WO2014029194A1 - 一体式飞点x光机 - Google Patents

一体式飞点x光机 Download PDF

Info

Publication number
WO2014029194A1
WO2014029194A1 PCT/CN2013/070258 CN2013070258W WO2014029194A1 WO 2014029194 A1 WO2014029194 A1 WO 2014029194A1 CN 2013070258 W CN2013070258 W CN 2013070258W WO 2014029194 A1 WO2014029194 A1 WO 2014029194A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
ray
guard
flying spot
ray machine
Prior art date
Application number
PCT/CN2013/070258
Other languages
English (en)
French (fr)
Inventor
陈志强
赵自然
吴万龙
罗希雷
丁光伟
金颖康
唐乐
丁富华
桑斌
曹硕
郑志敏
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2014029194A1 publication Critical patent/WO2014029194A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/153Spot position control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/043Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers changing time structure of beams by mechanical means, e.g. choppers, spinning filter wheels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/025X-ray tubes with structurally associated circuit elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/025Means for cooling the X-ray tube or the generator

Definitions

  • the invention belongs to the technical field of X-ray generators, and particularly relates to an integrated flying spot X-ray machine. Background technique
  • the well-known X-ray machine mainly emits X-rays on the cone beam surface and the fan surface, and cannot scan dynamically by point by point.
  • the current security and medical fields require the scanning of an integrated flying spot X-ray machine.
  • an integrated flying spot X-ray machine comprising: a radiation source generating device for generating X-rays; a rotary collimator device having at least one small through hole and being disposed Rotating around the radiation source generating device; a frameless torque motor for driving the rotary collimator device to rotate around the radiation source generating device; and a cooling device for cooling the radiation source generating device, wherein
  • the radiation source generating device, the rotary collimator device, the frameless torque motor, and the cooling device are mounted to the unitary mounting frame.
  • the X-ray machine emits a sector X-ray, and the dynamic point-by-point scanning of the ray is realized by rotating the collimator device around the small hole provided outside the sector ray.
  • the integrated mounting frame includes: a support frame for supporting the frameless torque motor and the cooling device; and a clamp base fixedly coupled to the support support frame for fixing the radiation source generating device.
  • the radiation source generating device includes: an X-ray tube; a high-voltage generator for driving the X-ray tube; an inner protective sleeve disposed outside the X-ray tube for shielding and shielding; An outer sleeve for protecting the outer portion of the inner protective sleeve, wherein: the inner protective sleeve and the outer sleeve each have a ray outlet, the ray outlets being aligned with each other and communicating to direct X-rays from the X-ray tube.
  • an anode end cover is disposed on an anode target side of the X-ray tube, and a first anode insulation protection seat and a second anode insulation protection seat are further disposed between the anode end cover and the anode target, Combining to form a labyrinth channel;
  • a cathode protective end cap is disposed on a cathode side of the X-ray tube, and a labyrinth guard ring is further disposed between the cathode of the X-ray tube and the cathode shield end cap.
  • a sealing window is disposed in each of the radiation outlets of the inner protective sleeve and the outer sleeve, and the material of the sealing window is a material that can be penetrated by X-rays.
  • the cavity around the X-ray tube is filled with high-pressure insulating oil; and an expansion drum is further disposed between the labyrinth guard ring and the cathodic protection end cap.
  • the cathode protection end cover, the inner protection sleeve, the second anode insulation protection seat, the first anode insulation protection seat, the labyrinth protection ring are made of shielding ray material, and the second anode insulation protection seat
  • the first anode insulating shield is also insulated.
  • the cathodic protection end cap is provided with a bent through hole, and the cathodic protection end cover is assembled with the expansion drum to form a gas chamber. Thereby, when the expansion drum is pressed, the exhaust gas is exhausted through the pores of the cathodic protection end cap.
  • the outer sleeve is provided with a beam outlet at a certain angle, and a boss with a shoulder is formed on the outer side wall of the outer sleeve.
  • the first anode insulation protection seat is combined with the second anode insulation protection seat to form a cavity, and the liquid guiding hole of the first anode insulation protection seat and the second anode insulation protection seat The holes are misaligned to form a labyrinth structure.
  • the first anode insulating shield and the second anode insulating shield material have high-voltage insulation and radiation leakage prevention, thereby ensuring high-voltage insulation and radiation prevention performance of the external cavity of the X-ray tube.
