WO2014029209A1 - 一种风冷系统及电子设备 - Google Patents

一种风冷系统及电子设备 Download PDF

Info

Publication number
WO2014029209A1
WO2014029209A1 PCT/CN2013/072933 CN2013072933W WO2014029209A1 WO 2014029209 A1 WO2014029209 A1 WO 2014029209A1 CN 2013072933 W CN2013072933 W CN 2013072933W WO 2014029209 A1 WO2014029209 A1 WO 2014029209A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
units
cooling system
layers
wind
Prior art date
Application number
PCT/CN2013/072933
Other languages
English (en)
French (fr)
Inventor
董愿
冯铭新
郝明亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014029209A1 publication Critical patent/WO2014029209A1/zh
Priority to US14/451,549 priority Critical patent/US20140342652A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source

Definitions

  • the invention relates to the field of electronics, and in particular to an air cooling system and an electronic device. Background technique
  • Electronic devices contain various electronic components that generate heat during the operation of the device, causing the temperature of the electronic device to rise. When the temperature of the electronic unit exceeds a certain value, it will cause overheating damage or malfunction. Therefore, proper cooling must be used to control the operating temperature of the electronic components to an appropriate range.
  • Rack servers often use air-cooled systems to dissipate heat.
  • Most air-cooled systems use a fan to dissipate heat. That is, the fan is located upstream of the air of the electronic components and discharges air to the electronic components.
  • the airflow flowing through the electronic components is uneven, and each fan basically provides heat dissipation to the electronic components directly downstream thereof.
  • the cooling system of a rack server typically uses a double-layer fan.
  • the above cooling system uses a double-layer fan, which is almost twice as large as that of a single-layer fan. Therefore, there are several main problems: The cost of the fan component is high; the overall failure rate of the fan is increased, and the maintenance workload is large. There are many spare parts required; the fan runs with high energy consumption and high noise. Summary of the invention
  • an air cooling system to dissipate heat for a heat generating device, the air cooling system including a plurality of Drying unit and air guiding device;
  • the plurality of blowing units are disposed upstream of the air flowing through the heat generating device, and the plurality of blowing units are configured to provide a wind required for heat dissipation of the heat generating device;
  • the air guiding device is disposed between the air outlet of the plurality of air blowing units and the heat generating device, and the air guiding device is configured to vertically guide the air outlets of the plurality of air blowing units and at least divide into Two layers, each layer of wind is jointly supplied by the plurality of blowing units, wherein at least the wind direction of the wind between the two adjacent layers is different.
  • the air guiding device includes a flat plate and a vertical plate;
  • the flat plate is disposed in a horizontal direction, and the flat plate is configured to divide the wind blown by the plurality of blowing units into at least two layers;
  • the risers are respectively vertically disposed in at least two layers of space into which the flat plates are divided, and the risers are used to guide the corresponding inter-layer winds.
  • the air guiding device includes N flat plates and N-1 vertical plates, wherein the N flat plates are triangular flat plates, and the N flat plates are vertically arranged in a vertical direction, and the length of the triangular flat plate The sides are respectively facing the air outlets of the plurality of air blowing units, the N-1 vertical plates are respectively arranged in the interlayer formed by the N flat plates, and the vertical plates in each layer are opposite to one of the interlayer flat plates Specifically, the air guiding device includes a plurality of flat plates and a plurality of vertical plates, wherein the plurality of flat plates are rectangular flat plates, the plurality of flat plates are vertically arranged in a vertical direction, and the rectangular flat plates are arranged The long sides of the plurality of blowing units are arranged perpendicularly and regularly with respect to the plurality of air blowing units, and the vertical plates in each of the layers are arranged in the same direction, so that The same wind direction is formed between the layers, and at least the vertical plates between the adjacent two layers are staggered so as to
  • the air guiding device is a unitary structure.
  • the air guiding device is a split type structure
  • the air guiding device includes a plurality of air guiding units, and the plurality of air guiding units correspond to the plurality of blowing units, and the plurality of air guiding units
  • Each of the individual air guiding units separately divides the air outlet of the air blowing unit corresponding to each air guiding unit into two layers through a flat plate, and the air guiding directions of the adjacent layers are different, so that the wind direction of the air blown in the adjacent layers is different.
  • the guiding directions of all the air guiding units of the same layer in the air guiding device are the same, such that the wind direction of the air blowing in the same layer of the air guiding device is the same, and the guiding of the air guiding unit in the adjacent layer of the air guiding device is different, so that The wind direction of the wind blown in the adjacent layer of the air guiding device is different.
  • the air cooling system includes a plurality of anti-backflow devices, and the plurality of air blowing units are respectively provided with respective anti-backflow devices, and the anti-backflow device is disposed at an air outlet of the air blowing unit, and then passes through when a single air blowing unit fails. A corresponding anti-backflow device prevents wind from flowing back into the single blowing unit.
  • the blowing unit is a fan, and the plurality of blowing units are connected in parallel.
  • the fan is a speed adjustable fan, and when a single fan fails, the same air flow rate is achieved by adjusting the rotation speed of the non-failed fan.
  • an electronic device including a housing and an electronic component, wherein the electronic component is disposed in the housing, the electronic component is a heat generating device, and the electronic device further includes a In the air-cooling system, the air-cooling system is disposed in the casing, and the air outlets of the plurality of air blowing units are layered and guided by the air guiding device, so that at the exit of the air guiding device, A uniform heat dissipation airflow is formed to dissipate heat from the electronic components.
  • an air guiding device is disposed between the air outlets of the plurality of air blowing units and the heat generating device, and the air outlets of the plurality of air blowing units are layered and guided by the air guiding device, so that the air outlet device is formed at the exit of the air guiding device.
  • the heat dissipation airflow of the hook can ensure the heat dissipation of the heat generating device directly downstream of the faulty blowing unit even in the case of failure of the single blowing unit. Since the above structure is adopted in the embodiment of the invention, the heat dissipation of the heating device under the normal working of the plurality of blowing units can be satisfied.
  • the requirement can also effectively prevent the heat dissipation effect caused by the failure of a single blowing unit in the plurality of blowing units, and the number of the blowing units can be reduced compared with the conventional double-layered plurality of blowing units, thereby reducing the cost of the blowing unit;
  • the overall failure rate of multiple blower units reduces maintenance and reduces the number of spare parts; multiple blower units operate with reduced energy consumption and reduced noise.
  • the electronic device with the cooling system has the advantages of good heat dissipation effect and stable operation.
  • FIG. 1 is a schematic structural view of a cooling system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an air guiding device according to an embodiment of the present invention.
  • FIG. 2A is a schematic structural view of an air guiding device according to another embodiment of the present invention
  • 3 is a schematic structural view of an air guiding device according to still another embodiment of the present invention
  • FIG. 3A is a schematic structural view of an air guiding device according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a cooling system according to still another embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a blowing unit and a wind guiding unit according to another embodiment of the present invention
  • FIG. 6 is a schematic structural view of an anti-backflow device according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an electronic device according to still another embodiment of the present invention.
  • blower units More than 10 blower units, 10 0A air blower outlet, 1 0B blower unit,
  • 21A first plate 21A1 first plate long side, 21A2 first plate first short side, 21A3 first plate second short side,
  • an embodiment of the present invention provides an air cooling system 1 .
  • the air cooling system 1 heats the heat generating device 2 , and the air cooling system 1 includes a plurality of air blowing units 10 and an air guiding device 20 ;
  • a plurality of blowing units 10 are disposed upstream of the air flowing through the heat generating device 2, and the plurality of blowing units 10 are configured to provide the wind required for heat dissipation of the heat generating device 2;
