WO2014029109A1 - 无线系统的帧同步的方法、装置和无线系统 - Google Patents

无线系统的帧同步的方法、装置和无线系统 Download PDF

Info

Publication number
WO2014029109A1
WO2014029109A1 PCT/CN2012/080562 CN2012080562W WO2014029109A1 WO 2014029109 A1 WO2014029109 A1 WO 2014029109A1 CN 2012080562 W CN2012080562 W CN 2012080562W WO 2014029109 A1 WO2014029109 A1 WO 2014029109A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signals
wireless system
correlation
delay
Prior art date
Application number
PCT/CN2012/080562
Other languages
English (en)
French (fr)
Inventor
马骏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12883114.6A priority Critical patent/EP2876837B1/en
Priority to ES12883114.6T priority patent/ES2629197T3/es
Priority to PCT/CN2012/080562 priority patent/WO2014029109A1/zh
Priority to CN201280001091.XA priority patent/CN102959879B/zh
Publication of WO2014029109A1 publication Critical patent/WO2014029109A1/zh
Priority to US14/626,482 priority patent/US9264113B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0808Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching comparing all antennas before reception
    • H04B7/0811Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching comparing all antennas before reception during preamble or gap period
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method, apparatus and wireless system for frame synchronization of a wireless system. Background technique
  • MIMO multiple input multiple output in Chinese
  • SISO single input single output in English, single input and single output in Chinese
  • the spectrum utilization of the M*N MIMO system is Min (M, N) times of the SISO system, where both M and N are integers greater than zero.
  • M represents the number of transmitting antennas
  • N represents the number of receiving antennas
  • MIMO systems can be divided into centralized
  • a centralized MIMO system has a small antenna spacing.
  • one base station is connected to multiple antennas, and multiple antennas are usually placed in one place.
  • the distributed MIMO system has a large antenna spacing.
  • one antenna is connected to one base station. Since each base station has a large separation distance, each antenna has a large separation distance.
  • distributed MIMO systems can achieve higher diversity gain than distributed MIMO systems, which is an important trend in the future development of wireless communication MIMO systems.
  • Embodiments of the present invention provide a method, an apparatus, and a wireless system for frame synchronization of a wireless system, which can improve the accuracy of frame synchronization of a wireless system.
  • a method for frame synchronization of a wireless system including: delaying a signal received by one of the N receiving antennas in K branches, and outputting K delay signals, wherein N and K is a positive integer; the K delay signal and the preamble sequence are correlated to generate a first output signal; each of the K delay signals and each of the K delay signals are subjected to a correlation operation to generate a second output Signal; canceling the first output signal and the second output signal to obtain a sequence of values, obtaining a maximum value as a correlation peak in a sequence of values, according to the correlation peak The time point corresponding to the value determines the position of the frame header.
  • the signals received by one of the N receiving antennas are respectively delayed in the K branches, and the outputting the K delayed signals includes: receiving one of the N receiving antennas The signal is delayed in K branches, and K delay signals are output, wherein the Kth branch outputs the Kth delay signal and the delay amount of the Kth delay signal is the length of the K-1 preamble sequence. Multiply by the symbol cycle time.
  • generating, by the correlation operation, the K delay signals and the preamble sequence to generate the first output signal includes: performing K delay signals with a preamble sequence execution length as a preamble The correlation operation of the length of the subsequence outputs K first signals, and the product of the K first signals generates a first output signal.
  • each of the K delay signals and each of the K delay signals are subjected to a correlation operation to generate a second output signal, including: K delay signals
  • the ⁇ second signals are output by a correlation operation with the length of the preamble sequence, and the product of the K second signals generates a second output signal.
  • the signals received by one of the N receiving antennas are respectively delayed in K branches, and K outputs are respectively output.
  • the method further includes: N receiving antennas receive the transmitting signals sent by the M transmitting antennas, wherein a preamble sequence of the transmitted signals sent by one of the M transmitting antennas is generated by K preamble sequences arranged in a periodicity The length of the preamble sequence is K times the length of the preamble sequence, where M is a positive integer.
  • the number of transmitting antennas of the wireless system is M > 2 and the receiving antenna of the wireless system The number N > 2, and the transmitter of the wireless system has more than two local oscillators and the receiver of the wireless system has more than two independent local oscillators.
  • a device for frame synchronization of a wireless system including a delay module, a signal correlation enhancement module, a relative frequency offset extraction module, and a cancellation module, wherein the delay module and the delay module are used to set N
  • the signal received by one of the receiving antennas is delayed in K branches, and K delay signals are output, wherein N and K are positive integers;
  • a signal correlation enhancement module is used to output K blocks of the delay module.
  • the delay signal and the preamble sequence generate a first output signal through a correlation operation;
  • the relative frequency offset extraction module is configured to correlate each of the K delay signals output by the delay module with each of the K delay signals Computing to generate a second output signal;
  • an offset module for The first output signal generated by the signal correlation enhancement module and the second output signal generated by the relative frequency offset extraction module are offset to obtain a sequence of values, and a maximum value is obtained as a correlation peak in a sequence of values, according to the time corresponding to the correlation peak. Click to determine where the frame header is located.
  • the delay module is specifically configured to delay the signals received by one of the N receiving antennas in K branches, and output K delay signals, where the Kth branch The Kth delay signal is output and the delay amount of the Kth delay signal is the length of the K-1 preamble sequence multiplied by the symbol period time.
  • the signal correlation enhancement module is specifically configured to: output K delay signals by performing a correlation operation between the K delay signals and the length of the preamble sequence as a length of the preamble sequence, respectively.
  • a signal, the product of the K first signals, produces a first output signal.
  • the relative frequency offset extraction module is specifically configured to pass the K delay signals to each of the K delay signals to perform a length of the preamble sequence.
  • the correlation operation outputs K second signals, and the second output signals are generated by the K second signal products.
  • the signal used by the delay module is a transmission sent by the M transmit antennas received by one of the N receive antennas.
  • the number of transmitting antennas of the wireless system is M>2 and the receiving antenna of the wireless system The number N > 2, and the transmitter of the wireless system has more than two independent local oscillators and the receiver of the wireless system has more than two independent local oscillators.
  • a wireless system including a transmitter, M transmit antennas, N receive antennas, and a receiver, the receiver including a frame synchronization device of the wireless system: a transmitter for generating a transmit signal and transmitting To M transmit antennas; M transmit antennas for transmitting transmit signals to N receive antennas; N receive antennas for receiving transmit signals transmitted by M transmit antennas and transmitting to receivers; receivers for receiving N receive signals
  • a signal of the antenna is processed, wherein the frame synchronization device of the wireless system is configured to delay the signals received by one of the N receiving antennas in K branches, and output K delay signals, wherein N and K a positive integer; generating a first output signal by correlating the K delay signals with the preamble sequence; each of the K delay signals Generating a second output signal by each of the K delay signals by a correlation operation; and canceling the first output signal and the second output signal to obtain a sequence of values, obtaining a maximum value as a correlation peak in a sequence of values, The position of the
  • the one receiving antenna receives the transmitting signal sent by the two transmitting antennas, and the preamble sequence of the transmitting signal sent by one of the one of the transmitting antennas is arranged by the first period.
  • the length of the preamble sequence is ⁇ times the length of the leader sequence, where ⁇ is a positive integer.
  • the number of transmit antennas of the wireless system is 2 > 2 and the number of receive antennas of the wireless system is > 2
  • the transmitter of the wireless system has two or more independent local oscillators and the receiver of the wireless system has two or more independent local oscillators.
  • the above technical solution can enhance the signal correlation, suppress the influence of the frequency offset aliasing on the signal, and the obtained correlation peak can improve the correctness of the frame synchronization.
  • Figure 1 is a schematic block diagram of a centralized ⁇ system.
  • Figure 2 is a schematic block diagram of a distributed ⁇ system.
  • Figure 3 is a schematic block diagram of the signal transceiving of a centralized ⁇ system.
  • Figure 4 is a schematic block diagram of signal transceiving in a distributed ⁇ system.
  • Figure 5 is a schematic illustration of the correlation peaks obtained by the centralized frame system using the existing frame synchronization method.
  • Figure 6 ⁇ and Figure 6 ⁇ are schematic diagrams of the correlation peaks obtained by the distributed frame system using the existing frame synchronization method.
  • FIG. 7 is a schematic flow chart of a frame synchronization method of a wireless system according to an embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a frame synchronization method of a wireless system according to another embodiment of the present invention.
  • Figure 9 is a schematic illustration of a frame structure 90 of a transmitted signal in accordance with an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing the effect of a method for frame synchronization of a wireless system according to an embodiment of the present invention.
  • 11 is a schematic block diagram of an apparatus for frame synchronization of a wireless system according to an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of an apparatus for frame synchronization of a wireless system according to another embodiment of the present invention.
  • Figure 13 is a schematic block diagram of a wireless system in accordance with an embodiment of the present invention. detailed description
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • a user equipment which may also be called a mobile terminal, a mobile user equipment, etc., may communicate with one or more core networks via a radio access network (eg, RAN, radio access network).
  • the user equipment can be a mobile terminal, such as a mobile phone (or "cellular" phone), and the user device can also be a computer with a mobile terminal, for example, can be portable, pocket, handheld, computer built, or in-vehicle.
  • Mobile devices that exchange language and/or data with a wireless access network.
  • the base station may be a base station (BTS) in a GSM or CDMA system, or may be a base station (NodeB) in a WCDMA system, or may be an evolved base station (eNB or e-NodeB, evolutional Node in the LTE system).
  • B the invention is not limited.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist separately. B These three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the baseband module of the centralized MIMO system outputs n (n is an integer greater than 0) a band-limited signal with a center frequency of 0, wherein each of the n-band limited signals is up-converted by the intermediate frequency module to become a medium-band limited signal, and then After the RF module Upconversion is performed to become an RF band-limited signal to be transmitted to the space through the antenna.
  • n is an integer greater than 0
  • n is an integer greater than 0
  • n is an integer greater than 0
  • each of the n-band limited signals is up-converted by the intermediate frequency module to become a medium-band limited signal, and then After the RF module Upconversion is performed to become an RF band-limited signal to be transmitted to the space through the antenna.
  • the biggest feature of the centralized MIMO system is that the multiple antennas (such as the antenna 11 in Figure 1) have a small spacing.
  • the n IF modules in the system are placed in the same position.
