RU2659816C2 - Рентгеновский генератор с регулируемой коллимацией - Google Patents
Рентгеновский генератор с регулируемой коллимацией Download PDFInfo
- Publication number
- RU2659816C2 RU2659816C2 RU2016138396A RU2016138396A RU2659816C2 RU 2659816 C2 RU2659816 C2 RU 2659816C2 RU 2016138396 A RU2016138396 A RU 2016138396A RU 2016138396 A RU2016138396 A RU 2016138396A RU 2659816 C2 RU2659816 C2 RU 2659816C2
- Authority
- RU
- Russia
- Prior art keywords
- ray
- heat
- ray tube
- high voltage
- generator according
- Prior art date
Links
- 238000001816 cooling Methods 0.000 claims abstract description 44
- 230000005855 radiation Effects 0.000 claims description 28
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 25
- 229920000642 polymer Polymers 0.000 claims description 22
- 238000012546 transfer Methods 0.000 claims description 16
- 210000000959 ear middle Anatomy 0.000 claims description 10
- 230000007246 mechanism Effects 0.000 claims description 10
- 238000009434 installation Methods 0.000 claims description 9
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 230000001413 cellular effect Effects 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000010615 ring circuit Methods 0.000 claims description 6
- 239000004519 grease Substances 0.000 claims description 5
- 229920001296 polysiloxane Polymers 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- 229910003439 heavy metal oxide Inorganic materials 0.000 claims description 4
- 230000033228 biological regulation Effects 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 7
- 238000001514 detection method Methods 0.000 abstract description 4
- 230000005611 electricity Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 25
- 239000010410 layer Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000009423 ventilation Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229910000416 bismuth oxide Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003471 anti-radiation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010724 circulating oil Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
- G21K1/04—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/02—Constructional details
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
- G21K1/04—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
- G21K1/043—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers changing time structure of beams by mechanical means, e.g. choppers, spinning filter wheels
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
- G21K1/04—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
- G21K1/046—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/12—Cooling non-rotary anodes
- H01J35/13—Active cooling, e.g. fluid flow, heat pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/08—Electrical details
- H05G1/10—Power supply arrangements for feeding the X-ray tube
- H05G1/12—Power supply arrangements for feeding the X-ray tube with dc or rectified single-phase ac or double-phase
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/12—Cooling
- H01J2235/1225—Cooling characterised by method
- H01J2235/1262—Circulating fluids
- H01J2235/1287—Heat pipes
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Fluid Mechanics (AREA)
- Power Engineering (AREA)
- X-Ray Techniques (AREA)
Abstract
Изобретение относится к рентгеновскому генератору с регулируемой коллимацией. Рентгеновский генератор содержит узел источника рентгеновского излучения, содержащий рентгеновскую трубку, содержащую катод и анод, и передний коллиматор; генератор высокого напряжения, расположенный в удлиненной камере корпуса для рентгеновской трубки и используемый для прикладывания высокого напряжения постоянного тока между катодом и анодом рентгеновской трубки для возбуждения рентгеновских лучей. Кроме того, генератор содержит блок регулирования коллимации, с возможностью вращения расположенный снаружи переднего коллиматора и используемый для регулировки веерообразных рентгеновских лучей с целью формирования непрерывных рентгеновских лучей в виде остронаправленных лучей, а также охлаждающее устройство, независимо установленное на рентгеновской трубке и используемое для охлаждения анода рентгеновской трубки. Узел источника рентгеновского излучения, генератор высокого напряжения, блок регулирования коллимации и охлаждающее устройство объединены как одно целое. Техническим результатом является компактность конструкции, что обеспечивает модульное исполнение и высокую эффективность оборудования обнаружения в системах безопасности. 15 з.п. ф-лы, 8 ил.
Description
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
Настоящая заявка испрашивает приоритет китайской патентной заявки № 201410250942.5, поданной 6 июня 2014 года в Государственное ведомство интеллектуальной собственности Китая, описание изобретения из которой полностью включено в настоящее описание посредством ссылки.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Область техники, к которой относится изобретение
Настоящее изобретение относится к области техники рентгеновских генераторов и, в частности, к рентгеновскому генератору с регулируемой коллимацией и монолитной конструкцией, используемому в аппаратуре обнаружения в системах безопасности на основе рентгеновской визуализации, при оказании медицинской помощи, в научных исследованиях и т. д.
Описание известного уровня техники
Обычный рентгеновский генератор обычно содержит такие части, как высоковольтный источник питания, рентгеновская трубка, охлаждающее устройство и т. д. Эти части являются относительно независимыми и соединены кабелями и трубами. Имеется много промежуточных частей и деталей, в результате чего занимается большое пространство. Излучаемые рентгеновские лучи в основном присутствуют в форме веера, и эти лучи не поддаются регулированию, или же регулировка этих лучей является трудной и сложной. Особенно в части охлаждения и рассеяния тепла, обычные способы рассеяния тепла, такие как циркуляционное масляное охлаждение и циркуляционное водяное охлаждение, легко подвержены утечке, и поэтому неудобны в применении.
В настоящее время аппаратура обнаружения в системах безопасности и оборудование для оказания медицинской помощи разрабатываются на основе принципов миниатюризации, модульного исполнения и высокой эффективности. Для достижения этой цели необходимо создать рентгеновский генератор с регулируемой коллимацией и монолитной конструкцией.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Настоящее изобретение направлено на уменьшение и/или преодоление по меньшей мере одной (одного) из проблем и недостатков, существующих в известном уровне техники.
Целью настоящего изобретения является создание рентгеновского генератора с регулируемой коллимацией и монолитной конструкцией, отвечающего требованиям в части миниатюризации, модульного исполнения и высокой эффективности рентгеновского устройства визуализации.
В соответствии с одним аспектом настоящего изобретения предлагается рентгеновский генератор с регулируемой коллимацией, содержащий:
узел источника рентгеновского излучения, содержащий рентгеновскую трубку, содержащую катод и анод, и передний коллиматор;
генератор высокого напряжения, расположенный в удлиненной камере корпуса для рентгеновской трубки и используемый для прикладывания высокого напряжения постоянного тока между катодом и анодом рентгеновской трубки для возбуждения рентгеновских лучей;
блок регулирования коллимации, с возможностью вращения расположенный снаружи переднего коллиматора и используемый для регулировки веерообразных рентгеновских лучей с целью формирования непрерывных остронаправленных рентгеновских лучей; и
охлаждающее устройство, независимо установленное на рентгеновской трубке и используемое для охлаждения анода рентгеновской трубки;
причем узел источника рентгеновского излучения, генератор высокого напряжения, блок регулирования коллимации и охлаждающее устройство объединены как одно целое.
В одном варианте осуществления узел источника рентгеновского излучения может дополнительно содержать теплоизлучающее основание для анода, расположенное на стороне анода рентгеновской трубки, и торцевую крышку и тимпан, расположенные на стороне катода рентгеновской трубки и взаимодействующие для обеспечения уплотнения и предотвращения утечки. Кроме того, в теплоизлучающее основание могут быть включены датчик температуры и термореле.