  • the air guiding device 20 is disposed between the air outlets 10A of the plurality of air blowing units and the heat generating device 2, and the air guiding device 20 is configured to vertically guide the air outlets of the plurality of air blowing units 10 into at least two layers, each of which is divided into two layers.
  • the layer winds are all supplied by a plurality of blowing units 10, wherein at least the winds of the wind between the two adjacent layers are different.
  • the upstream refers specifically to the origin of the wind.
  • Vertical stratification is to divide the vertical plane into multiple layers, specifically with spacing.
  • the working principle of the embodiment of the present invention Referring to FIG. 1, when the plurality of air blowing units 10 are blown by the wind guiding device 20, they are separated into multiple layers by the air guiding device 20, and in each layer, the air guiding device is not 20
  • the plurality of air blowing units 10 blocked are flowed downstream according to the original air flow path, and the plurality of air blowing units 10 blocked by the air guiding device 20 are guided according to the direction of the air guiding device 20,
  • the wind device 20 is divided into a plurality of layers, and at least two adjacent air guiding devices 20 are oriented in different directions.
  • the embodiment of the present invention adopts the above structure, not only can meet the heat dissipation requirement of the heat generating device 2 under the normal operation of the plurality of blowing units 10, but also effectively prevent the heat dissipation effect caused by the failure of the single blowing unit 10B in the plurality of blowing units 10.
  • a plurality of blowing units 10B can be arranged in a single layer, which can reduce the number of the blowing units 10B, thereby reducing the cost of the blowing unit 10B; reducing the overall number of the plurality of blowing units 10 The probability of failure, thereby reducing maintenance and reducing the number of spare parts; multiple blow unit 10 operating energy reduction, noise reduction.
  • the air guiding device 20 itself has a single structure, which has the advantages of easy processing and low cost.
  • the air guiding device 20 has a small resistance and hardly affects the operating point of the blowing unit 10B and the air volume of the cooling system.
  • the air guiding device 20 includes a flat plate 21 and a riser 22;
  • the flat plate 21 is disposed in a horizontal direction, and the flat plate 21 is configured to divide the wind blown by the plurality of blowing units 10 into at least two layers;
  • the risers 22 are respectively vertically disposed in at least two layers of the space divided by the flat plate 21, and the risers 22 are used for It is oriented to the corresponding inter-layer wind.
  • the interlayer refers to the space formed by the two flat plates.
  • the air guiding device 20 includes at least one flat plate 21 and at least two vertical plates 22 ;
  • At least one flat plate 21 is disposed in a horizontal direction, and at least one flat plate 21 is used to divide the wind blown by the plurality of blowing units 10 into at least two layers;
  • At least two risers 22 are vertically disposed in at least two layers of space into which at least one of the flat plates 21 is divided, and at least two risers 22 are used to guide the wind between the layers.
  • the air guiding device 20 includes N flat plates 21 and N-1 vertical plates 22, and the N flat plates 21 are triangular flat plates, and the N flat plates 21 are vertically oriented.
  • the upper and lower sides are arranged in parallel, and the long sides of the triangular flat plate face the air outlets 10A of the plurality of air blowing units, and the N-1 block vertical plates 22 are respectively arranged in the interlayer formed by the N flat plates 21, and the vertical plates in each of the layers 22 is arranged perpendicularly to a short side of the interlayer plate 21, and at least the vertical plates 22 between the adjacent two layers are staggered with respect to their common flat plates 21, wherein N ⁇ 2.
  • the vertical direction is a relative concept, and in the present embodiment, the vertical direction refers to a direction perpendicular to the horizontal plane.
  • the flat plate 21 in this embodiment is a triangular flat plate, so that after the air guiding device 20 is installed in the chassis, two spaces can be left at the two short sides of the triangular flat plate, and the first flat plate 21 A is taken as an example for description.
  • the two short sides 21 A2, 21A3 of a flat plate 21A can free up two spaces, and the device at the two spaces can be repaired without disassembling the air guiding device 20, thereby having the advantage of convenient maintenance.
  • N is four
  • the air guiding device 20 includes four flat plates 21 and three vertical plates 22.
  • the four flat plates 21 are a first flat plate 21A, a second flat plate 21B, a third flat plate 21C, and a fourth flat plate 21D, respectively.
  • the three risers 22 are a first riser 22A, a second riser 22B, and a third riser 22C, respectively.
  • the first plate 21A, the second plate 21B, the third plate 21C, and the fourth plate 21D are all triangular plates, and the first plate 21A, the second plate 21B, the third plate 21C, and the fourth plate 21D are vertically oriented. Arranged in parallel, and the long sides of the triangular flat plate are respectively facing the air outlets 10A of the plurality of air blowing units, and the first flat plate 21A is taken as an example.
  • the first flat plate 21A includes a first flat long side 21A1 and a first flat first short side. 21 A2 and a first flat second short side 21A 3 , wherein the first flat long side 21A1 faces the air outlet 10A of the plurality of blowing units 10 .
  • the three risers 22 are respectively disposed in the interlayer formed by the four flat plates 21, and the four flat plates 21 are formed in three layers.
  • the first riser 22A is disposed on the first layer formed by the first flat plate 21A and the second flat plate 21B.
  • the second riser 22B is disposed between the second layer formed by the second flat plate 21B and the third flat plate 21C
  • the third vertical plate 22C is disposed between the third flat plate 21C and the third layer formed by the fourth flat plate 21D.
  • the vertical plate 22 in each layer is vertically arranged with respect to one short side of the interlayer plate, and the first layer formed by the first flat plate 21A and the second flat plate 21B is taken as an example, and the first one among the first layers
  • the riser 22A is vertically arranged with respect to the first short side 21A2 of the first flat plate.
  • the vertical plates 22 between the adjacent two layers are staggered with respect to the common short sides of the flat plates, and the first interlayer and the second layer are taken as an example.
  • the first riser 22A and the second riser 22B are opposite to the second flat plate.
  • the staggered arrangement means that the arrangement direction of the vertical plates 22 is inconsistent, such that the left side of the first layer is ventilated, the right side of the second layer is ventilated, and the left side of the third layer is ventilated. That is, in this embodiment, the wind direction of the interlayer wind of any adjacent layer is different.
  • N is five
  • the air guiding device 20 includes five flat plates 21 and four vertical plates 22, and five flat plates 21 form four layers. From top to bottom, respectively, from the first layer to the fourth layer, wherein the vertical plate 22 between the first layer and the vertical plate 22 between the second layers are vertically arranged with respect to the right short side of the interlayer plate 21
  • the vertical plate 22 between the third layer and the vertical plate 22 between the fourth layer are vertically arranged with respect to the short side of the left side of the interlayer plate 21, and the vertical plate between the vertical layer 2 and the third layer between the second layer 22 staggered.
  • only the wind direction of the interlayer air of the second layer and the third layer is different between the adjacent two layers.
  • the riser 22 in each layer is vertically arranged with respect to one short side of the interlayer plate 21, and at least the risers 22 between adjacent two layers are short with respect to their common flat plate 21. Arranged in a staggered manner, at least the wind direction of the wind between the two adjacent layers is different.
  • the air guiding device 20 includes a plurality of flat plates 21 and a plurality of vertical plates 22, and the plurality of flat plates 21 are rectangular flat plates, and the plurality of flat plates 21 are vertically arranged in the vertical direction. And the long sides of the rectangular flat plate face the air outlets 10 A of the plurality of blowing units, and the layers formed by the plurality of vertical plates 22 with respect to the plurality of flat plates 21 are vertically and regularly arranged, and the vertical plates 22 in each of the layers are arranged in the same direction In order to form the same wind guiding between the layers, at least the vertical plates 22 between the adjacent two layers are staggered so as to form a staggered wind guiding between the at least adjacent layers.
  • the embodiment adopts the above structure and has a structural single tube, which is easy to The advantages of processing and manufacturing.
  • the air guiding device 20 includes four flat plates 21 and ten. Five risers 22.
  • the four flat plates 21 are a first flat plate 21A, a second flat plate 21B, a third flat plate 21 C, and a fourth flat plate 21 D, respectively.
  • the first plate 21 A, the second plate 21B, the third plate 21C, and the fourth plate 21 D are all rectangular plates, and the first plate 21A, the second plate 21B, the third plate 21C, and the fourth plate 21 D are vertically oriented.
  • the upper and lower sides are arranged in parallel, and the long sides of the first flat plate 21A, the second flat plate 21B, the third flat plate 21C, and the fourth flat plate 21D face the air outlets 10A of the plurality of air blowing units.