  • the n RF modules and n antennas in the system are Placed in another position different from the n IF modules, then the n IF modules use the same local oscillator, such as the local oscillator 1 in Figure 1, and the n RF modules use the same local oscillator, as shown in Figure 1.
  • the local oscillator signals of RF 1, RF 2, ... and RF n are all derived from LO 2 .
  • the baseband module of the distributed MIMO system outputs n (n is an integer greater than 0) a band-limited signal with a center frequency of 0, wherein each of the n-band limited signals is up-converted by the intermediate frequency module to become a medium-band limited signal, and then The RF module is up-converted to become a radio frequency band-limited signal to be transmitted to the space through the antenna. Since the n IF modules of the distributed MIMO system are placed in the same location, the n IF modules use the same local oscillator, such as the local oscillator 1 in Figure 2.
  • the n antennas of the distributed MIMO system (such as the antenna 21 in FIG. 2) have a larger pitch, and each antenna is integrated with each RF module.
  • the two form a subsystem, so each of the n subsystems is placed in different positions, then each of the n RF modules uses a different local oscillator, such as local oscillator 1, local oscillator 2 ...and the local oscillator n, as shown in Figure 2, the local oscillator signal of the RF module 1 is derived from the local oscillator 1, and so on.
  • the local oscillator signal of the radio frequency module n is derived from the local oscillator n, obviously, the radio frequency 1, the radio frequency 2.
  • the local oscillator signals of ... and RF n are different.
  • the difference between the local oscillators of the distributed MIMO system and the centralized MIMO system as described above causes the difference in the received signals of the two MIMO systems.
  • the RF local oscillator frequency has a certain drift, called the frequency offset, such as 15GHz ⁇ 5PPM (English is Parts Per Million, Chinese is one in a million), the frequency offset of different local oscillators is different.
  • FIG. 3 is a schematic block diagram of signal transmission and reception of the centralized MIMO system, and the signal flow of the transmitting end (TX) refers to the description of FIG.
  • the signal flow of the receiving end (RX) is the inverse process corresponding to the transmitting end.
  • Each of the plurality of antennas receives n radio frequency band-limited signals from the space, and is down-converted by the radio frequency module to become a mid-band limit signal, and then down-converted by the intermediate frequency module to become n band-limited signals with a center frequency of 0. Input to the baseband module of the centralized MIMO system.
  • h u , h 21 , h 12 , ... and h ln , h 2n are channel gain coefficients, Xl ( t ), x 2 ( t ), ..., and x n ( t) respectively, the intermediate frequency signal output by the intermediate frequency module of the transmitting end (TX) after performing up-conversion, yi ( t ), y 2 ( t ), ... and y n ( t ) are respectively receiving ends
  • the RF module of (RX) performs the IF signal output after down-conversion.
  • the frequency offset at the receiving end is only one ' + ) ⁇ .
  • the SISO system is similar to the centralized MIMO system in that it is commonly used for signal correlation (correlation in English) for frame synchronization.
  • the formula for the correlation operation (in English correlation computation) in the signal correlation method is:
  • Output signal input signal conjugate of X input signal
  • the maximum value of the result of the correlation operation is the frame synchronization maximum.
  • the position of the frame header is determined according to the corresponding time point of the correlation peak, and the frame is used for frame synchronization and de-frame.
  • FIG. 4 is a schematic block diagram of signal transmission and reception of the distributed MIMO system, and the signal flow of the transmitting end (TX) refers to the description of FIG.
  • the signal flow of the receiving end (RX) is the inverse process corresponding to the transmitting end.
  • Each of the plurality of antennas receives n radio frequency band-limited signals from the space, and is down-converted by the radio frequency module to become a mid-band limit signal, and then down-converted by the intermediate frequency module to become n band-limited signals with a center frequency of 0. To input to the baseband module of the distributed MIMO system.
  • h u , h 21 , h 12 , ... and h ln , h 2n are channel gain coefficients.
  • X; (t), ⁇ 2 ' (t), ... and x n (t) are the intermediate frequency signals output by the intermediate frequency module of the transmitting end (TX) after performing up-conversion
  • y (t), y 2 (t), ... and y n (t) are the intermediate frequency signals output by the RF module of the receiving end (RX) after performing down-conversion.
  • each of the n RF channels has an independent local oscillator, and each local oscillator has an independent frequency offset, and the signal is aliased to the frequency offset of the local oscillator when it is transmitted from the antenna.
  • the receiving antenna receives aliased signals from multiple transmit antennas (see Equation 3 or Equation 4). Since the frequency offset of the receiving end is irrelevant, it cannot be separated after aliasing with the signal, resulting in a decrease in signal correlation. At this time, if the correlation peak is generated by the existing frame synchronization method, the output correlation peak result is unstable, which will result in a frame. Synchronization error.
  • Frame synchronization is a key step in the processing of the baseband system at the receiving end. After frame synchronization, other steps such as channel estimation, frequency offset estimation, and payload extraction can be implemented.
  • Figure 5 is a schematic illustration of the correlation peaks obtained by the centralized MIMO system using the existing frame synchronization method.
  • the correlation peak obtained by the correlation operation is shown in Fig. 5.
  • the correlation peak is smooth and is a single pulse. Detecting the correlation peak during framing is very straightforward and easy.
  • FIGS. 6A and 6B are diagrams showing correlation peaks obtained by a distributed MIMO system using an existing frame synchronization method.
  • the mixed frequency offset is quite sensitive.
  • the correlation peak value of the output is affected by the mixed frequency offset, the amplitude fluctuates greatly, there is no peak in some places, and the frame synchronization effect is poor.
  • the correlation peak obtained by the correlation operation is as shown in Figs. 6A and 6B.
  • 6A is a schematic diagram showing a maximum correlation operation peak result after a correlation operation of a preamble sequence after a correlation operation for a period of time by using a conventional frame synchronization method
  • FIG. 6B is a partial enlarged view of FIG. 6A, and it can be seen that The resulting peak is disturbed by the aliasing frequency offset, and the result is unstable, and even there is no peak in some places, which may result in framing results.
  • the signal correlation (correlation) method is used for frame synchronization in SISO systems or centralized MIMO systems.
  • the signal correlation is degraded, and the above frame synchronization method is inferior in the distributed MIMO system scene.
  • Embodiments of the present invention provide a frame synchronization method and apparatus, which can efficiently solve distributed
  • FIG. 7 is a schematic flow diagram of a frame synchronization method 70 of a wireless system in accordance with an embodiment of the present invention.
  • S71 delaying signals received by one of the N receiving antennas in K branches, and outputting K delay signals, where N and K are positive integers.
  • the embodiment of the invention obtains by multiplying the received signal by the product of the known sequence correlation operation result.
  • the first signal the number of products is determined by the number of repetitions K of the preamble sequence, which enhances the correlation of the signal, but also enhances the influence of the frequency offset on the signal correlation; and then obtains the first product by multiplying the signal with the correlation result of the multiple signals.
  • the number of products is determined by the number of repetitions of the preamble sequence, which amplifies the influence of the relative frequency offset on the signal correlation.
  • the first signal and the second signal are cancelled, and the relative frequency offset is eliminated.
  • FIG. 8 is a schematic flow diagram of a frame synchronization method 80 of a wireless system in accordance with another embodiment of the present invention.
  • FIG. 9 is a schematic illustration of a frame structure 90 of a transmitted signal in accordance with an embodiment of the present invention.
  • frame 90 includes a preamble sequence 91 and a number of other sequences 92.
  • Nc is the length of the preamble sequence 93.
  • the leader sequence is formed by a plurality of periodic repetitions to form a leader sequence.
  • the total length of the leader sequence is K*Nc, where K is the number of repetitions of the leader sequence and is a positive integer.
  • a distributed MIMO system transmitter has a preamble sequence generator, a preamble circulator.
  • the preamble sequence generator is used to generate a preamble sequence of period Nc.
  • the generated preamble sequence enters the preamble circulator and copies the preamble sequence K times to generate a preamble sequence of K times and a total length of K*Nc.
  • Each of the N receive antennas in the distributed MIMO system receives the transmitted signal transmitted by the transmitter. Due to the relative frequency offset of the M*N distributed MIMO aliasing, the correlation of the preamble sequence is reduced.
  • three modules are used: a signal correlation enhancement module, a relative frequency offset extraction module. And a cancellation module for compensating for the correlation of the preamble signals.
  • K delay signals are output after delays are respectively performed in K branches, wherein the Kth branch outputs a Kth delayed signal.
  • the delay amount of the first delay signal outputted by the first branch delay is 0, and the delay amount of the second delay signal outputted by the second branch delay is Nc*t (Nc multiplied by t
  • the delay amount of the third delay signal outputted by the third branch delay is 2*Nc*t...
  • the delay amount of the Kth delay signal of the Kth branch delay output is (Kl)* Nc*t.
  • K is the number of repetitions of the preamble sequence and is a positive integer
  • t is the symbol period time during baseband processing.
  • the distributed MIMO system pre-sets the number K of repetitions of the preamble sequence, causing the connection
  • the baseband module at the receiving end determines the number of branches ⁇ of the processed signal according to the number of repetitions of the preamble sequence.
  • a signal of a different delay amount enters the signal correlation enhancement module.
  • the processing step of the correlation enhancement module for the signals of different delay amounts includes: performing correlation operations of length Nc with a sequence of Nc lengths and Nc lengths to obtain K correlations
  • the output result of the correlation operation which is also referred to as the first signal in the context of the output; and the K first signals are simultaneously accumulated to generate the first output signal.
  • the first output signal enhances the correlation of the received signal while increasing the effect of the relative frequency offset on the correlation of the received signal.
  • the first output signal is, for example, the molecule in the formula 5 of the specific embodiment shown in step S85.
  • r d+m is the signal received from the jth receiving antenna at the receiving end at (d+m), where d is the sampling instant and M is the count of the sequence performing the correlation operation, taking values from 0 to ( Nc-1)—the total number of Nc symbols; ( ⁇ is the leader sequence, and d* is the conjugate of the leader sequence.
  • the K delay signals generate a second output signal by multiplying the K branches by the products of the K delay signals themselves through correlation calculations.
  • K signals of different delay amounts also enter the relative frequency offset extraction module.
  • the relative frequency offset extraction module is used to extract the correlation value of the relative frequency offset. It should be noted here that the correlation value of the relative frequency offset is extracted instead of the relative frequency offset itself.
  • the correlation value of the relative frequency offset is used to divide the output of the correlation enhancement module in the cancellation module, and offsets the portion of the S83 step that is enhanced by the correlation of the signal correlation and the relative frequency offset correlation.
  • the specific implementation steps include: performing each of the K different delay amount signals with a correlation operation of the length Nc to obtain an output result of the K correlation operations, which is also referred to as a second signal in the context;
  • the K second signals are summed to generate a second output signal.
  • the acquisition of the second output signal is an enhancement of the portion of the relative frequency offset that affects the correlation of the received signal.
  • the second output signal is, for example, the denominator in Equation 5 of the specific embodiment shown in step S85.