  • the rotary collimator device comprises: at least one bearing supported on a boss with a shoulder of the outer sleeve; supported by the bearing and surrounding the outer sleeve Rotating flying point Slewing guard ring; and side guard plates and left and right end caps respectively arranged on both sides of the fly-point revolving guard ring.
  • the cooling device includes: a magnetic pump, a high-pressure insulating oil for pumping a temperature rise; and a heat exchanger for cooling the pumped high-pressure insulating oil; and an oil passage for The pumped high-pressure insulating oil is transferred to a heat exchanger for heat exchange, and the cooled high-pressure insulating oil is returned to the
  • the cavity around the X-ray tube The cavity around the X-ray tube.
  • High-pressure insulating oil is injected into the cavity of the radiation source generating device, and the anode target for cooling the bulb is used by using the above-mentioned series circulating system to ensure the normal operation of the integrated X-ray machine.
  • the present invention adopts the above technical solution, it has at least one of the following beneficial effects: First, the ray dynamic point-by-point scanning can be realized; second, the structure is compact; and third, the material used can effectively shield the radiation. DRAWINGS
  • Figure 1 is a front elevational view of an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1;
  • Figure 4 is a cross-sectional view taken along line C-C of Figure 1;
  • Figure 5 is a front view of the tube
  • Figure 6 is a view of the tube A direction
  • Figure 7 is a three-dimensional view of the outer sleeve with the ray exit
  • Figure 8 is a front elevational view of the first anode insulating shield and the second anode insulating shield;
  • Figure 9 is a plan view of the first anode insulating shield and the second anode insulating shield assembled; and
  • Figure 10 is a flying spot rotation A three-dimensional view of the guard ring. detailed description
  • An integrated flying spot X-ray machine comprising: a radiation source generating device 40 for generating X-rays; a rotary collimator device 60 provided with at least one small through hole and arranged to surround the radiation
  • the source generating device 40 is rotatable; the frameless torque motor 80 is configured to drive the rotary collimator device 60 to rotate around the radiation source generating device 40; and the cooling device 20 is configured to cool the radiation source generating device 40, wherein the radiation source generating device 40
  • the rotary collimator device 60, the frameless torque motor 80, and the cooling device 20 are mounted to the unitary mounting frames 10, 11.
  • the unitary mounting frames 10, 11 include: a support frame 10 for supporting the frameless torque motor 80 and the cooling device 20; and a clamp base 11 fixedly coupled to the support frame 10 for fixing the radiation source generating device 40.
  • the support frame 10 is used to support the frameless torque motor 80 and the cooling device 20, and the clamp base 11 is used to support the radiation source generating device 40.
  • the radiation source generating device 40 may include a cathode protective end cap 41, an aviation plug 42, an outer sleeve 43 with a ray outlet, an inner protective sleeve 44 with a ray outlet, a sealing window 45, an O-ring seal Ring 46, anode end cap 47, high voltage generator 90, fitting 49, second anode insulating shield 50, locating pin 51, first anode insulating shield 52, bulb 53, labyrinth guard ring 54 and expansion drum 55.
  • the radiation source generating device 40 includes: an X-ray tube 53; a high voltage generator 90 for driving the X-ray tube 53; and an inner protective cover disposed outside the X-ray tube 53 for shielding and protection. a sleeve 44; an outer sleeve 43 disposed outside the inner guard sleeve 44 for protection, wherein: the inner guard sleeve 44 and the outer sleeve 43 each have a ray outlet, the ray outlets being aligned with each other to communicate from the X-ray ball
  • the X-ray of the tube 53 is derived. As shown in FIGS.
  • the high voltage generator 90 applies a high voltage to the ends of the bulb 53 through the aviation plug 42 to generate X-rays, and the rays are angularly opened from the outer sleeve 43 in the circumferential direction, for example,
  • the fan-shaped cone port 72 of 110 degrees shown in Fig. 6 is emitted.
  • the positioning pin 51 is used to position the outgoing direction of the bulb 53.
  • an anode end cover 47 is disposed on the anode target 56 side of the X-ray tube 53 , and a first anode insulation guard 52 and a second anode insulation guard are further disposed between the anode end cover 47 and the anode target 56 .
  • the combination forms a labyrinth passage;
  • a cathode guard end cap 41 is disposed on the cathode side of the X-ray bulb 53, and a labyrinth guard ring 54 is further disposed between the cathode of the X-ray bulb 53 and the cathode shield end cap 41.
  • a labyrinth guard ring 54 is further disposed between the cathode of the X-ray bulb 53 and the cathode shield end cap 41.
  • the first anode insulating guard 52 is combined with the second anode insulating guard 50 to form a cavity 501, and the first anode insulating guard 52 has a guiding hole 502 and a second anode insulating seat.