  • the fifteen risers 22 are vertically and regularly arranged among the three layers formed by the four flat plates 21, and the fifteen vertical plates 22 are divided into three groups, that is, the first set of risers formed by the first riser 22A, and the second vertical a second set of risers formed by the plates 22B, and a third set of risers formed by the third risers 22C, each set of risers 22 being respectively disposed in the interlayer formed by the flat plate 21, and the first set of risers 22A being disposed on the first flat plate 21A and the second plate 21B are formed between the first layers, the second group of vertical plates 22B are disposed between the second layer formed by the second plate 21B and the third plate 21C, and the third group of the vertical plates 22C are disposed on the third plate 21C. And a third layer formed by the fourth plate 21 D.
  • the risers 22 in each of the layers are arranged in the same direction so that the same wind guides are formed between the layers.
  • the first layer formed by the first flat plate 21 A and the second flat plate 21 B is taken as an example.
  • the five first vertical plates 22A in the first interlayer are vertically arranged on the first flat plate 21A and Between the second plates 21B, and the five first risers 22A are all arranged obliquely to the left to form a left side wind guide between the first layers.
  • the risers between adjacent two layers are staggered so as to form a staggered wind guide between the adjacent layers. That is, in this embodiment, the wind direction of the interlayer wind of any adjacent layer is different.
  • the first interlayer and the second layer are taken as an example, and the five second risers 22B in the second layer are vertically disposed between the second flat plate 21B and the third flat plate 21C, and The five second risers 22B are all arranged obliquely to the right to form a right side wind guide between the second layers, that is, the first riser 22A and the second riser 22B between the first and second layers are staggered.
  • the left side wind guide and the right side wind guide are respectively formed between the first floor and the second floor.
  • the risers between adjacent layers are arranged in opposite directions, which avoids the presence of heat dead spots.
  • the number of the flat plates 21 and the number of the vertical plates 22 are not limited thereto, and may be implemented according to actual heat dissipation requirements.
  • the air guiding device 20 includes five flat plates 21 and twenty vertical plates 22 (see FIG. 3), and five flat plates 21 form four layers. From top to bottom, respectively, from the first floor to the fourth floor, twenty pieces of vertical plates 22 (see Figure 3) are divided into four groups, each group of five vertical plates 22 (see Figure 3), that is, four There are four sets of risers between the layers.
  • the second riser 22B between the layers is staggered with the third riser 22C between the third layers. That is, in the present embodiment, only the wind direction of the interlayer air of the second layer and the third layer is different between the adjacent two layers.
  • the risers 22 in each layer are arranged in the same direction so that the same wind direction is formed between the layers, and at least the risers 22 between the adjacent two layers are staggered so that the at least A staggered wind guide is formed between adjacent layers.
  • the air guiding device 20 is of a unitary structure.
  • the air guiding device 20 is a split structure, and the air guiding device 20 includes a plurality of air guiding units 20A, and the plurality of air guiding units 20A correspond to the plurality of air blowing units 10B.
  • the plurality of air guiding units 2 OA are independent of each other, and the air guiding unit 2 OA respectively guides the air blowing unit 10B corresponding thereto, and each of the air guiding units 20A passes the blowing unit corresponding to each air guiding unit 20A through the flat plate 21 .
  • the air outlet of 10B is divided into two layers, and the air guiding directions of the adjacent layers are different, so that the wind direction of the air blown in the adjacent layers is different, and the guiding directions of all the air guiding units 20A of the same layer in the air guiding device 20 are the same, so that the air guiding device
  • the wind direction of the wind blown in the same layer is the same, and the guidance of the air guiding unit 20A in the adjacent layer of the air guiding device 20 is different, so that the wind direction of the wind blown in the adjacent layer of the air guiding device 20 is different.
  • the split structure is adopted, which is convenient for processing, storage and maintenance.
  • the air guiding device 20 in this embodiment can also be a one-piece structure.
  • the plurality of air blowing units 10 includes five air blowing units 10B, that is, the first air blowing unit 11, the second air blowing unit 12, the third air blowing unit 13, and the fourth air blowing unit. 14 and the fifth blowing unit 15, and the five blowing units 11-15 are arranged in a single row, and the corresponding air guiding device 20 also includes five air guiding units 20A.
  • each of the air guiding units 2 OA and its corresponding blowing unit 10B constitute a cooling unit, and each of the air guiding units 20A passes the corresponding blowing unit 10B through the first to fourth plates 21A to 21D.
  • the air outlet is divided into three layers, and the two vertical plates 22 between the layers are used to guide the air between the layers, and the air guiding of the adjacent layers is different, that is, the first layer of air is different from the second layer of air, and the second layer is The wind is different from the third layer of air outlet, so that the wind direction of the wind blown in the adjacent layer is different.
  • the first layer is the left side wind
  • the second layer is the right side wind
  • the third layer is the left side wind.
  • the air guiding units 20A shown in FIG. 5 are arranged in a row, that is, the air guiding device 20 shown in FIG. 4, as shown in FIG. 4, all the air guiding units 20A of the same layer in the air guiding device 20
  • the same orientation The five air guiding units 20A of the first floor are all left side winds, the five air guiding units 20A of the second layer are all right side winds, and the five air guiding units 20A of the third layer are both left side winds, so that the guide The wind direction of the air blown in the same layer of the wind device 20 is the same, and the guidance of the air guiding unit 20A in the adjacent layer of the air guiding device 20 is different, so that the wind direction of the wind blown in the adjacent layer of the air guiding device 20 is different.
  • the air cooling system 1 includes a plurality of anti-backflow devices 30, and the plurality of air blowing units 10B (see FIG. 1) are respectively provided with respective anti-backflow devices 30, and the anti-backflow device 30 is disposed at the air blowing unit 10B.
  • the air outlet of (see Fig. 1) prevents the wind from flowing back into the single blowing unit 10B by the anti-backflow device 30 corresponding thereto when the single blowing unit 10B fails.
  • the backflow prevention device 30 includes a plurality of rotatable blades 31, and a louver structure formed in common, under the condition that the air blowing unit 10B (see FIG. 1) is normally blown. Due to the force of the air flow, the plurality of rotatable blades 31 in the backflow prevention device 30 are blown open, that is, the backflow prevention device 30 is opened; when the single air blowing unit 10B (see FIG. 1) fails, due to the cooling system 1 (See FIG.
  • the blowing unit 10B is preferably a fan, and the plurality of blowing units 1QB are preferably connected in parallel.
  • blowing unit can also be a fan, or other blowing device.
  • the fan is preferably a speed adjustable fan.
  • the speed of the non-failed fan is adjusted to achieve the same air flow rate.
  • an embodiment of the present invention further provides an electronic device 100 including a housing 3 and electronic components.
  • the electronic components are disposed in the housing 3 , and the electronic components are the heating devices 2 , and the electronic device
  • the air cooling system 1 further includes an air cooling system 1 disposed in the casing 3, and the air outlets of the plurality of air blowing units 10 are layered and guided by the air guiding device 20 so that the air outlet device 20 is formed at the exit of the air guiding device 20 Uniform cooling airflow for heat dissipation of electronic components.
  • the cooling system in this embodiment is identical in structure to the cooling system in the first embodiment, so the present embodiment will not be described again for the cooling system.
  • the embodiment of the present invention is provided with the above-described cooling device, and the air blowing device 20 is disposed between the plurality of air blowing unit air outlets 10A and the heat generating device 2, and the air blowing of the plurality of air blowing units 10 is performed by the air guiding device 20.
  • the layered guiding so as to form a uniform heat dissipation airflow at the outlet of the air guiding device 20, can ensure the heat dissipation of the heat generating device 2 directly downstream of the faulty blowing unit 10B even in the case of failure of the single blowing unit 10B;
  • the plurality of blowing units 10 arranged in layers can reduce the number of the blowing units 10B, thereby reducing the cost of the blowing unit 10B; reducing the failure probability of the plurality of blowing units 10 as a whole, thereby reducing maintenance and reducing the number of spare parts; Reduced energy consumption and reduced noise.
  • the electronic device 100 with the cooling system 1 has the advantages of good heat dissi