  • a sequence of values obtained by dividing the results of the steps S83 and S84 is performed, and a maximum value is obtained as a correlation peak in the sequence of values, thereby obtaining a signal that finally eliminates the influence of the relative frequency offset in frame synchronization.
  • the position of the frame header is determined according to the time point corresponding to the correlation peak, thereby realizing frame framing and deframing of the frame synchronization.
  • the formula is as follows: Take the 3*3 distributed MIMO system as an example.
  • r d+m is the signal received at the (d+m) time from the first receiving antenna at the receiving end, where d and m are positive integers and peak indicates the correlation peak.
  • the signal correlation is enhanced, the influence of frequency offset aliasing in the distributed MIMO system is suppressed, and a good correlation peak is generated for the frame synchronization.
  • this method has a significant improvement on the frame synchronization of the existing distributed MIMO system, the method can also be applied to the SISO system or the centralized MIMO system, compared to the prior art adopted by the SISO system or the centralized MIMO system.
  • the product of the K delay signals in the K branches and the result of the correlation operation of the preamble sequence respectively is divided by the product of the K delay signals in the K branches and the K delay signals themselves through the correlation operation.
  • the correlation peak of the frame synchronization related output is improved, thereby improving the effect of frame synchronization.
  • the first signal is obtained by multiplying the received signal by the product of the known sequence correlation operation, and the number of products is determined by the number of repetitions K of the preamble sequence, which enhances the correlation of the signal, but also enhances the frequency offset signal.
  • the second signal is obtained by multiplying the product by the correlation signal of the multiple signals, and the number of products is determined by the number of repetitions K of the preamble sequence, amplifying the influence of the relative frequency offset on the signal correlation, and finally making the first signal
  • the second signal is used for cancellation processing, which eliminates the influence of the relative frequency offset on the signal correlation operation result, thereby enhancing the signal correlation and suppressing the influence of the frequency offset aliasing on the signal, and the obtained correlation peak can improve the correctness of the frame synchronization.
  • FIG. 10 is a schematic diagram showing the effect of a method for frame synchronization of a wireless system according to an embodiment of the present invention. This method is applied in a 4*4 MIMO system with a relative frequency offset of 300 Khz. As shown in Fig. 10, the left graph is the total result generated, and the right side is an enlarged graph. From top to bottom, the correlation peak output 101, the first output signal 102 output by the signal correlation enhancement module, and the second output signal 103 of the associated frequency offset extraction output, respectively. From the correlation peak output 101 of Fig. 10, it becomes 4 ⁇ flat, which is advantageous for framing.
  • FIG 11 is a schematic block diagram of a device 110 for frame synchronization in accordance with an embodiment of the present invention.
  • the device 110 includes: a delay module 1101, a signal correlation enhancement module 1102, a relative frequency offset extraction module 1103, and a cancellation module 1104.
  • the delay module 1101 delays the signals received by one of the N receiving antennas in K branches, and outputs K delay signals, where N and K are positive integers;
  • the signal correlation enhancement module 1102 generates a first output signal by using the K delay signals output by the delay module 1101 and the preamble sequence by a correlation operation;
  • the relative frequency offset extraction module 1103 generates a second output signal by performing correlation operation on each of the K delay signals output by the delay module 1101 and each of the K delay signals; the cancellation module 1104 will signal
  • the first output signal generated by the correlation enhancement module 1102 and the second output signal generated by the relative frequency offset extraction module 1103 are subjected to a cancellation process to obtain a sequence of values, and a maximum value is obtained as a correlation peak in the sequence of values. And determining a location of the frame header according to a time point corresponding to the correlation peak.
  • the device 110 implements the method 70, and the details are not described herein.
  • the embodiment of the invention provides a device for frame synchronization, which obtains a first signal by multiplying a plurality of received signals and a known sequence correlation operation result, and the number of products is determined by the number of repetitions of the preamble sequence K, which enhances the correlation of the signal. But at the same time, it also enhances the influence of frequency offset on signal correlation. Then, the second signal is obtained by multiplying the multiple signal with the result of the correlation calculation result. The number of products is determined by the number of repetitions of the preamble sequence ⁇ , and the relative frequency offset is amplified.
  • the influence of the property finally causes the first signal and the second signal to be processed, eliminating the influence of the relative frequency offset on the signal correlation operation result, thereby enhancing the signal correlation and suppressing the influence of the frequency offset aliasing on the signal.
  • the correlation peak can improve the correctness of the frame synchronization.
  • Figure 12 is a schematic block diagram of an apparatus 120 for frame synchronization of a wireless system in accordance with another embodiment of the present invention.
  • the delay module 1201, the signal correlation enhancement module 1202, the relative frequency offset extraction module 1203 and the cancellation module 1204 of the device 120 and the delay module 1101 of the device 110, the signal correlation enhancement module 1102, the relative frequency offset extraction module 1103 and the offset respectively Module 1104 is the same or similar except that device 120 also includes a framing module 1205.
  • the delay module 1201 is specifically configured to delay the signals received by one of the N receiving antennas in the K branches, and output K delay signals, where the Kth branch outputs the Kth
  • the delay signal and the delay amount of the Kth delay signal are K-1 lengths of the leading subsequence multiplied by the symbol period time.
  • the signal correlation enhancement module 1202 is specifically configured to output K first signals by performing correlation operations between the K delay signals and a preamble sequence length that is a length of the preamble sequence.
  • the product of the K first signals generates a first output signal.
  • the relative frequency offset extraction module 1203 is specifically configured to: use the K delay signals to perform a correlation with the lengths of the K delay signals to be the length of the preamble sequence Computing, outputting K second signals, and generating a second output signal by the two second signal products.
  • the signal used by the delay module 1201 is a transmit signal sent by one of the received antennas, wherein the one of the one transmit antennas is sent by the one of the transmit antennas.
  • the preamble sequence of the signal is generated by the preamble sequence arranged in a cycle, the length of the preamble sequence being ⁇ times the length of the leader sequence, where ⁇ is a positive integer.
  • the number of transmit antennas of the wireless system is > 2 and the number of receive antennas of the wireless system is > 2, and the transmitter of the wireless system has Two or more independent local oscillators and the receiver of the wireless system have two or more independent local oscillators.
  • the framing module 1205 performs frame framing according to the correlation peak value obtained by the cancellation module 1204, and outputs frame structure information.
  • device 120 may be a frame synchronization device in a wireless communication system, or a receiver including a frame synchronization device.
  • the device 120 implements the method 80, and the details are not described herein.
  • the embodiment of the invention provides a device for frame synchronization, which obtains a first signal by multiplying a plurality of received signals and a known sequence correlation operation result, and the number of products is determined by the number of repetitions of the preamble sequence, which enhances the correlation of the signal. But at the same time, it also enhances the influence of frequency offset on signal correlation. Then, the second signal is obtained by multiplying the multiple signal with the result of the correlation calculation result. The number of products is determined by the number of repetitions of the preamble sequence ⁇ , and the relative frequency offset is amplified.
  • the influence of the property finally causes the first signal and the second signal to be processed, eliminating the influence of the relative frequency offset on the signal correlation operation result, thereby enhancing the signal correlation and suppressing the influence of the frequency offset aliasing on the signal.
  • the correlation peak can improve the correctness of the frame synchronization.
  • FIG. 13 is a schematic illustration of a wireless system 130 in accordance with an embodiment of the present invention.
  • the wireless system 130 includes a transmitter 1301, a plurality of transmit antennas 1302, a plurality of receive antennas 1303, and a receiver 1304.
  • the transmitter 1301 may include a leader sequence generator 13011, a leader circulator 13012, and the like.
  • Receiver 1304 can include frame synchronization means 13041, channel estimator 13042, frequency offset estimator 13043 and payload extractor 13044, and the like.
  • the device 13041 in which the frame is synchronized is the same as or similar to the devices 120 and 110.
  • the transmitter is configured to generate a transmit signal and transmit to the one transmit antenna; one transmit antenna is used to transmit the transmit signal to the one receive antenna; and one receive antenna is configured to receive the transmit signal sent by the one transmit antenna and send the transmit signal to the receiver
  • the receiver is used to carry out one signal of one receiving antenna
  • the device for synchronizing the frame of the wireless system is configured to delay the signals received by one of the N receiving antennas in K branches, and output K delay signals, where N and K are positive integers;
  • the K delay signals and the preamble sequence generate a first output signal through a correlation operation; each of the K delay signals and each of the K delay signals respectively generate a second output signal through a correlation operation;
  • the signal and the second output signal are cancelled to obtain a sequence of values, and a maximum value is obtained as the correlation peak in the sequence of values to determine the position of the frame header according to the time point corresponding to the correlation peak.
  • the transmitter 1301 generates a preamble sequence of a total length K*Nc by a preamble sequence generator 13011 and a preamble circulator 13012, where Nc is the length of the preamble sequence.
  • the preamble sequence and other sequences are included in the frame structure of the transmitted signal, and transmitted as a transmit signal to the receive antenna 1303 via the transmit antenna 1302.
  • the receiver receives a signal received by the receiving antenna 1303.
  • the signal is processed by the frame synchronization device 13041, and the correlation peak of the frame synchronization is generated by the correlation detection of the leading sequence of the frame. According to the peak signal, the received signal is framed, and the frame structure is output as a result of the frame.
  • the frame structure information is then utilized by channel estimator 13042, frequency offset estimator 13043, and payload extractor 13044 for further extraction of specific data and the like in the received signal.
  • the wireless system 130 using the method and/or apparatus for frame synchronization of the embodiments of the present invention may be a SISO system, a centralized MIMO system, or a distributed MIMO system.
  • the number of transmitting antennas of the wireless system is M > 2
  • the number of receiving antennas of the wireless system is N > 2.
  • the transmitter of the wireless system has two or more independent local oscillators and the receiver of the wireless system has two or more independent local oscillators.
  • the frame synchronization method and apparatus in the embodiments of the present invention suppress the influence of the frequency offset aliasing on the signal by enhancing the signal correlation, and the obtained correlation peak can improve the correctness of the frame synchronization.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种无线系统的帧同步的方法、装置和无线系统。无线系统的帧同步的方法包括:将N个接收天线中的一路所接收的信号在K个支路分别进行延时,输出K个延时信号,其中N和K为正整数;将K个延时信号与前导子序列通过相关运算生成第一输出信号;将K个延时信号的每一个与K个延时信号的每一个自身通过相关运算生成第二输出信号;将第一输出信号和第二输出信号进行抵消处理得到一序列数值,在一序列数值中获得最大值作为相关峰值,以根据相关峰值对应的时刻点确定帧头所在的位置。上述技术方案可以增强信号相关性,抑制频偏混叠对信号的影响,所获得的相关峰值能提高帧同步的正确性。

