I from JP
  • the invention also provides other amino acid substitutions in the positions identified by metabolite sensors and in comparable positions of the enzymes.
  • any other proteinogenic amino acid may also be present, such as Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Ala, Val, Gin, His, Pro, Leu, Tyr, Trp, Cys or Phe.
  • any other proteinogenic amino acid may be present in this position, such as Lys, Asn, Arg, Thr, Ile, Met, Glu, Asp, Ala, Val, Gin, His Pro, Leu, Tyr, Trp, Cys or Phe, or in position 341, instead of replacing Asp with Asn, any other proteinogenic amino acid such as Lys, Arg, Ser, Thr, Ile, Met, Glu, Asp, Ala, Val, Gin, His , Pro, Leu, Tyr, Trp, Cys or Phe.
  • the term "comparable position” is understood according to the invention to mean a position which is determined by comparing the starting sequence with the comparison sequence using a sequence comparison program (BLAST, Altschul et al., J. Mol. Biol. 1990, 215, 403-410). at the contemplated position of the starting sequence, provides an amino acid position in the reference sequence greater than ⁇ 5, preferably ⁇ 4, more preferably ⁇ 3, even more preferably ⁇ 2, most preferably ⁇ 1, and from the position to be compared extremely preferred to no position differs.
  • BLAST Altschul et al., J. Mol. Biol. 1990, 215, 403-410
  • example 1 Preparation of a cell according to the first embodiment according to the invention using the example of a cell in which a gene sequence coding for an enzyme is mutated and selected so that feedback-resistant enzymes and cells according to the invention having improved performance properties of feedback-resistant enzymes are obtained, the enzyme being aspartate kinase ,
  • the E. coli DH5amcr cells transformed with the ligation products were plated on LB agar plates (Lennox, 1955, Virology, 1: 190) containing 40 mg per liter kanamycin. b) Preparation of the lysC gene bank and transformation of Corynebacterium glutamicum
  • the transformed cells were regenerated for 2 hours, then 25 mg per liter of kanamycin was added and 1:10 dilutions of this suspension were incubated in CGXII medium for 15 hours.
  • the CGXII medium is described by Keilhauer et al. in J Bacteriol. 1993 Sep; 175 (17): 5595-603.
  • the cell suspension in CGXII medium was adjusted to an optical density below 0.1 and fed directly to the FACS A IA II high-speed cell sorter (Becton Dickinson GmbH, Tullastr., 8-12, 69126 Heidelberg).
  • the analysis was carried out with the excitation wavelengths of 488 and 633 nm and the detection at the emission wavelengths of 530 ⁇ 15 nm and 660 ⁇ 10 nm at a test pressure of 70 psi.
  • the data was analyzed with the device software version BD DIVA 6.1.3.
  • the jacket liquid was used BD FACSflow.
  • the electronic gating was adjusted on the basis of the forward and backward scatters in order to exclude non-bacterial particles.
  • To sort EYFP-positive cells the next level of electronic gating was chosen to exclude non-fluorescent cells. Fluorescent cells were sorted out on Petri dishes containing the brain heart infusion agar (Difco).
  • EYFP-positive single cells sorted out on petri dishes were inoculated into 0.75 ml of CGXII medium in Flowerplate microtiter plates.
  • the flowerplates were purchased from m2p-labs GmbH (Aachen) and incubated in a microtron high-capacity microplate incubator (Infors AG) at a shaking speed of 990 rpm and a shaking radius of 3 mm overnight. Subsequently, in a new CGXII medium in microtiter plates of the
  • the lysine was determined as o-phthdialdehyde derivative by high pressure liquid chromatography with a uHPLC 1290 Infinity System (Agilent) on a Zorbax Eclipse AAA C18 3.5 micron 4.6 x 75 mm Revered Phase column and a fluorescence detector.
  • the eluent used was a gradient of 0.01 M Na borate pH 8.2 with increasing methanol concentration and detection of the fluorescent isoindole derivatives was carried out at an excitation wavelength of 230 nm and an emission wavelength of 450 nm.
  • the L-lysine values shown in Table 2 were determined show an improvement in L-lysine formation in the parent strain.
  • Table 2 Strains in which the coding for the aspartate kinase gene sequence was mutated on a plasmid and were selected by means of metabolite sensor for improved performance and increasingly excrete L-lysine.
  • the amplificates were purified using the QIAquick PCR Purification Kit from Qiagen (catalog number 28104) and sequenced by GATC.
  • the DNA sequences obtained were then analyzed using the known algorithms or sequence analysis program GCG by Butler (Methods of Biochemical Analysis 39, 74-97 (1998)), the FASTA algorithm by Pearson and Lipman (Proceedings of the National Academy of Sciences USA 85, 2444-2448 (1988)) or the BLAST algorithm of Altschul et al. (Natura Genetics 6, 119-129 (1994)) and compared to the sequence entries available in publicly available databases (EMBL, Heidelberg, Germany, NCBI, Bethesda, MD, USA).
  • sequence identity numbers SEQ.ID.NO.
  • sequence identity numbers SEQ.ID.NO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Vektoren enthaltend ein für in seiner feedback-lnhibierung gemindertes oder ausgeschaltetes Enzym kodierendes Gen und deren Verwendung für die Herstellung von Aminosäuren und Nukleotiden. Erfindungsgemäß werden Gene, die für feedback-inhibierte Enzyme kodieren, in vitro mutagenisiert, - in einem weiteren Schritt in Vektoren ligiert, - die Vektoren jeweils in einem weiteren Schritt in einen Mikroorganismus transformiert, der einen Metabolitsensor enthält, der bei erhöhter Metabolitkonzentration die Synthese eines Fluoreszenzproteins bewirkt, - wonach eine Selektion von Mikroorganismen durchgeführt wird, die eine erhöhte oder die höchste Fluoreszenz aufweisen erfolgt, - und die Vektoren, die ein für ein in seiner feedback-lnhibierung gemindertes oder ausgeschaltetes Enzym kodierendes Gen enthalten werden aus Mikroorganismen mit einer erhöhten oder der höchsten Fluoreszenz isoliert.