Abstract

本发明公开了一种风冷系统及电子设备,属于电子领域。风冷系统为发热器件散热,包括多个吹风单元和导风装置,多个吹风单元设置在流经发热器件空气的上游,导风装置设置在多个吹风单元的出风口与发热器件之间,导风装置用以将多个吹风单元的出风进行分层导向且至少分为两层,每层风都由所述多个吹风单元共同供应,至少相邻两层间风的风向不同。电子设备包括壳体、电子元器件以及所述的风冷系统。本发明不但能够满足多个吹风单元正常工作下发热器件的散热需求,还可以有效防止多个吹风单元中的单个吹风单元失效带来的散热影响,相比常规的双层布置的多个吹风单元,可减少吹风单元的数量,降低风冷系统的部件成本、运行能耗和噪声。

Description

说 明 书 一种风冷系统及电子设备
本申请要求于 2012 年 08 月 24 日提交中国专利局、 申请号为 201210303917.X, 发明名称为 "一种风冷系统及电子设备" 的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及电子领域, 特别涉及一种风冷系统及电子设备。 背景技术
电子设备中包含各种电子元器件, 在设备工作过程中, 这些电子元器件会 产生热量, 导致电子元器温度升高。 当电子元器温度超过一定值时, 将会导致 过热损坏或功能异常。 因此, 必须采取合适的冷却方式, 将电子元器件的工作 温度控制在合适范围内。
下面以常见的电子设备一一机架式服务器为例加以说明。机架式服务器往 往采用风冷系统进行散热, 风冷系统多数采用风扇吹风散热方式, 即风扇位于 电子元器件的空气上游, 向电子元器件排放空气。 在上述风冷系统中, 由于风 扇出口侧压力分布不均, 使得流经各电子元器件的气流会不平均, 各个风扇基 本都是对其直接下游的电子元器件提供散热, 一旦单风扇失效, 失效风扇下游 的器件会得不到足够的冷却气流, 从而遭遇散热问题。 为了避免单风扇失效情 况下的散热问题, 机架式服务器的冷却系统通常采用双层风扇。
上述冷却系统采用双层风扇,相比单层风扇供风所需风扇数量几乎多出一 倍,故此存在以下几个主要问题: 风扇部件成本高;风扇整体的失效几率增加, 维护工作量大, 要求的备件多; 风扇运行能耗大, 噪声高。 发明内容
为了解决现有技术存在的风扇部件成本高, 风扇整体的失效几率增加, 维 护工作量大, 以及要求的备件多的问题; 以及风扇运行能耗大,噪声高的问题; 本发明实施例提供了一种风冷系统及电子设备。 所述技术方案如下:
一方面, 提供了一种风冷系统, 为发热器件散热, 所述风冷系统包括多个 吹风单元和导风装置;
所述多个吹风单元设置在流经所述发热器件空气的上游, 所述多个吹风单 元用于提供所述发热器件散热所需风;
所述导风装置设置在所述多个吹风单元的出风口与所述发热器件之间, 所 述导风装置用以将所述多个吹风单元的出风进行垂直分层导向且至少分为两 层, 每层风都由所述多个吹风单元共同供应, 其中, 至少相邻两层间风的风向 不同。
具体地, 所述导风装置包括平板和竖板;
所述平板沿水平方向设置, 所述平板用于将所述多个吹风单元吹出的风分 成至少两层;
所述竖板分别垂直地设置在所述平板分成的至少两层空间中, 所述竖板用 以为其所对应的层间风导向。
具体地, 所述导风装置包括 N块平板和 N-1块竖板, 所述 N块平板均为三 角形平板, 所述 N块平板在垂直方向呈上下平行布置, 并且所述三角形平板的 长边均面向所述多个吹风单元的出风口, 所述 N-1块竖板分别布置所述 N块平 板形成的层间中, 并且每一层间中的竖板相对该层间平板的一个短边垂直布 具体地, 所述导风装置包括多块平板和多块竖板, 所述多块平板均为矩形 平板, 所述多块平板在垂直方向呈上下平行布置, 并且所述矩形平板的长边均 面向所述多个吹风单元的出风口, 所述多块竖板相对所述多块平板形成的层间 垂直且规律布置, 每个层间中的竖板布置方向相同, 以使该层间形成相同风导 向, 至少相邻两层间的竖板交错布置, 以使该至少相邻层间形成交错风导向。
具体地, 所述导风装置为一体式结构。
具体地, 所述导风装置为分体式结构, 所述导风装置包括多个导风单元, 所述多个导风单元与所述多个吹风单元——对应, 所述多个导风单元各自独 每个导风单元均通过平板将每个导风单元所对应的吹风单元的出风至少 分为两层, 相邻层出风导向不同, 使得相邻层中吹出风的风向不同,
所述导风装置中同一层的所有导风单元的导向相同,使得所述导风装置同 一层中吹出风的风向相同, 所述导风装置相邻层中的导风单元的导向不同, 使 得所述导风装置相邻层中吹出风的风向不同。 进一步地, 所述风冷系统包括多个防倒流装置, 所述多个吹风单元分别设 有各自的防倒流装置, 防倒流装置设置在吹风单元的出风口, 进而在单个吹风 单元失效时, 通过与之对应的防倒流装置防止风倒流进所述单个吹风单元中。
具体地, 所述吹风单元为风扇, 所述多个吹风单元并联。
具体地, 所述风扇为可调速风扇, 单个风扇失效时, 通过调整非失效风扇 的转速, 以达到相同的气流量。
另一方面, 提供了一种电子设备, 包括壳体和电子元器件, 所述电子元器 件设于所述壳体之内, 所述电子元器件均为发热器件, 所述电子设备还包括所 述的风冷系统, 所述风冷系统设于所述壳体内, 通过所述导风装置对所述多个 吹风单元的出风进行分层导向, 使得在所述导风装置的出口处, 形成均匀的散 热气流, 为所述电子元器件进行散热。
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例通过在多个吹风单元出风口与发热器件之间设置导风装置, 通过导风装置对多个吹风单元的出风进行分层导向, 从而在导风装置的出口 处, 形成均勾的散热气流, 即使在单个吹风单元失效情况下, 也能保证故障吹 风单元直接下游的发热器件散热; 由于本发明实施例采用上述结构, 不但能够 满足多个吹风单元正常工作下发热器件的散热需求,还可以有效防止多个吹风 单元中的单个吹风单元失效带来的散热影响,相比常规的双层布置的多个吹风 单元, 可减少吹风单元的数量, 从而降低吹风单元的成本; 降低多个吹风单元 整体的失效几率,从而减少维护, 降低备件数量; 多个吹风单元运行能耗降低, 噪声降低。 进而使得带有所述冷却系统的电子设备具有散热效果好, 运行稳定 的优点。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一实施例提供的冷却系统的结构示意图;
图 2是本发明一实施例提供的导风装置的结构示意图;
图 2A是本发明又一实施例提供的导风装置的结构示意图; 图 3是本发明再一实施例提供的导风装置的结构示意图;
图 3A是本发明另一实施例提供的导风装置的结构示意图;
图 4是本发明再一实施例提供的冷却系统的结构示意图;
图 5是本发明另一实施例提供的吹风单元和导风单元的结构示意图; 图 6是本发明一实施例提供的防倒流装置的结构示意图;
图 7是本发明再一实施例提供的电子设备的结构示意图。
图中各符号表示含义如下:
1风冷系统,
1 0多个吹风单元, 1 0A多个吹风单元的出风口, 1 0B吹风单元,
1 1第一吹风单元, 12第二吹风单元, 1 3第三吹风单元, 14第四吹风单元, 15第五吹风单元,