Description

无线系统的帧同步的方法 装置和无线系统 技术领域
本发明涉及通信领域, 并且更具体地, 涉及无线系统的帧同步的方法、 装置和无线系统。 背景技术
MIMO(英文为 multiple input multiple output, 中文为多输入多输出 )系统 是一种频率复用系统, 该系统具有较高频谱利用率, 与 SISO (英文为 single input single output, 中文为单输入单输出)系统相比, M*N的 MIMO系统的 频谱利用率是 SISO系统的 Min(M,N)倍, 其中 M和 N都为大于零的整数,
M表示发射天线的个数, N表示接收天线的个数。
根据系统的射频结构和天线间距划分, MIMO 系统可以分为集中式的
MIMO系统和分布式的 MIMO系统。 一般来说集中式的 MIMO系统的天线 间距较小, 例如一个基站连接多个天线, 多个天线通常被放置于一处。 分布 式的 MIMO 系统天线间距较大, 例如一个天线连接一个基站, 由于每个基 站间隔距离较大, 所以每个天线间隔距离也较大。 分布式 MIMO 系统与集 中式的 MIMO系统相比, 分布式的 MIMO系统能获得更高的分集增益, 是 未来无线通信 MIMO系统发展的重要趋势。
然而, 使用现有的帧同步方法, 在分布式 MIMO 系统中会导致帧同步 错误。 因此, 需要一种帧同步方法, 能够适用于分布式 MIMO系统。 发明内容
本发明实施例提供一种无线系统的帧同步的方法、 装置和无线系统, 能 够提高无线系统的帧同步的准确率。
第一方面, 提供了一种无线系统的帧同步的方法, 包括: 将 N个接收天 线中的一路所接收的信号在 K个支路分别进行延时, 输出 K个延时信号, 其中 N和 K为正整数; 将 K个延时信号与前导子序列通过相关运算生成第 一输出信号; 将 K个延时信号的每一个与 K个延时信号的每一个自身通过 相关运算生成第二输出信号; 将第一输出信号和第二输出信号进行氐消处理 得到一序列数值, 在一序列数值中获得最大值作为相关峰值, 以根据相关峰 值对应的时刻点确定帧头所在的位置。
在第一种可能的实现方式中,将 N个接收天线中的一路所接收的信号在 K个支路分别进行延时, 输出 K个延时信号包括: 将 N个接收天线中的一 路所接收的信号在 K个支路分别进行延时, 输出 K个延时信号, 其中第 K 支路输出第 K延时信号且第 K延时信号的延时量为 K-1个前导子序列的长 度乘以符号周期时间。
结合第一方面,在第二种可能的实现方式中,将 K个延时信号与前导子 序列通过相关运算生成第一输出信号包括:将 K个延时信号分别与前导子序 列执行长度为前导子序列的长度的相关运算,输出 K个第一信号, K个第一 信号的乘积生成第一输出信号。
结合第一方面,在第三种可能的实现方式中,将 K个延时信号的每一个 与 K个延时信号的每一个自身通过相关运算生成第二输出信号包括: 将 K 个延时信号通过分别与自身执行长度为前导子序列的长度的相关运算,输出 κ个第二信号, K个第二信号的乘积生成第二输出信号。
结合第一方面或第一方面的上述可能的实现方式,在第四种可能的实现 方式中, 将 N个接收天线中的一路所接收的信号在 K个支路分别进行延时, 输出 K个延时信号之前, 方法还包括: N个接收天线接收 M个发射天线发 送的发射信号, 其中 M个发射天线中的一个所发送的发射信号的前导序列 由 K个周期排布的前导子序列生成, 前导序列的长度为 K倍前导子序列的 长度, 其中 M为正整数。
结合第一方面或第一方面的上述可能的实现方式,在第五种可能的实现 方式中, 使用方法的无线系统中, 无线系统的发射天线的个数 M > 2且无线 系统的接收天线的个数 N > 2, 且无线系统的发射机具有 2个以上的本振且 无线系统的接收机具有 2个以上的独立的本振。
第二方面, 提供了一种无线系统的帧同步的装置, 包括延时模块、 信号 相关性增强模块、相对频偏提取模块和抵消模块,其中延时模块,延时模块, 用于将 N个接收天线中的一路所接收的信号在 K个支路分别进行延时, 输 出 K个延时信号, 其中 N和 K为正整数; 信号相关性增强模块, 用于将延 时模块输出的 K个延时信号与前导子序列通过相关运算生成第一输出信号; 相对频偏提取模块, 用于将延时模块输出的 K个延时信号的每一个与 K个 延时信号的每一个自身通过相关运算生成第二输出信号; 抵消模块, 用于将 信号相关性增强模块生成的第一输出信号和相对频偏提取模块生成的第二 输出信号进行抵消处理得到一序列数值,在一序列数值中获得最大值作为相 关峰值, 以根据相关峰值对应的时刻点确定帧头所在的位置。
在第一种可能的实现方式中,延时模块具体用于将 N个接收天线中的一 路所接收的信号在 K个支路分别进行延时, 输出 K个延时信号, 其中第 K 支路输出第 K延时信号且第 K延时信号的延时量为 K-1个前导子序列的长 度乘以符号周期时间。
结合第二方面, 在第二种可能的实现方式中, 信号相关性增强模块具体 用于将 K 个延时信号分别与前导子序列执行长度为前导子序列的长度的相 关运算, 输出 K个第一信号, K个第一信号的乘积生成第一输出信号。
结合第二方面, 在第三种可能的实现方式中, 相对频偏提取模块具体用 于将 K个延时信号通过分别与 K个延时信号的每一个自身执行长度为前导 子序列的长度的相关运算, 输出 K个第二信号, 通过 K个第二信号乘积生 成第二输出信号。
结合第二方面或第二方面的上述可能的实现方式,在第四种可能的实现 方式中, 延时模块所使用的信号是 N个接收天线中的一个所接收的 M个发 射天线发送的发射信号, 其中 M个发射天线中的一个所发送的发射信号的 前导序列由 K个周期排布的前导子序列生成, 前导序列长度为 K倍前导子 序列长度, 其中 M为正整数。
结合第二方面或第二方面的上述可能的实现方式,在第五种可能的实现 方式中, 包括装置的无线系统中, 无线系统的发射天线的个数 M > 2且无线 系统的接收天线的个数 N > 2, 且无线系统的发射机具有 2个以上的独立的 本振且无线系统的接收机具有 2个以上的独立的本振。
第三方面, 提供了一种无线系统, 包括发射机、 M个发射天线、 N个接 收天线、 接收机, 该接收机包括上述无线系统的帧同步的装置: 发射机用于 生成发射信号并发送到 M个发射天线; M个发射天线用于向 N个接收天线 发送发射信号; N个接收天线用于接收 M个发射天线发送的发射信号并发 送到接收机;接收机用于将 N个接收天线的一路信号进行处理,其中无线系 统的帧同步的装置用于将 N个接收天线中的一路所接收的信号在 K个支路 分别进行延时, 输出 K个延时信号, 其中 N和 K为正整数; 将 K个延时信 号与前导子序列通过相关运算生成第一输出信号;将 K个延时信号的每一个 与 K个延时信号的每一个自身通过相关运算生成第二输出信号;将第一输出 信号和第二输出信号进行抵消处理得到一序列数值,在一序列数值中获得最 大值作为相关峰值, 以根据相关峰值对应的时刻点确定帧头所在的位置。
在第一种可能的实现方式中, Ν个接收天线接收 Μ个发射天线发送的 发射信号, 其中 Μ个发射天线中的一个所发送的发射信号的前导序列由 Κ 个周期排布的前导子序列生成,前导序列长度为 Κ倍前导子序列长度,其中 Μ为正整数。
结合第三方面或第三方面的第一种可能的实现方式,在第二种可能的实 现方式中, 无线系统的发射天线的个数 Μ > 2且无线系统的接收天线的个数 Ν > 2 ,且无线系统的发射机具有 2个以上的独立的本振且无线系统的接收机 具有 2个以上的独立的本振。
上述技术方案可以增强信号相关性, 抑制频偏混叠对信号的影响, 所获 得的相关峰值能提高帧同步的正确性。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其它的附图。
图 1是集中式 ΜΙΜΟ系统的示意框图。
图 2是分布式 ΜΙΜΟ系统的示意框图。
图 3是集中式 ΜΙΜΟ系统的信号收发的示意框图。
图 4是分布式 ΜΙΜΟ系统的信号收发的示意框图。
图 5是集中式 ΜΙΜΟ系统采用现有的帧同步方法得到的相关峰值的示 意图。
图 6Α和图 6Β是分布式 ΜΙΜΟ系统采用现有的帧同步方法得到的相关 峰值的示意图。
图 7是根据本发明实施例的无线系统的帧同步方法的示意流程图。 图 8是根据本发明另一实施例的无线系统的帧同步方法的示意流程图。 图 9是本发明实施例的发射信号的帧结构 90的示意图。
图 10是本发明实施例的无线系统的帧同步的方法的效果示意图。 图 11是本发明实施例的无线系统的帧同步的装置的示意框图。
图 12是本发明另一实施例的无线系统的帧同步的装置的示意框图。 图 13是本发明实施例的无线系统的示意框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通信系 统 ( GSM, global system of mobile communication ),码分多址 ( CDMA, code division multiple access ) 系统, 宽带码分多址 ( WCDMA, wideband code division multiple access wireless ) 系统, 通用分组无线业务 ( GPRS , general packet radio service ) 系统, 长期演进 ( LTE, long term evolution ) 系统等。
用户设备 ( UE , user equipment ) ,也可称之为移动终端( mobile terminal )、 移动用户设备等, 可以经无线接入网 (例如, RAN, radio access network ) 与一个或多个核心网进行通信, 用户设备可以是移动终端, 如移动电话(或 称为"蜂窝"电话), 用户设备还可以是具有移动终端的计算机, 例如, 可以 是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无 线接入网交换语言和 /或数据。
基站, 可以是 GSM 或 CDMA 系统中的基站 (BTS, base transceiver station ), 也可以是 WCDMA系统中的基站( NodeB ), 还可以是 LTE系统中 的演进型基站 ( eNB或 e-NodeB , evolutional Node B ), 本发明并不限定。