Description

B e s c h r e i b u n g
Verfahren zur Herstellung von Vektoren enthaltend ein für in seiner feedback-lnhibierung gemindertes oder ausgeschaltetes Enzym kodierendes Gen und deren Verwendung für die
Herstellung von Aminosäuren und Nukleotiden
Die Erfindung betrifft ein Verfahren zur Herstellung von Vektoren enthaltend ein für in seiner feedback-lnhibierung gemindertes oder ausgeschaltetes Enzym kodierendes Gen und deren Verwendung für die Herstellung von Aminosäuren und Nukleoditen. Aminosäuren finden in der Humanmedizin, in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung Anwendung. Es ist bekannt, dass Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, sowie von Enterobakterien, insbesondere Escherichia coli, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbes-serungen können fermentationstechnische Maßnahmen, wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien, wie zum Beispiel die Zuckerkonzentration während der Fermentation oder die Aufarbeitung zur Produktform durch zum Beispiel lonen- austauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorga- nismus selbst betreffen.
Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und die Aminosäuren produzieren. Ebenfalls werden Methoden der rekombi- nanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierenden Stämmen eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.
Die Synthese von Aminosäuren in Mikroorganismen erfolgt über Synthesewege, die Aminosäurebiosynthesewege oder auch Aminosäuresynthesewege oder auch Synthesewege genannt werden. Diese Synthesewege bestehen aus einzelnen Schritten bei denen die
Aminosäure aus Vorstufen synthetisiert wird. Diese Vorstufen werden im Zentralstoffwechsel zur Verfügung gestellt. Es sind zum Beispiel Pyruvat, alpha-Ketoglutarat, Oxalacetat, Pentosephosphat, AcetylCoA, Erythrosephosphat, Phosphoenolpyruvat oder Phosphoglycerat. Desweiteren werden zur Synthese der Aminosäuren aus Vorstufen über die Sythesewege NADPH2, NH4+ und reduziertes Tetrahydrofolat benötigt. Die Synthese der Aminosäuren aus Vorstufen über Synthesewege in coryneformen Bakterien und Enterobakterien ist dem Fachmann bekannt. Dies betrifft die Aminosäuren L-Alanin, L-Valin, L-Leucin, L-Asparagin, L-Aspartat, L-Lysin, L-Methionin, L-Threonin, L-Isoleucin, L-Histidin, L-Glutamat, L-Glutamin, Prolin, Glycin, L-Arginin, L-Tryptophan, L-Tyrosin, L-Phenylalanin, L-Serin und L-Cystein. Die Synthese der Aminosäuren ist besonders gut untersucht in Escherichia coli und Corynebac- terium glutamicum.
Die Synthesewege bestehen aus einer Reihe von durch Enzyme katalysierten Reaktionen und sie sind streng reguliert. Eine besonders strenge Regulation erfolgt durch feedback- resistente Enzyme. In Wildtypstämmen verhindern strikte Regulationsmechanismen die über den Eigenbedarf hinausgehende Produktion von Stoffwechselprodukten wie Aminosäuren und deren Abgabe ins Medium. Die Konstruktion von aus Herstellersicht organischchemischen Verbindungen überproduzierenden Stämmen erfordert deshalb diese Stoffwechselregulationen zu überwinden. Diese feedback-resistenten Enzyme katalysieren bevorzugt Eingangsreaktionen der Synthesewege oder Verzweigungspunkte der Synthesewege. Dabei erfolgt die Regulation oft über das Endprodukt des Synthesewegs, also die Ami- nosäure L-Alanin, L-Valin, L-Leucin, L-Asparagine, L-Aspartat, L-Lysin, L-Methionin, L- Threonin, L-Isoleucin, L-Histidin, L-Glutamat, L-Glutamin, Prolin, Glycin, L-Arginin, L- Tryptophan, L-Tyrosin, L-Phenylalanin, L-Serin und L-Cystein.
Es können auch Intermediate regulierend eingreifen, wie O-Acetyl serin, O-Acetylhomoserin, O-Succinylserin, O-Succinylhomoserin oder Adenosylmethionin. Die Regulation ist derart, dass bei einer erhöhten Konzentration der genannten Aminosäuren oder Intermediate das jeweilige Enzym des Synthesewegs oder auch die feedback-resistenten Enzyme des Synthesewegs, gehemmt werden.
Beispiele für Enzyme von Synthesewegen nach dem Stand der Technik, deren Bildung in der Zelle feedback- gesteuert ist und die für sie kodierenden Gene, sind in Tabelle 1 darge- stellt. Ferner sind die EC Nummern angegeben, die die jeweilige Reaktion bezüglich der
Substrate und Produkte des Mechanismus 'der Schlüsselreaktion charakterisieren. Weiterhin sind die Zugangsnummern für Sequenzen der regulierten feedback-resistenten Enzyme des Wiltyps von E. coli und C. glutamicum angegeben. Die Nukleotidsequenzen dieser Gene und die kodierten Polypeptidsequenzen sind in öffentlichen Datenbanken hinterlegt. So für C. glutamicum im National Center for Biotechnology Information (NCBI) database of the National Library of Medicine (Bethesda, MD, USA) unter den Zugangsnummern NC_003450.2 and BX927148.1 bis BX927157.1. Die Nukleotidsequenzen dieser Gene und die kodierten Polypeptidsequenzen von E. coli sind durch Blattner et al. beschrieben (Science 277: 1453- 1462 (1997)) und hinterlegt im National Center for Biotechnology Information (NCBI) databa- se of the National Library of Medicine (Bethesda, MD, USA) unter den Zugangsnummer
NC_000913.2. Zugang besteht ebenso über die Datenbank UniProtKB/Swiss-Prot European Molecular Biology Laboratory, Heidelberg. Tabelle 1 : Beispiele für feedback-inhibierte Enzyme, deren sie charakterisierende Enzymklassifikationsnummern und die für sie kodierenden Gene, sowie die beispielhaften
Zugangsnummern der Gene für E. coli und C. glutamicum.
Enzym EC Nummer Gen Zugangs- Nr. Zugangs- Nr.
E. coli C. glutamicum
2-lsopropylmalatsynthase EC 2.3.3.13 leuA EG 11226 YP_224548
Acetohydoxysäuresynthase EC 2.2.1.6 ilvN EG 10502 YP_225560.1
Acetohydoxysäuresynthase EC 2.2.1.6 ilvB EG 10494 YP_225561.1
Acetohydoxysäuresynthase EC 2.2.1.6 ilvl EG 10500 YP_225560.1
Acetohydoxysäuresynthase EC 2.2.1.6 ilvH EG 10499 YP_225561.1
Acetylg I utamatsynthase EC 2.3.1.1 argA EG 10063 YP_225682.1
Anthranilatsynthase EC 4.1.3.27 trpD EG11027 YP_227281.1
Anthranilatsynthase EC 4.1.3.27 trpE EG11028 YP_227280.1
Asparaginsynthetase B EC 6.3.5.4 asnB NP_415200.1 NC_006958.1
Aspartate transcarbamylase EC 2.1.3.2 pyrB NP_418666 Q8NQ38
Aspartate transcarbamylase EC 2.1.3.2 pyrl NP_418665.1 Q8NQ38
Aspartatkinase EC 2.7.2.4 lysC EG 10550 P26512.2
Aspartatkinase EC 2.7.2.4 metL EG 10590 P26512.2
Aspartatkinase EC 2.7.2.4 thrA EG10998 P26512.2
ATP-Phosphoribosyltransferase EC 2.4.2.17 hisG EG 10449 Q9Z472.2
Carbamoyl-phosphatsynthetase EC 6.3.5.5 carA EG10134 Q8NSR1.1
Carbamoyl-phosphatsynthetase EC 6.3.5.5 carB NP_414574.1 P58939.1
Chorismatmutase I EC 5.4.99.5 tyrA EG 11039 BAB98246.1
Chorismatmutase II EC 5.4.99.5 pheA EG 10707 YP_227138.1
Cysteinsynthase EC 2.5.1.47 cysK NP_416909.1 CBV01938.1
Cysteinsynthase EC 2.5.1.47 cysM NP_416916.1 CBF99279.1
D-3-phosphoglycerate dehydroge- EC 1.1.1.95 serA NP_417388.1 AEA48241.1 nase
3-Desoxy-D-Arabino-Heptulosonat- EC 4.1.2.15 aroG NP_415275.1 CAC25920.1 7-Phosphat-Synthase
Dihydrodipicolinatsynthase EC 4.2.1.52 dapA NP_416973.1 CAA37940.1
Glutamatdehydrogenase EC 1.4.1.4 gdh NP_416275.1 NP_601279.1
Glutamatsynthase EC 1.4.1.13 gltB NP_417679.2 YP_224481.1
Glutamatsynthase EC 1.4.1.13 gltD NP_417680.1 YP_226992.1
Glutaminsynthetase EC 6.3.1.2 glnA NP_418306.1 YP_226471.1
Glutamylkinase EC 2.7.2.11 proB NP_414777.1 YP_226601.1
Homocysteintransmethylase EC 2.1.1.14 metE NP_418273.1 CAF19845.1 Homoserin O-aceyltransferase EC 2.3.1.46 metX NP_417417.1 NP_600817.1
Homoserin O-succinyltransferase EC 2.3.1.46 metA NP_418437.1 YP_225473.1
Homoserindehydrogenase EC 1.1.1.3 metL EG 10590 CAF19887.1
Homoserindehydrogenase EC 1.1.1.3 thrA EG 10998 NP_414543.1
Methioninsynthase EC 2.1.1.13 metH NP_418443.1 NP_600723.1
Phosphoribosylpyrophosphatsyn- EC 2.7.6.1 prs NP_415725.1 YP_225235.1 thetase
Prephenatdehydrogenase 1 EC 1.3.1.12 pheA NP_417090.1 CAF20922.1
Prephenatdehydrogenase II EC 1.3.1.12 tyrA EG 11039 YP_227138.1
Pyrrolin-5-carboxylatreductase EC 1.5.1.2 proC NP_414920.1 NP_599658.1
Ribose 1 ,5-bisphosphokinase EC 2.7.4.23 phnN NP_418518.1 NP_600170
Serinacetyl(succinyl)transferase EC 2.3.1.30 cysE NP_418064.1 NP_601761.1
Threoninammonia-Iyase EC 4.3.1.19 ilvA NP_418220.1 NP_601328.2
Tyrosinaminotransferase EC 2.6.1.57 tyrB NP_418478.1 NP_599471.2
Ausgehend von der Wildform der in Tabelle 1 beispielhaft genannten feedback-gesteuerten Enzyme besteht der Bedarf, eine Deregulation der Enzymaktivität zu erreichen, um die Produktion von Zielverbindungen, wie beispielsweise Aminosäuren, Nukleodiden, Aminosäure- derivaten oder Intermediate der Synthesewege zu verbessern.
Die Bedeutung solcher feedback-resistenter Enzyme, deren Regulation beseitigt ist und die somit zur Verbesserung der Leistungsfähigkeit von Mikroorganismen beitragen, ist bekannt und es sind feedback-resistente Allele die gegenüber dem Wildtypgen Mutationen tragen beschrieben. So ist in DE102008040352A1 und EP000002147972A1 beschrieben, dass Allele von aroG die für 3-Desoxy-D-Arabino-Heptulosonat-7-Phosphat-Synthase kodieren zu verbesserter Tryptophanbildung führen. Weiterhin ist z. B. ein rekombinantes, L-Lysin produzierendes Bakterium bekannt, das ein lysC Allel mit feedback-resistenter Aspartatkinase enthält (EP0381527A1 ). Ebenso ist ein rekombinantes, L-Phenylalanin produzierendes Bakterium mit feedback-resistenter Prephenatdehydrogenase beschrieben (EP088424A2). Auch ist ein leuA Allel beschrieben, das für eine mutierte Isopropylmalatsynthase kodiert sowie ein Mikroorganismus, der L-Leucin produziert (EP000001568776B1 ). Eine mutierte Acetolaktatsynthase mit einer Mutation in der llvN Untereinheit und ein Mikroorganismus der L-Valin überproduziert ist in EP07017918.9 beschrieben. Auch für das Enzym Acetylglutama- tesynthase ist ein Allel beschrieben, das gegenüber dem Wildtypenzym feedback-Resistenz gegenüber Arginin aufweist, und es sind Stämme beschrieben die mit dem Allel mehr L- Arginin produzieren (US 7169586 B2). Mutierte Allele der Phosphoribosylpyrophosphat- synthetase und Methoden zur L-Histidinbildung sind beschrieben (EP 1529839 A1 ). Es ist auch bekannt, dass die L-Histidinbiosyntheseenzyme, die durch hisG und hisBHAFI kodiert sind, durch L-Histidin inhibiert werden und deshalb kann die Fähigkeit zur Produktion von L- Histidin auch durch Einführen einer Mutation, die eine Resistenz gegen die Rückkopplungshemmung verleiht, in ATP-Phosphoribosyltransferase wirksam erhöht werden (russische Patente Nr. 2003677 und 2119536). Mit der Carbamoyl-phosphatsynthetase als Enzym konnte eine verbesserte Argininbildung erreicht werden (EP000001026247A). Auch führte das Einbringen eines cysE-Allels, das für eine Serin-O-Acetyl-Transferase mit einer verminderten feedback-Hemmung durch L-Cystein kodiert, zu einer Steigerung der Cystein- Produktion (US6218168B1 ; Nakamori et al., 1998, Appl. Env. Microbiol. 64: 1607-1611 ; Takagi et al., 1999, FEBS Lett. 452: 323-327). Durch ein feedback-resistentes CysE-Enzym wird die Bildung von O-Acetyl-L-Serin, der direkten Vorstufe von L-Cystein, weitgehend vom L-Cystein-Spiegel der Zelle entkoppelt.
Zur Beseitigung der Kontrollmechanismen und Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z. B. das Threonin-Analogon alpha-Amino-beta-Hydroxyvaleriansäure (AHV) oder auxotroph für regulatorisch bedeutsame Metabolite sind und L-Aminosäuren wie z. B. L-Threonin produzieren. Resistenz gegen das Tryptophan-Analogon 5-Methyl-DL-Tryptophan (5-MT) zeichnet zum Beispiel einen Stamm aus, der L-Tryptophan produziert (DE 102008040352 A1 ). Auch wiesen Stämme die gegen 4-aza-D,L-leucine or 3-hydroxy-D,L-leucine, ß-2- thienylalanine, 3-hydroxyleucine, 4-azaleucine und 5,5,5-trifluoroleucine resistent waren eine feedback-resistente Isopropylmalatdehydrogenase auf (EP1568776A2, EP 1067191 A2). Es sind Stämme beschrieben deren Acetolaktatsynthasen durch Nutzung der Inhibitoren