  • the liquid injection hole 502 of 50 is misaligned to form a labyrinth structure.
  • labyrinth protection The function of the ring 54 is to form a labyrinth of the cathode lead outlet and the high pressure insulating oil return outlet to prevent radiation leakage. As shown in Fig.
  • a blocking window 45 is provided in each of the radiation outlets of the inner protective sleeve 44 and the outer sleeve 43, and the material of the sealing window 45 is a material that can be penetrated by X-rays.
  • the rays passing through the respective radiation outlets of the inner guard sleeve 44 and the outer sleeve 43 and the radiation of the sealing window 45 are at a predetermined angle, such as an angle of 4 degrees in FIG. 5, in a direction perpendicular to the longitudinal axis of the radiation source generating device 40.
  • the cathodic protection end cap 41, the inner protective sleeve 44, the second anode insulating guard 50, the first anode insulating guard 52, and the labyrinth guard ring 54 are made of a shielding ray material, and the second anode is The insulating shield 50 and the first anode insulating shield 52 are also insulative.
  • the cathodic protection end cap 41 is provided with a bent through hole 550 which is assembled with the expansion drum 55 to form a gas chamber 551.
  • the outer sleeve 43 is provided with an angled exit port 72, and a boss 71 with a shoulder is formed on the outer side wall of the outer sleeve.
  • the rotary collimator device 60 comprises: at least one bearing 63 supported on a boss 71 with a shoulder of the outer sleeve 43; supported by a bearing 63 and surrounding the outer casing A flying point swing guard ring 64 that rotates the cylinder 43; and side guard plates 61 and left and right end covers 62, 65 that are respectively disposed on both sides of the flying spot swing guard ring 64.
  • the anode target 56 of the bulb 53 emits a large amount of heat while generating radiation.
  • a plurality of flow guiding holes 57 are arranged on the circumference of the anode target 56. When the cooling liquid passes through the flow guiding holes 57, the heat of the anode target 56 is taken away to ensure the normal operation of the bulb 53.
  • the cavity around the X-ray tube 53 is filled with high-pressure insulating oil; and further, an expansion is provided between the labyrinth guard ring 54 and the cathodic protection end cap 41. Drum 55.
  • the chamber around the tube 53 is filled with high-pressure insulating oil for cooling the heat generated by the tube 53. As the temperature of the insulating oil rises, the volume begins to expand by a certain amount, and the expansion drum 55 is squeezed. At the same time, the insulating oil having a higher temperature is drawn from the pipe joint 49 of the anode end cover 47 through the magnetic pump 23, and is subjected to heat.
  • the first anode insulating guard 52 and the second anode insulating guard 50 are integrated by the pipe joint 48 near the end of the labyrinth guard ring to form a labyrinth channel, and then flow back through the air guiding hole 57.
  • the volume around the bulb 53 maintains a constant volume expansion of the oil.
  • the cooling device 20 includes: a magnetic pump 23 for pumping a high temperature insulating oil having an increased temperature; and a heat exchanger 21 for cooling the sucked high-pressure insulating oil;
  • the passage is for conveying the pumped high-pressure insulating oil to the heat exchanger 21 for heat exchange, and returns the cooled high-pressure insulating oil to the cavity around the X-ray tube 53.
  • the cooling device also includes a fan (22) to further enhance the heat exchange efficiency of the heat exchanger 21.
  • a rotary collimator unit 60 having a small hole includes a side guard 61, a left end cover 62, a bearing 63, a flying point revolving guard ring 64, and a right end cover 65.
  • the bearing 63 is mounted on a boss 71 having a shoulder on the outer side wall of the outer sleeve 43, and the flying point return guard 64 is mounted on the bearing 63 to form a rotating body.
  • the flying point revolving guard ring 64 has a small through hole 75.
  • the right end cap 65 is coupled to the mover 81 of the frameless torque motor 80 by screws, and the stator 82 is fixed to the support frame 10 by screws.
  • the frameless torque motor 80 drives the rotary collimator device 60 with the small through hole 75 to rotate, and the ray dynamic point-by-point scanning is realized by rotating around the small through hole 75 on the rotary collimator device 60 outside the radiation source generating device 40.
  • the side guard plates 61 and the flying spot rotary guard rings 64 on both sides are made of a shielded ray material and constitute a shield cavity, which can effectively prevent radiation leakage.
  • the flying spot rotary guard ring 64 has a small through hole in the radial direction, the present invention is not limited thereto, and it may be plural.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种一体式飞点X光机,其包括:放射源发生装置(40),用于产生X射线;回转准直器装置(60),其上设置有至少一个小通孔并设置成围绕所述放射源发生装置(40)可旋转;无框架扭矩电机(80),用于驱动所述回转准直器装置(60)围绕所述放射源发生装置(40)转动;冷却装置(20),用于所述放射源发生装置(40)的冷却,其中所述放射源发生装置(40)、回转准直器装置(60)、无框架扭矩电机(80)和所述冷却装置(20)安装到一体安装框架(10、11)上。