另外, 本文中术语"系统"和"网络"在本文中常被可互换使用。 本文中术 语"和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, A和 /或 B , 可以表示: 单独存在 A , 同时存在 A和 B , 单独存在 B 这三种情况。 另外, 本文中字符 "/" , 一般表示前后关联对象是一种 "或" 的关系。
图 1是集中式 MIMO系统的示意框图。 集中式 MIMO系统的基带模块 输出 n ( n为大于 0的整数)路中心频率为 0的带限信号, 其中 n路带限信 号中的每一路经过中频模块进行上变频成为中频带限信号,再经过射频模块 进行上变频成为射频带限信号以通过天线向空间发射出去。 集中式 MIMO 系统的最大特点是多个天线(如附图 1中的天线 11 ) 间距较小, 系统中的 n 个中频模块被放置在同一位置, 系统中的 n个射频模块及 n个天线被放置在 与 n个中频模块不同的另一位置, 那么 n个中频模块采用同一个本振, 例如 附图 1中的本振 1 , n个射频模块采用同一个本振, 如图 1所示, 射频 1、 射 频 2、 ...和射频 n的本振信号均来源于本振 2。
图 2是分布式 MIMO系统的示意框图。 分布式 MIMO系统的基带模块 输出 n ( n为大于 0的整数)路中心频率为 0的带限信号, 其中 n路带限信 号中的每一路经过中频模块进行上变频成为中频带限信号,再经过射频模块 进行上变频成为射频带限信号以通过天线向空间发射出去。 由于分布式 MIMO系统的 n个中频模块被放置在同一位置,那么 n个中频模块采用同一 个本振, 例如附图 2中的本振 1。 但是, 与集中式 MIMO系统最大的不同在 于, 分布式 MIMO系统的 n个天线 (如附图 2中的天线 21 ) 的间距较大, 而每一个天线是和每一个射频模块集成在一起的, 两者构成一个子系统, 所 以 n个子系统中的每一个子系统被安置在不同位置, 那么 n个射频模块中的 每个射频模块采用了不同的本振, 例如本振 1、 本振 2、 ...和本振 n, 如图 2 所示, 射频模块 1的本振信号来源于本振 1 , 以此类推, 射频模块 n的本振 信号来源于本振 n, 显然, 射频 1、 射频 2、 ...和射频 n的本振信号均不同。
分布式 MIMO系统和集中式 MIMO系统如以上所述的本振差别, 造成 了 2个 MIMO系统接收信号的不同。
射频本振频率有一定的漂移性, 称为频偏, 例如 15GHz ± 5PPM (英文 为 Parts Per Million, 中文为百万分之一), 不同本振的频偏不同。
对于集中式 MIMO 系统, 为筒化说明, 假设信号同时到达接收端, 请 参阅图 3, 图 3是集中式 MIMO系统的信号收发的示意框图, 发射端(TX ) 的信号流程参考图 1 的说明, 接收端 (RX ) 的信号流程是与发射端对应的 逆过程。 通过多个天线中的每一个天线从空间接收了 n个射频带限信号, 经 过射频模块进行下变频成为中频带限信号,再经中频模块进行下变频成为中 心频率为 0的 n个带限信号以输入至集中式 MIMO系统的基带模块。
在集中式 MIMO系统中, 如图 3所示, hu、 h21、 h12、 …和 hln、 h2n是 信道增益系数, Xl ( t )、 x2 ( t )、 …和 xn ( t )分别是发送端(TX )的中频模 块执行上变频后输出的中频信号, yi ( t )、 y2 ( t )、 …和 yn ( t )分别是接收端 ( RX ) 的射频模块执行下变频后输出的中频信号。
y, (0 =
Figure imgf000009_0001
(t)e j ]ejw'J
= [hnXl (t) + hl2x2 (0 +….. + {t) eiw'J eiWat
= [hnXl(t) + h12x2(t) +….. + /¾ „(0 (w"+w'Ji 公式 i
y2 (t) = [h2lXl {t)eiwJ + h22x2 (t)ejw'J + ····· + h2nxn (t)eJW'J ]eJW'J
= [h21x1 (t) + h22x2 (t) + ····· + h2nxn (t)]eiw'J eiw,J
= [h21x1(t) + h22x2(t) + ····· + h2nxn(t)]ej(w"+Wa)t 公式 2
接收端的频偏只有一个 '+ )ί
SISO系统与集中式 MIMO系统类似, 常用信号相关 (英文为 correlation) 做帧同步。 信号求相关的方法中相关运算(英文为 correlation computation ) 的公式为:
输出信号=输入信号 X输入信号的共轭
相关运算的结果的最大值, 也称为相关峰值作为帧同步最大值。 根据该 相关峰值的对应的时刻点确定帧头所在的位置, 用于帧同步的定帧和解帧。
对于分布式 MIMO 系统, 为筒化说明, 假设信号同时到达接收端, 请 参阅图 4, 图 4是分布式 MIMO系统的信号收发的示意框图, 发射端( TX ) 的信号流程参考图 2 的说明, 接收端 (RX) 的信号流程是与发射端对应的 逆过程。 通过多个天线中的每一个天线从空间接收了 n个射频带限信号, 经 过射频模块进行下变频成为中频带限信号,再经中频模块进行下变频成为中 心频率为 0的 n个带限信号以输入至分布式 MIMO系统的基带模块。
在分布式 MIMO系统中, 如图 4所示, hu、 h21、 h12、 …和 hln、 h2n是信 道增益系数。 X; (t)、 χ2' (t)、 …和 xn (t)分别是发送端 (TX)的中频模块 执行上变频后输出的中频信号, y (t)、 y2 (t)、 …和 yn (t)分别是接收端 (RX) 的射频模块执行下变频后输出的中频信号。
y1'( =[^11¾( ^'Wttlf +hl2x2'(t)e^' + ····· + hlnxn'(t)eiw-']e^' 公式 3
y2' (0 = [h2lx (t)e^' + h22x2' it)e^' +….. + h2nxn' it)e^' ]β^' 公式 4 在分布式 MIMO系统中, n个射频通道的每一个都具有独立的本振, 每 个本振具有独立的频偏, 信号从天线发射出去时会与该本振的频偏混叠。 接 收天线会接收到多个发射天线发射的混叠信号(见公式 3或公式 4)。 由于接 收端的频偏均不相关,与信号混叠后无法分离,造成信号相关性降低。此时, 若用现有的帧同步方法生成相关峰值, 输出相关峰值结果不稳定, 会导致帧 同步错误。
帧同步是接收端基带系统处理的关键步骤。 帧同步之后, 信道估计, 频 偏估计, 净荷提取等其它步骤才能得以实现。
图 5是集中式 MIMO系统采用现有的帧同步方法得到的相关峰值的示 意图。 若是集中式 MIMO系统结构, 用相关(correlation )运算得到的相关 峰值如图 5所示。 相关峰值平稳且是一个单脉沖, 定帧过程中检测该相关峰 值是十分筒单和容易的事情。
图 6A和图 6B是分布式 MIMO系统采用现有的帧同步方法得到的相关 峰值的示意图。 在分布式 MIMO 中, 对混合频偏相当敏感, 输出的相关峰 值受混合频偏影响, 幅值起伏大, 某些地方没有峰值, 做帧同步效果差。 在 相对频偏 300Khz的 4*4MIMO系统中, 用相关( correlation )运算得到的相 关峰值如图 6A和图 6B所示。 图 6A是采用现有的帧同步方法, 在进行一段 时间内的相关运算后的前导序列求相关运算后的最大相关运算峰值结果的 示意图, 图 6B是图 6A的局部放大图, 可以看出, 产生的峰值受混叠频偏 的干扰, 结果不稳定, 甚至某些地方没有峰值, 会导致定帧结果错误。
由此得出, 在 SISO 系统或集中式 MIMO 系统中使用信号相关 ( correlation )方法做帧同步, 效果良好。 然而, 由于分布式 MIMO系统混 叠的频偏, 导致信号相关性降低, 上述帧同步方法在分布式 MIMO 系统场 景下效果差。
本发明实施例提供了一种帧同步方法和装置, 能够高效解决分布式
MIMO系统帧同步问题。
图 7是根据本发明实施例的无线系统的帧同步方法 70的示意流程图。 S71 ,将 N个接收天线中的一路所接收的信号在 K个支路分别进行延时, 输出 K个延时信号, 其中 N和 K为正整数。
S72, 将 K个延时信号与前导子序列通过相关运算生成第一输出信号。
573,将 K个延时信号的每一个与 K个延时信号的每一个自身通过相关 运算生成第二输出信号。
574 , 将第一输出信号和第二输出信号进行抵消处理得到一序列数值, 在一序列数值中获得最大值作为相关峰值, 以根据相关峰值对应的时刻点确 定帧头所在的位置。
本发明实施例通过多次的接收信号与已知序列相关运算结果乘积获得 第一信号, 乘积次数由前导子序列重复次数 K决定, 增强了信号的相关性, 但是同时也增强了频偏对信号相关性的影响; 然后通过多次信号与自身求相 关运算结果乘积获得第二信号,乘积次数由前导子序列重复次数 Κ决定,放 大了相对频偏对信号相关性的影响, 最后使第一信号和第二信号做抵消处 理,消除了相对频偏对信号相关运算结果的影响,从而通过增强信号相关性, 抑制频偏混叠对信号的影响, 所获得的相关峰值能提高帧同步的正确性。
图 8是根据本发明另一实施例的无线系统的帧同步方法 80的示意流程 图。
581 , 接收发射天线发射的信号。
以 Μ*Ν分布式 ΜΙΜΟ系统为例, 其中该系统具有 Μ个发射天线, Ν 个接收天线。 图 9是本发明实施例的发射信号的帧结构 90的示意图。 为了 说明方便, 以 Μ=3时发射天线 TX1至 ΤΧ3所发射的信号的帧结构为例。 如 图 9所示, 帧 90包括一个前导序列 91和若干其它序列 92。 Nc是前导子序 列 93的长度。 前导子序列通过多次周期性的重复, 形成前导序列。 前导序 列的总长度是 K*Nc, K是前导序列重复的次数且为正整数。 分布式 MIMO 系统发射机具有前导子序列产生器, 前导循环器。 前导子序列产生器用于生 成周期为 Nc的前导子序列。 所生成的前导子序列, 进入前导循环器, 对前 导子序列复制 K次, 生成循环 K次、 总长度为 K*Nc的前导序列。
分布式 MIMO系统中 N个接收天线中的每一路接收到发射机发送的发 射信号。 由于受到 M*N分布式 MIMO混叠的相对频偏的影响, 前导序列的 相关性降低, 接下来, 在本发明实施例中, 使用 3个模块: 信号相关性增强 模块, 相对频偏提取模块以及抵消模块, 用于补偿前导序列信号的相关性。
582, 对多路接收天线中的一个接收天线所接收的信号在 K个支路分别 进行延时。