В одном варианте осуществления теплоизлучающее основание имеет поверхность теплопередачи для контакта с охлаждающим устройством с целью охлаждения. Кроме того, охлаждающее устройство может содержать теплоизлучающую пластину и тепловую трубку, расположенную на теплоизлучающей пластине, и теплоизлучающая пластина конструктивно выполнена для достаточного контакта с поверхностью теплопередачи теплоизлучающего основания посредством теплопроводной силиконовой смазки. Альтернативно, охлаждающее устройство может содержать лишь тепловую трубку, непосредственно установленную на поверхности теплопередачи теплоизлучающего основания. Кроме того, охлаждающее устройство может также содержать теплоизлучающие ребра, расположенные на тепловой трубке, и малошумный вентилятор, расположенный над теплоизлучающими ребрами. Предпочтительно, тепловая трубка может быть U-образной или L-образной.
В одном варианте осуществления рентгеновская трубка сообщается с удлиненной камерой и наполнена изоляционным маслом. Кроме того, генератор высокого напряжения может содержать кольцевую цепь высокого напряжения, трансформатор высокого напряжения и трансформатор накала, расположенные в удлиненной камере, причем кольцевая цепь высокого напряжения, трансформатор высокого напряжения и трансформатор накала соответственно находятся на соответствующих изолирующих полимерных пластинах и расположены на сторонах соответствующих изолирующих полимерных пластин, обращенных в сторону от рентгеновской трубки. Предпочтительно, изолирующая полимерная пластина может быть реализована как кольцевая изолирующая полимерная пластина, имеющая пустотелую часть, через которую проходит изоляционное масло, и периферическую часть, имеющую несколько выступающих установочных опор. Кроме того, генератор высокого напряжения может дополнительно содержать клеточную установочную дистанционирующую деталь, неподвижно расположенную в удлиненной камере, причем изолирующие полимерные пластины неподвижно расположены в удлиненной камере посредством клеточной установочной дистанционирующей детали.
В одном варианте осуществления рентгеновский генератор может дополнительно содержать механическое установочное устройство, на котором поддерживаются узел источника рентгеновского излучения, генератор высокого напряжения, блок регулирования коллимации и охлаждающее устройство.
В варианте осуществления, блок регулирования коллимации может содержать: вращающееся вольфрамовое кольцо, предназначенное для регулирования, и приводной механизм, предназначенный для привода вращающегося вольфрамового кольца во вращение вокруг переднего коллиматора для достижения точечного непрерывного рентгеновского сканирования. Приводной механизм содержит: двигатель, установленный на механическом установочном устройстве, ведущий шкив, соединенный с двигателем, ведомый шкив, соединенный с вращающимся вольфрамовым кольцом, и приводной ремень, предусмотренный между ведущим шкивов и ведомым шкивом. Кроме того, приводной механизм может дополнительно содержать натяжное устройство, предназначенное для регулирования степени натяжения приводного ремня.
В одном варианте осуществления рентгеновский генератор может дополнительно содержать устройство защиты от радиации, состоящее из слоя защиты от радиации, переднего коллиматора и вращающегося вольфрамового кольца, расположенного в рентгеновской трубке и удлиненной камере. Предпочтительно, передний коллиматор может представлять собой передний коллиматор из оксида тяжелого металла.
Соответственно, вышеупомянутый рентгеновский генератор содержит генератор высокого напряжения, прикладывающий напряжение к обоим концам рентгеновской трубки, узел источника рентгеновского излучения, содержащий передний коллиматор и устройство защиты от радиации, вращающийся блок регулирования коллимации, используемый для регулирования рентгеновского излучения, охлаждающее устройство с тепловыми трубками для охлаждения анода рентгеновской трубки и механическое установочное устройство для обеспечения опор и креплений. Генератор высокого напряжения расположен в удлиненной камере корпуса для рентгеновской трубки, а охлаждающее устройство установлено независимо. Все вышеупомянутые части объединены в компактную и монолитную конструкцию.
То есть, рентгеновский генератор с регулируемой коллимацией в соответствии с вариантами осуществления настоящего изобретения содержит генератор высокого напряжения, узел источника рентгеновского излучения, блок регулирования коллимации, охлаждающее устройство и механическое установочное устройство, объединенные в одно целое. Соответственно, он имеет объединенную монолитную конструкцию, использует систему охлаждения с тепловыми трубками и регулирует веерообразные рентгеновские лучи с целью формирования непрерывных остронаправленных рентгеновских лучей с использованием переднего коллиматора и вращающегося блока регулирования коллимации, обеспечивая динамическое точечное сканирование на проверяемом объекте.
В соответствии с вышеупомянутыми вариантами осуществления генератор высокого напряжения прикладывает высокое напряжение постоянного тока между катодом и анодом рентгеновской трубки, чтобы обладающие высокой энергией электроны, генерированные на катоде, ударялись об анод для испускания рентгеновский лучей. Генератор высокого напряжения расположен в удлиненной камере корпуса для рентгеновской трубки и выполнен объединенным с узлом источника рентгеновского излучения; корпус заполнен чистым трансформаторным маслом.
В соответствии с вышеупомянутыми вариантами осуществления в качестве трансформатора накала может использоваться ферритовый магнитный сердечник типа UY, в качестве трансформатора высокого напряжения может использоваться ферритовый магнитный сердечник типа R, имеющий низкие поток рассеяния и индуктивность рассеяния и высокую магнитную проницаемость, цепь высокого напряжения предпочтительно является кольцевой, и высокое выходное напряжение достигается путем нескольких стадий выпрямления с умножением напряжения. Трансформатор накала, трансформатор высокого напряжения и цепь высокого напряжения расположены на сторонах изолирующих полимерных пластин, обращенных в одном направлении. На периферической части каждой из полимерных пластин предусмотрены три выступающие установочные опоры, а центральная часть является пустотелой с таким расчетом, чтобы через нее проходило изоляционное масло. На внутренней стороне свинцового слоя защиты от радиации выполнен кольцевой позиционирующий прилив. Три кольцевые изолирующие полимерные пластины 104 расположены в требуемом положении клеточной установочной дистанционирующей деталью. Выход высокого напряжения постоянного тока соединен с рентгеновской трубкой посредством соединителя. Система управления подключена посредством противомасляного навигационного соединителя.
В соответствии с вышеупомянутыми вариантами осуществления узел источника рентгеновского излучения содержит цилиндрический корпус для рентгеновской трубки, монтажный прилив, теплоизлучающее основание для анода рентгеновской трубки, слой защиты от радиации, крышку фильтра, изготовленную из поликарбоната, торцевую крышку для уплотнения катода, отверстия для вакуумного масла, тимпан и т. д. Теплоизлучающее основание для анода используется как торцевая крышка уплотнения и имеет чистовую и слегка выступающую поверхность теплопередачи. Уплотнительное кольцо на анодной стороне изготовлено из не содержащего кислорода медного материала, предотвращающего деформацию, вызванную перегревом. Кроме того, уплотнительное кольцо 209 выполнено с отверстиями 210 для вакуумного масла, предназначенными для обеспечения работы изоляционного масла внутри. Вогнутая крышка фильтра изготовлена из поликарбоната, используется для ограничения толщины слоя масла в отверстии для луча рентгеновской трубки 203, и сама обладает высокой проницаемостью для рентгеновских лучей, усиливая эффективную выходную дозу рентгеновского излучения. Корпус для рентгеновской трубки имеет веерообразное отверстие с определенным углом в соответствии с характеристиками угла раскрыва рентгеновской трубки, при этом рентгеновские лучи эффективно генерируются при прикладывании высокого напряжения постоянного тока к обоим концам рентгеновской трубки.