Description

一体式飞点 X光机 本申请要求了 2012年 8月 21日提交的、 申请号为 201210299797.0、发明名 称为 "一体式飞点 X光机" 的中国专利申请的优先权, 其全部内容通过引用结 合在本申请中。 技术领域
本发明属于 X射线发生器技术领域, 具体涉及一种一体式飞点 X光机。 背景技术
公知的 X光机主要是以锥束面、 扇面发出 X射线, 不能动态逐点扫描。 现 在的安检和医疗领域需要一体式飞点 X光机的扫描。 为了实现此功能的需要, 实有必要提出一种一体式飞点 X光机, 至少能够消除前述技术问题的至少一个 方面。 发明内容
针对上述现有技术存在的缺点, 为了实现对安检和医疗领域功能需求, 本发 明的目的是提供一种一体式飞点 X光机。
根据本发明的一个方面, 其提供一种一体式飞点 X光机, 其包括: 放射源 发生装置, 用于产生 X射线; 回转准直器装置, 其上述设置有至少一个小通孔 并设置成围绕所述放射源发生装置可旋转; 无框架扭矩电机, 用于驱动所述回转 准直器装置围绕所述放射源发生装置转动; 冷却装置, 用于所述放射源发生装置 的冷却, 其中所述放射源发生装置、 回转准直器装置、无框架扭矩电机和所述冷 却装置安装到一体安装框架上。
通过采用上述结构, 将 X光机发出扇面 X射线, 通过围绕扇面射线外面带 有的小孔回转准直器装置的转动, 实现射线的动态逐点扫描。
进一步地, 所述一体安装框架包括: 支撑架, 用于支撑无框架扭矩电机和 冷却装置; 和卡箍座, 与所述支承支撑架固定相连用于固定放射源发生装置。 通过采用上述技术方案,所述支撑架和卡箍座用来将上述的各部分功能装置集合 在一起, 形成结构紧凑的一体式 X光机结构。
具体地, 所述放射源发生装置包括: X射线球管; 用于驱动 X射线球管的 高压发生器; 设置在 X射线球管外部用于屏蔽和防护的内防护套筒; 设置在所 述内防护套筒外部用于防护的外套筒, 其中: 所述内防护套筒和外套筒各自具有 射线出口, 上述射线出口相互对正和连通以将来自 X射线球管的 X射线导出。
进一步地, 在所述 X射线球管的阳极靶一侧设置有阳极端盖, 在所述阳极 端盖与阳极靶之间进一步设置有第一阳极绝缘防护座和第二阳极绝缘防护座,其 组合形成迷宫通道; 在所述 X射线球管的阴极一侧设置有阴极防护端盖, 在所 述 X射线球管的阴极与阴极防护端盖之间进一步设置有迷宫防护环。
在上述技术方案中, 在所述内防护套筒和外套筒各自的射线出口中设置有 封堵窗, 所述封堵窗的材料为能被 X射线穿透的材料。
更具体地, 在 X射线球管周围的腔体内注满高压绝缘油; 以及在迷宫防护 环和阴极防护端盖之间进一步设置有膨胀鼓。
在上述技术方案中, 所述阴极防护端盖、 内防护套筒、 第二阳极绝缘防护 座、第一阳极绝缘防护座、迷宫防护环是用屏蔽射线材料制作的, 并且第二阳极 绝缘防护座和第一阳极绝缘防护座还具有绝缘性。
在一种实施方式中, 所述阴极防护端盖上开有折弯通孔, 该阴极防护端盖 与膨胀鼓装配后形成一个气室。 由此, 在膨胀鼓受到挤压时, 通过阴极防护端盖 的气孔进行排气。
具体地, 所述外套筒上开有一定角度的出束口, 在该外套筒外侧壁上还形 成带有轴肩的凸台。
更具体地, 所述第一阳极绝缘防护座与第二阳极绝缘防护座组合一体后形 成一个腔体,所述第一阳极绝缘防护座上的导流孔与第二阳极绝缘防护座的液体 注入孔错位, 以形成迷宫结构。 并且, 上述第一阳极绝缘防护座与第二阳极绝缘 防护座材料具有高压绝缘和防止射线外泄特点, 由此可以确保 X射线球管外部 腔体的高压绝缘和防止射线性能。
在一种实施方式中, 所述回转准直器装置包括: 支承在所述外套筒的带有 轴肩的凸台上的至少一个轴承; 由所述轴承支承并可围绕所述外套筒回转的飞点 回转防护环; 以及分别设置在飞点回转防护环两侧的侧防护板和左、 右端盖。 通 过采用上述技术方案,所述带有小孔的回转准直器装置围绕在放射源发生装置的 外套筒上, 通过轴承使其准直器装置做回转运动。进而, 所述带有小孔的回转准 直器装置通过无框架扭矩电机驱动,通过围绕放射源发生装置外面准直器装置上 的小孔回转, 实现射线动态逐点扫描。