20导风装置, 2 QA导风单元,
21平板,
21A 第一平板, 21A1第一平板长边, 21A2第一平板第一短边, 21A3第一 平板第二短边,
21B第二平板, 21B2第二平板第一短边, 21B3第二平的第二短边, 21C第三平板, 21 D第四平板,
22竖板, 22A第一竖板, 22B第二竖板, 22C第三竖板, 22D第四竖板, 30防倒流装置, 31可转动叶片,
2发热器件,
3壳体,
1 00电子设备。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。
实施例一
参见图 1所示, 本发明实施例提供了一种风冷系统 1 , 风冷系统 1为发热 器件 2散热, 风冷系统 1包括多个吹风单元 1 0和导风装置 20 ;
多个吹风单元 1 0设置在流经发热器件 2空气的上游, 多个吹风单元 1 0用 于提供发热器件 2散热所需风; 导风装置 20设置在多个吹风单元的出风口 1 0A与发热器件 2之间, 导风 装置 20用以将多个吹风单元 10的出风进行垂直分层导向且至少分为两层,每 层风都由多个吹风单元 10共同供应, 其中, 至少相邻两层间风的风向不同。
其中, 上游具体是指风的始发点。 垂直分层是将垂直面分为多层, 具体是 设有间隔。
本发明实施例的工作原理: 参见图 1所示, 多个吹风单元 10 出风吹向导 风装置 20时, 会被导风装置 20分隔成多层, 在每一层内, 未被导风装置 20 阻挡的多个吹风单元 1 0出风按照原有的气流路径流向下游,被导风装置 20阻 挡的多个吹风单元 10出风则会按照导风装置 20的方向进行特定的导向, 由于 导风装置 20分多层, 至少相邻两层导风装置 20的导流方向朝向不同。
在多个吹风单元 1 0正常工作情况下, 在导风装置 20的出口处, 气流将会 是相互混合、 均匀分布的, 不会影响原有散热效果;
在单个吹风单元 10B出现故障情况下, 由于导风装置 20对气流进行了上 述的分层导向, 改变了原有多个吹风单元 1 0散热情况下的气流分布, 在失效 吹风单元 10B的直接下游处, 依然有来自其他吹风单元 10B的冷却气流, 从而 解决了单个吹风单元 1 0B失效的难题, 降低了散热风险。 由于本发明实施例采用上述结构, 不但能够满足多个吹风单元 10正常工 作下发热器件 2的散热需求, 还可以有效防止多个吹风单元 10中的单个吹风 单元 1 0B失效带来的散热影响,相比常规的双层布置的多个吹风单元 10 ,可采 用多个吹风单元 10B单层布置, 可减少吹风单元 1 0B的数量, 从而降低吹风单 元 10B的成本; 降低多个吹风单元 10整体的失效几率, 从而减少维护, 降低 备件数量; 多个吹风单元 10运行能耗降低, 噪声降低。
此外, 导风装置 20本身结构筒单, 具有易于加工, 成本低的优点。
此外, 导风装置 20阻力小, 几乎不影响吹风单元 10B工作点和冷却系统 风量。
具体地, 参见图 1所示, 导风装置 20包括平板 21和竖板 22 ;
平板 21沿水平方向设置, 平板 21用于将多个吹风单元 1 0吹出的风分成 至少两层;
竖板 22分别垂直地设置在平板 21分成的至少两层空间中, 竖板 22用以 为其所对应的层间风导向。
其中, 层间是指两个平板所形成的空间。
具体地, 参见图 1所示, 本实施例中, 导风装置 20包括至少一块平板 21 和至少两块竖板 22 ;
至少一块平板 21沿水平方向设置, 至少一块平板 21用于将多个吹风单元 1 0吹出的风分成至少两层;
至少两块竖板 22分别垂直地设置在至少一块平板 21分成的至少两层空间 中, 至少两块竖板 22用以为层间风导向。
更具体地,如图 2所示,本实施例中,导风装置 20包括 N块平板 21和 N-1 块竖板 22 , N块平板 21均为三角形平板, N块平板 21在垂直方向呈上下平行 布置, 并且三角形平板的长边均面向多个吹风单元的出风口 1 0A , N-1 块竖板 22分别布置 N块平板 21形成的层间中,并且每一层间中的竖板 22相对该层间 平板 21的一个短边垂直布置, 至少相邻两层之间的竖板 22相对它们共用的平 板 21短边交错布置, 其中, N ^ 2。
其中, 垂直方向是一个相对概念, 本实施例中, 垂直方向是指与水平面相 垂直的方向。
本实施例中的平板 21为三角形平板, 使得导风装置 20装入机箱后, 在三 角形平板的两个短边处能够空余出两个空间, 以第一平板 21 A为例加以说明, 在第一平板 21A的两个短边 21 A2、 21A3处能够空余出两个空间, 在不拆卸导 风装置 20 的情况下, 即可对两个空间处的器件进行维修, 因此具有维修方便 的优点。
更具体地, 如图 2所示, 本实施例中, N为四, 导风装置 20包括四块平板 21和三块竖板 22。 四块平板 21分别为第一平板 21A、 第二平板 21B、 第三平 板 21C及第四平板 21 D。 三块竖板 22分别为第一竖板 22A、 第二竖板 22B及第 三竖板 22C。
第一平板 21A、 第二平板 21B、 第三平板 21C及第四平板 21 D均为三角形 平板, 第一平板 21A、 第二平板 21B、 第三平板 21C及第四平板 21 D在垂直方 向呈上下平行布置,并且三角形平板的长边均面向多个吹风单元的出风口 1 0A , 以第一平板 21A为例加以说明, 第一平板 21A包括第一平板长边 21A1、第一平 板第一短边 21 A2及第一平板第二短边 21A 3 ,其中,第一平板长边 21A1面向多 个吹风单元 1 0的出风口 1 0A。 三块竖板 22分别布置在四块平板 21形成的层间中, 四块平板 21形成三 层, 具体地, 第一竖板 22A布置在第一平板 21A和第二平板 21B形成的第一层 间, 第二竖板 22B布置在第二平板 21B和第三平板 21C形成的第二层间, 第三 竖板 22C布置在第三平板 21C和第四平板 21D形成的第三层间。每一层间中的 竖板 22相对该层间平板的一个短边垂直布置,以第一平板 21A和第二平板 21B 形成的第一层间为例加以说明, 第一层间中的第一竖板 22 A相对第一平板第一 短边 21A2垂直布置。相邻两层之间的竖板 22相对它们共用的平板短边交错布 置, 以第一层间和第二层间为例加以说明, 第一竖板 22A及第二竖板 22B相对 第二平板 21B短边交错布置, 第一竖板 22A相对第二平板 21B第一短边 21B2 布置 (即图 2中右侧布置), 第二竖板 22B相对第二平板 21B的第二短边 21B3 布置(即图 2中左侧布置)。 其中, 交错布置是指竖板 22的布置方向是不一致 的, 使得第一层间左侧出风, 第二层间右侧出风, 第三层间左侧出风。 即本实 施例中, 任一相邻层的层间风的风向不同。
如图 2A所示, 本实施例与图 2中所示实施例的区别在于: N为五, 导风装 置 20包括五块平板 21和四块竖板 22 , 五块平板 21形成四个层间, 由上至下 分别为第一层间至第四层间, 其中, 第一层间的竖板 22及第二层间的竖板 22 均相对该层间平板 21的右侧短边垂直布置, 第三层间的竖板 22及及第四层间 的竖板 22均相对该层间平板 21的左侧短边垂直布置, 第二层间的竖板 2与第 三层间的竖板 22 交错布置。 本实施例中各个相邻两层中仅有第二层与第三层 的层间风的风向不同。