В соответствии с вышеупомянутыми вариантами осуществления теплоизлучающее основание для анода предпочтительно изготовлено из не содержащего кислорода медного материала и имеет не только, в целом, относительно большой размер, но и проходящий вбок торец, повышающий теплоемкость и площадь теплоизлучения. Кроме того, оно используется и как торцевая крышка для уплотнения анода в корпусе для рентгеновской трубки.
В соответствии с вышеупомянутыми вариантами осуществления торцевая крышка для уплотнения катода взаимодействует с гибким тимпаном для создания камеры между ними. При работе рентгеновского генератора изоляционное масло при нагреве расширяется, а при охлаждении соответственно сжимается, и тимпан будет выдавливаться со стороны изоляционного масла или со стороны внешней среды. Вентиляционное отверстие, выполненное в торцевой крышке для катода, используется для действия в качестве канала сброса давления, чтобы получить равенство давлений. Вентиляционное отверстие выполнено с внутренней резьбой, и в вентиляционном отверстии установлен предохранительный болт со сквозным отверстием. В случае утечки масла предохранительный болт ввинчивается в вентиляционное отверстие, при этом сквозное отверстие блокируется, предотвращая тем самым дальнейшую утечку изоляционного масла. Кроме того, тимпан и торцевая крышка вместе действуют как уплотнительное кольцо.
В соответствии с вышеупомянутыми вариантами осуществления блок регулирования коллимации содержит вращающееся вольфрамовое кольцо, передний коллиматор, радиально-упорный подшипник с угловым контактом, ведущий шкив, ведомый шкив, приводной ремень, стопорную гайку и серводвигатель. Вращающееся вольфрамовое кольцо выполнено с несколькими небольшими сквозными отверстиями и закреплено на ведомом шкиве. Передний коллиматор неподвижно связан вокруг наружной поверхности корпуса для рентгеновской трубки. Радиально-упорный подшипник с угловым контактом встроен внутри ведомого шкива, обхватывает вокруг наружную поверхность корпуса для рентгеновской трубки и застопорен стопорной гайкой. Под действием серводвигателя 308 ведомый шкив приводится ведущим шкивом и приводит во вращение радиально-упорный подшипник с угловым контактом, в данном случае вольфрамовое кольцо приводится во вращение вокруг переднего коллиматора, обеспечивая точечное непрерывное рентгеновское сканирование. Упомянутый блок регулирования коллимации имеет простую конструкцию, потребляет мало мощности, создает мало шума, имеет хорошие точечные характеристики, уменьшенный полутеневой эффект и более высокое разрешение изображения.
В соответствии с вышеупомянутыми вариантами осуществления передний коллиматор имеет определенную толщину и встроен в вогнутой крышке фильтра, изготовленной из поликарбоната. Передний коллиматор изготовлен из оксида тяжелого металла, предпочтительно, оксида висмута, легко поддающегося механической обработке, обладающего характеристиками высоковольтной изоляции и защиты от радиации, а также отвечающего экологическим требованиям. Могут использоваться и другие материалы, такие как оксид свинца. Вольфрамовое кольцо на обеих его сторонах оснащено защитными ребрами и обладает хорошим эффектом защиты от радиации. Внутренний защитный слой корпуса для рентгеновской трубки, передний коллиматор и вращающееся вольфрамовое кольцо вместе представляют собой эффективное лабиринтное устройство противолучевой защиты, предотвращающее утечку рентгеновского излучения, чтобы отвечать требованиям безопасности.
В соответствии с вышеупомянутыми вариантами осуществления охлаждающее устройство использует отвод тепла посредством тепловой трубки и состоит из тепловых трубок, неподвижных зажимных пластин, теплопроводной подложки, теплоизлучающих ребер и малошумного вентилятора. Во избежание абляции мишени из-за перегрева анода рентгеновской трубки используется тепловая трубка, являющаяся эффективным проводником тепла, передающим тепло посредством испарения и конденсации жидкости в полностью закрытой вакуумной трубке. Обычно она имеет L-образную форму. Конец на стороне испарения тепловой трубки закреплен теплопроводящей подложкой и конструктивно выполнен для достаточного контактирования со слегка выступающей поверхностью теплопередачи теплоизлучающего основания, а к концу на стороне конденсации приварены несколько слоев теплоизлучающих ребер большого размера. Малошумный вентилятор вместе с всасывающим вентилятором, установленным над устройством защиты от радиации, отбирают горячий воздух и втягивают вместо него холодный воздух, что образует канал для плавного воздуха, и при этом тепло, создаваемое на аноде, отводится быстро и эффективно. То есть, охлаждающее устройство, состоящее из тепловых трубок, имеет высокотехнологичную конструкцию, является дешевым, устойчивым в работе, легким в обслуживании и имеет малое потребление мощности, меньшее число точек отказа и новый и практически осуществимый эффект.
Альтернативно, тепловые трубки могут крепиться непосредственно к теплоизлучающему основанию для анода.
В соответствии с вышеупомянутыми вариантами осуществления предусмотрено механическое установочное устройство, предназначенное для объединения этих вышеупомянутых функциональных единиц в монолитную конструкцию. Механическое установочное устройство содержит крепежную стойку, внешнее устройство защиты от радиации, раму для двигателя, крепежный винт, разжимную втулку и т. д. Крепежная стойка используется для сборки корпуса для рентгеновской трубки и ее периферических компонентов вместе и имеет внешнее устройство защиты от радиации, благодаря чему достигается модульное исполнение. Механическое установочное устройство обрабатывается с использованием высокой технологии обработки и высокой точностью для обеспечения высоких точечных характеристик отрегулированных лучей рентгеновского излучения и эффекта в собранном состоянии.
Кроме того, рентгеновский генератор в соответствии с вышеописанными вариантами осуществления может дополнительно содержать миниатюрные термореле и датчик температуры, встроенные в теплоизлучающем основании для анода, модуль управления цепью инвертора, связанный интерфейс электрического управления, реле приближения и т. д.
Соответственно рентгеновский генератор в соответствии с вариантами осуществления обладает следующими преимуществами. Во-первых, генератор высокого напряжения включен вовнутрь корпуса для рентгеновской трубки, и генератор высокого напряжения, узел источника рентгеновского излучения, блок регулирования коллимации и охлаждающее устройство объединены как компактная и монолитная конструкция, что обеспечивает миниатюризацию, модульное исполнение и высокую эффективность рентгеновских устройств обнаружения в системах безопасности и достижение новой и практически реализуемой конструкции 1. Во-вторых, рентгеновские лучи регулируются с формированием непрерывных остронаправленных рентгеновских лучей для динамического сканирования, достижения высоких точечных характеристик, малого полутеневого эффекта и более высокого разрешения изображения. В-третьих, охлаждающее устройство, состоящее из тепловых трубок, собранных отдельно, работает во взаимодействии с эффективной конструкцией воздушного канала, благодаря чему достигаются чистое и устойчивое конструктивное исполнение и уменьшение отказов системы.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Вышеупомянутые и другие признаки настоящего изобретения станут очевиднее из подробного описания его примерных вариантов осуществления со ссылками на прилагаемые чертежи, на которых:
фиг. 1 представляет собой вид спереди рентгеновского генератора с регулируемой коллимацией в соответствии с одним вариантом осуществления настоящего изобретения;
фиг. 2 представляет собой вид в направлении А на фиг. 1;
фиг. 3 представляет собой разрез по линии B-B на фиг. 1;
фиг. 4 представляет собой схематическое изображение цепи высокого напряжения в рентгеновском генераторе, показанном на фиг. 1;
фиг. 5 представляет собой схематический вид установочной дистанционирующей детали рентгеновского генератора, показанного на фиг. 1;
фиг. 6 представляет собой схематический вид лабиринтного устройства противолучевой защиты рентгеновского генератора, показанного на фиг. 1;
фиг. 7 представляет собой схематический вид поверхности теплопередачи рентгеновского генератора, показанного на фиг. 1; и
на фиг. 8 представляет собой схематическое изображение источника высокого напряжения рентгеновского генератора, показанного на фиг. 1.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Далее приводится подробное описание примерных вариантов осуществления настоящего изобретения со ссылками на прилагаемый графический материал, на котором подобные элементы обозначены подобными позициями. Следует, однако, отметить, что настоящее изобретение может быть осуществлено во многих разных формах и не должно толковаться как ограниченное вариантами осуществления, представленными в настоящем описании; напротив, эти варианты осуществления приведены для того, чтобы настоящее раскрытие было доскональным и полным и полностью передало специалистам в области техники, к которой относится изобретение, идею изобретения.