针对一个接收天线的信号, 在 K个支路分别进行延时后输出 K个延时信号, 其中第 K支路输出第 K延时信号。 举例来说, 第一支路延时输出的第一延 时信号的延时量为 0, 第二支路延时输出的第二延时信号的延时量为 Nc*t ( Nc乘以 t ), 第三支路延时输出的第三延时信号的延时量为 2*Nc*t...第 K 支路延时输出的第 K延时信号的延时量为(K-l)*Nc*t。其中 K是前导序列重 复的次数且为正整数; t是基带处理过程中的符号周期时间。 参考步骤 S81 中的说明, 分布式 MIMO系统预先设置前导子序列重复的次数 K, 致使接 收端的基带模块根据前导子序列的重复次数确定处理信号的支路数量 κ。
583 , 将 Κ个延时信号与前导子序列通过相关运算生成第一输出信号。 Κ个不同延时量的信号进入信号相关性增强模块。 相关性增强模块对 Κ 个不同延时量的信号实施的处理步骤包括:将 Κ个不同延时量的信号分别与 Nc长度的前导子序列执行长度为 Nc的相关 ( correlation )运算, 得到 K个 相关运算的输出结果,该输出结果上下文中也称为第一信号; 同时将 K个第 一信号求积, 生成第一输出信号。 该第一输出信号达到加强了接收信号的相 关性, 同时扩大了相对频偏对接收信号的相关性的影响。 第一输出信号例如 为步骤 S85所示的具体实施例的公式 5中的分子, 分子中的。其中 r d+m)是 从接收端第 j个接收天线在( d+m )时刻接收到的信号, 其中 d为采样时刻, M表示做相关运算的序列的计数, 取值为从 0到 (Nc-1 )—共 Nc个符号个 数; (^是前导子序列, d*是前导子序列的共轭。
584, K个延时信号在 K个支路分别与 K个延时信号自己通过相关运 算的结果的乘积生成第二输出信号。
此外, K个不同延时量的信号还进入相对频偏提取模块。 相对频偏提取 模块用于提取出相对频偏的相关值, 此处需要注意的是: 所提取出相对频偏 的相关值而非相对频偏本身。该相对频偏的相关值用来与相关性增强模块输 出结果在抵消模块中做除法运算,抵消掉 S83步骤中因为信号相关性增强同 时相对频偏相关性也增强的部分。
具体实现步骤包括:将 K个不同延时量的信号的每一个与其自身执行长 度为 Nc的相关运算, 得到 K个相关运算的输出结果, 该输出结果上下文中 也称为第二信号; 同时将 K个第二信号求积, 生成第二输出信号。 该第二输 出信号的获得是增强了相对频偏对接收信号相关性影响的部分。第二输出信 号例如为步骤 S85所示的具体实施例的公式 5中的分母。
S85 ,将第一输出信号和第二输出信号进行抵消处理得到的一序列数值, 在一序列数字中获得最大值作为相关峰值, 以根据相关峰值对应的时刻点确 定帧头所在的位置。
在抵消模块中将 S83和 S84步骤的结果做除法运算得到的一序列数值, 在所述一序列数值中获得最大值作为相关峰值, 由此得出最终消除了相对频 偏影响的信号在帧同步时使用的相关峰值。根据该相关峰值对应的时刻点确 定帧头所在的位置, 从而实现帧同步的定帧和解帧。 运算公式如下: 以 3*3分布式 MIMO系统为例子。
^ r- (d + m)c: (d) ^rj(dJrmJr Nc)c^ (d) ^rj(dJrmJr 2Nc)c: (d)
Oe^aUk = ― ― ―
^ r- (d + m)r (d + m)^ r- (d--m-- Nc) (d--m-- Nc) ^jrj(dJrm + 2Nc) (d--m-- 2Nc) 公式 5 其中 r d+m)是从接收端第 个接收天线在(d+m) 时刻接收到的信号, 其中 d和 m为正整数, peak指示相关峰值。
通过上述方法, 增强了信号相关性, 抑制分布式 MIMO 系统中频偏混 叠所产生的影响, 为帧同步提供产生良好的相关峰值。 然而, 虽然该方法对 现有分布式 MIMO 系统的帧同步有突出的改进, 但本方法同样可以适用 SISO系统或集中式 MIMO系统, 比起 SISO系统或集中式 MIMO系统采用 的现有技术, 通过 K个延时信号在 K个支路分别与前导子序列通过相关运 算的结果的乘积除以 K个延时信号在 K个支路分别与 K个延时信号自己通 过相关运算的结果的乘积, 改进了帧同步相关输出的相关峰值, 进而提高了 帧同步的效果。
本发明实施例通过多次的接收信号与已知序列相关运算结果乘积获得 第一信号, 乘积次数由前导子序列重复次数 K决定, 增强了信号的相关性, 但是同时也增强了频偏对信号相关性的影响; 然后通过多次信号与自身求相 关运算结果乘积获得第二信号,乘积次数由前导子序列重复次数 K决定,放 大了相对频偏对信号相关性的影响, 最后使第一信号和第二信号做抵消处 理,消除了相对频偏对信号相关运算结果的影响,从而通过增强信号相关性, 抑制频偏混叠对信号的影响, 所获得的相关峰值能提高帧同步的正确性。
图 10是本发明实施例的无线系统的帧同步的方法的效果示意图。 在相 对频偏 300Khz的 4*4MIMO系统中应用该方法, 如图 10中所示, 左侧的图 是生成的全部结果, 右侧是放大图。 从上至下, 分别为相关峰值输出 101、 信号相关性增强模块输出的第一输出信号 102、 相关频偏提取输出的第二输 出信号 103。 从图 10的相关峰值输出 101变得 4艮平坦, 利于定帧。
图 11是本发明实施例的帧同步的装置 110的示意框图。 装置 110包括: 延时模块 1101、 信号相关性增强模块 1102, 相对频偏提取模块 1103和抵消 模块 1104。
延时模块 1101将 N个接收天线中的一路所接收的信号在 K个支路分别 进行延时, 输出 K个延时信号, 其中 N和 K为正整数; 信号相关性增强模块 1102将延时模块 1101输出的所述 K个延时信号与 前导子序列通过相关运算生成第一输出信号;
相对频偏提取模块 1103将延时模块 1101输出的所述 K个延时信号的每 一个与所述 K个延时信号的每一个的自身通过相关运算生成第二输出信号; 抵消模块 1104将信号相关性增强模块 1102生成的所述第一输出信号和 相对频偏提取模块 1103生成的所述第二输出信号进行氏消处理得到一序列 数值, 在所述一序列数值中获得最大值作为相关峰值, 以根据所述相关峰值 对应的时刻点确定帧头所在的位置。
装置 110实现了方法 70, 出于筒洁, 具体细节此处不再赘述。
本发明实施例提供了一种帧同步的装置,通过多次的接收信号与已知序 列相关运算结果乘积获得第一信号, 乘积次数由前导子序列重复次数 K 决 定, 增强了信号的相关性, 但是同时也增强了频偏对信号相关性的影响; 然 后通过多次信号与自身求相关运算结果乘积获得第二信号,乘积次数由前导 子序列重复次数 κ决定,放大了相对频偏对信号相关性的影响, 最后使第一 信号和第二信号做氏消处理, 消除了相对频偏对信号相关运算结果的影响, 从而通过增强信号相关性, 抑制频偏混叠对信号的影响, 所获得的相关峰值 能提高帧同步的正确性。
图 12是本发明另一实施例的无线系统的帧同步的装置 120的示意框图。 装置 120的延时模块 1201、 信号相关性增强模块 1202, 相对频偏提取模块 1203和抵消模块 1204分别与装置 110的延时模块 1101、 信号相关性增强模 块 1102, 相对频偏提取模块 1103和抵消模块 1104相同或相似, 不同之处在 于装置 120还包括定帧模块 1205。
可选的, 所述延时模块 1201具体用于将 N个接收天线中的一路所接收 的信号在 K个支路分别进行延时, 输出 K个延时信号, 其中第 K支路输出 第 K延时信号且所述第 K延时信号的延时量为 K-1个所述前导子序列的长 度乘以符号周期时间。
可选的, 所述信号相关性增强模块 1202具体用于将所述 K个延时信号 分别与前导子序列执行长度为所述前导子序列的长度的相关运算,输出 K个 第一信号, 所述 K个第一信号的乘积生成第一输出信号。
可选的, 所述相对频偏提取模块 1203具体用于将所述 K个延时信号通 过分别与所述 K个延时信号自身执行长度为所述前导子序列的长度的相关 运算, 输出 K个第二信号, 通过所述 Κ个第二信号乘积生成第二输出信号。 可选的, 所述延时模块 1201所使用的信号是 Ν个接收天线中的一个所 接收的 Μ个发射天线发送的发射信号, 其中所述 Μ个发射天线中的一个所 发送的所述发射信号的前导序列由 Κ个周期排布的所述前导子序列生成,所 述前导序列长度为 Κ倍所述前导子序列长度, 其中 Μ为正整数。
可选的, 包括所述装置的无线系统中, 所述无线系统的发射天线的个数 Μ > 2且所述无线系统的接收天线的个数 Ν > 2 ,且所述无线系统的发射机具 有 2个以上的独立的本振且所述无线系统的接收机具有 2个以上的独立的本 振。
可选的, 所述定帧模块 1205根据所述抵消模块 1204获得的所述相关峰 值进行定帧, 输出帧结构信息。
作为一种实现方式, 装置 120可以是无线通信系统中的帧同步装置, 或 者包括帧同步装置的接收机。 装置 120实现了方法 80, 出于筒洁, 具体细节 此处不再赘述。
本发明实施例提供了一种帧同步的装置,通过多次的接收信号与已知序 列相关运算结果乘积获得第一信号, 乘积次数由前导子序列重复次数 Κ 决 定, 增强了信号的相关性, 但是同时也增强了频偏对信号相关性的影响; 然 后通过多次信号与自身求相关运算结果乘积获得第二信号,乘积次数由前导 子序列重复次数 κ决定,放大了相对频偏对信号相关性的影响, 最后使第一 信号和第二信号做氏消处理, 消除了相对频偏对信号相关运算结果的影响, 从而通过增强信号相关性, 抑制频偏混叠对信号的影响, 所获得的相关峰值 能提高帧同步的正确性。
图 13是本发明实施例的无线系统 130的示意图。 无线系统 130包括发 射机 1301、 Μ个发射天线 1302、 Ν个接收天线 1303、 接收机 1304。 其中发 射机 1301可以包括前导子序列产生器 13011和前导循环器 13012等。 接收 机 1304可以包括帧同步的装置 13041、信道估计器 13042,频偏估计器 13043 和净荷提取器 13044等。 其中帧同步的装置 13041与装置 120和 110相同或 相似。
发射机用于生成发射信号并发送到 Μ个发射天线; Μ个发射天线用于 向 Ν个接收天线发送发射信号; Ν个接收天线用于接收 Μ个发射天线发送 的发射信号并发送到接收机;接收机用于将 Ν个接收天线的一路信号进行处 理,其中无线系统的帧同步的装置用于将 N个接收天线中的一路所接收的信 号在 K个支路分别进行延时, 输出 K个延时信号, 其中 N和 K为正整数; 将 K个延时信号与前导子序列通过相关操作生成第一输出信号; 将 K个延 时信号的每一个与 K个延时信号的每一个自身通过相关操作生成第二输出 信号; 将第一输出信号和第二输出信号进行氐消处理得到一序列数值, 在所 述一序列数值中获得最大值作为相关峰值, 以根据所述相关峰值对应的时刻 点确定帧头所在的位置。