当然, 本领域普通技术人员可以理解, 每一层间中的竖板 22相对该层间 平板 21的一个短边垂直布置, 至少相邻两层之间的竖板 22相对它们共用的平 板 21短边交错布置, 至少相邻两层间风的风向不同。
具体地, 如图 3所示, 本实施例中, 导风装置 20包括多块平板 21和多块 竖板 22 ,多块平板 21均为矩形平板,多块平板 21在垂直方向呈上下平行布置, 并且矩形平板的长边均面向多个吹风单元的出风口 10 A ,多块竖板 22相对多块 平板 21形成的层间垂直且规律布置, 每个层间中的竖板 22布置方向相同, 以 使该层间形成相同风导向, 至少相邻两层间的竖板 22 交错布置, 以使该至少 相邻层间形成交错风导向, 本实施例采用上述结构, 具有结构筒单, 易于加工 制造的优点。
更具体地, 如图 3所示, 本实施例中, 导风装置 20包括四块平板 21和十 五块竖板 22。
四块平板 21分别为第一平板 21A、 第二平板 21B、 第三平板 21 C及第四平 板 21 D。 第一平板 21 A、 第二平板 21B、 第三平板 21C及第四平板 21 D均为矩形 平板, 第一平板 21A、 第二平板 21B、 第三平板 21C及第四平板 21 D在垂直方 向呈上下平行布置, 并且第一平板 21A、 第二平板 21B、 第三平板 21C及第四 平板 21 D的长边均面向多个吹风单元的出风口 1 0A。
十五块竖板 22相对四块平板 21形成的三个层间中垂直且规律布置, 十五 块竖板 22分成三组, 即第一竖板 22A形成的第一组竖板, 第二竖板 22B形成 的第二组竖板, 第三竖板 22C形成的第三组竖板, 每组竖板 22分别布置在平 板 21形成的层间中, 第一组竖板 22A布置在第一平板 21A和第二平板 21 B形 成的第一层间, 第二组竖板 22B布置在第二平板 21B和第三平板 21C形成的第 二层间, 第三组竖板 22C布置在第三平板 21C和第四平板 21 D形成的第三层间 中。
每个层间中的竖板 22布置方向相同, 以使该层间形成相同风导向。 本实 施例中, 以第一平板 21 A和第二平板 21 B形成的第一层间为例加以说明, 第一 层间中的五块第一竖板 22A均垂直布置在第一平板 21A和第二平板 21B之间, 并且五块第一竖板 22A均向左倾斜布置, 以使第一层间形成左侧风导向。
相邻两层间的竖板交错布置, 以使该相邻层间形成交错风导向。 即本实施 例中, 任一相邻层的层间风的风向不同。 本实施例中, 以第一层间和第二层间 为例加以说明, 第二层间中的五块第二竖板 22B均垂直布置在第二平板 21B和 第三平板 21C之间, 并且五块第二竖板 22B均向右倾斜布置, 以使第二层间形 成右侧风导向, 即第一层间和第二层间的第一竖板 22A和第二竖板 22B交错布 置 , 使得第一层间和第二层间分别形成左侧风导向及右侧风导向。
最优选地, 相邻层间的竖板采用相反方向布置, 此结构可避免散热死角的 存在。
当然, 本领域普通技术人员可以理解, 平板 21的数量及竖板 22的数量不 限于此, 具体实施时可以根据实际散热需求而定。
如图 3A所示, 本实施例与图 3所示实施例的区别在于: 导风装置 20包括 五块平板 21和二十块竖板 22 (参见图 3 ), 五块平板 21形成四个层间, 由上 至下分别为第一层间至第四层间, 二十块竖板 22 (参见图 3 )分为四组, 每组 五块竖板 22 (参见图 3 ), 即四个层间对应四组竖板。 其中, 第一层间的第一 竖板 22A及第二层间的第二竖板 22B均向左倾斜布置, 第三层间的第三竖板 22C及及第四层间的第四竖板 22D均向右倾斜布置, 第二层间的第二竖板 22B 与第三层间的第三竖板 22C交错布置。 即本实施例中各个相邻两层中仅有第二 层与第三层的层间风的风向不同。
当然, 本领域普通技术人员可以理解, 每个层间中的竖板 22布置方向相 同, 以使该层间形成相同风导向, 至少相邻两层间的竖板 22 交错布置, 以使 该至少相邻层间形成交错风导向。
具体地, 如图 3所示, 本实施例中, 导风装置 20为一体式结构。
具体地, 如图 4所示, 本实施例中, 导风装置 20为分体式结构, 导风装 置 20包括多个导风单元 20A,多个导风单元 20A与多个吹风单元 10B——对应, 多个导风单元 2 OA各自独立,导风单元 2 OA分别为其所对应的吹风单元 10B导 风, 每个导风单元 20A均通过平板 21将每个导风单元 20A所对应的吹风单元 10B的出风至少分为两层, 相邻层出风导向不同, 使得相邻层中吹出风的风向 不同, 导风装置 20中同一层的所有导风单元 20A的导向相同, 使得导风装置 20同一层中吹出风的风向相同, 导风装置 20相邻层中的导风单元 20A的导向 不同, 使得导风装置 20相邻层中吹出风的风向不同。
本实施例, 采用分体式结构, 便于加工、 储存及维修。
当然, 本领域普通技术人员可以理解, 本实施例中的导风装置 20还可以 是一体式结构。
更具体地, 如图 4所示, 本实施例中, 多个吹风单元 10包括五个吹风单 元 10B, 即第一吹风单元 11、 第二吹风单元 12、 第三吹风单元 13、 第四吹风 单元 14及第五吹风单元 15 , 并且五个吹风单元 11-15呈单排布置, 相应的导 风装置 20也包括五个导风单元 20A。
如图 5所示,每个导风单元 2 OA与其所对应的吹风单元 10B组成一个冷却 单元,每个导风单元 20A均通过第一平板 21A至第四平板 21D将所对应的吹风 单元 10B的出风分为三层, 通过层间的两块竖板 22用以为层间风导向, 相邻 层出风导向不同, 即第一层出风与第二层出风导向不同, 第二层出风与第三层 出风导向不同, 使得相邻层中吹出风的风向不同, 本实施例中, 第一层为左侧 风, 第二层为右侧风, 第三层为左侧风。
将图 5中所示的导风单元 20A五个布置成一排, 即为图 4中所示的导风装 置 20 , 如图 4所示, 导风装置 20中同一层的所有导风单元 20A的导向相同, 第一层的五个导风单元 20A均为左侧风, 第二层的五个导风单元 20A均为右侧 风, 第三层的五个导风单元 20A均为左侧风, 使得导风装置 20同一层中吹出 风的风向相同, 导风装置 20相邻层中的导风单元 20A的导向不同, 使得导风 装置 20相邻层中吹出风的风向不同。
进一步地, 如图 6所示, 风冷系统 1包括多个防倒流装置 30, 多个吹风单 元 10B (参见图 1 )分别设有各自的防倒流装置 30, 防倒流装置 30设置在吹风 单元 10B (参见图 1 ) 的出风口, 进而在单个吹风单元 10B失效时, 通过与之 对应的防倒流装置 30防止风倒流进单个吹风单元 10B中。