В последующем подробном описании в целях объяснения изложены многочисленные конкретные детали для обеспечения досконального понимания раскрытых вариантов осуществления. Будет, однако, очевидным, что один или несколько вариантов осуществления могут быть практически осуществлены без этих конкретных деталей. В других случаях для упрощения графического материала хорошо известные конструкции и устройства показаны лишь схематически.
На фиг. 1 показана общая конструкция рентгеновского генератора с регулируемой коллимацией в соответствии с одним вариантом осуществления настоящего изобретения. Рентгеновский генератор, в основном, содержит узел 200 источника рентгеновского излучения, блок 300 регулирования коллимации, ведущий шкив 304, ведомый шкив 305, приводной ремень 306, серводвигатель 308, охлаждающее устройство 400, крепежную стойку 501 и противомасляную навигационную базу 107.
Основные части, включая узел 200 источника рентгеновского излучения, блок 300 регулирования коллимации, охлаждающее устройство 400 и т. д., объединены как монолитная конструкция и встроены в корпус 201 для рентгеновской трубки. Блок 300 регулирования коллимации приводится во вращательное движение серводвигателем 308 с помощью ведущего шкива 304, приводного ремня 306 и ведомого шкива 305. Крепежная стойка 501 используется для установки корпуса 201 для рентгеновской трубки, серводвигателя 308 и других компонентов и выполнена с соответствующими установочными отверстиями. Системно функции электрического или автоматического управления достигаются посредством противомасляной навигационной базы 107.
В варианте осуществления, показанном на фиг. 1–3, рентгеновский генератор с регулируемой коллимацией содержит узел 200 источника рентгеновского излучения, блок 300 регулирования коллимации, генератор 100 высокого напряжения и охлаждающее устройство 400, причем узел 200 источника рентгеновского излучения, генератор 100 высокого напряжения, блок 300 регулирования коллимации и охлаждающее устройство 400 объединены как одно целое. В частности, узел 200 источника рентгеновского излучения содержит рентгеновскую трубку, имеющую катод и анод, и передний коллиматор 302. Генератор 100 высокого напряжения расположен в удлиненной камере корпуса 201 для рентгеновской трубки и предназначен для прикладывания высокого напряжения постоянного тока между катодом и анодом рентгеновской трубки для возбуждения рентгеновский лучей. Блок 300 регулирования коллимации с возможностью вращения расположен снаружи переднего коллиматора 302 и используется для регулировки веерообразных рентгеновских лучей с целью формирования непрерывных остронаправленных рентгеновских лучей. Охлаждающее устройство независимо установлено на рентгеновской трубке и используется для охлаждения анода рентгеновской трубки.
Как показано на фиг. 1–2, передний коллиматор 302 предпочтительно изготовлен из оксида висмута и выполняет функцию высоковольтной изоляции и функцию противолучевой защиты. Он дешев, легок и прост в изготовлении, а также отвечает экологическим требованиям. Передний коллиматор 302 прикреплен к наружной стороне переднего коллиматора 302 дугообразным хомутом.
Как показано на фиг. 3, узел источника рентгеновского излучения дополнительно содержит теплоизлучающее основание 204 для анода, расположенное на анодной стороне рентгеновской трубки, и торцевую крышку 207 и тимпан 208, расположенные на катодной стороне рентгеновской трубки и взаимодействующие для обеспечения уплотнения и предотвращения утечки. Когда рентгеновская трубка 203 непрерывно испускает лучи, температура изоляционного масла повышается, и его объем претерпевает определенную степень расширения. Напротив, когда эта температура понижается, тимпан 208 под действием атмосферного давления втискивается снаружи вовнутрь. Тимпан 208 прикреплен к внутренней стороне катода и одновременно действует в качестве уплотнительного кольца.
Оптимально, в теплоизлучающее основание 204 для анода может быть встроен датчик 601 температуры и термореле 602. Как показано на фиг. 7, в теплоизлучающее основание 204 для анода рентгеновской трубки встроен датчик 601 температуры, используемый для контроля в реальном времени рабочей температуры рентгеновской трубки 203, а термореле 602 может быстро выдавать сигнал неисправности, как только температура выходит за допустимый порог, для защиты безопасности устройств.
Как показано на фиг. 1–3, рентгеновский генератор может дополнительно содержать охлаждающее устройство 400, независимо установленное на рентгеновской трубке и используемое для охлаждения анода рентгеновской трубки. В частности, теплоизлучающее основание 204 имеет поверхность 211 теплопередачи, предназначенную для контакта с охлаждающим устройством 400 с целью охлаждения. Охлаждающее устройство может содержать теплоизлучающую пластину 405 и тепловые трубки 401, расположенные на теплоизлучающей пластине 405, и теплоизлучающая пластина 405 достаточно контактирует с поверхностью 211 теплопередачи теплоизлучающего основания 204 посредством теплопроводной силиконовой смазки. Альтернативно, охлаждающее устройство 400 может содержать лишь тепловые трубки 401, непосредственно зажатые и зафиксированные на поверхности 211 теплопередачи теплоизлучающего основания 204. Кроме того, охлаждающее устройство 400 может дополнительно содержать теплоизлучающие ребра 402, расположенные на тепловых трубках 401, и малошумный вентилятор 403, расположенный над теплоизлучающими ребрами 402. Предпочтительно, тепловая трубка 401 может быть U-образной или L-образной.
Как показано на фиг. 1 и 3, охлаждающее устройство 400 используется для отбора тепла от анода рентгеновской трубки 203 и содержит теплоизлучающее основание 204 для анода, тепловые трубки 401, теплоизлучающие ребра 402, малошумный вентилятор 403 и теплоизлучающую пластину 405. Тепловые трубки 401 независимы друг от друга, и каждая имеет свою определенную прочность и предпочтительно искривлена в U-образную форму. На теплоизлучающей пластине 405 установлены несколько U-образных тепловых трубок. Теплоизлучающие ребра 402 приварены вокруг тепловых трубок 401 для увеличения площади теплоизлучения. Малошумный вентилятор 403 закреплен защелкиванием. Вышеупомянутая конструкция полностью установлена на теплоизлучающем основании 204 рентгеновской трубки.
Как показано на фиг. 3 и 7, поверхность 211 теплопередачи на наружной стороне теплоизлучающего основания 204 для анода является чистовой. Чистовая поверхность 211 теплопередачи вместе с поверхностью теплоизлучающей пластины 405 является чистой и неповрежденной и равномерно покрыта слоем хорошей теплопроводной силиконовой смазки для обеспечения достаточного контакта теплоизлучающей пластины 405 с поверхностью 211 теплопередачи теплоизлучающего основания посредством теплопроводной силиконовой смазки, чтобы тем самым обеспечивать быстрое теплоизлучение.