具体地, 所述冷却装置包括: 磁力泵, 用于抽吸温度升高的高压绝缘油; 以 及用于对所述抽吸的高压绝缘油进行冷却的热交换器; 以及油路通道, 用于将抽 吸的高压绝缘油输送到热交换器中进行热交换,并将冷却的高压绝缘油回流到在
X射线球管周围的腔体内。在放射源发生装置腔体内注有高压绝缘油, 通过采用 上述串联构成的循环系统, 用于冷却球管的阳极靶, 保证了一体式 X光机的正 常运行。
由于本发明采用了上述技术方案, 因此具有如下至少一项有益效果: 其一, 可实现射线动态逐点扫描; 其二, 结构紧凑; 其三, 采用的材料可以有效屏蔽射 线。 附图说明
图 1是本发明实施例的主视图;
图 2是沿图 1的 A-A剖视图;
图 3是沿图 1的 B-B剖视图;
图 4是沿图 1的 C-C剖视图;
图 5是球管的主视图;
图 6是球管 A向视图;
图 7是带有射线出口的外套筒的三维视图;
图 8是第一阳极绝缘防护座和第二阳极绝缘防护座装配后的主视图; 图 9是第一阳极绝缘防护座和第二阳极绝缘防护座装配后的俯视图; 以及 图 10是飞点回转防护环的三维视图。 具体实施方式
下面结合附图, 对本发明实施例作进一步描述。 参见图 1, 其示出了根据本发明的一种具体实施例的总体结构。根据本发明 的一种一体式飞点 X光机, 其包括: 放射源发生装置 40, 用于产生 X射线; 回 转准直器装置 60, 其上述设置有至少一个小通孔并设置成围绕放射源发生装置 40可旋转; 无框架扭矩电机 80,用于驱动回转准直器装置 60围绕放射源发生装 置 40转动; 冷却装置 20, 用于放射源发生装置 40的冷却, 其中放射源发生装 置 40、 回转准直器装置 60、 无框架扭矩电机 80和冷却装置 20安装到一体安装 框架 10、 11上。 一体安装框架 10、 11包括: 支撑架 10, 用于支撑无框架扭矩 电机 80和冷却装置 20; 和卡箍座 11, 与支承支撑架 10固定相连用于固定放射 源发生装置 40。 支撑架 10用来支撑无框架扭矩电机 80、 冷却装置 20, 卡箍座 11用来支撑放射源发生装置 40。
参见图 2, 放射源发生装置 40可以包括阴极防护端盖 41、航空插头 42、带 有射线出口的外套筒 43、 带有射线出口的内防护套筒 44、 封堵窗 45、 O形密封 圈 46、 阳极端盖 47、 高压发生器 90、 管接头 49、 第二阳极绝缘防护座 50、 定 位销 51、 第一阳极绝缘防护座 52、 球管 53、 迷宫防护环 54和膨胀鼓 55。
如图 2所示, 放射源发生装置 40包括: X射线球管 53 ; 用于驱动 X射线球 管 53的高压发生器 90; 设置在 X射线球管 53外部用于屏蔽和防护的内防护套 筒 44; 设置在内防护套筒 44外部用于防护的外套筒 43, 其中: 内防护套筒 44 和外套筒 43各自具有射线出口, 上述射线出口相互对正和连通以将来自 X射线 球管 53的 X射线导出。 如图 2和图 7所示, 高压发生器 90通过航空插头 42将 高压加载在球管 53两端, 使其产生 X射线, 射线从外套筒 43上沿圆周方向开 有一定角度, 例如图 6中示出的 110度, 的扇形锥束口 72射出。 如图 2所示, 定位销 51用来定位球管 53的出束方位。
具体地, 在 X射线球管 53的阳极靶 56—侧设置有阳极端盖 47, 在阳极端 盖 47与阳极靶 56之间进一步设置有第一阳极绝缘防护座 52和第二阳极绝缘防 护座 50, 其组合形成迷宫通道; 在 X射线球管 53的阴极一侧设置有阴极防护端 盖 41, 在 X射线球管 53的阴极与阴极防护端盖 41之间进一步设置有迷宫防护 环 54。 如图 8所示, 第一阳极绝缘防护座 52与第二阳极绝缘防护座 50组合一 体后形成一个腔体 501, 第一阳极绝缘防护座 52上的导流孔 502与第二阳极绝 缘防护座 50的液体注入孔 502错位, 以形成迷宫结构。 如图 2所示, 迷宫防护 环 54的作用是对阴极引线出口和高压绝缘油回流出口形成迷宫,阻止射线泄露。 如图 2所示, 在内防护套筒 44和外套筒 43各自的射线出口中设置有封堵 窗 45, 封堵窗 45的材料为能被 X射线穿透的材料。 通过内防护套筒 44和外套 筒 43各自的射线出口以及封堵窗 45的射线沿与放射源发生装置 40的纵轴线垂 直的方向以预定角度, 例如图 5中的 4度的角度范围内射出。