Sulphonylurea und Imidazolinone reduzierte feedback-Hemmung aufweisen (CA 2663711 A1 ). Auch gelang es durch Selektion langsam wachsender Mutanten Stämme mit argA Alle- len zu gewinnen die zur L-Argininbildung geeignet sind (US 7169586 B2). Ebenso konnten über die Resistenz vermittelnden Substanzen 5-Azauracil, 6-Azauracil, 2-Thiouracil, 5- Fluorouracil, 5-Bromouracil, 5-Azacytosine, 6-Azacytosine, Argininhydroxamat, 2-Thiouracil und 6-Azauracil (Japanese Patent 49-126819) Argininbildner gewonnen werden. Durch Nutzung von Pyrimidinanaloga, wie Azidothymidine oder Azidodeoxyuridine ist es möglich, Stämme zu gewinnen, in denen feedback-resistente Enzyme wie z.B. die Aspartattranscar- bamoylase des gemeinsamen Synthesewegs von L-Histidin, Purin und Pyrimidinmutiert sind (US 5213972). Durch Nutzung von Lysinanaloga, wie S-(2-aminoethyl)-cysteine gelang es lysC Allele zu gewinnen oder durch Nutzung von Methioninanaloga, wie alpha-methyl- Methionine, Ethionine, Norleucine, N-Acetylnorleucine, S-Trifluoromethylhomocysteine, 2- Amino-5-heprenoit acid, Seleno-methionine, Methioninesulfoxamine, Methoxine, 1-
Aminocyclopentancarboxysäure Stämme mit Allelen die vermehrt L-Methionin akkumulieren (EP 1745138 B1 ). Durch Verwendung von 1 ,2,4,-Triazole-D-alanin konnte die feedback- Hemmung des HisG Allels hisG13 aufgehoben werden und damit Stämme gewonnen werden deren Leistungseigenschaft verbessert war (Mizukami T et al., Biosci Biotechnol Bio- chem. 1994 Apr,58(4):635-8).
Ein großer Nachteil der bisherigen Gewinnung von in ihrer feedback-Resistenz geminderten Enzymen ist der Einsatz von Analoga, wie zum Beispiel alpha-Amino-beta-
Hydroxyvaleriansäure, 5-Methyl-DL-Tryptophan, 4-aza-D,L-leucine oder 3-hydroxy-D,L- leucine, β-2-thienylalanin, 3-hydroxyleucine, 4-azaleucin, 5,5,5-trifluoroleucin, Sulphonylurea, Imidazolinon, 5-Azauracil, 6-Azauracil, 2-Thiouracil, 5-Fluorouracil, 5-Bromouracil, 5- Azacytosine, 6-Azacytosine, Argininhydroxamat, 2-Thiouracil, 6-Azauracil, Azidothymidin, Azidodeoxyuridin, S-(2-aminoethyl)-cystein, alpha-methyl-Methionin, Ethionin, Norleucin, N- Acetylnorleucin, S-Trifluoromethylhomocystein, 2-Amino-5-heprenoitsäure, Seleno- methionin, Methioninesulfoxamin, Methoxine, 1-Aminocyclopentancarboxysäure, 1 ,2,4,- Triazole-D-alanin und die Isolation gegen solche Analoga resistenten Mutanten. Ein weiterer großer Nachteil bisheriger Verfahren zur Gewinnung von feedback-resistenten Enzymen und deren Nutzung um die Leistungsfähigkeit der Mikroorganismen zu verbessern ist es, dass viele Stämme nach ungerichteter Mutagenese und Einsatz von Analoga auf verbesserte Leistungsfähigkeit getestet werden müssen, da Analogaresistenz verschiedenste Ursachen haben kann, wie z.B. verbesserten Abbau des Analogons oder auch verbesserten Export des Analogons, was eine feedback-Resistenz vortäuschen kann und was dazu führt, dass kein neues feedback-resistentes Enzym gewonnen werden konnte und kein Stamm mit verbesserter Leistungseigenschaft vorliegt. Deswegen können bisherige Techniken die gezielte Gewinnung von feedback-resistenten Enzymen zu isolieren, die die Aufgabe haben, die Leistungsfähigkeit von Mikroorganismen zur Herstellung von Aminosäuren verbessern, nur teilweise, beziehungsweise unvollkommen oder auch gar nicht lösen.
Es ist daher die Aufgabe der Erfindung ein Verfahren zur Gewinnung von Vektoren, enthaltend ein Gen, kodierend für ein in seiner feedback-lnhibierung gemindertes oder ausgeschaltetes Enzym, zu schaffen, mit dem feedback-resistente Enzyme oder Enzyme, die in ihrer Inhibierung gegenüber der Wildform gemindert sind und die dafür kodierende Desoxyribonukleinsäure zuverlässiger, schneller und besser bereitgestellt werden können. Weiterhin sollen feedback-resistente Enzyme oder in ihrer Inhibierung geminderte Enzyme und die für sie kodierende Desoxyribonukleinsäuren zur Verfügung gestellt werden.
Ausgehend vom Oberbegriff des Anspruchs 1 und der Nebenansprüche wird die Aufgabe gelöst durch die im kennzeichnenden Teil angegebenen Merkmale.
Mit dem erfindungsgemäßen Verfahren ist es nunmehr möglich, feedback-resistente Enzyme oder gegenüber der Wildform in ihrer Inhibierung geminderte Enzyme sowie die für sie kodierende Desoxyribonukleinsäure und Vektoren enthaltend diese Desoxyribonukleinsäure be- reitzustellen bzw. zu gewinnen. Das Verfahren ist genauer, zuverlässiger und schneller als die Methoden nach dem Stand der Technik, da eine feedback-Resistenz oder Minderung der feedback-Resistenz durch die Verfahrensweise nicht vorgetäuscht wird, sondern in direktem kausalem Zusammenhang mit den durchgeführten Methoden festgestellt wird.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Im Folgenden soll die Erfindung in ihrer allgemeinen Form beschrieben werden.
- In einem ersten Schritt wird das feedback- sensitive Gen der Wildform eines Mikroorganismus als Ausgangsorganismus, beispielsweise eines Bakteriums oder einer Hefe in vitro mutagenisiert und mit einem Vektor ligiert.
- Mit dem Ligationsansatz wird ein Mikroorganismus transformiert und es wird eine
Vektorgenbank erhalten. Dabei ist der zur Transformation benutzte Mikroorganismus, der einen Metabolitsensor enthält, der bei erhöhter Metabolitkonzentration zur Synthese eines Fluoreszenzproteins führt.
- Im nachfolgenden Schritt werden Mikroorganismen mit der höchsten Fluoreszenz ausgewählt, und deren Vektoren isoliert. Es können auch Mikroorganismen ausgewählt werden, die eine durch den Metabolitsensor bedingte Fluoreszenz aufweisen, die im Vergleich zu dem Ausgangsorganismus der das Gen der Wildform enthält erhöht ist.
Mit diesen Verfahrensschritten kann ermittelt werden, welche Mutante die höchste oder eine erhöhte Produktion des gewünschten Produkts hervorbringt.
Die nach diesem Verfahren isolierten Vektoren enthalten Gene, die für in ihrer feedback- Inhibierung geminderte oder ausgeschaltete Enzyme kodieren. Diese in den Vektoren enthaltenen Gene, die für in ihrer feedback-lnhibierung ausgeschaltete oder geminderte Enzyme kodieren, können nach dem Fachmann bekannten Verfahren zur Produktion von Aminosäuren, Nukleotiden oder Intermediaten benutzt werden. Hierfür können beispielhaft die nachfolgende, dem Fachmann bekannte, Verfahrensschritte durchgeführt werden.
Die Gene, die für in ihrer feedback-lnhibierung geminderte oder ausgeschaltete Enzyme kodieren, können auf dem Vektor in den Produktionsstamm eingeführt werden, der dann zur besseren Produktion des gewünschten Produktes befähigt ist.
Alternativ können die Gene, die für in ihrer feedback-lnhibierung geminderte oder ausgeschaltete Enzyme kodieren in Vektoren eingebaut werden, die bereits zur Pro- duktion des gewünschten Produktes dienen und zu einer zusätzlichen Steigerung der Produktbildung führen.
- In einer weiteren Ausführungsform können die Gene, die für in ihrer feedback- Inhibierung geminderte oder ausgeschaltete Enzyme kodieren in das Chromosom des Produktionsstammes eingeführt werden, der dann zur besseren Produktion des gewünschten Produktes befähigt ist.
Unter einem feedback-sensitiven Gen im Sinne der Erfindung ist eine Desoxyribonukleinsäure zu verstehen, die für ein Enzym kodiert, das feedback-inhibiert wird. Dabei ist es egal, ob die feedback-lnhibierung durch das gebildete Produkt oder durch ein bei der Produktion entstehendes Intermediat erfolgt.
Unter dem Begriff„Wildform" im Sinne der Erfindung, ist ein Gen oder ein Gen aus einem Stamm zu verstehen, das noch nicht mit dem erfindungsgemäßen Verfahren verändert wurde oder das bereits einer erfindungsgemäßen Veränderung unterzogen wurde, und dessen kodierende Enzymaktivität noch weiter gesteigert werden soll, das also als Ausgangsgen für das erfindungsgemäße Verfahren eingesetzt werden soll. Dabei kann es sich um ein natürlich vorkommendes Gen oder um ein Gen aus einem Stamm, der genetisch verändert wurde, handeln und das bzw. der als Ausgangsmaterial für die erfindungsgemäß durchführte Muta- genese dient.
Die Mutagenisierung kann dabei vorzugsweise durch ungerichtete Methoden durchgeführt werden, wie beispielsweise durch eine fehlerhafte Polymerasekettenreaktion, die nach dem Stand der Technik bekannt sind.
Bei dem Ausgangsorganismus aus dem das zu verändernde Gen bezogen wird, kann es sich um jeden beliebigen Mikroorganismus handeln, der ein Gen für ein Protein enthält, welches feedback-reguliert bzw. feedback-inihibiert wird, beispielsweise um ein Bakterium, wie ein Corynebakterium, ein Enterobakterium oder eine Hefe, wie beispielsweise Saccha- romyces cerevisiae. Insbesondere können Corynebakterium glutamicum oder ein E. coli als Ausgangsorganismus eingesetzt werden.
Beispielhaft aber nicht beschränkend können für die in Tabelle I genannten Organismen und deren Gene und Enzyme für eine erfindungsgemäße Veränderung herangezogen werden.
Die in Tabelle 1 offenbarten Aminosäuresequenzen der feedback-gesteuerten Enzyme und die Nukleinsäuresequenzen der für sie kodierenden Gene als Ausgangsmaterialien für das erfindungsgemäße Verfahren umfassen erfindungsgemäß auch solche Sequenzen, die eine Homologie (auf Aminosäureebene) bzw. Identität (auf Nukleinsäureebene, exklusive der natürlichen Degeneration) größer als 70%, vorzugsweise 80%, mehr bevorzugt 85% (in Bezug auf die Nukleinsäuresequenz) bzw. 90% (auch in Bezug auf die Polypeptide), bevorzugt größer als 91%, 92%, 93% oder 94%, mehr bevorzugt größer als 95% oder 96% und besonders bevorzugt größer als 97%, 98% oder 99% (in Bezug auf beide Arten von Sequenzen) zu einer dieser Sequenzen aufweisen, sofern die Wirkungsweise bzw. Funktion und Zweck einer solchen Sequenz erhalten bleibt. Der Ausdruck "Homologie" (oder Identität) wie hierin verwendet, kann durch die Gleichung H (%) = [1-V/X]x 100, definiert werden, worin H Homologie bedeutet, X die Gesamtzahl an Nukleobasen/Aminosäuren der Vergleichssequenz ist und V die Anzahl an unterschiedlichen Nukleobasen/Aminosäuren der zu betrachtenden Sequenz bezogen auf die Vergleichssequenz ist. Auf jeden Fall sind mit dem Begriff Nukleinsäuresequenzen, welche für Polypeptide kodieren, alle Sequenzen umfasst, die nach Maßgabe der Degeneration des genetischen Codes möglich erscheinen. Selbiges gilt auch für alle anderen möglichen Gene oder Enzyme, die erfindungsgemäß verändert werden sollen und die nicht in Tabelle 1 aufgelistet sind.
Die prozentuale Identität zu den Aminosäuresequenzen, die in dieser Beschreibung durch die Zugangsnummer (Acession No.) in Tabelle 1 gegeben sind, kann mit im Stand der Technik bekannten Verfahren vom Fachmann ohne weiteres ermittelt werden. Ein geeignetes Programm, das erfindungsgemäß eingesetzt werden kann, ist BLASTP (Altschul et a\.. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17): 3389-3402).