Как показано на фиг. 1 и 3, малошумный вентилятор 403 расположен над теплоизлучающими ребрами 402 и осуществляет направленное вертикально вверх всасывание воздуха. В соответствии с принципом тепловой конвекции, согласно которому более теплый воздух поднимается, а более холодный опускается, образуется канал для спокойного воздуха, показанный стрелками на фиг. 1. Это конструктивное исполнение теплоизлучения является независимо собранным, сокращающим число точек отказа системы и являющимся малогабаритным и совершенным, экологичным, стабильным и удобным и имеющим низкую стоимость.
Как показано на фиг. 3, теплоизлучающее основание 204 для анода рентгеновской трубки предпочтительно изготовлено из не содержащего кислорода медного материала, не только способного быстро отводить тепло, но и используемого как торцевая крышка для уплотнения анода в корпусе 201 рентгеновской трубки. Уплотнительное кольцо 209 для теплоизлучающего основания 204 предпочтительно изготовлено из не содержащего кислорода медного материала, что предотвращает повреждение от перегрева, присущее обычному резиновому уплотнительному кольцу. Кроме того, уплотнительное кольцо 209 выполнено с отверстиями 210 для вакуумного масла, предназначенными для обеспечения работы изоляционного масла внутри.
Как показано на фиг. 3, теплоизлучающее основание 204 имеет, в целом, относительно большой размер и имеет проходящий вбок торец, повышающий теплоемкость и площадь теплоизлучения. Альтернативно, тепловые трубки могут зажиматься и фиксироваться непосредственно на теплоизлучающем основании 204.
В соответствии с вариантом осуществления, показанном на фиг. 1 и 3, рентгеновский генератор дополнительно содержит генератор 100 высокого напряжения, расположенный в удлиненной камере корпуса 201 для рентгеновской трубки и используемый для прикладывания высокого напряжения постоянного тока между катодом и анодом рентгеновской трубки для возбуждения рентгеновских лучей. Как показано на фиг. 3, генератор 100 высокого напряжения распределен в удлиненной камере корпуса 201 для рентгеновской трубки. Корпус 201 для рентгеновской трубки прикреплен к крепежной стойке 501 с помощью монтажного прилива 202. Выход высокого напряжения постоянного тока подключен к катоду рентгеновской трубки 203 высоковольтным соединителем 106.
В частности, рентгеновская трубка 203 сообщается с удлиненной камерой и наполнена изоляционным маслом. Как показано на фиг. 3, корпус 201 для рентгеновской трубки наполнен изоляционным маслом под высоким давлением. В корпусе 201 выполнено вентиляционное отверстие 212 с внутренней резьбой, и в этом вентиляционном отверстии установлен предохранительный болт 213 с L-образным сквозным отверстием. Благодаря L-образному сквозному отверстию достигается равенство давлений внутри корпуса 201 и во внешней среде. В случае утечки масла предохранительный болт 213 ввинчивается в вентиляционное отверстие 212, при этом L-образное сквозное отверстие блокируется, предотвращая тем самым дальнейшую утечку изоляционного масла.
Как показано на фиг. 3, вогнутая крышка 206 фильтра, предпочтительно изготовленная из поликарбоната, используется для ограничения толщины слоя масла в отверстии для луча рентгеновской трубки 203, и сама обладает высокой проницаемостью для рентгеновских лучей, усиливая эффективную выходную дозу рентгеновского излучения.
Как показано на фиг. 3 и 4, генератор высокого напряжения 100 содержит кольцевую цепь 101 высокого напряжения, трансформатор 102 высокого напряжения и трансформатор 103 накала, расположенные в удлиненной камере. Кольцевая цепь 101 высокого напряжения, трансформатор 102 высокого напряжения и трансформатор 103 накала соответственно находятся на соответствующих изолирующих полимерных пластинах 104 и расположены на сторонах соответствующих изолирующих полимерных пластин 104, обращенных в сторону от рентгеновской трубки. Предпочтительно, изолирующая полимерная пластина 104 реализована как кольцевая изолирующая полимерная пластина, имеющая пустотелую часть, через которую проходит изоляционное масло, и периферическую часть, имеющую несколько выступающих установочных опор.
Как показано на фиг. 3 и 4, цепь 101 высокого напряжения имеет кольцевую форму, в качестве трансформатора 102 высокого напряжения используется магнитный сердечник типа R, а в качестве трансформатора 103 накала используется магнитный сердечник типа UY, и все три упомянутые компонента прикреплены на сторонах кольцевых изолирующих полимерных пластин 104, обращенных в том же направлении. На периферической части каждой из полимерных пластин 104 предусмотрены три выступающих установочных опоры, а центральная часть является пустотелой с таким расчетом, чтобы через нее проходило изоляционное масло.
Кроме того, генератор 100 высокого напряжения дополнительно содержит клеточную установочную дистанционирующую деталь 105, неподвижно расположенную в удлиненной камере, причем изолирующие полимерные пластины 104 неподвижно расположены в удлиненной камере посредством клеточной установочной дистанционирующей детали 105. Как показано на фиг. 3 и 5, три кольцевые изолирующие полимерные пластины 104 расположены в требуемом положении клеточной установочной дистанционирующей деталью 105.
В частности, блок 300 регулирования коллимации содержит вращающееся вольфрамовое кольцо 301, предназначенное для регулирования, и приводной механизм, предназначенный для привода вращающегося вольфрамового кольца во вращение вокруг переднего коллиматора для достижения точечного непрерывного рентгеновского сканирования. Приводной механизм содержит двигатель 308, установленный на крепежной стойке 501, ведущий шкив 304, соединенный с двигателем 308, ведомый шкив 305, соединенный с вращающимся вольфрамовым кольцом 301, и приводной ремень 306,предусмотренный между ведущим шкивов 304 и ведомым шкивом 305.
Как показано на фиг. 3, узел 200 источника рентгеновского излучения и блок 300 регулирования коллимации содержат корпус 201 для рентгеновской трубки, монтажный прилив 202, обшивку 205 для защиты от радиации, рентгеновскую трубку 203 и теплоизлучающее основание 204 для ее анода, не содержащее кислорода медное уплотнительное кольцо 209, вогнутую крышку 206 фильтра, торцевую крышку 207 и тимпан 208 для уплотнения катода, вращающееся вольфрамовое кольцо 301, ведомый шкив 305, стопорную гайку 307, передний коллиматор 302, радиально-упорный подшипник 303 с угловым контактом и противомасляную навигационную базу 107.
Как показано на фиг. 1–3, источником возбуждения для вращения вольфрамового кольца 301 является серводвигатель 308, установленный на раме 503 двигателя, причем ведущий шкив 304 туго надет на приводной вал серводвигателя 308 с использованием разжимной втулки и посредством приводного ремня 306 приводит ведомый шкив 305 во вращение, причем ведущий шкив 304 и ведомый шкив 305 обеспечивают определенное передаточное число.