如图 2所示, 阴极防护端盖 41、 内防护套筒 44、 第二阳极绝缘防护座 50、 第一阳极绝缘防护座 52、 迷宫防护环 54是用屏蔽射线材料制作的, 并且第二阳 极绝缘防护座 50和第一阳极绝缘防护座 52还具有绝缘性。阴极防护端盖 41上 开有折弯通孔 550, 该阴极防护端盖 41与膨胀鼓 55装配后形成一个气室 551。
参见图 7, 外套筒 43上开有一定角度的出束口 72, 在该外套筒外侧壁上还 形成带有轴肩的凸台 71。 如图 2、 图 7和图 10所示, 回转准直器装置 60包括: 支承在外套筒 43的带有轴肩的凸台 71上的至少一个轴承 63 ; 由轴承 63支承并 可围绕外套筒 43回转的飞点回转防护环 64;以及分别设置在飞点回转防护环 64 两侧的侧防护板 61和左、 右端盖 62、 65。
如图 2、 图 5、 图 6所示, 球管 53的阳极靶 56在产生射线同时放出大量的 热。 为了能加快散热效果, 阳极靶 56的圆周上分布着许多导流孔 57, 冷却液在 通过导流孔 57时, 将带走阳极靶 56的热量, 保证球管 53正常工作。
更进一步地, 如图 2、 图 8和图 9所示, 在 X射线球管 53周围的腔体内注 满高压绝缘油;以及在迷宫防护环 54和阴极防护端盖 41之间进一步设置有膨胀 鼓 55。 在球管 53周围的腔体内注满着高压绝缘油, 用来冷却球管 53产生的热 量。 由于绝缘油温度升高, 体积开始有一定量的膨胀, 就会挤压膨胀鼓 55, 与 此同时, 温度较高的绝缘油通过磁力泵 23, 从阳极端盖 47的管接头 49抽出, 经过热交换器 20的冷却后, 通过靠近迷宫防护环 54—端的管接头 48, 经第一 阳极绝缘防护座 52和第二阳极绝缘防护座 50组合一体后形成迷宫通道, 进而 通过导流孔 57回流到球管 53周围的腔体内, 使油的体积膨胀量保持恒定。
如图 1 -4所示, 冷却装置 20包括: 磁力泵 23, 用于抽吸温度升高的高压绝 缘油; 以及用于对抽吸的高压绝缘油进行冷却的热交换器 21 ; 以及油路通道, 用于将抽吸的高压绝缘油输送到热交换器 21中进行热交换, 并将冷却的高压绝 缘油回流到在 X射线球管 53周围的腔体内。在一种优选实施例中,如图 3所述, 该冷却装置还包括风扇 (22 ) , 以进一步增强热交换器 21的热交换效率。
下面结合附图 2和 10, 对根据本发明具体实施方式中的一体式飞点 X光机 的操作进行说明。
如图 2和图 10所示, 带有小孔的回转准直器装置 60, 它包括侧防护板 61、 左端盖 62、轴承 63、 飞点回转防护环 64和右端盖 65。轴承 63安装在外套筒 43 外侧壁上带有轴肩的凸台 71,飞点回转防护环 64装在轴承 63,使之形成转动体。 飞点回转防护环 64上开有小通孔 75。 右端盖 65通过螺钉与无框架扭矩电机 80 的动子 81相连接, 定子 82通过螺钉固定在支撑架 10上。无框架扭矩电机 80驱 动带有小通孔 75的回转准直器装置 60转动, 通过围绕放射源发生装置 40外面 回转准直器装置 60上的小通孔 75回转, 实现射线动态逐点扫描。 如图 2所示, 位于两侧的侧防护板 61和飞点回转防护环 64使用屏蔽射线材料制作,并构成一 个屏蔽腔, 能有效防止射线外泄。
虽然在上述实施例中, 飞点回转防护环 64的径向上开有一个小通孔, 但是 本发明并不仅限于此, 其也可是多个。
虽然结合附图对本发明进行了说明, 但是附图中公开的实施例旨在对本发 明优选实施方式进行示例性说明, 而不能理解为对本发明的一种限制。虽然本总 体发明构思的一些实施例巳被显示和说明, 本领域普通技术人员将理解, 在不背 离本总体发明构思的原则和精神的情况下, 可对这些实施例做出改变, 本发明的 范围以权利要求和它们的等同物限定。

Claims

权 利 要 求
1. 一种一体式飞点 X光机, 其包括:
放射源发生装置 (40), 用于产生 X射线;
回转准直器装置 (60), 其上述设置有至少一个小通孔并设置成围绕所述放 射源发生装置 (40) 可旋转;
无框架扭矩电机 (80), 用于驱动所述回转准直器装置 (60) 围绕所述放射 源发生装置 (40) 转动;
冷却装置 (20), 用于所述放射源发生装置 (40) 的冷却,
其中所述放射源发生装置(40)、回转准直器装置(60)、无框架扭矩电机(80) 和所述冷却装置 (20) 安装到一体安装框架 (10、 11) 上。
2. 根据权利要求 1所述的一体式飞点 X光机, 其中所述一体安装框架(10、 11) 包括:
支撑架 (10), 用于支撑无框架扭矩电机 (80) 和冷却装置 (20); 和 卡箍座(11), 与所述支承支撑架 (10) 固定相连用于固定放射源发生装置 (40)。
3. 根据权利要求 1所述的一体式飞点 X光机,其中所述放射源发生装置 (40) 包括:
X射线球管 (53) ;
用于驱动 X射线球管 (53) 的高压发生器 (90) ;
设置在 X射线球管 (53) 外部用于屏蔽和防护的内防护套筒 (44) ; 设置在所述内防护套筒 (44) 外部用于防护的外套筒 (43) , 其中- 所述内防护套筒 (44) 和外套筒 (43) 各自具有射线出口, 上述射线出口 相互对正和连通以将来自 X射线球管 (53) 的 X射线导出。
4. 根据权利要求 3所述的一体式飞点 X光机, 其中- 在所述 X射线球管 (53) 的阳极靶 (56) —侧设置有阳极端盖 (47) , 在 所述阳极端盖(47)与阳极靶(56)之间进一步设置有第一阳极绝缘防护座(52) 和第二阳极绝缘防护座 (50) , 其组合形成迷宫通道;
在所述 X射线球管 (53) 的阴极一侧设置有阴极防护端盖 (41) , 在所述 X射线球管(53)的阴极与阴极防护端盖 (41)之间进一步设置有迷宫防护环 (54)。
5. 根据权利要求 3或 4所述的一体式飞点 X光机, 其中:
在所述内防护套筒 (44) 和外套筒 (43) 各自的射线出口中设置有封堵窗 (45) , 所述封堵窗 (45) 的材料为能被 X射线穿透的材料。
6. 根据权利要求 5所述的一体式飞点 X光机, 其中- 在 X射线球管 (53) 周围的腔体内注满高压绝缘油; 以及
在迷宫防护环(54)和阴极防护端盖(41)之间进一步设置有膨胀鼓(55) 。
7. 根据权利要求 5所述的一体式飞点 X光机,其中所述阴极防护端盖 (41)、 内防护套筒 (44) 、 第二阳极绝缘防护座 (50) 、 第一阳极绝缘防护座 (52) 、 迷宫防护环 (54) 是用屏蔽射线材料制作的, 并且第二阳极绝缘防护座 (50)和 第一阳极绝缘防护座 (52)还具有绝缘性。
8.根据权利要求 6所述的一体式飞点 X光机,其中所述阴极防护端盖(41) 上开有折弯通孔 (550) , 该阴极防护端盖 (41) 与膨胀鼓 (55) 装配后形成一 个气室 (551) 。
9. 根据权利要求 5-7中任何一项所述的一体式飞点 X光机, 其中所述外套 筒 (43)上开有一定角度的出束口 (72) , 在该外套筒外侧壁上还形成带有轴肩 的凸台 (71) 。
10. 根据权利要求 2所述的一体式飞点 X光机, 其中所述第一阳极绝缘防 护座 (52) 与第二阳极绝缘防护座 (50) 组合一体后形成一个腔体 (501) , 所 述第一阳极绝缘防护座 (52) 上的导流孔 (502) 与第二阳极绝缘防护座 (50) 的液体注入孔 (502) 错位, 以形成迷宫结构。
11. 根据权利要求 9所述的一体式飞点 X光机, 其中所述回转准直器装置 (60) 包括:
支承在所述外套筒(43) 的带有轴肩的凸台 (71) 上的至少一个轴承(63); 由所述轴承(63)支承并可围绕所述外套筒(43)回转的飞点回转防护环(64); 以及
分别设置在飞点回转防护环(64)两侧的侧防护板(61)和左、右端盖(62、
65)。
12. 根据权利要求 6所述的一体式飞点 X光机, 其中所述冷却装置 (20) 包括:
磁力泵 (23), 用于抽吸温度升高的高压绝缘油; 以及
用于对所述抽吸的高压绝缘油进行冷却的热交换器 (21); 以及
油路通道, 用于将抽吸的高压绝缘油输送到热交换器 (21) 中进行热交换, 并将冷却的高压绝缘油回流到在 X射线球管 (53) 周围的腔体内。
PCT/CN2013/070258 2012-08-21 2013-01-09 一体式飞点x光机 WO2014029194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210299797.0 2012-08-21
CN201210299797.0A CN103635002B (zh) 2012-08-21 2012-08-21 一体式飞点x光机