Die in Tabelle 1 offenbarten Nukleinsäuresequenzen der kodierenden Gene für feedback- sensitive.Enzyme umfassen erfindungsgemäß auch Nukleinsäuresequenzen die mit den angegebenen hybridisieren. Anleitungen zur Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehrin- ger Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology 41 : 255-260 (1991 )). Die Hybridisierung findet unter stringenten Bedingungen statt, das heißt, es werden nur Hybride gebildet, bei denen Sonde, beispielsweise die zum Gen komplementäre Nukleotidsequenz, und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflusst bzw. bestimmt wird. Die Hybridisierungsreaktion wird im Allgemeinen bei relativ niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996). Für die Hybridisierungsreaktion kann beispielsweise ein Puffer entsprechend 5xSSC-Puffer bei einer Temperatur von ca. 50°C - 68°C eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2xSSC und gegebenenfalls nachfolgend 0,5xSSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50°C - 68°C, ca. 52°C - 68°C, ca. 54°C - 68°C, ca. 56°C - 68°C, ca. 58°C - 68°C, ca. 60°C - 68°C, ca. 62°C - 68°C, ca. 64°C - 68°C, ca. 66°C - 68°C eingestellt wird. Vorzugsweise werden die Waschschritte bei Temperaturen von ca. 62°C - 68°C, bevorzugt von 64°C - 68°C oder ca. 66°C - 68°C, besonders bevorzugt von ca. 66°C - 68°C durchgeführt. Es ist gegebenenfalls möglich die Salzkonzentration bis auf eine Konzentration entsprechend 0,2xSSC oder 0,1xSSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1 - 2°C von 50°C bis 68°C können Polynukleotidfragmente die für feedback-sensitive Enzyme kodieren isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% oder mindestens 96% bis 98% oder mindestens 99% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mann- heim, Deutschland, Catalog No. 1603558). Analog können auch andere nicht in Tabelle 1 genannte Aminosäuresequenzen und für sie kodierende Gene hybridisiert als Ausgangsmaterial für die erfindungsgemäße veränderten feedback-resistenten Gene eingesetzt werden.
Als Vektoren können alle bekannten Plasmidkörper, Transposons, Insertionselemente oder Phagen als Rohmaterial eingesetzt werden, in die die mutagenisierten Gene inseriert wur- den. Beispielhaft aber nicht beschränkend, können Vektoren die sich von pACYC184 (Bartolome et al.; Gene 102, 75-78 (1991 )), oder pTrc99A (Amann et al.: Gene 69: 301-315 (1988)) oder pSC101 (Vocke and Bastia, Proceedings of the National Academy of Sciences USA 80 (21 ): 6557-6561 (1983)) ableiten, verwendet werden. Derartige genetische Systeme sind beispielsweise in den Patentschriften US 4,822,738, US 5,804,414 und US 5,804414 be- schrieben. In gleicher weise können auch Vektoren wie pZ1 , pXZ10142,pEKEx2, pEKEx3, oderpEC-t19mob2 (zitiert im " Handbook of Corynebacterium glutamicum" (Herausgeber: L. Eggeling und M. Bott)) verwendet werden, die für das erfindungsgemäße Verfahren eingesetzt werden.
Als Metabolitsensoren können bekannte Metabolitsensoren, wie beispielsweise pSenLys, pSenArg, pSenSer, pSenOAS oder pJC1-lrp-brnF-eyfp eingesetzt werden. Der Metabolit- sensor umfasst eine für ein Autofluoreszenzprotein kodierende Gensequenz, wobei die Expression des Autofluoreszenzproteins von der intrazellulären Konzentration eines bestimmten Metaboliten abhängig ist. Dabei erfolgt die Kontrolle der Expression der für das Autofluoreszenzprotein kodierenden Gensequenz in Abhängigkeit von der intrazellulären Konzentration des bestimmten Metaboliten auf der Ebene der Transkription. In Abhängigkeit von der intrazellulären Konzentration des jeweiligen Metaboliten wird mithin mehr oder weni- ger mRNA gebildet, die in den Ribosomen unter Bildung des Autofluoreszenzproteins trans- latiert werden kann.
Der zur Transformation benutzte Mikroorganismus kann jeder beliebige Mirtoorganismus sein. Beispielhaft können Bakterien, Hefen oder Enterobakterien, beispielsweise E. coli, Corynebakterium glutamicum oder Saccharomyces cerevisiae genannt werden.
Dabei ist der zur Transformation benutzte Mikroorganismus ein Mikroorganismus, der einen Metabolitsensor enthält, der bei einer Metabolitkonzentration, die höher ist als die Metabolit- konzentration, die in dem Ausgangsorganismus vorliegt, zur Synthese eines Fluoreszenzpro- teins führt.
Zur Transformation können die Vektoren enthaltend Gene, die für in ihrer feedback- Inihibierung geminderte oder ausgeschaltete Enzyme kodieren, eingebracht werden. Diese können direkt aus der Selektion mittels Metabolitsensoren gewonnen werden. Bei der Ausführungsform bei der die Gene, die für in ihrer feedback-lnihibierung geminderte oder ausgeschaltete Enzyme kodieren, in andere Vektoren eingebracht werden, die bereits zur Produktion des gewünschten Produkts dienen kann es sich um Vektoren handeln, die bereits zur Produktion des gewünschten Produktes eingesetzt werden und die bereits Gene enthalten, die die Produktionseigenschaft des für die Produktion eingesetzten Mikroorganis- m us verbessern.
Bei der Ausführungsform bei der die Gene, die für in ihrer feedback- Inhibierung geminderte oder ausgeschaltete Enzyme kodieren in das Chromosom des Produktionsstammes eingeführt werden, der dann zur besseren Produktion des gewünschten Produktes befähigt ist, kann die Insertion nach der dem Fachmann bekannten Methoden an jede beliebige Stelle im Chromosom stattfinden.
Als Produktionsstamm können alle in der Biotechnologie eingesetzten Stämme verwendet werden, in die die Plasmide, die die mutagenisierten Gene, die für feedback-resistente Enzyme oder in ihrer feedback-Sensitivität gemindert sind, kodieren eingeführt wurden. Bei- spielhaft können coryneforme Bakterien, Enterobakterien oder Hefen, wie beispielsweise E.coli, Corynebakterium glutamicum, oder Saccharomyces cerevisiae genannt werden.
Das erfindungsgemäße Verfahren kann grundsätzlich für die Bereitstellung jedes interessierenden Enzyms und der dafür kodierenden Desoxyribonukleinsäure eingesetzt werden, dass der Inhibierung entweder vollkommen entzogen wird oder dessen feedback-lnhibierung zumindest gemindert werden soll. Beispielhaft aber nicht beschränkend können die in Tabelle 1 genannten Enzyme und jede der für sie kodierende Desoxyribonukleinsäure als erfindungsgemäß zu verändernde Materialien genannt werden.
Mit dem erfindungsgemäßen Verfahren kann die Herstellung von Aminosäuren und derer Derivate, Nukleotide oder Intermediate von Synthesewegen als Produkte gegenüber dem Stand der Technik verbessert werden. Das erfindungsgemäße Verfahren ermöglicht die Produktion von Aminosäuren und derer Derivate, Nukleotide oder Intermediate von Synthesewegen die von den entsprechenden Mikroorganismen vor der erfindungsgemäßen Veränderung nicht oder nur in geringem Maß produziert wurden.
Die mit dem erfindungsgemäßen Verfahren erhaltenen Nukleinsäuren und Enzyme können für die Herstellung von diesen gewünschten Produkten verwendet werden und sind bezüglich ihrer Funktion aktiver.
Im Folgenden soll die Erfindung im Einzelnen beispielhaft aber nicht beschränkend näher beschrieben werden.
Gegenstand der Erfindung sind Allele von Genen, die für gegenüber der Wildform in ihrer feedback-lnhibierung geminderte oder ausgeschaltete Enzyme kodieren die mittels Metabo- litsensoren gewonnen werden, wobei die Wildtypallele plasmidkodiert vorliegen, die nach in vitro Mutagenese in Mikroorganismen, bevorzugt coryneforme Bakterien und Enterobakte- rien, eingebracht werden die den Metabolitsensor enthalten, und Einzelzellen erzeugt wer- den, beziehungsweise isoliert werden, die als Zelle erkannt wird die ein nicht mehr reguliertes Enzym enthält.
Metabolitsensoren ermöglichen den direkten Nachweis erhöhter intrazellulärer Aminosäurekonzentrationen in Einzelzellen coryneformer Bakterien, wie zum Beispiel Corynebacterium glutamicum und in Enterobakterien, wie zum Beispiel Escherichia coli (WO201 1138006 ). Weiterhin ermöglichen Metabolitsensoren die Detektion erhöhter intrazellulärer Aminosäurekonzentrationen von L-Valin, L-Leucin, L-Asparagin, L-Lysin, L-Methionin, L-Threonin, L- Isoleucin, L-Histidin, L-Glutamat, L-Glutamin, Prolin, L-Arginin, L-Tryptophan, L-Tyrosin, L- Phenylalanin, L-Serin und L-Cystein, besonders bevorzugt die von L-Histidin, L-Arginin, L- Lysin, L-Leucin.
Metabolisensoren ermöglichen auch den Nachweis erhöhter Konzentrationen von Intermedi- aten, wie beispielsweise Intermediaten der Aminosäure oder Nukleotidsynthese, wie beispielsweise O-Acetylserin, O-Acetylhomoserin, Cystathionin, Orotidine-5'-Phosphat, 5- Phosphoribosyldiphosphat, oder lnosin-5'-phosphat.
Das Verfahren zur Gewinnung der erfindungsgemäß veränderten Enzyme ist dadurch ge- kennzeichnet, dass die Gene bzw. Allele deren feedback-lnhibierung aufgehoben oder ver- mindert werden soll vektorkodiert, vorzugsweise plasmidkodiert vorliegen, und nicht chromosomal kodiert sind. Die Gene, bzw. Allele der Enzyme, die erfindungsgemäß verändert werden sollen sind insbesondere die, der Aminosäuresynthesewege leuA.ilvN, ilvB.ilvl, ilvH, argA.trpD, trpE, asnA, asnB.pyrB, pyrl, lysC, metL, thrA, hisG, carA, carB, tyrA, pheA, cysK, cysM, serA, aroG, dapA, gdh, gltB, gltD, glnA, proB, metE, metX, metA.metL, gnd, zwf, thrA, metH, prs, pheA, tyrA, proC, prs, cysE, ilvA, tyrB, bevorzugt lysC, hisG, argB, cysE und leuA. Diese Gene werden in vitro nach bekannten Verfahren mutagenisiert. Die Nukleotidsequen- zen dieser Gene und die kodierten Polypeptidsequenzen von C. glutamicum sind beschrieben in EP-A-1108790 und auch hinterlegt im National Center for Biotechnology Information (prs) database of the National Library of Medicine (Bethesda, MD, USA) unter den Zugangsnummern NC_003450.2 und BX927148.1 bis BX927157.1. Die Nukleotidsequenzen dieser Gene und die kodierten Polypeptidsequenzen von E. coli sind durch Blattner et al. beschrieben (Science 277: 1453-1462 (1997)) und hinterlegt im National Center for Biotechnology Information (NCBI) database of the National Library of Medicine (Bethesda, MD, USA) unter den Zugangsnummer NC_000913.2. Die Peptide deren feedback-lnhibierung erfindungsgemäß zu verringern oder auszuschalten ist schließen auch jene ein, die mindestens 90 bis 95%, insbesondere 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% oder 99% identisch mit den Polypeptiden der Enzyme LeuA, llvN, llvB, IM, IlvH, ArgA, TrpD, TrpE, AsnA, AsnB, PyrB, Pyrl, LysC, MetL, ThrA, HisG, CarA, CarB, TyrA, PheA, CysK, CysM, SerA, AroG, DapA, Gdh, GltB, Gnd, Zwf, OpcA, GltD, GlnA, ProB, MetE, MetX, MetA, MetL, Gnd, Zwf, ThrA, MetH, Prs, PheA, TyrA, ProC, Prs, CysE, IlvA, TyrB, bevorzugt LysC, HisG, ArgB, CysE, und LeuA sind. Diese Erfindung bezieht sich auch auf die Nukleotidsequenzen ilvN, ilvB.ilvl, ilvH, argA, trpD, trpE, asnA, asnB, pyrB, pyrl, lysC, metL, thrA, hisG, carA, carB, tyrA, pheA, cysK, cysM, serA, aroG, dapA, gdh, gltB, gltD, glnA, proB, metE, metX, metA, metL, gnd, zwf, thrA, metH, prs, pheA, tyrA, proC, prs, cysE, ilvA, tyrB, bevorzugt lysC, hisG, argB, cysE und leuA, und solche Sequenzen, die mindestens 70%, vorzugsweise 80%, mehr bevorzugt 85% (in Bezug auf die Nukleinsäuresequenz) bzw. 90%, bevorzugt größer als 91 %, 92%, 93% oder 94%, mehr bevorzugt größer als 95% oder 96% und besonders bevorzugt größer als 97%, 98% oder 99% Homologie zu einer dieser Sequenzen aufweisen, so- fern die Wirkungsweise bzw. Funktion und Zweck einer solchen Sequenz erhalten bleibt oder identisch dazu ist.
Zur Einführung der ortsunspezifischen Mutationen in die plasmidkodierten Gene der Enzyme wird bevorzugt eine in vitro Mutagenese unter Zuhilfenahme einer fehlerhaften Polymerase- kettenreaktion (PCR) und einer Amplifikationstechnik durchgeführt. Dabei wird das zu mutie- rende Gen einer PCR unter Verwendung einer Polymerase unterzogen, die abhängig von den Bedingungen der Reaktion einzelne Nucleotide gegenüber der Wildform falsch in die synthetisierten Gene einbaut (Tindali, K.R. and T.A. Kunkel, Fidelity of DNA synthesis by the Thermus aquaticus DNA Polymerase. Biochemistry, 1988. 27(16): p. 6008-13). Eine häufige Variante dieser Methode beinhaltet die Verwendung von Mangan(ll)-lonen oder von Nukleo- tidanaloga im PCR Ansatz (Cadwell R. C et al. (1992) PCR Methods Appl. 2:28-33./Leung D. W. et al. (1989) Techniques 1 :11-15). Diese Techniken zur Mutationseinführung werden als "Error-Prone-PCR (epPCR)" bezeichnet (Labrou NE. Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sei. 2010;11 :91-100). Die Mutationen können beispielsweise Punktmutationen sein, es können z.B. Substitutionen, Deletionen oder Insertionen durch die Polymerase erzeugt werden. Die Mutationsrate beträgt zwischen 1-40 Mutationen pro 1 kb, bevorzugt 1-5 Mutationen pro 1 kb.