Как показано на фиг. 2 и 3, вращающееся вольфрамовое кольцо 301 выполнено с несколькими небольшими сквозными отверстиями в нем, надето на передний коллиматор 302 и закреплено на ведомом шкиве 305 винтами. Радиально-упорный подшипник 303 с угловым контактом установлен на наружной поверхности корпуса 201 для рентгеновской трубки, плотно прикреплен к упорному приливу и застопорен стопорной гайкой 307. Ведомый шкив 305 установлен снаружи радиально-упорного подшипника 303 с угловым контактом. Вращающееся вольфрамовое кольцо приводится серводвигателем 308 во вращение вокруг переднего коллиматора 302, обеспечивая динамическое сканирование рентгеновского излучения остронаправленных лучей. Это вращающееся устройство защиты от радиации имеет высокотехнологичную конструкцию, потребляет мало мощности и создает мало шума.
Как показано на фиг. 3, рентгеновское излучение в виде остронаправленных лучей, регулируемое вращающимся вольфрамовым кольцом 301, имеет хорошую точечную характеристику и малый полутеневой эффект, что способствует повышению разрешения изображения.
Кроме того, приводной механизм может дополнительно содержать натяжное устройство, предназначенное для регулирования степени натяжения приводного ремня 306. Как показано на фиг. 1 и 2, степень натяжения приводного ремня 306 может регулироваться серводвигателем 308 с помощью таких механизмов, как винт 504 с головкой, натяжное колесо и т. д.
В соответствии с одним вариантом осуществления рентгеновский генератор может дополнительно содержать механическое установочное устройство 500, и узел 200 источника рентгеновского излучения, генератор 100 высокого напряжения, блок 300 регулирования коллимации и охлаждающее устройство 400 поддерживаются на крепежной стойке 501 механического установочного устройства 500.
В соответствии с одним вариантом осуществления рентгеновский генератор может дополнительно содержать устройство защиты от радиации, состоящее из слоя 205 защиты от радиации, переднего коллиматора 302 и вращающегося вольфрамового кольца 301, расположенного в рентгеновской трубке и удлиненной камере.
Как показано на фиг. 3 и 5, позиционирующий прилив 108 выполнен в форме кольца на внутренней стороне свинцового слоя 205 защиты от радиации. Три кольцевых изолирующих полимерных пластины 104 располагаются в требуемом положении клеточной установочной дистанционирующей деталью 105.
Как показано на фиг. 3 и 6, передний коллиматор 302 представляет собой передний коллиматор, предпочтительно изготовленный из оксида тяжелого металла. Передний коллиматор 302 имеет определенную характеристику толщины и угла раскрыва для ограничения рентгеновских лучей в веерообразном отверстии. Вращающееся вольфрамовое кольцо 301 на обеих его сторонах оснащено защитными ребрами и установлено вокруг переднего коллиматора 302 с зазором между ними примерно 1 мм. Помимо прохождения через небольшие сквозные отверстия в вольфрамовом кольце, все рентгеновские лучи проходят по пути высвобождения, показанном на фиг. 2. Внутренний защитный слой корпуса 201 для рентгеновской трубки, передний коллиматор 302 и вращающееся вольфрамовое кольцо 301 вместе представляют собой эффективное лабиринтное устройство противолучевой защиты для предотвращения утечки рентгеновского излучения, чтобы отвечать требованиям безопасности.
Как показано на фиг. 8, электрический ток из источника питания проходит через первый модуль регулирования и выпрямления, а затем выдается через цепь полномостового инвертора в трансформатор 102 высокого напряжения, чтобы добиться начального повышения напряжения. Затем он подается в модуль 101 выпрямления по схеме удвоения напряжения для достижения высокого отрицательного напряжения. Наконец, он подается на катод рентгеновской трубки 203. Электрический ток из источника питания проходит через второй модуль регулирования и выпрямления, а затем выдается через цепь полумостового инвертора на первичную сторону трансформатора 103 накала, а вторичная сторона трансформатора 103 накала соединена с обоими концами нити накала катода рентгеновской трубки 203. Модуль 603 инверсии и управления соединен с навигационной базой 107 так, что при прикладывании высокого напряжения к обоим концам рентгеновской трубки 203 генерируются ускоренные горячие электроны для соударения с анодом-мишенью для генерирования рентгеновских лучей.
Выше показаны и описаны несколько примерных вариантов осуществления, однако специалистам в области техники, к которой относится изобретение, ясно, что в эти варианты осуществления могут вноситься различные изменения и модификации в пределах принципов и сущности изобретения, объем которого определен в пунктах формулы изобретения и их эквивалентах.
Claims (32)
1. Рентгеновский генератор с регулируемой коллимацией, содержащий:
узел источника рентгеновского излучения, содержащий рентгеновскую трубку, имеющую катод и анод, и передний коллиматор;
генератор высокого напряжения, расположенный в удлиненной камере корпуса для рентгеновской трубки и используемый для прикладывания высокого напряжения постоянного тока между катодом и анодом рентгеновской трубки для возбуждения рентгеновских лучей;
блок регулирования коллимации, с возможностью вращения расположенный снаружи переднего коллиматора и используемый для регулировки веерообразных рентгеновских лучей с целью формирования непрерывных рентгеновских лучей в виде остронаправленных лучей; и
охлаждающее устройство, независимо установленное на рентгеновской трубке и используемое для охлаждения анода рентгеновской трубки;
отличающийся тем, что узел источника рентгеновского излучения, генератор высокого напряжения, блок регулирования коллимации и охлаждающее устройство объединены как одно целое;
при этом генератор высокого напряжения содержит кольцевую цепь высокого напряжения, трансформатор высокого напряжения и трансформатор накала, расположенные в удлиненной камере, причем кольцевая цепь высокого напряжения, трансформатор высокого напряжения и трансформатор накала соответственно находятся на соответствующих изолирующих полимерных пластинах и расположены на сторонах соответствующих изолирующих полимерных пластин, обращенных в сторону от рентгеновской трубки.
2. Рентгеновский генератор по п. 1, отличающийся тем, что узел источника рентгеновского излучения дополнительно содержит:
теплоизлучающее основание для анода, расположенное на стороне анода рентгеновской трубки; и
торцевую крышку и тимпан, расположенные на стороне катода рентгеновской трубки и взаимодействующие для обеспечения уплотнения и предотвращения утечки.
3. Рентгеновский генератор по п. 2, отличающийся тем, что теплоизлучающее основание имеет поверхность теплопередачи для контакта с охлаждающим устройством с целью охлаждения.
4. Рентгеновский генератор по п. 3, отличающийся тем, что охлаждающее устройство содержит теплоизлучающую пластину и тепловую трубку, расположенную на теплоизлучающей пластине, и теплоизлучающая пластина конструктивно выполнена для достаточного контакта с поверхностью теплопередачи теплоизлучающего основания посредством теплопроводной силиконовой смазки.
5. Рентгеновский генератор по п. 3, отличающийся тем, что охлаждающее устройство содержит тепловую трубку, непосредственно установленную на поверхности теплопередачи теплоизлучающего основания.
6. Рентгеновский генератор по п. 4 или 5, отличающийся тем, что охлаждающее устройство дополнительно содержит:
теплоизлучающие ребра, расположенные на тепловой трубке; и
малошумный вентилятор, расположенный над теплоизлучающими ребрами.
7. Рентгеновский генератор по п. 4 или 5, отличающийся тем, что тепловая трубка имеет U-образную форму.
8. Рентгеновский генератор по п. 2, отличающийся тем, что в теплоизлучающее основание встроены датчик температуры и термореле.
9. Рентгеновский генератор по п. 1, отличающийся тем, что рентгеновская трубка сообщается с удлиненной камерой и наполнена изоляционным маслом.