Publications (1)

Publication Number Publication Date
WO2014029194A1 true WO2014029194A1 (zh) 2014-02-27

Family

ID=49028940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070258 WO2014029194A1 (zh) 2012-08-21 2013-01-09 一体式飞点x光机

Country Status (6)

Country Link
US (1) US9355810B2 (zh)
EP (1) EP2701159B1 (zh)
CN (1) CN103635002B (zh)
HK (1) HK1195697A1 (zh)
PL (1) PL2701159T3 (zh)
WO (1) WO2014029194A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765408B1 (en) * 2011-10-04 2018-07-25 Nikon Corporation X-ray device, x-ray irradiation method, and manufacturing method for structure
CN103997839B (zh) * 2014-06-06 2018-03-30 同方威视技术股份有限公司 一种准直可调制的x射线发生器
JP1540371S (zh) * 2015-02-25 2018-12-10
JP1540372S (zh) * 2015-02-25 2018-12-10
WO2018092174A1 (ja) * 2016-11-17 2018-05-24 キヤノンアネルバ株式会社 X線発生装置及びx線撮影システム
IT201800005279A1 (it) * 2018-05-11 2019-11-11 Gruppo emettitore di raggi-X con una pluralità di aperture per raggi-X e per liquido refrigerante e apparecchiature radiologiche
US11257653B2 (en) 2020-03-27 2022-02-22 The Boeing Company Integrated aperture shield for x-ray tubes
US11169098B2 (en) * 2020-04-02 2021-11-09 The Boeing Company System, method, and apparatus for x-ray backscatter inspection of parts
CN113835129B (zh) * 2020-06-23 2023-03-24 同方威视技术股份有限公司 飞点扫描装置和背散射安全检测系统
CN114256041A (zh) * 2021-12-17 2022-03-29 苏州博思得电气有限公司 一种x射线管防护结构及具有其的高压油箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183083A (zh) * 2001-12-04 2008-05-21 X射线光学系统公司 输出稳定性增强的x射线源组件及优化x射线传输的方法
JP2010044897A (ja) * 2008-08-11 2010-02-25 Hitachi Medical Corp X線管装置
RU2393653C1 (ru) * 2009-06-22 2010-06-27 Закрытое Акционерное Общество "Рентгенпром" (Зао "Рентгенпром") Устройство формирования сканирующего рентгеновского пучка пирамидальной формы (варианты)
CN102595754A (zh) * 2012-01-06 2012-07-18 同方威视技术股份有限公司 辐射器件安装箱、油冷循环系统以及x射线发生器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2376439A (en) * 1943-06-18 1945-05-22 Machlett Lab Inc Insulating structure
US4024401A (en) * 1975-11-17 1977-05-17 General Electric Company X-ray apparatus
FR2622758B1 (fr) * 1987-10-30 1990-04-27 Thomson Cgr Ensemble radiogene a protection integrale contre les rayonnements de fuite
JPH0475000A (ja) * 1990-07-16 1992-03-10 Toshiba Corp X線走査装置
JPH0557029A (ja) * 1991-08-30 1993-03-09 Hitachi Medical Corp 定位的放射線治療装置
JPH065382A (ja) * 1992-06-19 1994-01-14 Hitachi Medical Corp X線発生装置
EP1206903A2 (en) 1999-07-30 2002-05-22 American Science & Engineering, Inc. Method for raster scanning an x-ray tube focal spot
DE102004060506A1 (de) * 2004-12-16 2006-06-29 Etel S.A. Rahmenloser Torque-Motor mit Transportsicherung
WO2006102274A1 (en) 2005-03-21 2006-09-28 American Science And Engineering, Inc. Increased detectability and range for x-ray backscatter imaging systems
CN101113960B (zh) * 2006-07-25 2010-07-21 上海英迈吉东影图像设备有限公司 一种利用背散射技术进行炸药检测的装置
US8638904B2 (en) * 2010-03-14 2014-01-28 Rapiscan Systems, Inc. Personnel screening system
US8090075B2 (en) * 2007-06-06 2012-01-03 Comet Holding Ag X-ray tube with an anode insulation element for liquid cooling and a receptacle for a high-voltage plug
FR2929068B1 (fr) * 2008-03-21 2014-03-14 Gen Electric Systeme d'imagerie medicale a pompe de circulation de fluide de refroidissement deportee par rapport a son tube d'emission de rayons x
CN102478529A (zh) * 2010-11-25 2012-05-30 上海英迈吉东影图像设备有限公司 X射线飞点的形成装置和方法
CN202177591U (zh) * 2011-07-07 2012-03-28 董明 X射线转盘式断路飞点形成装置
CN202275162U (zh) * 2011-10-20 2012-06-13 天津重方科技有限公司 新型飞点人体扫描仪
CN202979445U (zh) * 2012-08-21 2013-06-05 同方威视技术股份有限公司 一体式飞点x光机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183083A (zh) * 2001-12-04 2008-05-21 X射线光学系统公司 输出稳定性增强的x射线源组件及优化x射线传输的方法
JP2010044897A (ja) * 2008-08-11 2010-02-25 Hitachi Medical Corp X線管装置
RU2393653C1 (ru) * 2009-06-22 2010-06-27 Закрытое Акционерное Общество "Рентгенпром" (Зао "Рентгенпром") Устройство формирования сканирующего рентгеновского пучка пирамидальной формы (варианты)
CN102595754A (zh) * 2012-01-06 2012-07-18 同方威视技术股份有限公司 辐射器件安装箱、油冷循环系统以及x射线发生器

Also Published As

Publication number Publication date
EP2701159B1 (en) 2016-09-21
US20140056412A1 (en) 2014-02-27
CN103635002A (zh) 2014-03-12
EP2701159A3 (en) 2015-03-04
EP2701159A2 (en) 2014-02-26
US9355810B2 (en) 2016-05-31
HK1195697A1 (zh) 2014-11-14
CN103635002B (zh) 2016-03-16
PL2701159T3 (pl) 2017-03-31

Similar Documents

Publication Publication Date Title
WO2014029194A1 (zh) 一体式飞点x光机
RU2659816C2 (ru) Рентгеновский генератор с регулируемой коллимацией
JP4942868B2 (ja) 一体的ハウジングを備える乳房撮影法用のx線管
CN105393330B (zh) x射线源、高电压发生器、电子束枪、旋转靶组件、旋转靶以及旋转真空密封件
US7443957B2 (en) X-ray apparatus with a cooling device through which cooling fluid flows
US7558376B2 (en) Rotating anode X-ray tube assembly
JPS6086742A (ja) 回転陽極型x線管
IL180440A0 (en) Compact source with very bright x - ray beam
CN101154550A (zh) 旋转阳极x-射线管组件
JP2000003799A (ja) X線装置の冷却
JP2012029398A (ja) 回転電機
CN112928003A (zh) X射线发生装置及成像设备
CN202979445U (zh) 一体式飞点x光机
JP6996896B2 (ja) 冷却装置
JP2013056119A (ja) X線コンピュータ断層撮影装置及びその制御方法
JP2015060624A (ja) 回転陽極型x線管装置
KR20140029296A (ko) 컴퓨터 단층촬영 스캐닝 장비
JPWO2016079806A1 (ja) 回転電機
CN116913748B (zh) 一种x射线管的阳极结构、x射线管、影像设备
CN111243924B (zh) 一种用于射线源的转动靶机构
JP2021500696A (ja) 放射線放出装置
JPH02144836A (ja) 回転陽極x線管
KR101438112B1 (ko) 원자로냉각재펌프(rcp) 내부구조물의 단열장치 및 이를 구비한 원자로냉각재펌프
CN210668261U (zh) 一种x射线管旋转阳极的冷却结构
CN208489739U (zh) 一种电机快速散热罩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831535

Country of ref document: EP

Kind code of ref document: A1