Die Vektoren, vorzugsweise Plasmide die die erfindungsgemäß erhaltenen Mutationen in Genen der Enzyme enthalten werden anschließend durch Transformation in einen Mikro- roorganismus, wie beispielsweise E. coli, C. glutamicum oder Saccharomyces cerevisiae eingebracht. Der Begriff Transformation umfasst sämtliche Methoden zur Übertragung von Polynukleotiden, insbesondere DNA, in einen gewünschten Mikroorganismus. Hierzu gehö- ren unter anderem die Verwendung von isolierter DNA bei der Transformation, Elektrotrans- formation bzw. Elektroporation, die Übertragung durch Zellkontakt wie bei der Konjugation oder die Übertragung von DNA mittels Partikelbeschuss.
Im nachfolgenden Verfahrensschritt des erfindungsgemäßen Verfahrens werden einzelne transformierte Zellen in der Zellsuspension mit erhöhter intrazellulärer Konzentration von Metaboliten gegenüber der Wildform des durch den Metabolitsensor detektierbaren Metaboliten durch Nachweis der intrazellulären Fluoreszenz identifiziert. Dazu wird die Zellsuspension elektromagnetischer Strahlung in derjenigen Frequenz ausgesetzt, welche das Autofluoreszenzprotein des Metabolitsensors zur Emission von Licht anregt. Als Autofluoreszenzprotein bevorzugt sind Proteine, die aus Gensequenzen abgelesen werden, welche für fluores- zierende Proteine beispielsweise der Gattung Aequora, wie das Green Fluorescent Protein (GFP), und Varianten davon, die in einem anderen Wellenlängenbereich fluoreszieren (z.B. Yellow Fluorescent Protein, YFP; Blue Fluorescent Protein, BFP; Cyan Fluorescent Protein, CFP) oder deren Fluoreszenz verstärkt ist (enhanced GFP oder EGFP, beziehungsweise EYFP, EBFP oder ECFP), kodieren. Ferner können erfindungsgemäß auch Gensequenzen verwendet werden, welche für andere autofluoreszierende Proteine, z.B. DsRed, HcRed,
AsRed, AmCyan, ZsGreen, AcGFP, ZsYellow, wie sie von BD Biosciences, Franclin Lakes, USA, bekannt sind, kodieren. Das besonders bevorzugte Autofluoreszenzprotein ist dabei EYFP bzw. das dafür kodierende Gen.
Gemäß einer besonderen Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt im Anschluss, vorzugsweise im unmittelbaren Anschluss an das Identifizieren der Zellen ein weiterer Verfahrensschritt, in dem die identifizierten Zellen aus der Zellsuspension abgetrennt werden, wobei dieses Abtrennen vorzugsweise mittels Durchflusszytometrie (FACS = fluorescence activated cell sorting), ganz besonders bevorzugt mittels Hochdurchflusszyto- metrie (HT-FACS = high througput fluorescence activated cell sorting) erfolgt. Einzelheiten zur Analyse von Zellsuspensionen mittels Durchflusszytometrie können beispielsweise Sack U, Tarnok A, Rothe G (Hrsg): Zelluläre Diagnostik. Grundlagen, Methoden und klinische Anwendungen der Durchflusszytometrie, Basel, Karger, 2007, Seiten 27 - 70 entnommen werden.
Mittels des erfindungsgemäßen Verfahrens ist es daher möglich, in einer Zellsuspension in der Transformanten vorliegen, die eine Genbank plasmidkodierter Enzyme enthält, gezielt diejenigen Zellen zu isolieren, in denen feedback-resistente Enzyme zu einer gesteigerten intrazellularen Konzentration eines bestimmten Metaboliten führt.
Gegenstand der Erfindung ist die Nutzung solcherart gewonnener feedback-resistenter Enzyme oder in ihrer feedback-Sensitivität geminderter Enzyme und der für sie kodierenden Gene zur Verbesserung der Leistungseigenschaft von Mikroorganismen. Dies geschieht indem die durch das Verfahren gewonnen Vektoren, für die hier beispielhaft aber nicht ein- schränkend im Folgenden Plasmide angeführt werden, die für feedback-resistente Enzyme oder in ihrer feedback-Sensitivität geminderte Enzyme, kodieren, unmittelbar in den Mikroorganismus eingebracht werden. Dazu werden die Plasmide nach bekannten Verfahren isoliert und der zu verbessernde Mikroorganismus wird mit diesen Plasmiden transformiert. Der Begriff Transformation umfasst sämtliche Methoden zur Übertragung von Polynukleotiden, insbesondere DNA, in ein gewünschtes Bakterium. Hierzu gehören unter anderem die Verwendung von isolierter DNA bei der Transformation, Elektrotransformation bzw. Elektropora- tion, die Übertragung durch Zellkontakt wie bei der Konjugation oder die Übertragung von DNA mittels Partikelbeschuss.
In einer weiteren Ausführungsform werden die durch das Verfahren gewonnenen Gene, die für feedback-resistente Enzyme oder in ihrer feedback-Sensitivität geminderte Enzyme, kodieren, zunächst in andere Plasmide eingebracht, die beispielsweise bereits zusätzliche Gene enthalten die bereits die Leistungseigenschaft des Mikroorganismus verbessern, oder die auch einen Replikationsursprung enthalten der die Replikation des Plasmids in dem zu verbessernden Mikroorganismus ermöglicht. Solche Plasmide sind dem Fachmann bekannt, wie beispielsweise in Enterobacteriaceae replizierbare Plasmidvektoren, wie z.B. von pA-
CYC184 abgeleitete Kloniervektoren ( Bartolome et al.; Gene 102: 75-78 (1991 )), pTrc99A ( Amann et al.; Gene 69: 301-315 (1988)) oder pSC101 -Derivate ( Vocke und Bastia; Procee- dings of the National Academy of Sciences USA 80(21 ): 6557-6561 (1983)) oder auch Plasmide die in Corynebacterien und verwandten Organismen replizieren und im Handbook of Corynebacterium glutamicum (eds. Eggeling and Bott), in Kapitel 23 Seiten 535-66 angeführt sind oder in der EP 1097998 B1 oder auch die kommerziell erhätlichen Plasmide für Bacillus Stämme von MoBiTech GmbH, Lotzestrasse 22a, 37083 Goettingen oder auch die für Lac- tobacillus beschriebenen (Wang TT, Lee BH, 1997, Crit Rev Biotechnol. Plasmids in Lacto- bacillus. 17(3):227-72) oder kommerziell erhältlichen Plasmide (MoBiTech GmbH, Lotzestrasse 22a, 37083 Goettingen). In einer weiteren Ausführungsform werden die durch das Verfahren gewonnenen Gene, die für feedback-resistente Enzyme oder in ihrer feedback-Sensitivität geminderte Enzyme, kodieren in das Genom des zu verbessernden Mikroorganismus eingebracht. Dies ist beispielsweise von Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) oder in der WO03/040373 beschrieben. Bei dieser Methode wird das Gen in einen Plasmidvektor kloniert, der in dem Wirt dessen Leistungseigenschaften verbessert werden sollen nicht replizieren kann. Als Vektoren kommen beispielsweise pSUP301 ( Simon et al., Bio/Technology 1 , 784-791 (1983)), pK18mob oder pK19mob ( Schäfer et al., Gene 145, 69- 73 (1994)), pGEM-T (Promega Corporation, Madison, Wl, USA), pCR2.1-TOPO ( Shuman (1994). Journal of Biological Chemistry 269:32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534- 541 (1993)), pEM1 ( Schrumpf et al, 1991 , Journal of Bacteriology 173:4510-4516) oder pBGS8 ( Spratt et al.,1986, Gene 41 : 337-342) in Frage. Der Plasmidvektor der das für das feedback-resistente Enzym oder in ihrer feedback-Sensitivität geminderte Enzym kodiert, sowie gegebenfalls einschließlich die Expressions- und/oder Regulationssignale, und die Randbereiche des Gens, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm dessen Leistungseigenschaft verbessert werden soll überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiology Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm eine Kopie des heterologen Gens einschließlich des Plasmidvektors an dem gewünschten Genort des Chromosoms von beispielsweise Corynebakterium glutamicum oder E. coli, der über die homologen Nukleotid- Sequenzen auf dem Plasmid vorbestimmt war. Mittels eines geeigneten zweiten, eine Excisi- on bewirkenden "cross-over"-Ereignisses im Zielgen bzw. in der Zielsequenz erreicht man den Einbau nur des Gens des feedback-resistenten oder in seiner feedback-Sensitivität geminderten Enzyms.
Gegenstand der Erfindung sind in ihrer feedback-lnihbierung geminderte oder ausgeschalte- te Enzyme und die dafür kodierenden Gene, die zu einer gesteigerten intrazellulären Konzentration eines bestimmten Metaboliten, insbesondere Aminosäuren wie L-Valin, L-Leucin, L-Asparagin, L-Lysin, L-Methionin, L-Threonin, L-Isoleucin, L-Histidin, L-Glutamat, L- Glutamin, Prolin, L-Arginin, L-Tryptophan, L-Tyrosin, L-Phenylalanin, L-Serin und L-Cystein, führen. Gegenstand der Erfindung sind insbesondere Enzyme der L-Lysinsynthese und ganz besonders auch feedback-resistente Aspartatkinasen die zu L-Lysin führen. Ebenso sind Gegenstand der Erfindung in ihrer feedback-lnihbierung geminderte oder ausgeschaltete Enzyme und die dafür kodierenden Gene die zu einer gesteigerten Konzentration von Inter- mediaten der Aminosäure- oder Nukleotidsynthese führen, wie beispielsweise O-Acetylserin, O-Acetylhomoserin, Cystathionin, Orotidine-5'-Phosphat, 5-Phosphoribosyldiphosphat oder lnosin-5'-phosphat. So können beispielhaft Mutationen in dem Aspartatkinasegen lysC in den Nukleotidpositio- nen 60, 61 , 233, 556 und 982 so wie in SEQ. ID. NO. 9 angegeben, mit den Aminosäureaustauschen 20, 21 , 78, 186, 328 so wie in SEQ. ID. NO. 10 angegeben oder in den Nukleotid- positionen 60, 61 , 932, 1196, so wie in SEQ. ID. NO. 11 angegeben, mit den Aminosäureaustauschen in den Positionen 20,21 ,311 ,399 so wie in SEQ. ID. NO. 12 angegeben oder in der Nukleotidposition 61 , so wie in SEQ. ID. NO. 13 angegeben, mit den Aminosäureaustauschen in den Positionen 21 so wie in SEQ. ID. NO. 14 angegeben oder in den Nukleotidposi- tionen 61 , 833, 839, so wie in SEQ. ID. NO. 15 angegeben, mit den Aminosäureaustauschen in den Positionen 21 , 278, 280 so wie in SEQ. ID. NO. 16 angegeben oder in den Nukleotid- positionen 61 , 833, 839, 1172 so wie in SEQ. ID. NO. 33 angegeben, mit den Aminosäure- austauschen in den Positionen 21 , 278, 280, 391 so wie in SEQ. ID. NO. 34 angegeben oder in den Nukleotidpositionen 61 und 932, so wie in SEQ. ID. NO. 17 angegeben, mit den Aminosäureaustauschen in den Positionen 21 und 311 so wie in SEQ. ID. NO. 18 angegeben oder in den Nukleotidpositionen 61 , 932, 1 196, so wie in SEQ. ID. NO. 19 angegeben, mit den Aminosäureaustauschen in den Positionen 21 , 311 , 399 so wie in SEQ. ID. NO. 20 angegeben oder in den Nukleotidpositionen 61 und 1094, so wie in SEQ. ID. NO. 21 angegeben, mit den Aminosäureaustauschen in den Positionen 21 und 365 so wie in SEQ. ID. NO. 22 angegeben oder in den Nukleotidpositionen 61 , 908 so wie in SEQ. ID. NO. 29 angegeben, mit den Aminosäureaustauschen in den Positionen 21 , 303 so wie in SEQ. ID. NO. 30 angegeben oder in den Nukleotidpositionen 715 so wie in SEQ. ID. NO. 31 angegeben, mit den Aminosäureaustauschen in den Positionen 239 so wie in SEQ. ID. NO. 32 angegeben oder in den Nukleotidpositionen 71 , 932, so wie in SEQ. ID. NO. 23 angegeben, mit den Aminosäureaustauschen in den Positionen 24, 311 so wie in SEQ. ID. NO. 24 angegeben oder in den Nukleotidpositionen 205, 370, 631 , 680, 703, 1049, 1120, so wie in SEQ. ID. NO. 25 angegeben, mit den Aminosäureaustauschen in den Positionen 69,124,211 ,
227,235,350,374 so wie in SEQ. ID. NO. 26 angegeben, der in den Nukleotidpositionen 476, 1010, 1021 , so wie in SEQ. ID. NO. 27 angegeben, mit den Aminosäureaustauschen in den Positionen 159, 337, 341 so wie in SEQ. ID. NO. 28 angegeben, erhalten werden. Dabei kann auch jeweils nur einer der Nukleotid- und Aminosäureaustausche pro Allel und Enzym vorliegen oder auch mehrere, nämlich bis zu sieben, wie in SEQ. ID. NO. 25, beziehungsweise SEQ. ID. NO. 26 angegeben.
Disclaimer:
Gegenstand der Erfindung sind nicht Mutationen die aus dem nachstehend angeführten Stand der Technik bekannt sind, wie die Mutation lysC A279T die in der Anmeldung JP 1994062866-A (Sequenz 1 ) beschrieben ist oder auch lysC A279V aus JP 1994261766-A (Sequenz 3), lysC S301 F aus JP 1994261766-A (Sequenz 4), lysC T308I aus JP
1994261766-A (Sequenz 5), lysC G345D (Follettie und Sinskey, Datenbankeintrag L16848), lysC R320G, lysC G345D (Jetten et al., Datenbankeintrag L27125), lysC S301 F
(US3732144), lysC S381 F (EP0435132), lysC S317A (US5688671 (Sequenz 1 )) und auch lysC T380I (WO 01/49854).
Gegenstand der Erfindung sind auch andere Aminosäureaustausche in den durch Metabolit- sensoren identifizierten Positionen und in vergleichbaren Positionen der Enzyme. So beispielsweise in dem Aspartatkinase Enzym der SEQ. ID. NO. 28, wo in der Position 159 Val gegen Gly ausgetauscht ist, kann bevorzugt auch jede andere proteinogene Aminosäure vorhanden sein, wie Lys, Asn, Arg, Ser, Thr, lle, Met, Glu, Ala, Val, Gin, His, Pro, Leu, Tyr, Trp, Cys oder Phe. Bei dem gleichen Enzym ist in Position 337 Asn gegen Ser ausgetauscht und es kann auch jede andere proteinogene Aminosäure in dieser Position vorhanden sein, wie Lys, Asn, Arg, Thr, lle, Met, Glu, Asp, Ala, Val, Gin, His, Pro, Leu, Tyr, Trp, Cys oder Phe oder in Position 341 anstelle des Austausches Asp gegen Asn jede andere proteinogene Aminosäure wie Lys, Arg, Ser, Thr, lle, Met, Glu, Asp, Ala, Val, Gin, His, Pro, Leu, Tyr, Trp, Cys oder Phe.
Unter dem Ausdruck "vergleichbare Position" wird erfindungsgemäß eine Position verstanden, die durch Vergleich der Ausgangssequenz mit der Vergleichsequenz unter Anwendung eines Sequenz-Vergleichs-Programms (BLAST, Altschul et al. J. Mol. Biol. 1990, 215, 403- 410) bei der ins Auge gefassten Position der Ausgangssequenz eine Aminosäuren-Position in der Vergleichssequenz liefert, die sich von der zu vergleichenden Position um mehr als ±5, bevorzugt ±4, weiter bevorzugt ±3, noch weiter bevorzugt ±2, extrem bevorzugt ±1 und äußerst bevorzugt um keine Position unterscheidet.
Die Erfindung wird nun anhand nicht limitierender Beispiele näher erläutert.
Beispiel 1 Herstellung einer erfindungsgemäßen Zelle gemäß der ersten Ausführungsform am Beispiel einer Zelle, bei der eine für ein Enzym kodierende Gensequenz mutiert und selektioniert wird, sodass feedback-resistente Enzyme und erfindungsgemäße Zellen mit feedback- resistenten Enzymen mit verbesserter Leistungseigenschaft erhalten werden, wobei das Enzym Aspartatkinase ist.
a) Konstruktion des Vektors pUC18-lysC und error prone PCR des Aspatatkinasegens lysC
Mit den Primerpaaren rspl (SEQ. ID. NO. 1 ) und univ (SEQ. ID. NO. 2) sowie chromosomaler DNA des Wildtyps von C. glutamicum ATCC 13032 als Template wurde das Gen lysC, das für das Enzym Aspartatkinase kodiert amplifiziert.
(SEQ. ID. NO. 1 ):
GATGGATCCGTGGCCCTGGTCGTACAGAAATATGG
(SEQ. ID. NO. 2): GATGTCGACTTAGCGTCCGGTGCCTGCATAAACG Die chromosomale DNA von C. glutamicum wurde wie bei Tauch et al. beschrieben isoliert (Tauch et al., 1995, Plasmid 33:168-179). Das Amplifikat wurde mit BamHI und Sali behandelt, und mit ebenso behandeltem pUC18 ligiert, und es wurde pUC18-lysC erhalten.
In der error prone PCR zur Einführung der Mutationen wurden 10 ng pUC18-lysC als
Template pro Reaktion eingesetzt, sowie 0,1 - 0,8mM Mn2+, wobei bei der niedrigeren Konzentration von unter < 0,2mM Mn2+ mit Mg2+, eine Gesamtkonzentration von mindestens 0,2mM eingestellt wurde. Pro Reaktion wurden x μΙ Taq Polymerase von Fermentas (Katalog Nr.: EP0401 ) zugesetzt. Als primer wurden die Polynukleotide
(SEQ. ID. NO. 3): C AC AG G AAACAG CT AT G AC C ATG
(SEQ. ID. NO. 4): CGCCAGGGTTTTCCCAGTCACGAC
benutzt. Die Reaktionen wurden 30 Minuten inkubiert. Anschließend wurden die Reaktions- produkte mit BamHI und Sali behandelt und mit dem ebenso behandelten Vektor pSen- LysTK(b)-lysC ligiert. Mit den Ligationsprodukten wurde E. coli DH5amcr transformiert (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649). Zur Konstruktion des Vektors pSenLysTK(b)-lysC wurde mit den Primerpaaren LysC- PSLTKC-fw (SEQ.ID.NO. 5) und LysC-PSLTKC-rv (SEQ.ID.NO.6) sowie chromosomaler DNA des Wildtyps von C. glutamicum ATCC 13032 als Template das Gen lysC mit den vorangehenden 520bp amplifiziert. Das Amplifikat wurde mit Xhol und Sali geschnitten und in Sali geschnittenen pSenLysTK (WO201 1138006) ligiert.
(SEQ.ID.NO. 5):
GCCCTCGAGAAAACAAAAGGCTCAGTCGGAAGACTGGGCCTTTTGTTTTGGTACCAGC GGCAGCGTGAACATC (SEQ.ID.NO. 6):
GCCGTCGACACGGAATTCAATCTTACGGCCTGCGGAACG
Die mit den Ligationsprodukten transformierten E. coli DH5amcr Zellen wurden auf LB Agarplatten (Lennox, 1955, Virology, 1 :190) ausplattiert, der 40 mg pro Liter Kanamycin enthielt. b) Präparation der lysC Genbank und Transformation von Corynebacterium glutamicum
Nach Übernacht Inkubation der mit den Ligationsprodukten transformierten E. coli DH5amcr Zellen wurden LB Agarplatten mit 1 ml 0.9% NaCI abgeschwemmt und die Plasmid DNA nach gängigen Methoden präpariert (Sambrook et al., Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA). Mit dieser Plasmid DNA Präparation wurden elektrokompetente Zellen von C. glutamicum ATCC 13032 transformiert, so wie es bei Kirchner, O. und Tauch, A. beschrieben ist (J Biotechnol. 2003 Sep 4;104(1-3):287-99). Die transformierten Zellen wurden für 2 Stunden regeneriert, dann wurde 25 mg pro Liter Kanamycin zugesetzt und 1 :10 Verdünnungen dieser Suspension in CGXII Medium 15 Stunden inkubiert. Das CGXII Medium ist bei Keilhauer et al. in J Bacteri- ol. 1993 Sep;175(17):5595-603 beschrieben.
c) Selektion von lysC Muteinen
Zur Identifizierung und Abtrennung der Zellen mit mutierten Aspartatkinasen wurde die Zellsuspension in CGXII Medium auf eine optische Dichte unter 0.1 eingestellt und unmittelbar dem FACS A IA II high-speed cell sorter (Becton Dickinson GmbH, Tullastr. 8-12, 69126 Heidelberg) zugeführt. Die Analyse erfolgte mit den Anregungswellenlängen von 488 und 633 nm und die Detektion bei den Emissionswellenlängen von 530 ± 15 nm und 660 ± 10 nm bei einem Probedruck von 70 psi. Die Daten wurden mit der zum Gerät gehörenden Software Version BD DIVA 6.1.3 analysiert. Die Mantelflüssigkeit wurde BD FACSflow verwendet. Das elektronische gating wurde anhand des forward und backward scatters eingestellt um nicht bakterielle Partikel auszuschließen. Um EYFP-positive Zellen zu sortieren wurde die nächste Stufe des elektronischen gatings gewählt um nicht-fluoreszierende Zellen auszuschließen. Fluoreszierende Zellen wurden auf Petrischalen die brain heart infusion Agar (Difco) enthielten aussortiert. Beispiel 2
Herstellung einer erfindungsgemäßen Zelle mit feedback-resistenten Enzymen mit verbesserter Leistungseigenschaft, wobei das Enzym Aspartatkinase ist und neue Aspartatkinase- sequenzen.
a) Lysinbildung durch isolierte Zellen mit mutierter Aspartatkinase als Enzym.
EYFP-positive, auf Petrischalen aussortierte Einzelzellen wurden in 0,75 ml CGXII Medium in Mikrotiterplatten des Typs Flowerplate angeimpft. Die Flowerplates wurden von m2p-labs GmbH (Aachen) bezogen und in einemMicrotron high-capacity microplate incubator (Infors AG) mit einer Schüttelgeschwindigkeit von 990 rpm und einem Schüttelradius von 3 mm über Nacht inkubiert. Anschließend wurde in ein neues CGXII Medium in Mikrotiterplatten des
Typs Flowerplate angeimpft und nach 48 Stunden Proben zur Lysinbestimmung entnommen.
Die Lysinbestimmung erfolgte als o-Phthdialdehyd Derivat mittels Hochdruckflüssigchroma- tografie mit einem uHPLC 1290 Infinity System (Agilent) auf einer Zorbax Eclipse AAA C18 3.5 micron 4.6 x 75 mm Revered Phase Säule und einem Fluoreszenzdetektor. Als Eluenz wurde ein Gradient aus 0.01 M Na-Borat pH 8.2 mit steigender Methanolkonzentration benutzt und Detektion der fluoreszierenden Isoindolderivate erfolgte bei einer Anregungswellenlänge von 230 nm und einer Emissionswellenlänge von 450 nm. Es wurden die in Tabelle 2 gezeigten L-Lysinwerte bestimmt, die gegenüber dem Ausgangsstamm eine Verbesserung der L-Lysinbildung zeigen.
Tabelle 2: Stämme bei der die für die Aspartatkinase kodierende Gensequenz auf einem Plasmid mutiert wurde und die mittels Metabolitsensor auf verbesserte Leistungseigenschaft selektioniert wurden und vermehrt L-Lysin ausscheiden.
Stamm L-Lysin
(mM)
Ausgangsstamm ATCC13032 0,2
Stamm lysC-ls42 21 ,1
Stamm lysC-ss77 44,9
Stamm lysC-ss12 20,0
Stamm lysC-ls90 39,0
Stamm lysC-ls2 24,9
Stamm lysC-ss92 44,3 Stamm lysC-ls15 27,1
Stamm lysC-ls57 29,5
Stamm lysC-ss91 14,0
Stamm lysC-ls1 19,7
Stamm lysC-ls8 23,0
Stamm lysC-ss63 32,5
Stamm lysC-ls56 30,9
b) Bestimmung der Sequenzen der Aspartkinasen
Von den in Tabelle 2 gezeigten Stämmen wurde eine Kolonie PCR durchgeführt, so wie es bei Lee and Cooper beschrieben ist (Improved screen for bacterial colonies, Biotechniques 18(2):225-226). Dazu wurden die folgenden zwei Primer benutzt:
(SEQ.ID.NO. 7): TGAGACGCATCCGCTAAAGCC
(SEQ.ID.NO. 8): ATCTTACGGCCTGCGGAACGTG
Die Amplifikate wurden mit dem QIAquick PCR Purification Kit von Qiagen (Katalognummer 28104) aufgereinigt und durch das Unternehmen GATC sequenziert. Die erhaltenen DNA- Sequenzen wurden dann mit den bekannten Algorithmen bzw. dem Sequenzanalyse- Programm GCG von Butler ( Methods of Biochemical Analysis 39, 74-97 (1998)), dem FASTA-Algorithmus von Pearson und Lipman (Proceedings of the National Academy of Sciences USA 85, 2444-2448 (1988)) oder dem BLAST-Algorithmus von Altschul et al. (Natura Genetics 6, 119-129 (1994)) untersucht und mit den in öffentlich zugänglichen Daten- banken (EMBL, Heidelberg, Deutschland; NCBI, Bethesda, MD, USA) vorhandenen Sequenzeinträgen verglichen.
Die Sequenzidentitätsnummern (SEQ.ID.NO.) der lysC Allele aus den jeweiligen in Tabelle 2 genannten Stämmen die die Plasmide mit dem lysC-Allelen in pSenLysTK(b) enthalten sind in Tabelle 3 angegeben. Zusätzlich sind dort auch die Sequenzidentitätsnummern
(SEQ.ID.NO.) der Aspartatkinase Polypeptidsequenzen mit angegeben. Ferner sind die Nukleotidaustausche der lysC Allele mit Angabe der Position in der Polynukleotidsequenz mit angeführt, sowie die Aminosäureaustausche der LysC Polypeptide mit Angabe der Position in der Polypeptidsequenz. Tabelle 3: Nukleotidsequenzen und Polypeptidsequenzen des Enzyms Aspartatkinase welche zu verbesserten Leistungseigenschaften führen.
Allel Nukleoti- Polypeptid Aminosäureaus- daustausch(e) tausch(e)
SEQ. ID. lysC-ls42 a60c,a61g,a233g, SEQ. ID. LysC-ls42 R20S,N21 D,N78S, NO. 9 a556g,a982g NO. 10 I186V,K328E
SEQ. ID. lysC- a60c,a61g,c932t, SEQ. ID. LysC-ss77 R20S,N21 D,T311 I, NO. 11 ss77 gl 196t NO. 12 R399L
SEQ. ID. lysC- a61g SEQ. ID. LysC-ss12 N21 D
NO. 13 ss12 NO. 14
SEQ. ID. lysC-ls90 a61g,a833g,c839t SEQ. ID. LysC -Is90 N21 D, E278G, NO. 15 NO. 16 A280V
SEQ. ID. lysC- a61g,c932t SEQ. ID. LysC - N21 D.T311 I NO. 17 ss92 NO. 18 ss92
SEQ. ID. lysC-ls15 a61g,c932t, gl 196t SEQ. ID. LysC -Is15 N21 D.T311 I, NO. 19 NO. 20 R399L
SEQ. ID. lysC-ls57 a61g,t1094a SEQ. ID. LysC -Is57 N21 D, M365K NO. 21 NO. 22
SEQ. ID. lysC-ls8 a71g,c932t SEQ. ID. LysC -Is8 E24G, T311 I NO. 23 NO. 24
SEQ. ID. lysC- c205t,g370c,a631g, SEQ. ID. LysC - L69F,124P,211V, NO. 25 ss63 t680c,a703g,t1049c, NO. 26 ss63 L227P, 235D, a1 120g 350A.374D
SEQ. ID. lysC-ls56 t476g,a1010g, SEQ. ID. LysC -Is56 V159E, N337S, NO. 27 g1021 a NO. 28 D341 N
SEQ. ID. lysC- a61g,t908c SEQ. ID. LysC - N21 D.V303A NO. 29 ss91 NO. 30 ss91
SEQ. ID. lysC-ls1 a715g SEQ. ID. LysC -Is1 T239A
NO. 31 NO. 32
SEQ. ID. lysC-ls2 a61g,a833g,c839t, SEQ. ID. LysC -Is2 N21 D.E278G, NO. 33 a1172g NO. 34 A280V, E391G

Claims

P a t e n t a n s p r ü c h e
Verfahren zur Herstellung von Vektoren enthaltend ein für ein in seiner feedback- Inhibierung gemindertes oder ausgeschaltetes Enzym kodierendes Gen, bei dem
- Gene, die fürfeedback-inhibierte Enzyme kodieren, in vitro mutagenisiert werden,
- in einem weiteren Schritt in Vektoren ligiert werden,
- die Vektoren jeweils in einem weiteren Schritt in einen Mikroorganismus transformiert werden, der einen Metabolitsensor enthält, der bei erhöhter Metabolitkonzentration die Synthese eines Fluoreszenzproteins bewirkt,
- wonach eine Selektion von Mikroorganismen durchgeführt wird, die eine erhöhte Fluoreszenz aufweisen,
- und die Vektoren, die ein für ein in seiner feedback-lnhibierung gemindertes oder ausgeschaltetes Enzym kodierendes Gen enthalten aus Mikroorganismen mit erhöhter oder der höchsten Fluoreszenz, isoliert werden.
Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Mutagenisierung durch ungerichtete Mutation erfolgt.
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass als Vektor, in den das Gen, das für ein feedback-inhibiertes Enzym kodiert, ligiert wird, ein Plasmid, ein Insertionselement, ein Transposon und/oder ein Phage eingesetzt wird.
Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass als Metabolitsensor mindestens eine Komponente aus der Gruppe bestehend aus pSenLys, pSenArg, pSenSer, pSenOAS, pJC1-lrp-brnF-eyfp eingesetzt wird.
Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass als Gen, das für ein feedback-inhibiertes Enzym kodiert, ein Gen aus einer Hefe oder einem Bakterium eingesetzt wird. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass als Gen, das für ein feedback-inhbiertes Enzym kodiert, eine 2- Isopropylmalatsynthase, Acetohydoxysäuresynthase, Acetylglutamatsynthase, Anthra- nilatsynthase, Asparaginsynthetase, Aspartattranscarbamylase, Aspartatkinase, ATP- Phosphoribosyltransferase, Carbamoyl- phosphatsynthetase, Chorismatmutase I, Chorismatmutase II, Cysteinsynthase, D-3-phosphoglyceratdehydrogenase, 3-Desoxy-D- Arabino-Heptulosonat-7-Phosphat-Synthase, Dihydrodipicolinatsynthase, Glutamatdehydrogenase, Glutamatsynthase, Glutaminsynthetase, Glutamylkinase, Homo- cysteintransmethylase, Homoserin O-aceyltransferase, Homoserin O- succinyltransferase, Homoserindehydrogenase, Methioninsynthase, Phosphoribosylpy- rophosphatsynthase, Prephenatdehydrogenase I, Prephenatdehydrogenase II, Pyrro- lin-5-carboxylatreductase, Ribose 1 ,5-bisphosphokinase, Serinace- tyl(succinyl)transferase, Threoninammoniumlyase oder Tyrosinaminotransferase, eingesetzt wird.
Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass eine Selektion von Mikroorganismen durchgeführt wird, die die höchste Fluoreszenz aufweisen.
Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass die Vektoren, die ein für ein in seiner feedback-lnhibierung gemindertes oder ausgeschaltetes Enzym kodierendes Gen enthalten und nach der Selektion aus Mikroorganismen mit einer erhöhten oder der höchsten Fluoreszenz isoliert wurden, in einen Produktionsmikroorganismus transformiert werden.
Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass die Gene, die für in der feedback-lnhibierung geminderte oder ausgeschaltete Enzyme kodieren in Vektoren eingebaut werden, die bereits zur Produktion des gewünschten Produktes dienen und zu einer zusätzlichen Steigerung der Produktion führen und dass diese Vektoren in einen Produktionsstamm transformiert werden.
Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass die Gene, die für in der feedback-lnhibierung geminderte oder ausgeschaltete Enzyme kodieren in das Chromosom eines Produktionsstammes eingeführt werden.
11. Verfahren nach einem der Ansprüche 1 bis10,
dadurch gekennzeichnet,
dass der Mikroorganismus in den das Gen oder der Vektor, enthaltend das Gen welches für in seiner feedback-lnhibierung vermindertes oder ausgeschaltetes Enzym kodiert, transformiert wird, ein Bakterium oder eine Hefe ist.
12. Verwendung von nach einem der Ansprüche 1 bis 11 erhaltenen Vektoren oder Gene zur Produktion von Aminosäuren oder Nukleotiden.
13. Verwendung nach Anspruch 12,
dadurch gekennzeichnet,
dass als Aminosäure mindestens eine Komponente aus der Gruppe bestehend aus L- Valin, L-Leucin, L-Asparagin, L-Lysin, L-Methionin, L-Threonin, L-Isoleucin, L-Histidin, L-Glutamat, L-Glutamin, Prolin, L-Arginin, L-Tryptophan, L-Tyrosin, L-Phenylalanin, L- Serin und L-Cystein hergestellt werden.
14. Verwendung nach Anspruch 12,
dadurch gekennzeichnet,
dass als Nukleotide mindestens eine Komponente der Gruppe bestehend aus Orotidi- ne-5'-Phosphat, 5-Phosphoribosyldiphosphat oder lnosin-5'-phosphat hergestellt werden.
WO 2014/029376 ^NATIONAL SEARCH REPORT IntematioiPCT/DE2013/000416
PCT/DE2013/000416
Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item l.c of the first sheet)
With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search carried out on the basis of a sequence listing filed or furnished:
(means)
on paper
in electronic form
(time)
in the international application as filed
tögether with the international application in' electronic form
_J subsequently to this, Authority for the purposes of search
In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, .the required. Statements that the Information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
3. Additional comments:
Form PCT/ISA/210 (continuation of first sheet (1)) ( y 2009)
PCT/DE2013/000416 2012-08-22 2013-07-23 Verfahren zur herstellung von vektoren enthaltend ein für in seiner feedback-inhibierung gemindertes oder ausgeschaltetes enzym kodierendes gen und deren verwendung für die herstellung von aminosäuren und nukleotiden WO2014029376A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015527791A JP2015529459A (ja) 2012-08-22 2013-07-23 フィードバック阻害が低下したまたはオフとなった酵素をコードする遺伝子を含有するベクターの製造方法、ならびにアミノ酸およびヌクレオチドを生産するための、その使用
US14/422,394 US9644226B2 (en) 2012-08-22 2013-07-23 Method for producing vectors containing a gene coding for an enzyme having reduced or deactivated feedback inhibition and the use thereof for producing amino acids and nucleotides
EP13753806.2A EP2888372A1 (de) 2012-08-22 2013-07-23 Verfahren zur herstellung von vektoren enthaltend ein für in seiner feedback-inhibierung gemindertes oder ausgeschaltetes enzym kodierendes gen und deren verwendung für die herstellung von aminosäuren und nukleotiden
CN201380044415.2A CN104662169A (zh) 2012-08-22 2013-07-23 制备含有编码在其反馈抑制中减弱或者消除的酶的基因的载体的方法及其用于制备氨基酸和核苷酸的用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012016716.4 2012-08-22
DE102012016716.4A DE102012016716A1 (de) 2012-08-22 2012-08-22 Verfahren zur Herstellung von Vektoren enthaltend ein für in seiner feedback-Inhibierung gemindertes oder ausgeschaltetes Enzym kodierendes Gen und deren Verwendung für die Herstellung von Aminosäuren und Nukleotiden

Publications (1)

Publication Number Publication Date
WO2014029376A1 true WO2014029376A1 (de) 2014-02-27

Family

ID=49083490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/000416 WO2014029376A1 (de) 2012-08-22 2013-07-23 Verfahren zur herstellung von vektoren enthaltend ein für in seiner feedback-inhibierung gemindertes oder ausgeschaltetes enzym kodierendes gen und deren verwendung für die herstellung von aminosäuren und nukleotiden

Country Status (6)

Country Link
US (1) US9644226B2 (de)
EP (1) EP2888372A1 (de)
JP (1) JP2015529459A (de)
CN (1) CN104662169A (de)
DE (1) DE102012016716A1 (de)
WO (1) WO2014029376A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027267A2 (ko) 2017-08-02 2019-02-07 씨제이제일제당 (주) Atp 포스포리보실 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
WO2020218736A1 (ko) 2019-04-22 2020-10-29 씨제이제일제당 (주) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647642B2 (en) 2008-09-18 2014-02-11 Aviex Technologies, Llc Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment
DE102012024435A1 (de) 2012-12-14 2014-07-10 Forschungszentrum Jülich GmbH Verfahren zur Identifizierung einer Zelle mit gegenüber ihrem Wildtyp erhöhten intrazellulären Konzentration eines bestimmten Metaboliten, wobei die Veränderung der Zelle durch Rekombi-neering erreicht wird, sowie ein Verfahren zur Herstellung einer gegenüber ihrem Wildtyp genetisch veränderten Produktionszelle mit optimierter Produktion eines bestimmten Metaboliten, ein Verfahren zur Herstellung dieses Metaboliten, sowie dafür geeignete Nukleinsäuren
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
DE102017004566A1 (de) * 2017-05-11 2018-11-15 Forschungszentrum Jülich GmbH Pyruvatcarboxylase und für die Pyruvatcarboxylase kodierende DNA, Plasmid enthaltend die DNA, sowie Mikroorganismus zur Produktion und Verfahren zur Herstellung von Produkten, deren Biosynthese Oxalacetat als Vorstufe beinhaltet, Chromosom und Screeningverfahren
DE102017004750A1 (de) 2017-05-18 2018-11-22 Forschungszentrum Jülich GmbH Pyruvvatcarboxylase und für die Pyrovatcarboxylase kodierende DNA, Plasmid enthaltend die DNA, sowie Mikroorganismen zur Produktion und Verfahren zur Herstellung von Produkten, deren Biosynthese Oxalacetat als Vorstufe beeinhaltet und Chromsom
DE102017004751A1 (de) 2017-05-18 2018-11-22 Forschungszentrum Jülich GmbH Pyruvatcarboxylase und für die Pyruvatcarboxylase kodierende DNA, Plasmid enthaltend die DNA, sowie Mikroorganismus zur Produktion und verfahren zur Herstellung von Produkten, deren Bioynthese Oxalacetat als Vorstufe beeinhaltet und Chromosom
EP3778901A4 (de) * 2018-03-27 2021-12-22 CJ Cheiljedang Corporation Neuer promotor und verfahren zur herstellung von l-aminosäure unter verwendung desselben
WO2019204787A1 (en) * 2018-04-20 2019-10-24 Zymergen, Inc. Engineered biosynthetic pathways for production of histamine by fermentation
CN110343672B (zh) * 2018-12-27 2021-07-06 华东理工大学 一种抗尿苷酸反馈抑制的氨甲酰磷酸合成酶突变体及其应用
KR102281361B1 (ko) * 2021-01-26 2021-07-22 씨제이제일제당 (주) 신규한 아스파라긴 신타제 변이체 및 이를 이용한 l-발린 생산 방법
JP2024075803A (ja) * 2021-03-29 2024-06-05 GreenEarthInstitute株式会社 改変型α-イソプロピルマレートシンターゼ

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732144A (en) 1970-01-22 1973-05-08 Kyowa Hakko Kogyo Kk Process for producing l-threonine and l-lysine
JPS49126819A (de) 1973-04-09 1974-12-04
EP0088424A1 (de) 1982-03-10 1983-09-14 INDAG Gesellschaft für Industriebedarf mbH Verfahren und Vorrichtung zum Aufbringen von Schrumpffolien auf palettierte Güterstapel
US4822738A (en) 1984-04-04 1989-04-18 Ajinomoto Co., Inc. Transducible composite plasmid
EP0381527A1 (de) 1989-02-02 1990-08-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ouabainähnliche Verbindungen und sie enthaltende pharmazeutische Zusammensetzungen
EP0435132A1 (de) 1989-12-27 1991-07-03 Forschungszentrum Jülich Gmbh Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, dafür geeignete Mikroorganismen und rekombinante DNA
US5213972A (en) 1989-12-08 1993-05-25 Chemgen Corporation Fermentation process for the production of pyrimidine deoxyribonucleosides
RU2003677C1 (ru) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина
JPH0662866A (ja) 1992-04-28 1994-03-08 Ajinomoto Co Inc 変異型アスパルトキナーゼ遺伝子
JPH06261766A (ja) 1993-03-16 1994-09-20 Mitsubishi Petrochem Co Ltd フィードバックインヒビションの解除されたアスパルトキナーゼをコードする遺伝子dna及びその利用
US5487993A (en) 1990-09-27 1996-01-30 Invitrogen Corporation Direct cloning of PCR amplified nucleic acids
US5804414A (en) 1995-06-30 1998-09-08 Ajinomoto Co., Inc. Method of amplifying genes using artificial transposons in coryneform bacteria
RU2119536C1 (ru) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм escherichia coli - продуцент l-гистидина
EP1026247A1 (de) 1999-02-01 2000-08-09 Ajinomoto Co., Inc. Carbamoyl-phosphat Synthetasegen aus Coryneformbakterien und Verfahren zur Herstellung von L-arginin
EP1067191A2 (de) 1999-07-09 2001-01-10 Ajinomoto Co., Ltd. DNS die für eine mutierte Isopropylmalatsynthase kodiert, Microorganismus das L-Leucin produziert, und Verfahren zur Herstellung von L-Leucin
US6218168B1 (en) 1995-10-26 2001-04-17 CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products
EP1108790A2 (de) 1999-12-16 2001-06-20 Kyowa Hakko Kogyo Co., Ltd. Neue Polynukleotide
WO2001049854A2 (en) 1999-12-30 2001-07-12 Archer-Daniels-Midland Company Increased lysine production by gene amplification using coryneform bacteria
WO2003040373A2 (en) 2001-08-06 2003-05-15 Degussa Ag Production of l-lysine by genetically modified corynebacterium glutamicum strains
EP1529839A1 (de) 2003-11-10 2005-05-11 Ajinomoto Co., Inc. Mutierte Phosphoribosylpyrophosphat Synthetase und ihre Verwendung zur L-Histidine-Produktion
US7169586B2 (en) 2000-06-28 2007-01-30 Ajinomoto Co., Inc. Mutant N-acetylglutamate synthase and method for L-arginine production
CA2663711A1 (en) 2006-09-22 2008-04-03 Danisco Us Inc. Acetolactate synthase (als) selectable marker from trichoderma reesei
EP1097998B1 (de) 1999-11-05 2008-05-07 Evonik Degussa GmbH Plasmide aus Corynebacterium glutamicum und deren Verwendung
DE102008040352A1 (de) 2008-07-11 2010-01-14 Evonik Degussa Gmbh Verfahren zur Herstellung von L-Tryptophan unter Verwendung von verbesserten Stämmen der Familie Enterobacteriaceae
EP1745138B1 (de) 2004-02-27 2010-05-19 Evonik Degussa GmbH Verfahren zur fermentativen herstellung von methionin unter verwendung rekombinanter coryneformer bakterien
WO2011138006A1 (de) 2010-05-03 2011-11-10 Forschungszentrum Jülich GmbH Sensoren zur intrazellulären metabolit-detektion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027310A2 (en) * 2001-09-24 2003-04-03 Archemix Corporation Regulatable, catalytically active nucleic acids
DE10249642A1 (de) * 2002-10-24 2004-05-13 Consortium für elektrochemische Industrie GmbH Feedback-resistente Homoserin-Transsuccinylasen mit modifiziertem C-Terminus
RU2355763C2 (ru) 2006-09-13 2009-05-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Мутантная ацетолактатсинтаза и способ продукции разветвленных l-аминокислот
US20140259212A1 (en) * 2009-11-18 2014-09-11 Basf Plant Science Company Gmbh Process for the Production of Fine Chemicals

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732144A (en) 1970-01-22 1973-05-08 Kyowa Hakko Kogyo Kk Process for producing l-threonine and l-lysine
JPS49126819A (de) 1973-04-09 1974-12-04
EP0088424A1 (de) 1982-03-10 1983-09-14 INDAG Gesellschaft für Industriebedarf mbH Verfahren und Vorrichtung zum Aufbringen von Schrumpffolien auf palettierte Güterstapel
US4822738A (en) 1984-04-04 1989-04-18 Ajinomoto Co., Inc. Transducible composite plasmid
EP0381527A1 (de) 1989-02-02 1990-08-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ouabainähnliche Verbindungen und sie enthaltende pharmazeutische Zusammensetzungen
US5213972A (en) 1989-12-08 1993-05-25 Chemgen Corporation Fermentation process for the production of pyrimidine deoxyribonucleosides
EP0435132A1 (de) 1989-12-27 1991-07-03 Forschungszentrum Jülich Gmbh Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, dafür geeignete Mikroorganismen und rekombinante DNA
US5487993A (en) 1990-09-27 1996-01-30 Invitrogen Corporation Direct cloning of PCR amplified nucleic acids
RU2003677C1 (ru) 1992-03-30 1993-11-30 Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина
JPH0662866A (ja) 1992-04-28 1994-03-08 Ajinomoto Co Inc 変異型アスパルトキナーゼ遺伝子
JPH06261766A (ja) 1993-03-16 1994-09-20 Mitsubishi Petrochem Co Ltd フィードバックインヒビションの解除されたアスパルトキナーゼをコードする遺伝子dna及びその利用
US5688671A (en) 1993-04-27 1997-11-18 Ajinomoto Co., Inc. Mutant aspartokinase gene
US5804414A (en) 1995-06-30 1998-09-08 Ajinomoto Co., Inc. Method of amplifying genes using artificial transposons in coryneform bacteria
US6218168B1 (en) 1995-10-26 2001-04-17 CONSORTIUM FüR ELEKTROCHEMISCHE INUDSTRIE GMBH Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products
RU2119536C1 (ru) 1997-01-21 1998-09-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Штамм escherichia coli - продуцент l-гистидина
EP1026247A1 (de) 1999-02-01 2000-08-09 Ajinomoto Co., Inc. Carbamoyl-phosphat Synthetasegen aus Coryneformbakterien und Verfahren zur Herstellung von L-arginin
EP1067191A2 (de) 1999-07-09 2001-01-10 Ajinomoto Co., Ltd. DNS die für eine mutierte Isopropylmalatsynthase kodiert, Microorganismus das L-Leucin produziert, und Verfahren zur Herstellung von L-Leucin
EP1568776B1 (de) 1999-07-09 2008-09-03 Ajinomoto Co., Inc. DNS, die für eine mutierte Isopropylmalatsynthase kodiert, Mikroorganismus, der L-Leucin produziert, und Verfahren zur Herstellung von L-Leucin
EP1568776A2 (de) 1999-07-09 2005-08-31 Ajinomoto Co., Inc. DNA die eine mutierte Isopropylmalatsynthase kodiert, Microorganismus das L-Leucin produziert, und Verfahren zur Herstellung von L-Leucin
EP1097998B1 (de) 1999-11-05 2008-05-07 Evonik Degussa GmbH Plasmide aus Corynebacterium glutamicum und deren Verwendung
EP1108790A2 (de) 1999-12-16 2001-06-20 Kyowa Hakko Kogyo Co., Ltd. Neue Polynukleotide
WO2001049854A2 (en) 1999-12-30 2001-07-12 Archer-Daniels-Midland Company Increased lysine production by gene amplification using coryneform bacteria
US7169586B2 (en) 2000-06-28 2007-01-30 Ajinomoto Co., Inc. Mutant N-acetylglutamate synthase and method for L-arginine production
WO2003040373A2 (en) 2001-08-06 2003-05-15 Degussa Ag Production of l-lysine by genetically modified corynebacterium glutamicum strains
EP1529839A1 (de) 2003-11-10 2005-05-11 Ajinomoto Co., Inc. Mutierte Phosphoribosylpyrophosphat Synthetase und ihre Verwendung zur L-Histidine-Produktion
EP1745138B1 (de) 2004-02-27 2010-05-19 Evonik Degussa GmbH Verfahren zur fermentativen herstellung von methionin unter verwendung rekombinanter coryneformer bakterien
CA2663711A1 (en) 2006-09-22 2008-04-03 Danisco Us Inc. Acetolactate synthase (als) selectable marker from trichoderma reesei
DE102008040352A1 (de) 2008-07-11 2010-01-14 Evonik Degussa Gmbh Verfahren zur Herstellung von L-Tryptophan unter Verwendung von verbesserten Stämmen der Familie Enterobacteriaceae
EP2147972A1 (de) 2008-07-11 2010-01-27 Evonik Degussa GmbH Verfahren zur Herstellung von L-Tryptophan unter Verwendung von verbesserten Stämmen der Familie Enterobacteriaceae
WO2011138006A1 (de) 2010-05-03 2011-11-10 Forschungszentrum Jülich GmbH Sensoren zur intrazellulären metabolit-detektion

Non-Patent Citations (50)

* Cited by examiner, † Cited by third party
Title
"DIG Easy Hyb", FIRMA ROCHE DIAGNOSTICS GMBH
"Handbook of Corynebacterium glutamicum"
"Hybaid Hybridisation Guide", 1996, HYBAID LIMI- TED
"Improved screen for bacterial colonies", BIOTECHNIQUES, vol. 18, no. 2, pages 225 - 226
"The DIG Sys- tem User's Guide for Filter Hybridisation", 1995, BOEHRINGER MANNHEIM
"The DIG System Users Guide for Filter Hybridization", 1993, FIRMA BOEHRIN- GER MANNHEIM GMBH
ALTSCHUL ET AL.: "BLAST", J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ALTSCHUL ET AL.: "Gapped.BLAST and PSI-BLAST: a new generation of protein database search programs", NUCLEIC ACIDS RES., vol. 25, no. 17, 1997, pages 3389 - 3402, XP002905950, DOI: doi:10.1093/nar/25.17.3389
AMANN ET AL., GENE, vol. 69, 1988, pages 301 - 315
BARTO- LOME ET AL., GENE, vol. 102, 1991, pages 75 - 78
BARTOLOME ET AL., GENE, vol. 102, 1991, pages 75 - 78
BEI LIEBL ET AL., INTERNATIONAL' JOURNAL OF SYSTEMATIC BACTERIOLOGY, vol. 41, 1991, pages 255 - 260
BERNARD ET AL., JOURNAL OF MOLECULAR BIOLOGY, vol. 234, 1993, pages 534 - 541
BLATTNER ET AL., SCIENCE, vol. 277, 1997, pages 1453 - 1462
CADWELL R. C ET AL., PCR METHODS APPL., vol. 2, 1992, pages 28 - 33
DUNICAN; SHIVNAN, BIO/TECHNOLOGY, vol. 7, 1989, pages 1067 - 1070
EGGELING AND BOTT: "Handbook ofCorynebacterium glutamicum", pages: 535 - 66
FOLLETTIE; SINSKEY, DATENBANKEINTRAG, pages L16848
GRANT, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES U.S.A., vol. 87, 1990, pages 4645 - 4649
JETTEN ET AL., DATENBANKEINTRAG, pages L27125
KEILHAUER ET AL., J BACTERI- OL, vol. 175, no. 17, September 1993 (1993-09-01), pages 5595 - 603
KIRCHNER, O; TAUCH, A, J BIOTECHNOL, vol. 104, no. 1-3, 4 September 2003 (2003-09-04), pages 287 - 99
LABROU NE: "Random mutagenesis methods for in vitro directed enzyme evolution", CURR PROTEIN PEPT SCI, vol. 11, 2010, pages 91 - 100
LENNOX, VIROLOGY, vol. 1, 1955, pages 190
LEUNG D. W. ET AL., TECHNIQUES, vol. 1, 1989, pages 11 - 15
METHODS OF BIOCHEMICAL ANALYSIS, vol. 39, 1998, pages 74 - 97
MIZUKAMI T ET AL., BIOSCI BIOTECHNOL BIO- CHEM., vol. 8, no. 4, 5 April 1994 (1994-04-05), pages 635 - 8
NAKAMORI ET AL., APPL. ENV. MICROBIOL., vol. 64, 1998, pages 1607 - 1611
NURIJE MUSTAFI ET AL: "The development and application of a single-cell biosensor for the detection of-methionine and branched-chain amino acids", METABOLIC ENGINEERING, ACADEMIC PRESS, US, vol. 14, no. 4, 6 February 2012 (2012-02-06), pages 449 - 457, XP028429545, ISSN: 1096-7176, [retrieved on 20120215], DOI: 10.1016/J.YMBEN.2012.02.002 *
SACK U, TARNOK A, ROTHE G: "Zelluläre Diagnostik. Grundlagen, Methoden und klinische Anwendungen der Durchflusszytometrie", 2007, KARGER, pages: 27 - 70
SAMBROOK ET AL.: "Molecular Cloning. A Laboratory Man- ual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHÄFER ET AL., APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 60, 1994, pages 756 - 759
SCHÄFER ET AL., GENE, vol. 145, 1994, pages 69 - 73
SCHRUMPF ET AL., JOURNAL OF BACTERIOLOGY, vol. 173, 1991, pages 4510 - 4516
SCIENCE, vol. 277, 1997, pages 1453 - 1462
SHUMAN, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, 1994, pages 32678 - 84
SIMON ET AL., BIO/TEÄHNOLOGY, vol. 1, 1983, pages 784 - 791
SPRATT, GENE, vol. 41, 1986, pages 337 - 342
STEPHAN BINDER ET AL: "A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level", GENOME BIOLOGY, BIOMED CENTRAL LTD., LONDON, GB, vol. 13, no. 5, 28 May 2012 (2012-05-28), pages R40, XP021127741, ISSN: 1465-6906, DOI: 10.1186/GB-2012-13-5-R40 *
TAKAGI ET AL., FEBS LETT., vol. 452, 1999, pages 323 - 327
TAUCH ET AL., FEMS MICRO- BIOLOGY LETTERS, vol. 123, 1994, pages 343 - 347
TAUCH ET AL., PLASMID, vol. 33, 1995, pages 168 - 179
THIERBACH ET AL., APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 29, 1988, pages 356 - 362
TINDALL, K.R.; T.A. KUNKEL: "Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase", BIOCHEMISTRY, vol. 27, no. 16, 1988, pages 6008 - 13, XP002204423, DOI: doi:10.1021/bi00416a027
VOCKE; BASTIA, PROCEE- DINGS OF THE NATIONAL ACADEMY OF SCIENCES USA, vol. 80, no. 21, 1983, pages 6557 - 6561
VOCKE; BASTIA, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES USA, vol. 80, no. 21, 1983, pages 6557 - 6561
VON ALTSCHUL ET AL., NA- TURE GENETICS, vol. 6, 1994, pages 119 - 129
VON PEARSON; LIPMAN, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES USA, vol. 85, 1988, pages 2444 - 2448
VON REINSCHEID ET AL., APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 60, 1994, pages 126 - 132
WANG TT; LEE BH: "Plasmids in Lacto- bacillus", CRIT REV BIOTECHNOL, vol. 17, no. 3, 1997, pages 227 - 72

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027267A2 (ko) 2017-08-02 2019-02-07 씨제이제일제당 (주) Atp 포스포리보실 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
US11098333B2 (en) 2017-08-02 2021-08-24 Cj Cheiljedang Corporation ATP phosphoribosyltransferase variant and method for producing L-histidine using the same
WO2020218736A1 (ko) 2019-04-22 2020-10-29 씨제이제일제당 (주) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법

Also Published As

Publication number Publication date
DE102012016716A1 (de) 2014-02-27
US9644226B2 (en) 2017-05-09
US20150284760A1 (en) 2015-10-08
CN104662169A (zh) 2015-05-27
EP2888372A1 (de) 2015-07-01
JP2015529459A (ja) 2015-10-08

Similar Documents

Publication Publication Date Title
WO2014029376A1 (de) Verfahren zur herstellung von vektoren enthaltend ein für in seiner feedback-inhibierung gemindertes oder ausgeschaltetes enzym kodierendes gen und deren verwendung für die herstellung von aminosäuren und nukleotiden
EP2553113B1 (de) Verfahren zur herstellung von l-ornithin unter verwendung von lyse überexprimierenden bakterien
EP2041276B1 (de) Verfahren zur herstellung von l-aminosäuren mittels mutanten des glta-gens kodierend für citratsynthase
EP1824968B1 (de) Allele des gnd-gens aus coryneformen bakterien
EP2354235B1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP2276845B1 (de) Verfahren zur herstellung von l-aminosäuren
WO2013000827A1 (de) Varianten des promotors des für die glyzerinaldehyd-3-phosphat-dehydrogenase kodierenden gap-gens
EP3467114A1 (de) Verfahren zur fermentativen herstellung von l-aminosäuren
EP2061881A2 (de) Allele des rel-gens aus coryneformen bakterien
EP1574582A1 (de) Verfahren zur Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP2089525B1 (de) Allele des oxyr-gens aus coryneformen bakterien
EP2078085B1 (de) Allele des prpd1-gens aus coryneformen bakterien
DE60218215T2 (de) Allele des siga gens aus coryneformen bakterien
DE10162387A1 (de) Für das rpoB-Gen kodierende Nukleotidsequenzen
EP1659174A2 (de) Allele des metK-Gens aus coryneformen Bakterien
DE10162730A1 (de) Allele des glk-Gens aus coryneformen Bakterien
EP1239040A2 (de) Mutationen im rpoB-Gen L-Lysin produzierender Corynebacterium glutamicum-Stämme und Verfahren zur Herstellung von L-Lysin
EP1538213A2 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE10162386A1 (de) Für das rpsL-Gen kodierende Nukleotidsequenzen
DE10162650A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE10163167A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren und Verwendung coryneformer Bakterien
EP1143003A2 (de) Nukleotidsequenzen, die für das rplk-Gen kodieren, und Verfahren zur Herstellung von L-Aminosäuren
DE10017057A1 (de) Neue für das rpIK Gen kodierende Nukleotidsequenzen
EP1354051A1 (de) Neue für das cite-gen kodierende nukleotidsequenzen
DE10125089A1 (de) Neue für das mtrA und/oder mtrB-Gen kodierende Nukleotidsequenzen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753806

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013753806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013753806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14422394

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015527791

Country of ref document: JP

Kind code of ref document: A