10. Рентгеновский генератор по п. 1, отличающийся тем, что изолирующая полимерная пластина реализована как кольцевая изолирующая полимерная пластина, имеющая пустотелую часть, через которую проходит изоляционное масло, и периферическую часть, имеющую несколько выступающих установочных опор.
11. Рентгеновский генератор по п. 1, отличающийся тем, что генератор высокого напряжения дополнительно содержит клеточную установочную дистанционирующую деталь, неподвижно расположенную в удлиненной камере, причем изолирующие полимерные пластины неподвижно расположены в удлиненной камере посредством клеточной установочной дистанционирующей детали.
12. Рентгеновский генератор по п. 1, отличающийся тем, что дополнительно содержит механическое установочное устройство, на котором поддерживаются узел источника рентгеновского излучения, генератор высокого напряжения, блок регулирования коллимации и охлаждающее устройство.
13. Рентгеновский генератор по п. 12, отличающийся тем, что блок регулирования коллимации содержит:
вращающееся вольфрамовое кольцо, предназначенное для регулирования; и
приводной механизм, предназначенный для привода вращающегося вольфрамового кольца во вращение вокруг переднего коллиматора для достижения точечного непрерывного рентгеновского сканирования, при этом приводной механизм содержит:
двигатель, установленный на механическом установочном устройстве;
ведущий шкив, соединенный с двигателем;
ведомый шкив, соединенный с вращающимся вольфрамовым кольцом; и
приводной ремень, предусмотренный между ведущим шкивом и ведомым шкивом.
14. Рентгеновский генератор по п. 13, отличающийся тем, что приводной механизм дополнительно содержит натяжное устройство, предназначенное для регулирования степени натяжения приводного ремня.
15. Рентгеновский генератор по п. 1, отличающийся тем, что дополнительно содержит устройство защиты от радиации, состоящее из слоя защиты от радиации, переднего коллиматора и вращающегося вольфрамового кольца, расположенного в рентгеновской трубке и удлиненной камере.
16. Рентгеновский генератор по п. 1, отличающийся тем, что передний коллиматор представляет собой передний коллиматор из оксида тяжелого металла.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410250942.5 | 2014-06-06 | ||
CN201410250942.5A CN103997839B (zh) | 2014-06-06 | 2014-06-06 | 一种准直可调制的x射线发生器 |
PCT/CN2015/080780 WO2015185003A1 (zh) | 2014-06-06 | 2015-06-04 | 一种准直可调制的x射线发生器 |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2016138396A3 RU2016138396A3 (ru) | 2018-04-02 |
RU2016138396A RU2016138396A (ru) | 2018-04-02 |
RU2659816C2 true RU2659816C2 (ru) | 2018-07-04 |
Family
ID=51311805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016138396A RU2659816C2 (ru) | 2014-06-06 | 2015-06-04 | Рентгеновский генератор с регулируемой коллимацией |
Country Status (8)
Country | Link |
---|---|
US (1) | US9779908B2 (ru) |
EP (1) | EP2953136B1 (ru) |
CN (1) | CN103997839B (ru) |
BR (1) | BR112016022227B1 (ru) |
ES (1) | ES2657272T3 (ru) |
PL (2) | PL231530B1 (ru) |
RU (1) | RU2659816C2 (ru) |
WO (1) | WO2015185003A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2706219C1 (ru) * | 2019-03-19 | 2019-11-15 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Коллиматор для жесткого рентгеновского излучения |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017002210A1 (de) * | 2017-03-08 | 2018-09-13 | Heuft Systemtechnik Gmbh | Kühlvorrichtung für Röntgengeneratoren |
CN106851950B (zh) * | 2017-04-06 | 2018-09-11 | 同方威视技术股份有限公司 | X射线管装置和弹簧针 |
CN107966460B (zh) * | 2017-12-26 | 2024-05-10 | 清华大学 | 辐射检查系统和辐射检查方法 |
CN108683342B (zh) * | 2018-05-08 | 2023-12-08 | 深圳市日联科技有限公司 | 一种多倍压整流装置、多倍压整流电路及其控制方法 |
CN108400079A (zh) * | 2018-05-10 | 2018-08-14 | 同方威视技术股份有限公司 | 笔形束x射线管和背散射检测设备 |
CN108461369B (zh) * | 2018-05-10 | 2024-03-12 | 同方威视技术股份有限公司 | 双点束扫描x射线发生器 |
CN108389768B (zh) * | 2018-05-10 | 2024-03-12 | 同方威视技术股份有限公司 | 组合扫描x射线发生器 |
DE102018112054B4 (de) * | 2018-05-18 | 2023-02-09 | Yxlon International Gmbh | Röntgenröhre mit Kollimator und Kollimatorvorrichtung für geschlossene Röntgenröhre |
KR102470128B1 (ko) * | 2019-05-15 | 2022-11-22 | 주식회사 엘지화학 | 전지의 xrd 측정용 스테이지 장치 |
RU204394U1 (ru) * | 2019-05-21 | 2021-05-24 | Общество с ограниченной ответственностью "Газпром трансгаз Томск" (ООО "Газпром трансгаз Томск") | Генератор рентгеновского излучения |
CN112666196A (zh) * | 2019-10-16 | 2021-04-16 | 北航(四川)西部国际创新港科技有限公司 | 一种射线整合装置 |
JP7222880B2 (ja) * | 2019-12-26 | 2023-02-15 | キヤノン電子管デバイス株式会社 | X線管梱包装置 |
US11257653B2 (en) | 2020-03-27 | 2022-02-22 | The Boeing Company | Integrated aperture shield for x-ray tubes |
US11169098B2 (en) * | 2020-04-02 | 2021-11-09 | The Boeing Company | System, method, and apparatus for x-ray backscatter inspection of parts |
CN111787676A (zh) * | 2020-07-27 | 2020-10-16 | 辽宁道特凯力科技有限公司 | 医用诊断x线高压发生器变频kv控制系统 |
CN112271129A (zh) * | 2020-11-13 | 2021-01-26 | 黄石上方检测设备有限公司 | 一种连续水冷的x射线机 |
US20240071644A1 (en) * | 2021-01-08 | 2024-02-29 | Viken Detection Corporation | Low-Profile X-Ray Scanning Source with Ring Collimator |
JP2022134597A (ja) * | 2021-03-03 | 2022-09-15 | 富士フイルム株式会社 | 放射線管及び放射線源 |
US11659645B2 (en) * | 2021-06-01 | 2023-05-23 | Moxtek, Inc. | Monolithic x-ray source housing |
US11786199B1 (en) * | 2022-03-23 | 2023-10-17 | Seethru AI Inc. | X-ray pencil beam forming system and method |
CN117790267B (zh) * | 2024-02-26 | 2024-05-14 | 苏州一目万相科技有限公司 | 一种石蜡相变温控的x射线球管 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2872353Y (zh) * | 2006-01-10 | 2007-02-21 | 上海英迈吉东影图像设备有限公司 | 利用背散射技术进行安全检测的装置 |
EP2701159A2 (en) * | 2012-08-21 | 2014-02-26 | Nuctech Company Limited | Integrated flying-spot x-ray apparatus |