更具体地, 如图 6所示, 本实施例中, 防倒流装置 30包括多个可转动的 叶片 31, 并共同形成的百叶窗式结构, 在吹风单元 10B (参见图 1)正常吹风的 条件下, 由于受到气流的作用力, 使得防倒流装置 30 中的多个可转动的叶片 31被吹开, 即防倒流装置 30开启; 当单个吹风单元 10B (参见图 1)失效时, 由 于受到冷却系统 1 (参见图 1)内外压差的影响, 失效吹风单元 10B对应的防倒 流装置 30的多个可转动的叶片 31向下落下, 即防倒流装置 30关闭, 从而实 现失效吹风单元 10B的防倒流作用。
具体地, 参见图 1, 本实施例中, 吹风单元 10B优选为风扇, 多个吹风单 元 1QB优选并联。
当然本领域普通技术人员可以理解, 吹风单元还可以是风机, 或其他吹风 设备。
具体地, 参见图 1, 本实施例中, 所述风扇优选为可调速风扇, 单个风扇 失效时, 通过调整非失效风扇的转速, 以达到相同的气流量。 实施例二
如图 7所示, 本发明实施例还提供了一种电子设备 100, 包括壳体 3和电 子元器件, 电子元器件设于壳体 3之内, 电子元器件均为发热器件 2, 电子设 备 100还包括的风冷系统 1,风冷系统 1设于壳体 3内,通过导风装置 20对多 个吹风单元 10的出风进行分层导向, 使得在导风装置 20的出口处, 形成均匀 的散热气流, 为电子元器件进行散热。 其中, 本实施例中的冷却系统与实施例 一中的冷却系统结构完全相同, 故本实施例针对冷却系统部分不再赘述。
本发明实施例带有上述冷却装置,通过在多个吹风单元出风口 10A与发热 器件 2之间设置导风装置 20,通过导风装置 20对多个吹风单元 10的出风进行 分层导向, 从而在导风装置 20 的出口处, 形成均匀的散热气流, 即使在单个 吹风单元 1 0B失效情况下, 也能保证故障吹风单元 10B直接下游的发热器件 2 散热; 由于本发明实施例采用上述结构, 不但能够满足多个吹风单元 10正常 工作下发热器件 2的散热需求, 还可以有效防止多个吹风单元 10中的单个吹 风单元 10B失效带来的散热影响,相比常规的双层布置的多个吹风单元 10 ,可 减少吹风单元 10B的数量, 从而降低吹风单元 10B的成本; 降低多个吹风单元 10整体的失效几率, 从而减少维护, 降低备件数量; 多个吹风单元 10运行能 耗降低,噪声降低。进而使得带有冷却系统 1的电子设备 100具有散热效果好, 运行稳定的优点。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种风冷系统, 为发热器件散热, 其特征在于, 所述风冷系统包括多个 吹风单元和导风装置;
所述多个吹风单元设置在流经所述发热器件空气的上游, 所述多个吹风单 元用于提供所述发热器件散热所需风;
所述导风装置设置在所述多个吹风单元的出风口与所述发热器件之间, 所 述导风装置用以将所述多个吹风单元的出风进行垂直分层导向且至少分为两 层, 每层风都由所述多个吹风单元共同供应, 其中, 至少相邻两层间风的风向 不同。
2、 根据权利要求 1所述的风冷系统, 其特征在于, 所述导风装置包括平板 和竖板;
所述平板沿水平方向设置, 所述平板用于将所述多个吹风单元吹出的风分 成至少两层;
所述竖板分别垂直地设置在所述平板分成的至少两层空间中, 所述竖板用 以为其所对应的层间风导向。
3、 根据权利要求 2所述的风冷系统, 其特征在于, 所述导风装置包括 N块 平板和 N-1块竖板, 所述 N块平板均为三角形平板, 所述 N块平板在垂直方向 呈上下平行布置, 并且所述三角形平板的长边均面向所述多个吹风单元的出风 口, 所述 N-1块竖板分别布置所述 N块平板形成的层间中, 并且每一层间中的 竖板相对该层间平板的一个短边垂直布置, 至少相邻两层之间的竖板相对它们 共用的平板短边交错布置, 其中, N ^ 2。
4、 根据权利要求 2所述的风冷系统, 其特征在于, 所述导风装置包括多块 平板和多块竖板, 所述多块平板均为矩形平板, 所述多块平板在垂直方向呈上 下平行布置, 并且所述矩形平板的长边均面向所述多个吹风单元的出风口, 所 述多块竖板相对所述多块平板形成的层间垂直且规律布置, 每个层间中的竖板 布置方向相同, 以使该层间形成相同风导向, 至少相邻两层间的竖板交错布置, 以使该至少相邻层间形成交错风导向。
5、 根据权利要求 2-4任一项权利要求所述的风冷系统, 其特征在于, 所述 导风装置为一体式结构。
6、 根据权利要求 2-4任一项权利要求所述的风冷系统, 其特征在于, 所述 导风装置为分体式结构, 所述导风装置包括多个导风单元, 所述多个导风单元 与所述多个吹风单元——对应, 所述多个导风单元各自独立, 所述导风单元分 别为所述导风单元所对应的吹风单元导风,
每个导风单元均通过平板将每个导风单元所对应的吹风单元的出风至少分 为两层, 相邻层出风导向不同, 使得相邻层中吹出风的风向不同,
所述导风装置中同一层的所有导风单元的导向相同, 使得所述导风装置同 一层中吹出风的风向相同, 所述导风装置相邻层中的导风单元的导向不同, 使 得所述导风装置相邻层中吹出风的风向不同。
7、 根据权利要求 1-6任一项权利要求所述的风冷系统, 其特征在于, 所述 风冷系统包括多个防倒流装置, 所述多个吹风单元分别设有各自的防倒流装置, 防倒流装置设置在吹风单元的出风口, 进而在单个吹风单元失效时, 通过与之 对应的防倒流装置防止风倒流进所述单个吹风单元中。
8、 根据权利要求 1-7任一项权利要求所述的风冷系统, 其特征在于, 所述 吹风单元为风扇, 所述多个吹风单元并联。
9、根据权利要求 8所述的风冷系统, 其特征在于, 所述风扇为可调速风扇, 单个风扇失效时, 通过调整非失效风扇的转速, 以达到相同的气流量。
10、 一种电子设备, 包括壳体和电子元器件, 所述电子元器件设于所述壳 体之内, 所述电子元器件均为发热器件, 其特征在于, 所述电子设备还包括权 利要求 1-9中任一项权利要求所述的风冷系统, 所述风冷系统设于所述壳体内, 通过所述导风装置对所述多个吹风单元的出风进行分层导向, 使得在所述导风 装置的出口处, 形成均匀的散热气流, 为所述电子元器件进行散热。
PCT/CN2013/072933 2012-08-24 2013-03-20 一种风冷系统及电子设备 WO2014029209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/451,549 US20140342652A1 (en) 2012-08-24 2014-08-05 Air Cooling System and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210303917.XA CN103635065B (zh) 2012-08-24 2012-08-24 一种风冷系统及电子设备
CN201210303917.X 2012-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/451,549 Continuation US20140342652A1 (en) 2012-08-24 2014-08-05 Air Cooling System and Electronic Device