具体地, 如图 13所示, 发射机 1301通过前导子序列产生器 13011和前 导循环器 13012生成循环 K次, 总长度为 K*Nc的前导序列, 其中 Nc为前 导子序列的长度。 该前导序列与其它序列包括在发射信号的帧结构中, 作为 发射信号经发射天线 1302发送到接收天线 1303。 接收机接收一路接收天线 1303所接收的信号。该信号经过帧同步的装置 13041处理,通过帧的前导序 列的相关检测产生帧同步的相关峰值, 依据该峰值信号, 对接收信号进行定 帧, 定帧的结果输出帧结构信息。 该帧结构信息随后被信道估计器 13042、 频偏估计器 13043和净荷提取器 13044利用, 用于进一步提取所接收的信号 中的具体数据等。
使用了本发明实施例的帧同步的方法和 /或装置的无线系统 130 可以是 SISO系统、 集中式 MIMO系统或分布式 MIMO系统。 其中, 集中式 MIMO 系统或分布式 MIMO系统中, 无线系统的发射天线的个数 M > 2 , 且无线系 统的接收天线的个数 N > 2。 优选的, 分布式 MIMO系统中, 无线系统的发 射机具有 2个及 2个以上的独立的本振且所述无线系统的接收机具有 2个及 2个以上的独立的本振。
本发明实施例中的帧同步方法和装置通过增强信号相关性,抑制频偏混 叠对信号的影响, 所获得的相关峰值能提高帧同步的正确性。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM , Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种无线系统的帧同步的方法, 其特征在于, 包括:
将 N个接收天线中的一路所接收的信号在 K个支路分别进行延时, 输 出 K个延时信号, 其中 N和 K为正整数;
将所述 K个延时信号与前导子序列通过相关运算生成第一输出信号; 将所述 K个延时信号的每一个与所述 K个延时信号的每一个自身通过 相关运算生成第二输出信号;
将所述第一输出信号和所述第二输出信号进行抵消处理得到一序列数 值, 在所述一序列数值中获得最大值作为相关峰值, 以根据所述相关峰值对 应的时刻点确定帧头所在的位置。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将 N个接收天线中 的一路所接收的信号在 K个支路分别进行延时, 输出 K个延时信号包括: 将 N个接收天线中的一路所接收的信号在 K个支路分别进行延时, 输 出 K个延时信号, 其中第 K支路输出第 K延时信号且所述第 K延时信号的 延时量为 K-1个所述前导子序列的长度乘以符号周期时间。
3、 根据权利要求 1所述的方法, 其特征在于, 所述将所述 K个延时信 号与前导子序列通过相关运算生成第一输出信号包括:
将所述 K 个延时信号分别与前导子序列执行长度为所述前导子序列的 长度的相关运算, 输出 K个第一信号, 所述 K个第一信号的乘积生成第一 输出信号。
4、 根据权利要求 1所述的方法, 其特征在于, 所述将所述 K个延时信 号的每一个与所述 K个延时信号的每一个自身通过相关运算生成第二输出 信号包括:
将所述 K 个延时信号通过分别与自身执行长度为所述前导子序列的长 度的相关运算, 输出 K个第二信号, 所述 K个第二信号的乘积生成第二输 出信号。
5、 根据权利要求 1至 4所述的方法, 其特征在于, 所述将 N个接收天 线中的一路所接收的信号在 K个支路分别进行延时, 输出 K个延时信号之 前, 所述方法还包括:
N个接收天线接收 M个发射天线发送的发射信号, 其中所述 M个发射 天线中的一个所发送的所述发射信号的前导序列由 K个周期排布的所述前 导子序列生成,所述前导序列的长度为 K倍所述前导子序列的长度,其中 M 为正整数。
6、 根据权利要求 5所述的装置, 其特征在于, 使用所述方法的无线系 统中, 所述无线系统的发射天线的个数 M > 2且所述无线系统的接收天线的 个数 N > 2, 且所述无线系统的发射机具有 2个以上的本振且所述无线系统 的接收机具有 2个以上的独立的本振。
7、 一种无线系统的帧同步的装置, 其特征在于, 包括:
延时模块, 用于将 N个接收天线中的一路所接收的信号在 K个支路分 别进行延时, 输出 K个延时信号, 其中 N和 K为正整数;
信号相关性增强模块,用于将所述延时模块输出的所述 K个延时信号与 前导子序列通过相关运算生成第一输出信号;
相对频偏提取模块,用于将所述延时模块输出的所述 K个延时信号的每 一个与所述 K个延时信号的每一个自身通过相关运算生成第二输出信号; 抵消模块, 用于将所述信号相关性增强模块生成的所述第一输出信号和 所述相对频偏提取模块生成的所述第二输出信号进行抵消处理得到一序列 数值, 在所述一序列数值中获得最大值作为相关峰值, 以根据所述相关峰值 对应的时刻点确定帧头所在的位置。
8、 根据权利要求 7所述的装置, 其特征在于:
所述延时模块具体用于将 N个接收天线中的一路所接收的信号在 K个 支路分别进行延时, 输出 K个延时信号, 其中第 K支路输出第 K延时信号 且所述第 K延时信号的延时量为 K-1个所述前导子序列的长度乘以符号周期 时间。
9、 根据权利要求 7所述的装置, 其特征在于:
所述信号相关性增强模块具体用于将所述 K个延时信号分别与前导子 序列执行长度为所述前导子序列的长度的相关运算,输出 K个第一信号,所 述 K个第一信号的乘积生成第一输出信号。
10、 根据权利要求 7所述的装置, 其特征在于:
所述相对频偏提取模块具体用于将所述 K 个延时信号通过分别与所述 K个延时信号的每一个自身执行长度为所述前导子序列的长度的相关运算, 输出 K个第二信号, 通过所述 K个第二信号乘积生成第二输出信号。
11、 根据权利要求 7至 10所述的装置, 其特征在于, 所述延时模块所 使用的信号是 N个接收天线中的一个所接收的 M个发射天线发送的发射信 号,其中所述 M个发射天线中的一个所发送的所述发射信号的前导序列由 K 个周期排布的所述前导子序列生成,所述前导序列长度为 K倍所述前导子序 列长度, 其中 M为正整数。
12、 根据权利要求 11所述的装置, 其特征在于, 包括所述装置的无线 系统中, 所述无线系统的发射天线的个数 M > 2且所述无线系统的接收天线 的个数 N > 2且所述无线系统的发射机具有 2个以上的独立的本振且所述无 线系统的接收机具有 2个以上的独立的本振。
13、 一种无线系统, 其特征在于, 包括发射机、 M个发射天线、 N个接 收天线、 接收机, 所述接收机包括如权利要求 7至 12任一所述的无线系统 的帧同步的装置:
所述发射机用于生成发射信号并发送到所述 M个发射天线;
所述 M个发射天线用于向所述 N个接收天线发送所述发射信号; 所述 N个接收天线用于接收所述 M个发射天线发送的发射信号并发送 到所述接收机;
所述接收机用于将所述 N个接收天线的一路信号进行处理, 其中 所述无线系统的帧同步的装置用于将所述 N 个接收天线中的一路所接 收的信号在 K个支路分别进行延时, 输出 K个延时信号, 其中 N和 K为正 整数; 将所述 K个延时信号与前导子序列通过相关运算生成第一输出信号; 将所述 K个延时信号的每一个与所述 K个延时信号的每一个自身通过相关 运算生成第二输出信号; 将所述第一输出信号和所述第二输出信号进行氏消 处理得到一序列数值, 在所述一序列数值中获得最大值作为相关峰值, 以根 据所述相关峰值对应的时刻点确定帧头所在的位置。
14、 根据权利要求 13所述的无线系统, 其特征在于:
所述 N个接收天线接收所述 M个发射天线发送的发射信号, 其中所述
M个发射天线中的一个所发送的所述发射信号的前导序列由 K个周期排布 的所述前导子序列生成,所述前导序列长度为 K倍所述前导子序列长度, 其 中 M为正整数。
15、 根据权利要求 13或 14所述的无线系统, 其特征在于:
所述无线系统的发射天线的个数 M > 2且所述无线系统的接收天线的个 数N > 2且所述无线系统的发射机具有 2个以上的独立的本振且所述无线系 统的接收机具有 2个以上的独立的本振
PCT/CN2012/080562 2012-08-24 2012-08-24 无线系统的帧同步的方法、装置和无线系统 WO2014029109A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12883114.6A EP2876837B1 (en) 2012-08-24 2012-08-24 Method and device of frame synchronization of wireless system and wireless system
ES12883114.6T ES2629197T3 (es) 2012-08-24 2012-08-24 Método y dispositivo de sincronización de tramas de sistema inalámbrico y sistema inalámbrico
PCT/CN2012/080562 WO2014029109A1 (zh) 2012-08-24 2012-08-24 无线系统的帧同步的方法、装置和无线系统
CN201280001091.XA CN102959879B (zh) 2012-08-24 2012-08-24 无线系统的帧同步的方法、装置和无线系统
US14/626,482 US9264113B2 (en) 2012-08-24 2015-02-19 Frame synchronization method and apparatus of wireless system, and wireless system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/080562 WO2014029109A1 (zh) 2012-08-24 2012-08-24 无线系统的帧同步的方法、装置和无线系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/626,482 Continuation US9264113B2 (en) 2012-08-24 2015-02-19 Frame synchronization method and apparatus of wireless system, and wireless system