JP2014078474A (ja) * | 2012-10-12 | 2014-05-01 | Origin Electric Co Ltd | 一体型x線発生装置 |
RU2013126420A (ru) * | 2010-11-09 | 2014-12-20 | Конинклейке Филипс Электроникс Н.В. | Система формирования магнитно-резонансных изображений и устройство лучевой терапии с регулируемой осью вращения |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4063097A (en) * | 1976-09-16 | 1977-12-13 | General Electric Company | X-ray body scanner for computerized tomography comprising inner fluid container surrounded by outer fluid container |
US4726046A (en) * | 1985-11-05 | 1988-02-16 | Varian Associates, Inc. | X-ray and electron radiotherapy clinical treatment machine |
US5268955A (en) * | 1992-01-06 | 1993-12-07 | Picker International, Inc. | Ring tube x-ray source |
US5438605A (en) * | 1992-01-06 | 1995-08-01 | Picker International, Inc. | Ring tube x-ray source with active vacuum pumping |
US5493599A (en) * | 1992-04-03 | 1996-02-20 | Picker International, Inc. | Off-focal radiation limiting precollimator and adjustable ring collimator for x-ray CT scanners |
FR2700657B1 (fr) * | 1993-01-15 | 1995-02-17 | Gen Electric Cgr | Ensemble radiogène. |
JP3599575B2 (ja) * | 1998-10-12 | 2004-12-08 | 株式会社日立製作所 | 電圧駆動型半導体装置の温度検出回路とそれを用いる駆動装置及び電圧駆動型半導体装置 |
US6778635B1 (en) | 2002-01-10 | 2004-08-17 | Varian Medical Systems, Inc. | X-ray tube cooling system |
CN1751543B (zh) * | 2003-02-20 | 2011-02-02 | 因普有限公司 | 集成的x射线源模块 |
US7730748B2 (en) * | 2003-10-09 | 2010-06-08 | General Electric Company | Method of making a post-patent collimator assembly |
JP4656998B2 (ja) * | 2005-04-22 | 2011-03-23 | トヨタ自動車株式会社 | インホイールモータの冷却構造 |
US7410297B2 (en) * | 2006-08-18 | 2008-08-12 | General Electric Company | Apparatus for controlling radiation in a radiation generator |
US8090075B2 (en) * | 2007-06-06 | 2012-01-03 | Comet Holding Ag | X-ray tube with an anode insulation element for liquid cooling and a receptacle for a high-voltage plug |
CN101252821B (zh) * | 2007-10-12 | 2010-09-08 | 张文 | 一种散热方法、散热系统及散热装置 |
US7771117B2 (en) * | 2008-06-13 | 2010-08-10 | Korea Electrotechnology Research Institute | X-ray system for dental diagnosis and oral cancer therapy based on nano-material and method thereof |
US8023713B2 (en) * | 2010-01-20 | 2011-09-20 | Kabushiki Kaisha Toshiba | Method and system for reducing artifact due to time delay in data acquisition system in computer tomography |
US9151721B2 (en) | 2011-06-20 | 2015-10-06 | The Boeing Company | Integrated backscatter X-ray system |
CN102680501B (zh) * | 2012-05-26 | 2013-11-20 | 中国人民解放军信息工程大学 | 一种x射线背散射扫描仪准直系统 |
JP6104689B2 (ja) * | 2013-04-18 | 2017-03-29 | 東芝電子管デバイス株式会社 | X線管装置及びx線コンピュータ断層撮影装置 |
CN203934087U (zh) * | 2014-06-06 | 2014-11-05 | 同方威视技术股份有限公司 | 一种准直可调制的x射线发生器 |
-
2014
- 2014-06-06 CN CN201410250942.5A patent/CN103997839B/zh active Active
-
2015
- 2015-06-03 US US14/729,622 patent/US9779908B2/en active Active
- 2015-06-04 PL PL420091A patent/PL231530B1/pl unknown
- 2015-06-04 RU RU2016138396A patent/RU2659816C2/ru active
- 2015-06-04 BR BR112016022227-0A patent/BR112016022227B1/pt active IP Right Grant
- 2015-06-04 WO PCT/CN2015/080780 patent/WO2015185003A1/zh active Application Filing
- 2015-06-05 EP EP15170759.3A patent/EP2953136B1/en active Active
- 2015-06-05 ES ES15170759.3T patent/ES2657272T3/es active Active
- 2015-06-05 PL PL15170759T patent/PL2953136T3/pl unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2872353Y (zh) * | 2006-01-10 | 2007-02-21 | 上海英迈吉东影图像设备有限公司 | 利用背散射技术进行安全检测的装置 |
RU2013126420A (ru) * | 2010-11-09 | 2014-12-20 | Конинклейке Филипс Электроникс Н.В. | Система формирования магнитно-резонансных изображений и устройство лучевой терапии с регулируемой осью вращения |
EP2701159A2 (en) * | 2012-08-21 | 2014-02-26 | Nuctech Company Limited | Integrated flying-spot x-ray apparatus |
JP2014078474A (ja) * | 2012-10-12 | 2014-05-01 | Origin Electric Co Ltd | 一体型x線発生装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2706219C1 (ru) * | 2019-03-19 | 2019-11-15 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Коллиматор для жесткого рентгеновского излучения |
Also Published As
Publication number | Publication date |
---|---|
EP2953136B1 (en) | 2018-01-03 |
PL2953136T3 (pl) | 2018-08-31 |
PL420091A1 (pl) | 2017-07-17 |
CN103997839A (zh) | 2014-08-20 |
US20150371809A1 (en) | 2015-12-24 |
PL231530B1 (pl) | 2019-03-29 |
EP2953136A1 (en) | 2015-12-09 |
BR112016022227B1 (pt) | 2022-08-16 |
CN103997839B (zh) | 2018-03-30 |
US9779908B2 (en) | 2017-10-03 |
WO2015185003A1 (zh) | 2015-12-10 |
RU2016138396A3 (ru) | 2018-04-02 |
RU2016138396A (ru) | 2018-04-02 |
BR112016022227A2 (pt) | 2021-09-08 |
ES2657272T3 (es) | 2018-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2659816C2 (ru) | Рентгеновский генератор с регулируемой коллимацией | |
JP4942868B2 (ja) | 一体的ハウジングを備える乳房撮影法用のx線管 | |
US5802140A (en) | X-ray generating apparatus with integral housing | |
US7515687B2 (en) | Compact source with very bright X-ray beam | |
JP2000340146A (ja) | X線発生デバイス | |
JP5414167B2 (ja) | X線管装置 | |
KR101177864B1 (ko) | 일체형 엑스선 발생장치 | |
JP4538236B2 (ja) | 熱吸収要素を有するx線を発生するための装置 | |
CN112928003A (zh) | X射线发生装置及成像设备 | |
CN203934087U (zh) | 一种准直可调制的x射线发生器 | |
JP2003123999A (ja) | X線管装置 | |
US9202664B2 (en) | Finned anode | |
JP2726252B2 (ja) | X線管 | |
JP2009158418A (ja) | 回転陽極型x線管装置 | |
CN221553509U (zh) | 一种弧形多焦点旋转阳极栅控射线源及相应的静态ct设备 | |
CN218009753U (zh) | 一种医疗器械x射线真空管用散热器 | |
JPH0864386A (ja) | 回転陽極x線管装置 | |
JP2015213062A (ja) | X線管装置 | |
SU824341A1 (ru) | Рентгеновска трубка | |
JP2012109105A (ja) | X線管装置 | |
CN116744522A (zh) | 一种便携式x光机组合机头 | |
JPH062991U (ja) | 高電圧電源の冷却装置 | |
JP2007048640A (ja) | X線管装置 |