Publications (1)

Publication Number Publication Date
WO2014029209A1 true WO2014029209A1 (zh) 2014-02-27

Family

ID=50149388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072933 WO2014029209A1 (zh) 2012-08-24 2013-03-20 一种风冷系统及电子设备

Country Status (3)

Country Link
US (1) US20140342652A1 (zh)
CN (1) CN103635065B (zh)
WO (1) WO2014029209A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9363927B2 (en) * 2014-09-12 2016-06-07 Lanner Electronic Inc. Electrical signal computing module capable of accommodating printed circuit board
CN105992505B (zh) * 2015-03-24 2018-06-12 杭州迪普科技股份有限公司 网络设备
US10151324B2 (en) * 2016-01-29 2018-12-11 Western Digital Technologies, Inc. Backflow stopper with acoustic barrier
EP3381248B1 (en) * 2016-02-23 2023-07-26 Hewlett Packard Enterprise Development LP Deflection of heated air from a posterior electrical component
CN108024483B (zh) * 2017-12-28 2024-03-22 浙江大学昆山创新中心 一种紧凑型发热模组及系统
TWI647997B (zh) * 2018-02-14 2019-01-11 緯創資通股份有限公司 防回流裝置及使用其的伺服器系統
CN208227548U (zh) 2018-04-18 2018-12-11 哈曼国际工业有限公司 电子装置和用于电子装置的散热装置
US10548238B1 (en) 2018-12-13 2020-01-28 Caterpillar Inc. Duct design for airflow cooling systems
EP3725413A1 (de) * 2019-04-16 2020-10-21 Eppendorf AG Zentrifugentemperierung
US20240130072A1 (en) * 2022-10-14 2024-04-18 Schneider Electric It Corporation Airflow guide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2467827Y (zh) * 2000-12-12 2001-12-26 神达电脑股份有限公司 具有多风向的散热风扇装配装置
CN101109982A (zh) * 2007-08-22 2008-01-23 中兴通讯股份有限公司 一种实现可变风量分区控制的方法和系统框架
CN101765354A (zh) * 2009-09-16 2010-06-30 苏州工业园区胜欣电子有限公司 一种网络广告机的散热装置
JP2012093773A (ja) * 2011-12-05 2012-05-17 Necディスプレイソリューションズ株式会社 冷却装置、冷却装置を備えた電子機器及び液晶プロジェクタ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2226264Y (zh) * 1995-05-08 1996-05-01 郑寿山 水冷式风扇热交换器
US6525936B2 (en) * 2001-04-30 2003-02-25 Hewlett-Packard Company Air jet cooling arrangement for electronic systems
JP2004191033A (ja) * 2002-12-10 2004-07-08 Lg Electronics Inc 空気調和機
CN2615559Y (zh) * 2003-04-08 2004-05-12 广州佳仕峰机电实业有限公司 水冷式空调机之变向排风风嘴
KR100577205B1 (ko) * 2004-05-21 2006-05-10 엘지전자 주식회사 환기시스템
US7420806B1 (en) * 2005-11-22 2008-09-02 Juniper Networks, Inc. Airflow distribution through an electronic device
CN2899907Y (zh) * 2006-05-26 2007-05-16 张家港市新中环保设备有限公司 锥体状网格形出风管口
US20100041327A1 (en) * 2006-12-29 2010-02-18 Stulz Air Technology Systems, Inc. Apparatus, system and method for air conditioning using fans located under flooring
TWI349072B (en) * 2008-07-04 2011-09-21 Inventec Corp Wind guiding cover
CN201688556U (zh) * 2010-04-14 2010-12-29 许硕 炉用热风机
US8045328B1 (en) * 2010-05-04 2011-10-25 Chenbro Micom Co., Ltd. Server and cooler moduel arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2467827Y (zh) * 2000-12-12 2001-12-26 神达电脑股份有限公司 具有多风向的散热风扇装配装置
CN101109982A (zh) * 2007-08-22 2008-01-23 中兴通讯股份有限公司 一种实现可变风量分区控制的方法和系统框架
CN101765354A (zh) * 2009-09-16 2010-06-30 苏州工业园区胜欣电子有限公司 一种网络广告机的散热装置
JP2012093773A (ja) * 2011-12-05 2012-05-17 Necディスプレイソリューションズ株式会社 冷却装置、冷却装置を備えた電子機器及び液晶プロジェクタ

Also Published As

Publication number Publication date
CN103635065B (zh) 2016-03-30
CN103635065A (zh) 2014-03-12
US20140342652A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
WO2014029209A1 (zh) 一种风冷系统及电子设备
US11197394B2 (en) Protective louver assembly for air-moving assembly
TWI392997B (zh) 伺服器之冷卻循環系統
TWI566679B (zh) 伺服器系統
US8644014B2 (en) Server system with heat dissipation device
US20110250831A1 (en) Air-conditioning system and air conditioner thereof
TW201302038A (zh) 具機房內外循環散熱切換功能之冷卻系統
US20120100795A1 (en) Air-conditioning system
JP2010127606A (ja) サーバ室の空調システム
US9462729B1 (en) Tile assemblies faciliating failover airflow into cold air containment aisle
CN104765432A (zh) 服务器组合
JP6309783B2 (ja) 空調システム
KR20210024974A (ko) 랙 호스팅 전자 설비 및 적어도 하나의 팬을 위한 냉각 장치
JP6859889B2 (ja) サーバシステム及びサーバルーム
JP5307853B2 (ja) ファンユニット
JP6081731B2 (ja) 情報処理機器室の空調システム
TWI511656B (zh) 伺服模組
EP3720262B1 (en) Air management system for room containing electrical equipment and method of cooling such a room
JP2014031974A (ja) 情報処理機器室の空調システム
JP6524774B2 (ja) 冷却装置、及び冷却方法
JP5659373B2 (ja) 気流制御板
JP5210256B2 (ja) 発熱機器収容ラックの吸排気構造及びデータセンタ
Hannaford Ten steps to solving cooling problems cause by high-density server deployment
JP2014167385A (ja) サーバ室の空調システム
TWM505635U (zh) 散熱裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831175

Country of ref document: EP

Kind code of ref document: A1