Publications (1)

Publication Number Publication Date
WO2014029109A1 true WO2014029109A1 (zh) 2014-02-27

Family

ID=47766351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080562 WO2014029109A1 (zh) 2012-08-24 2012-08-24 无线系统的帧同步的方法、装置和无线系统

Country Status (5)

Country Link
US (1) US9264113B2 (zh)
EP (1) EP2876837B1 (zh)
CN (1) CN102959879B (zh)
ES (1) ES2629197T3 (zh)
WO (1) WO2014029109A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785653A (zh) * 2022-04-20 2022-07-22 桂林电子科技大学 一种符号同步方法、系统、设备及可读存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525477B1 (en) * 2015-09-24 2016-12-20 Qualcomm Incorporated Frequency tracking with sparse pilots
CN106850469B (zh) * 2016-12-30 2020-08-25 上海华为技术有限公司 一种相位噪声估计的方法及相关装置
US10666489B2 (en) 2017-09-18 2020-05-26 Apple Inc. Synchronization sequence design for device-to-device communication
US10694562B2 (en) * 2017-09-18 2020-06-23 Apple Inc. Off grid radio service system design
CN110324114B (zh) * 2019-05-29 2022-01-04 西安空间无线电技术研究所 一种星载码流快速自适应锁定帧头方法及装置
CN110505175B (zh) * 2019-06-05 2022-02-18 暨南大学 一种快速帧同步方法及帧同步装置
CN117424945B (zh) * 2023-12-18 2024-03-22 四川恒湾科技有限公司 一种应用于o-ru的gsm上行处理系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355971A (zh) * 1999-06-15 2002-06-26 三星电子株式会社 获得与正交频分复用信号的码元定时和频率同步的设备和方法
US20090168937A1 (en) * 2007-12-28 2009-07-02 Samsung Electro-Mechanics Co., Ltd. Rf receiver having timing offset recovery function and timing offset recovery method using thereof
CN101951356A (zh) * 2010-09-26 2011-01-19 东南大学 一种基于峰值检测的ofdm-uwb系统同步方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785350B1 (en) * 1999-10-14 2004-08-31 Nokia Corporation Apparatus, and associated method, for detecting a symbol sequence
JP3835800B2 (ja) * 2002-02-08 2006-10-18 株式会社東芝 受信フレームの同期方法、および、受信装置
EP1414208A1 (en) * 2002-10-21 2004-04-28 STMicroelectronics N.V. Synchronization using training sequences with a periodical structure
KR100950646B1 (ko) * 2003-10-16 2010-04-01 삼성전자주식회사 다입다출 직교주파수분할다중 통신 시스템의 동기화를위한 프리앰블 전송 방법
KR100640472B1 (ko) * 2004-11-29 2006-10-30 삼성전자주식회사 프레임 시작 추정 장치 및 방법
KR100689552B1 (ko) 2004-12-22 2007-03-02 삼성전자주식회사 무선 통신 시스템에서 셀 탐색 방법 및 장치
CN1933470A (zh) 2005-09-13 2007-03-21 上海贝尔阿尔卡特股份有限公司 分布式多发多收-正交频分复用系统帧同步方法及装置
US7639754B2 (en) * 2006-03-29 2009-12-29 Posdata Co., Ltd. Method of detecting a frame boundary of a received signal in digital communication system and apparatus of enabling the method
JP2010520694A (ja) * 2007-03-05 2010-06-10 ウエイブサット インク チャネルプロファイラー及び入力信号のプロファイリング方法
CN101442360A (zh) * 2007-11-21 2009-05-27 华为技术有限公司 时间同步方法及装置
JP2009213055A (ja) * 2008-03-06 2009-09-17 Fujitsu Ltd 検出方法及び検出回路
KR101069988B1 (ko) * 2008-10-10 2011-10-04 삼성전기주식회사 무선랜에서 신속한 동기 검출을 위한 상관 방법 및 상관 장치
US8447005B2 (en) * 2009-11-05 2013-05-21 Telefonaktiebolaget L M Ericsson (Publ) Frequency synchronization methods and apparatus
JP5477480B2 (ja) * 2010-03-29 2014-04-23 株式会社村田製作所 無線通信システムにおける正確な時間同期用の方法および装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355971A (zh) * 1999-06-15 2002-06-26 三星电子株式会社 获得与正交频分复用信号的码元定时和频率同步的设备和方法
US20090168937A1 (en) * 2007-12-28 2009-07-02 Samsung Electro-Mechanics Co., Ltd. Rf receiver having timing offset recovery function and timing offset recovery method using thereof
CN101951356A (zh) * 2010-09-26 2011-01-19 东南大学 一种基于峰值检测的ofdm-uwb系统同步方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2876837A4 *
YAO, ZHIQIANG ET AL.: "Timing synchronization algorithm for MIMO-OFDM systems with iistributed antennas", CHINESE JOURNAL OF RADIO SCIENCE, vol. 25, no. 4, August 2010 (2010-08-01), pages 717 - 722, XP026782745 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785653A (zh) * 2022-04-20 2022-07-22 桂林电子科技大学 一种符号同步方法、系统、设备及可读存储介质
CN114785653B (zh) * 2022-04-20 2023-08-04 桂林电子科技大学 一种符号同步方法、系统、设备及可读存储介质

Also Published As

Publication number Publication date
EP2876837B1 (en) 2017-05-10
CN102959879A (zh) 2013-03-06
ES2629197T3 (es) 2017-08-07
US20150229368A1 (en) 2015-08-13
EP2876837A1 (en) 2015-05-27
US9264113B2 (en) 2016-02-16
EP2876837A4 (en) 2015-12-02
CN102959879B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2014029109A1 (zh) 无线系统的帧同步的方法、装置和无线系统
AU2019447734B2 (en) Methods, distributed base station system, remote radio unit and base band unit system for handling uplink signals
CN107210907B (zh) 全双工通信系统的训练信号的系统和方法
US9231632B2 (en) Apparatus for interference cancellation in MIMO receiver, method for interference cancellation in MIMO receiver and MIMO receiver
US9614700B2 (en) Techniques for channel estimation in millimeter-wave communication systems
CN105210341B (zh) 多输入输出正交频分复用通信系统及信号补偿方法
CN111602349B (zh) 用于时间同步的方法、装置和系统
EP1767045A1 (en) Effective time-of-arrival estimation algorithm for multipath environment
JP2013513331A (ja) 無線ネットワークにおけるダウンリンク・マルチユーザーmimo送信のための方法および装置
US8275074B2 (en) OFDM receiver for dispersive environment
JP2014522620A (ja) 無線通信システムにおける信号受信装置及び方法
WO2017005964A1 (en) Timing acquisition techniques for mobile station in wireless network
WO2013080451A1 (ja) 無線通信システムにおける無線受信装置および無線受信方法
US10148471B2 (en) Communication apparatus, communication method and communication system
CN1656765B (zh) 片段式频道均衡为基础的数据评估
EP1475932A2 (en) Interferer detection and channel estimation for wireless communication networks
US9100228B2 (en) Long term evolution (LTE) uplink canonical channel estimation
EP3282657B1 (en) Device and method for detecting transmission signal
US20220345336A1 (en) Reference signal channel estimation
CN114710382A (zh) 一种时分双工多天线系统的干扰消除方法
KR101932991B1 (ko) 무선 통신 시스템에서 신호 수신 장치 및 방법
CN108476059B (zh) 一种信号的发送方法、接收方法、终端设备、基站及系统
US10014995B2 (en) Data transmission method, data reception and detection method, base station and user equipment
KR20130006935A (ko) 수신기 및 이의 동작 방법
CN105450564B (zh) 信号处理方法及电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001091.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883114

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012883114

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012883114

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE