WO2014027652A1 - ラマン分光法を用いた生体分子の解析方法及び装置 - Google Patents

ラマン分光法を用いた生体分子の解析方法及び装置 Download PDF

Info

Publication number
WO2014027652A1
WO2014027652A1 PCT/JP2013/071844 JP2013071844W WO2014027652A1 WO 2014027652 A1 WO2014027652 A1 WO 2014027652A1 JP 2013071844 W JP2013071844 W JP 2013071844W WO 2014027652 A1 WO2014027652 A1 WO 2014027652A1
Authority
WO
WIPO (PCT)
Prior art keywords
raman
biomolecule
low molecular
group
acid
Prior art date
Application number
PCT/JP2013/071844
Other languages
English (en)
French (fr)
Inventor
袖岡 幹子
潤 安藤
三和子 淺沼
孝介 ▲ど▼▲ど▼
克昌 藤田
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to US14/422,055 priority Critical patent/US10338078B2/en
Priority to CA2882003A priority patent/CA2882003C/en
Priority to JP2014530555A priority patent/JP6429318B2/ja
Priority to EP13879362.5A priority patent/EP2887061B1/en
Publication of WO2014027652A1 publication Critical patent/WO2014027652A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6472Cysteine endopeptidases (3.4.22)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/22Cysteine endopeptidases (3.4.22)
    • C12Y304/22001Cathepsin B (3.4.22.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • G01N27/44726Arrangements for investigating the separated zones, e.g. localising zones by optical means using specific dyes, markers or binding molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2570/00Omics, e.g. proteomics, glycomics or lipidomics; Methods of analysis focusing on the entire complement of classes of biological molecules or subsets thereof, i.e. focusing on proteomes, glycomes or lipidomes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/78Detectors specially adapted therefor using more than one detector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates

Definitions

  • the present invention relates to an analysis method and apparatus for identifying a biomolecule that binds to a low molecular compound, in particular, an intracellular or extracellular biomolecule, or identifying a binding site between a biomolecule and a low molecular compound. More specifically, the present invention relates to an apparatus including a sample separation unit, a Raman spectroscopic unit, and a mass spectrometric unit, a method for identifying a biomolecule that combines Raman spectroscopic analysis and mass spectrometry, and binding between a biomolecule and a low molecular compound. The present invention relates to a method for identifying a site. The present invention also relates to surface enhanced Raman spectroscopy.
  • a low molecular weight compound (drug, etc.) having toxicity or medicinal effect acts on a biomolecule such as a protein in a living body and exhibits biological activity. It is an effective treatment to investigate the distribution of target biomolecules for low molecular weight compounds in vivo or in cells, identify the target biomolecule, analyze the specific site of action, and elucidate the mechanism of biological activity. It is extremely important in the development of methods and therapeutics and the life research that forms the basis for them.
  • molecular imaging using a radioactive compound, a phosphorescent compound or a fluorescent compound, and Raman imaging for detecting scattered light of the biomolecule itself are known.
  • Molecular imaging in a living body or in a cell is an important technique for understanding disease states, drug dynamics, and the like, and has been rapidly developed in recent years.
  • Raman imaging Raman spectroscopy is used to detect the Raman scattered light of the laser irradiated on the sample and image the distribution.
  • Raman imaging uses a low-molecular compound that is non-radioactive and has little influence on the target molecule.
  • Non-patent Document 1 describes that 5-ethyl-2′-deoxyuridine (EdU), which is a nucleic acid analog, was taken into cells and confirmed that this was taken into cell nuclei by imaging with a Raman microscope. (See Non-Patent Document 1, page 6103, FIG. 2 and FIG. 4).
  • EdU 5-ethyl-2′-deoxyuridine
  • a Raman image is obtained at a wave number at which a Raman peak peculiar to a label is obtained. Therefore, the obtained image is a spatial intensity distribution of a Raman peak of a specific wave number.
  • LC-MS combining a liquid chromatograph and a mass spectrometer is used as a method for searching for low molecular compounds such as drugs and biomolecules targeted by the compound and identifying the binding site.
  • the sample is fractionated by LC, and the fractionated sample is sequentially and comprehensively subjected to MS and MS / MS analysis to identify the target biomolecule and identify the binding site.
  • MS analysis a target biomolecule is searched based on a mass shift derived from the binding of a low-molecular compound.
  • the binding site can be identified by acquiring information such as the amino acid sequence of the peptide by MS / MS analysis.
  • a low molecular compound is taken into the cell and the low molecular compound is bound to a target biomolecule in the cell.
  • Crush cells (3) detect target biomolecules from cell lysate, (4) analyze and identify target biomolecules, or (1) crush cells, (2) cell lysates A series of processes of mixing a low molecular weight compound and binding with a target biomolecule, (3) fractionating a cell lysate, and (4) analyzing and identifying the target biomolecule are required.
  • a method for selectively purifying intracellular target molecules for analysis such as mass spectrometry has been developed and widely used by affinity purification using a carrier bound with a low molecular weight compound to separate and purify target molecules.
  • the bound target biomolecule can be determined by examining the radioactive, phosphorescent or fluorescent compound previously introduced into the low molecular weight compound.
  • An identifying method is also used.
  • a technique for identifying and identifying a binding site of a target molecule a method of observing by introducing a fluorophore into a low molecular compound is widely used.
  • Patent Document 1 a method for identifying and identifying a binding site between a labeled drug and a protein, a method using a xanthine dye (rhodamine, fluorescein or rhodol), a cyanine dye, a coumarin dye or a complex dye as a fluorophore has been reported.
  • a xanthine dye rhodamine, fluorescein or rhodol
  • cyanine dye a coumarin dye or a complex dye as a fluorophore
  • radioactive compounds when radioactive compounds are used as low-molecular compounds, the chemical properties of the radioisotopes are basically the same and do not affect the activity of the target molecule, but the facilities that can be used are limited to radiation management facilities. Furthermore, it is difficult to say that it is a simple method because the method of identifying the binding site is greatly limited in usage. Unlike the radioactive compounds, the method of directly binding a phosphorescent compound or a fluorescent compound with a large molecular weight to the target molecule has almost no restrictions on use, but the molecular weight of the fluorophore is lower than that of a low molecular weight compound. There is a problem that it can affect the activity or binding properties of molecular compounds.
  • fluorouracil a kind of anticancer agent
  • Rhodamine 6G a typical fluorophore
  • 5-FU fluorouracil
  • Rhodamine 6G a typical fluorophore
  • 5-FU the physiological activity of the anticancer agent 5-FU by fluorescence labeling may be affected.
  • the anticancer drug flavagline extracted from a plant called Aglaia inhibits cell growth specifically in cancer cells, and anticancer drugs are unlikely to cause side effects, so elucidation of the mechanism of action in vivo is required.
  • labeling with a fluorophore reduces the drug activity to 1/40 or less.
  • Non-Patent Document 3 reports that the activity disappears when the molecule 16F16 that binds to the target protein is modified with a fluorophore (Non-Patent Document 3, page 901, right column, lines 13-17). .
  • Non-patent document 4 For specifying a protein that binds to the lipid and a report example in which a biotin tag is introduced into farnesyl lipid by a click reaction and detected with streptavidin.
  • these methods also include the above-mentioned problems associated with the click reaction.
  • Raman spectroscopy can detect a target molecule without labeling based on molecular vibration information. Since there are no restrictions on the facilities used and there is no effect on the activity and binding properties of low-molecular compounds, the combination of Raman spectroscopy and LC-MS can be a new detection method that overcomes the various problems described above. So far, an example of analyzing lysozyme by combining a Raman spectroscope and a matrix-assisted laser desorption / ionization mass spectrometer has been reported (Patent Document 2, column 27, FIG. 31 and claim 21).
  • Patent Document 2 the problem to be solved by the invention described in Patent Document 2 is to increase the sensitivity of Raman spectroscopic analysis.
  • a technique for aggregating the sample in an isolated state is disclosed.
  • the reason why the mass spectrometer is used in Patent Document 2 is to reconfirm the result confirmed by Raman spectroscopy by another method.
  • the identification of the biomolecule that binds to the low molecular weight compound and the binding site This is fundamentally different from the present invention for identification purposes.
  • Identifying a target molecule that binds to a biomolecule in a wide variety of biomolecules contained in a living cell and identifying the binding site is an extremely important technology for developing effective therapeutic agents for various diseases.
  • a practical and simple method and an analysis apparatus therefor are not known.
  • a molecule containing a radioisotope a molecule having a phosphorescent compound or a fluorescent compound bound thereto is used as a labeling agent
  • the activity (binding ability) of the target molecule may be reduced or eliminated by introducing a fluorophore having a large molecular weight.
  • molecules to which a phosphorescent compound or a fluorescent compound is bound have various problems such that they can be firmly bound to the column non-specifically in chromatography and can be difficult to isolate and recover.
  • an object of the present invention is to provide a method and apparatus for identifying a target molecule that binds to a biomolecule by a practical and simple method and identifying the binding site.
  • Another object of the present invention is to provide a surface enhanced Raman spectroscopy (SERS) method with enhanced sensitivity.
  • SERS surface enhanced Raman spectroscopy
  • the present inventors used a fractionated sample for Raman spectroscopic analysis, and then subjected to mass spectrometry for biomolecules that bind to low molecular compounds.
  • the present invention has been completed by discovering that it can be specified and that a binding site between a low molecular weight compound and a biomolecule can be specified.
  • the present inventors have found that the sensitivity of SERS can be enhanced by using an aggregation accelerator. That is, the present invention is as follows.
  • An apparatus for identifying a biomolecule that binds to a low molecular compound or for identifying a binding site between a low molecular compound and a biomolecule comprising a sample separation unit, a Raman spectroscopic unit, and a mass spectrometric unit
  • sample separation unit is a liquid chromatograph or a capillary electrophoresis apparatus.
  • liquid chromatograph is any one type of high performance liquid chromatograph selected from the group consisting of normal phase, reverse phase, molecular sieve, and ion exchange chromatograph.
  • the Raman spectroscopic unit is a linear or non-linear Raman spectroscopic device having a laser unit for irradiating a Raman excitation laser beam and a spectrum analyzing unit for spectrally analyzing Raman scattered light. The device described.
  • the mass spectrometer includes a mass spectrometer that uses a matrix-assisted laser desorption ionization method, an electrospray ionization method, or an atmospheric pressure chemical ionization method as an ionization method .
  • the low molecular weight compound has an alkynyl group, nitrile group, diazonio group, isocyanate ester group, isonitrile group, ketene group, carbodiimide group, thiocyanate ester group, azide having a scattering spectrum in the silent region of the Raman spectrum in the molecule.
  • the apparatus according to any one of [1] to [6], comprising at least one substituent selected from the group consisting of a group, a diazo group, an alkynediyl group, and deuterium.
  • biomolecule is at least one biomolecule selected from the group consisting of proteins, peptides, nucleic acids, sugars and lipids.
  • the plate according to [9] or [10] which is made of metal, glass, quartz, calcium fluoride, or magnesium fluoride.
  • a method for identifying a binding site between a biomolecule and a low molecular weight compound comprising the following steps: (1) subjecting the fractionated biomolecule fragment bound to the low molecular weight compound to Raman spectroscopic analysis; and (2) subjecting all or part of the fraction subjected to Raman spectroscopic analysis to mass spectrometry. Including Detects a fraction having a Raman peak derived from a low molecular weight compound bound to a biomolecule fragment by Raman spectroscopic analysis, obtains a mass analysis result of the fraction having a low molecular weight compound-derived Raman peak, and obtains the mass information of the biomolecule.
  • biomolecule is fragmented by an enzyme selected from the group consisting of a proteolytic enzyme, a peptide degrading enzyme, a nucleolytic enzyme, a glycolytic enzyme, and a lipolytic enzyme, or by chemical degradation.
  • an enzyme selected from the group consisting of a proteolytic enzyme, a peptide degrading enzyme, a nucleolytic enzyme, a glycolytic enzyme, and a lipolytic enzyme, or by chemical degradation.
  • a screening method for identifying a biomolecule that binds to a low molecular weight compound comprising the following steps: (1) subjecting a fraction containing a biomolecule bound to a low molecular compound to Raman spectroscopic analysis, and (2) subjecting all or a part of the fraction subjected to Raman spectroscopic analysis to mass spectrometry, Including Detects a fraction having a Raman peak derived from a low molecular compound by Raman spectroscopic analysis, obtains a mass analysis result of a fraction having a Raman peak derived from a low molecular compound, and collates this with the mass information of the biomolecule. And a method for identifying a biomolecule that binds to the low molecular weight compound.
  • a sample containing a biomolecule bound to the low molecular weight compound is obtained by (A) incorporating a low molecular weight compound into a cell, binding it to the intracellular biomolecule, and disrupting the cell, or (B) [17] The method according to [17], wherein the method is prepared by disrupting cells, adding a low molecular compound to the cell disruption solution, and binding the cells with biomolecules in the cells.
  • the low molecular weight compound has an alkynyl group, nitrile group, diazonio group, isocyanate group, isonitrile group, ketene group, carbodiimide group, thiocyanate group, azide having a scattering spectrum in the silent region of the Raman spectrum in the molecule.
  • biomolecule is at least one biomolecule selected from the group consisting of proteins, peptides, nucleic acids, sugars and lipids.
  • the fractionated fraction is a droplet as it is or a droplet mixed with a solvent, the droplet is arranged on a plate having a cleaned surface, and included in the droplet
  • Organic acid is trifluoroacetic acid, difluoroacetic acid, monofluoroacetic acid, trifluoromethanesulfonic acid, difluoromethanesulfonic acid, 3,3,3-trifluoropropionic acid, trichloroacetic acid, dichloroacetic acid, monochloroacetic acid, trichloromethane
  • the method according to [28] which is selected from the group consisting of sulfonic acid, dichloromethanesulfonic acid, 3,3,3-trichloropropionic acid, formic acid, acetic acid, propionic acid, methanesulfonic acid, and combinations thereof.
  • a low molecular weight compound that binds to a biomolecule has an alkynyl group, nitrile group, diazonio group, isocyanate group, isonitrile group, ketene group, carbodiimide group, thiocyanate having a scattering spectrum in the silent region of the Raman spectrum.
  • a surface enhanced Raman spectroscopic analysis method comprising:
  • the target molecule is a biomolecule, a fragment of a biomolecule, a biomolecule bonded to a low molecular compound having a Raman peak in the silent region, or a biomolecule fragment bonded to a low molecular compound having a Raman peak in the silent region. [31] or [32].
  • biomolecule is at least one biomolecule selected from the group consisting of proteins, peptides, nucleic acids, sugars and lipids.
  • Organic acid is trifluoroacetic acid, difluoroacetic acid, monofluoroacetic acid, trifluoromethanesulfonic acid, difluoromethanesulfonic acid, 3,3,3-trifluoropropionic acid, trichloroacetic acid, dichloroacetic acid, monochloroacetic acid, trichloromethane Any one of [31] to [34] selected from the group consisting of sulfonic acid, dichloromethanesulfonic acid, 3,3,3-trichloropropionic acid, formic acid, acetic acid, propionic acid, methanesulfonic acid, and combinations thereof Method.
  • a low molecular weight compound that binds to a biomolecule has an alkynyl group, nitrile group, diazonio group, isocyanate group, isonitrile group, ketene group, carbodiimide group, thiocyanate having a scattering spectrum in the silent region of the Raman spectrum.
  • the droplets of the solution containing aggregates are arranged on a plate having a cleaned surface, and the solvent contained in the droplets is evaporated.
  • An analysis method comprising subjecting all or part of the solution or fraction subjected to the surface enhanced Raman spectroscopy (SERS) analysis method according to any one of [31] to [38] to mass spectrometry.
  • SERS surface enhanced Raman spectroscopy
  • the liquid chromatography-Raman spectroscopic-mass spectrometry (LC-R-MS) or capillary electrophoresis-Raman spectroscopic-mass spectrometric (CE-R-MS) apparatus is a novel biomolecular analysis that has not been known so far.
  • This is a device that can be used for conventional liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) devices that comprehensively search for biomolecules, determine sequencing and identify binding sites, etc. Compared to this, it is an excellent analysis device that can shorten the processing time and has high accuracy.
  • the method according to the present invention when used, complementary information regarding a measurement target can be acquired by Raman spectroscopic analysis and mass spectrometry, and a target biomolecule can be identified more quickly and reliably.
  • the SERS method using the aggregation accelerator of the present invention has an increased measurement sensitivity and an improved detection limit. Further, in the SERS method using the aggregation accelerator of the present invention, the correlation between the amount of the sample to be measured and the SERS signal intensity is improved, and variation in measurement is suppressed.
  • the Raman spectroscopic unit according to the present invention can perform non-destructive and non-contact measurement using a Raman spectroscopic device without modifying the sample.
  • a low molecular weight compound can be selectively detected with high sensitivity by a Raman label having a characteristic Raman peak.
  • a Raman label having a characteristic Raman peak since there are almost no compounds or deuterium with triple bonds such as alkyne molecules in living organisms, when alkyne or deuterium is used as a Raman label, low molecular weight compounds from complex mixtures such as cell lysates are used.
  • the target biomolecule bound to can be identified. The same applies to other types of Raman labels having a Raman peak in the silent region.
  • the Raman spectroscopic analysis according to the present invention When the Raman spectroscopic analysis according to the present invention is performed, not only low molecular compounds but also molecular vibration information derived from biomolecules can be obtained. Therefore, there is an advantage that the coexistence of the low molecular compounds and the biomolecules can be confirmed.
  • the conventional fluorescence labeling method confirms the presence or absence of a low-molecular compound from the fluorescence intensity of a single channel, whereas the Raman spectroscopy according to the present invention provides multi-dimensional vibrational spectroscopy information, and thus has multiple scattering peaks. From the strength, it is possible to confirm the presence or absence of both low molecular weight compounds and biomolecules. Furthermore, in the case of peptides and the like, information on the backbone structure and side chains can also be obtained from the shape of the spectrum.
  • the method according to the present invention uses a low-molecular compound as it is or can suppress the molecular weight of a tag added to an analysis target compound, so that it is low in comparison with the conventional fluorescent labeling method using a large fluorophore.
  • the target biomolecule can be specifically identified / detected and identified without changing the biochemical characteristics of the molecular compound. That is, when the Raman label of the present invention is used, the artifact due to modification is small compared to the fluorophore.
  • a mass spectrum of a protein or peptide can be obtained by a mass spectrometer, and a binding site between a low molecular compound and a target biomolecule can be identified based on the mass spectrum.
  • the amino acid sequence of a protein or peptide can also be determined by mass spectrometry using MS / MS analysis.
  • protein post-translational modifications can be analyzed.
  • Non-Patent Document 2 The conventional method of combining an alkyne tag with a click reaction (Non-Patent Document 2, etc.) has a problem that there is a loss of the target compound related to the click reaction operation and a non-specific reaction occurs.
  • the analysis target compound is used as it is as a low molecular compound in Raman spectroscopy, or the analysis target compound added with an alkyne tag is used as a low molecular compound, and this is used as it is in Raman spectroscopy. For this reason, the problems involved in the conventional method are solved.
  • C shows the peak of alkyne obtained from the Raman spectrum of each fraction (FIG. 9-3G).
  • D shows the mass spectrum of fraction number 4, and E shows the mass spectrum of fraction number 12.
  • F represents the intensities of fractions 1-16 at 1211.5 m / z and 1229/6 m / z. It is a Raman spectrum of each fraction corresponding to FIG. 9-1C. It is the figure which compared the online Raman measurement and the offline Raman measurement. A is an online Raman detection method, and B is an offline Raman detection method. It is a figure which shows the apparatus which concerns on 1 aspect of this invention. It is a figure shown about the effect of SERS.
  • the Raman intensity of RAT8-AOMK increased by more than 10 3 when silver nanoparticles with a diameter of 40 nm were used. It is a figure which shows the sample spotted with the multi spot metal substrate. Spot the fraction sample as shown in the schematic diagram in the upper center.
  • the upper right is a 384 multi-spot metal substrate.
  • the lower right shows a photograph in which the peptides in the solution aggregate as the droplets on the substrate dries. It is a figure which shows the example of the plate which can be used for the apparatus which concerns on this invention.
  • the upper left is a microscope substrate fixing plate.
  • the lower left is the Raman microscope sample stage.
  • FIG. 6 is a view showing a Raman spectrum of fraction numbers 35 to 94.
  • fractions 57-66 a characteristic Raman peak was observed around 2106 cm -1 . It is a figure which shows the mass spectrometry result about the spot after Raman spectroscopy. From the spot where the Raman peak was obtained, a peptide bound with a low molecular weight compound having a Raman label was detected.
  • A is fraction number 62
  • B is 60
  • C is 57.
  • A shows experimental values and calculated values corresponding to fraction number 62.
  • B shows the experimental value and calculated value corresponding to fraction number 60.
  • C shows the experimental value and calculated value corresponding to fraction number 57.
  • a comparison of the Raman spectrum of RAT8-AOMK itself and the spectrum of fraction numbers 35-75 is shown in A.
  • C shows the Raman peak intensities at 1609 cm -1 and 2107 cm -1 .
  • the dotted line is the intensity of 1609 cm ⁇ 1 derived from the phenyl ring, and the solid line is the intensity of 2107 cm ⁇ 1 derived from the alkyne.
  • the lower part of FIG. 24 shows structures and molecular weights before and after the binding of RAT8-AOMK to cathepsin B. It is a figure which shows the Raman spectrum of RAT8-AOMK.
  • Peptide A-2 (no cleavage error, + RAT8-AOMK), m / z 2435.0067. It is a figure which shows the MALDI mass spectrum of fraction number 58-62 (peptide B-1). The scale was fixed at 2E 7 .
  • Peptide B-1 (1 cleavage mistake, + RAT8-AOMK + CAM), m / z 2890.2559. It is a figure which shows the MALDI mass spectrum of fraction number 60-65 (peptide A-1). The scale was fixed at 2E 7 .
  • Peptide A-1 (no cleavage error, + RAT8-AOMK + CAM), m / z 2492.0282.
  • FIG. 30 summarizes the results of FIGS.
  • the ion count number of the target peptide of fraction number 50-69 is shown.
  • the horizontal axis is the fraction number, and the vertical axis is the ion count number.
  • the excitation wavelength was 532 nm.
  • the SERS spectrum of RAT8-AOMK when using gold nanoparticles is shown.
  • the excitation wavelength was 660 nm.
  • the upper spectrum is with gold nanoparticles and the lower spectrum is without gold nanoparticles.
  • the result of SERS measurement by mixing a dispersion of silver nanoparticles with an aqueous solution of alkyne-labeled / unlabeled peptide is shown.
  • the upper spectrum is that of an alkyne labeled peptide and the lower spectrum is that of a normal peptide.
  • the result of comparing the case of introducing a fluorophore with a click reaction and the case of Raman spectroscopy is shown.
  • the UV chromatogram (1) at the bottom of the figure is the case of Raman spectroscopy of the present invention
  • the UV chromatogram (2) is the case where a fluorophore is introduced by a click reaction. In the case of the click reaction, there was a 57.5-74.2% sample reduction.
  • the black circle is a Raman chromatogram
  • the white circle is a UV romanogram with a fluorophore introduced by a click reaction.
  • An apparatus includes a sample separation unit, a Raman spectroscopic unit, and a mass spectrometric unit.
  • the sample separation unit, the Raman spectroscopic unit, and the mass spectrometry unit are connected in this order.
  • An example of the sample separation unit is shown in FIG. 1, an example of the Raman spectroscopic unit is shown in FIG. 2, and an example of the mass analysis unit is shown in FIG. Each of these will be described.
  • the sample separation unit according to the present invention can separate various molecules in a sample from each other.
  • Specific examples of the sample separation unit include, but are not limited to, a liquid chromatograph and a capillary electrophoresis apparatus.
  • the sample separation unit can be an isoelectric focusing device.
  • a sample refers to a sample that may contain a compound to be measured.
  • An example of a sample separation unit according to the present invention is shown in FIG. First, the sample is fed from the sample injection unit 1 to the fractionation unit 3 through the liquid feeding line 2. Next, the fractionation unit 3 performs fractionation.
  • the fractionation unit 3 may include various chromatography columns, liquid chromatography columns, and electrophoresis capillaries, but is not limited thereto.
  • the detection unit 5 can be, for example, an ultraviolet (UV) light detector.
  • the detection means in the detection unit 5 is preferably a nondestructive inspection. In FIG. 1, it is indicated by a right-pointing arrow that the separated fraction is further connected to the next Raman spectroscopic unit.
  • the sample fractionated by the sample separation unit can be detected by Raman spectroscopic analysis, and therefore the detection unit 5 in FIG. 1 can be omitted. That is, FIG. 1 is merely an example, and the detection unit 5 is not an essential component for the sample separation unit.
  • a liquid chromatograph refers to a chromatograph that uses a liquid as the mobile phase.
  • substances contained in a mobile phase are eluted or eluted from columns packed with a solid phase carrier at different rates based on the difference in the degree of interaction with the solid phase carrier.
  • a specific substance contained in the mobile phase is separated from other substances using the difference in elution rate.
  • the principle of liquid chromatographic separation may be any, and examples include distribution, adsorption, molecular exclusion, molecular sieving, ion exchange, and the like.
  • the chromatograph may be normal phase or reverse phase.
  • the liquid chromatograph is high performance liquid chromatography (HPLC) using a liquid pressurized to a high pressure as the mobile phase.
  • HPLC high performance liquid chromatography
  • any solvent that dissolves the solute may be used as the mobile phase, such as water, aqueous solution, aqueous solution containing salts, organic solvent, methanol, ethanol, isopropanol, n-propanol, etc.
  • the basic compound contained in the aqueous solution may be adsorbed by the residual silanol present in the column and the chromatogram peak may tail.
  • separation may be performed by adding an acid such as trifluoroacetic acid. As described below, such an acid can be removed from the sample used in the next step by removing the solvent used in the separation operation after liquid chromatography.
  • the Raman measurement can be performed regardless of the presence or absence of a solvent.
  • the solvent used before the Raman measurement For example, it is desirable to use a low boiling polar solvent as the main component of the solvent of the mobile phase of the chromatogram. This is because such a low boiling point polar solvent can be easily removed by evaporation.
  • the low boiling point polar solvent is a solvent having a low boiling point and polarity, and examples thereof include acetonitrile, methanol, dichloromethane, trichloromethane and the like.
  • a low boiling polar solvent is preferred as the mobile phase used in the liquid chromatograph.
  • a concentration gradient can be brought about in the separation solution, thereby increasing the resolution of the sample.
  • the solvent used for the liquid chromatograph can be removed from the sample used for the Raman measurement.
  • a person skilled in the art can appropriately set conditions such as a separation solvent and a concentration gradient to be applied according to the sample to be separated.
  • Capillary electrophoresis refers to a method in which electrophoresis is performed in a sufficiently thin capillary tube to separate substances contained in a sample.
  • a capillary electrophoresis apparatus typically includes a capillary tube and a voltage application unit.
  • one of the capillaries is a sample injection part, and the other is a sample elution part. For example, referring to the sample separation unit in FIG.
  • This capillary electrophoresis includes capillary zone electrophoresis (CZE), micelle conduction chromatography (MEKC), capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF), and the like.
  • CZE capillary zone electrophoresis
  • MEKC micelle conduction chromatography
  • CGE capillary gel electrophoresis
  • cIEF capillary isoelectric focusing
  • a person skilled in the art can appropriately set the operating conditions such as the solvent used for capillary electrophoresis, the type of capillary, and the applied voltage.
  • the fraction fractionated by capillary electrophoresis can be subjected to the next step in a dry state by evaporating the solvent as in the liquid chromatograph.
  • the Raman spectroscopic unit referred to in this specification is a linear or non-linear Raman spectroscopic device including a laser unit that emits Raman excitation laser light and a spectral analysis unit that performs spectral analysis of Raman scattered light.
  • FIG. 2 shows a micro Raman analysis apparatus as an example of the Raman spectroscopic unit according to the present invention.
  • a sample 9 is placed on the sample stage 10 and analyzed by a Raman microscope.
  • Laser light for Raman excitation is irradiated from the laser unit 6, and this is reflected by the difleic filter 7 and irradiated to the sample 9 focused by the objective lens 8.
  • the Raman scattered light is dispersed by the spectroscope 11 and detected by a detection mechanism such as a charge coupled device (CCD) in the detector 12.
  • the spectrum analysis unit includes a spectroscope 11, a detection unit 12, and an arbitrary electronic calculation unit for acquiring the Raman scattering spectrum of FIG.
  • the collected Raman scattered light is indicated by an upward arrow entering the spectrometer 11.
  • An entrance slit or a lens can be appropriately used for condensing light.
  • the Raman spectroscopic unit according to the present invention is not limited to a microscopic Raman analyzing apparatus, but includes all known Raman spectroscopic analyzing apparatuses such as a dispersion type laser Raman spectroscopic apparatus and an FT-Raman spectroscopic analyzing apparatus.
  • the spectrum analysis unit included in the Raman spectroscopic unit according to the present invention may include a device that detects Raman scattered light with an interferometer instead of the spectroscope.
  • a filter having a limited transmission wavelength band may be used for the Raman scattered light detection unit, and the scattered light transmitted through the filter may be directly detected by a detection mechanism such as a CCD without using a spectroscope or the like.
  • a detection mechanism such as a CCD
  • a wavelength tunable filter is used, a Raman spectrum can be acquired by scanning the transmission wavelength band.
  • the structure which acquires a Raman spectrum by using the wavelength variable laser light source for the laser for Raman excitation, and scanning the wavelength of excitation laser light may be sufficient. Whether it is a spectroscope, interferometer, filter, or scanning of excitation laser light, it is possible to detect the intensity of a specific Raman peak or information on the Raman spectrum by detecting Raman scattered light in any configuration.
  • the sample is placed on the sample stage as shown in FIG. 2, it is also possible to send the sample through a liquid feed line and perform so-called “on-line” measurement.
  • a person skilled in the art can appropriately analyze the presence / absence of the target molecule in the sample from the obtained Raman spectrum pattern (profile). Analysis can also be performed manually or with the aid of a computer.
  • the laser for Raman excitation a semiconductor laser, a diode-excited solid (DPSS) laser, a gas laser, a liquid laser, or the like can be used, but is not limited thereto.
  • Raman spectroscopic analysis is a well-known technique in this technical field. For example, the principle is explained in Raman spectroscopy (published by the Japan Spectroscopic Society, Measurement Method Series 17) edited by Hiroo Hamaguchi and Atsuko Hirakawa. Yes. Briefly, Raman spectroscopy uses the so-called “Raman effect”, in which light with a wavelength different from the wavelength of incident light in scattered light is generated when light such as laser light is incident on a chemical substance. This is a spectroscopic analysis method. The difference between the frequency of Raman scattered light and the frequency of incident light is called Raman shift.
  • Raman shift is specific to the structure of the molecule, knowledge about the molecular structure can be obtained by measuring the Raman shift.
  • the Raman spectrum of a molecule whose chemical structure has been elucidated is measured in advance to obtain a profile, and the Raman spectrum pattern of the sample is compared with the profile to determine whether the molecule exists in a sample. This can be detected. Detecting means confirming the presence of a certain compound in a certain sample.
  • Raman spectroscopy has the advantage of being a non-destructive analytical method. Linear Raman spectroscopy is also called Raman scattering spectroscopy, also known as spontaneous Raman scattering spectroscopy, having an intensity proportional to the incident light intensity.
  • Nonlinear Raman spectroscopy is Raman spectroscopy based on higher-order nonlinear optical effects, and means Raman scattering spectroscopy having an intensity proportional to the second or higher order of the intensity of incident light.
  • Raman spectroscopy include nonlinear Raman spectroscopy such as stimulated Raman scattering, hyper-Raman scattering, and coherent / anti-Stokes Raman scattering.
  • An example of a Raman spectrum is shown in FIG. As shown in FIG. 4, the molecular vibration of paclitaxel itself is detected as a peak.
  • Raman spectroscopy in this example is described in J. Ling et al., Applied Optic, 41, (28), 6006 (2002). Measurements were made using a Renishaw Model 2000 Raman spectroscopy system, Ti: sapphire laser. The sample was a powder, and measurement was performed with a 20 ⁇ lens and 30 seconds exposure.
  • the present invention provides Raman spectroscopy using surface enhanced Raman spectroscopy (SERS).
  • SERS surface enhanced Raman spectroscopy
  • the surface enhanced Raman spectroscopy (SERS) of the present invention can be used in an apparatus or method according to the present invention.
  • Raman spectroscopy since scattered light is weak, a long-term measurement is generally required. However, when SERS is used, a Raman signal can be enhanced and a rapid measurement can be performed.
  • SERS is known as one of the Raman spectroscopic methods, and performs Raman spectroscopic analysis using a metal particle colloid or a substrate containing a metal.
  • the surface plasmon of the metal is excited by the laser, and as a result, the electromagnetic field surrounding the metal increases and the Raman signal generated in proportion to the electromagnetic field is enhanced. Furthermore, a chemical interaction including the transfer of electrons occurs between a molecule near the metal surface and the metal, thereby enhancing the Raman signal.
  • the action of either or both of the electromagnetic and chemical enhancement mechanisms described above greatly enhances the measured Raman signal.
  • the metal used for SERS include, but are not limited to, iron, cobalt, nickel, tin, indium, germanium, copper, silver, gold, platinum, palladium, aluminum, titanium, ruthenium, and the like.
  • the metal can be a metal nanoparticle, a metal nanostructure or a metal nanostructure.
  • FIG. 12 shows that the intensity of the Raman peak of RAT8-AOMK increased by 10 3 or more when silver nanoparticles having a diameter of 40 nm were used. The exposure time was 10 seconds.
  • FIG. 34 shows a SERS spectrum when gold nanoparticles are used. The lower spectrum of FIG.
  • the SERS effect of the present invention is not limited to silver nanoparticles, and it is considered that the Raman signal is enhanced when metal nanoparticles such as gold nanoparticles are used in general.
  • the SERS sample is spotted on a substrate cleaned with a commercially available silver nanoparticle dispersed aqueous solution and dried, and then the sample is overlaid on it, or the sample solution is mixed with the silver nanoparticle dispersed aqueous solution, or the mixed sample is spotted. It can be prepared by post-drying.
  • the substrate a substrate obtained by applying a silver nanoparticle-dispersed aqueous solution to the entire surface of the substrate by a mechanical coating method such as a spin coating method can be used.
  • the diameter of the metal nanoparticles is not particularly limited and is preferably small.
  • the diameter (diameter) of the particle is a length equal to the diameter of a sphere having the same volume as the particle.
  • the particle having a diameter of 40 nm means that a value obtained by averaging the diameters obtained as described above of a large number of particles is 40 nm.
  • metal nanostructures such as nanorods, nanowires, nanocubes, nanoprisms, and shell structures, and it is preferable that the sizes thereof are also small.
  • the size of the metal nanostructure refers to the length of the structure in the longitudinal direction.
  • the size of the metal nanostructure being 40 nm means that the average size of various metal nanostructures is 40 nm.
  • the size of the metal particle, metal nanostructure or metal nanostructure is preferably equal to or less than the mean free path of electrons that vibrate in the metal by light.
  • the diameter of the particle In the case of a metal particle, the diameter of the particle In the case of a nanostructure or a metal nanostructure, the length of the nanostructure is 200 nm or less, more preferably 100 nm or less, and still more preferably 50 nm or less.
  • Examples of the aggregation accelerator (organic acid) used in the present invention include halogenated organic acids containing fluorine or chlorine atoms in the molecule, such as trifluoroacetic acid, difluoroacetic acid, monofluoroacetic acid, trifluoromethanesulfonic acid, difluoromethanesulfonic acid or Fluorine-containing organic acids such as 3,3,3-trifluoropropionic acid and chlorine-containing organic acids such as trichloroacetic acid, dichloroacetic acid, monochloroacetic acid, trichloromethanesulfonic acid, dichloromethanesulfonic acid or 3,3,3-trichloropropionic acid Hydrocarbon organic acids such as formic acid, acetic acid, methanesulfonic acid, propionic acid can be used.
  • halogenated organic acids containing fluorine or chlorine atoms in the molecule such as trifluoroacetic acid, difluoroacetic acid, monofluor
  • trifluoroacetic acid trifluoroacetic acid, difluoroacetic acid, trifluoromethanesulfonic acid, difluoromethanesulfonic acid, 3, 3,3-trifluoropropionic acid, formic acid, acetic acid, propionic acid or Tan sulfonic acid is preferred.
  • Organic acids containing bromine or iodine atoms in the molecule are more decomposable than fluorine-containing or chlorine-containing compounds, and have little effect on SERS due to the reaction between decomposition products and alkynyl groups, etc. Rather, it is not preferable because it is considered to have an inhibitory effect.
  • the addition amount of the aggregation accelerator (organic acid) of the present invention is not limited as long as uniform aggregate formation is promoted, for example, 0.001 to 10 mol%, 0.01 to 1 mol%, preferably 0.05 to 0.5. mol%.
  • a person skilled in the art prepares a plurality of solutions containing various organic acids together with a target molecule or a plurality of solutions containing various concentrations of organic acid together with a target molecule, and these are mixed with metal nanoparticles, and the solution is liquidated.
  • the droplets By forming the droplets on the plate and observing the bright field image with a microscope, the formation of aggregates and the uniformity thereof can be easily confirmed. Thereby, the organic acid which can be used for this invention can be confirmed. Also, an appropriate amount of organic acid can be determined.
  • Such screening can be performed at high throughput, for example using automated equipment, with only routine work by preparing a large number of spots on the plate.
  • the aggregation promoter of the present invention can be used as follows.
  • an aqueous solution containing the aggregation promoter of the present invention and a target molecule is mixed with metal nanoparticles, and then the target molecule-metal nanoparticle complex is aggregated.
  • an aqueous solution containing the aggregation promoter of the present invention but not the target molecule is mixed with the metal nanoparticles, and then the metal nanoparticles are aggregated.
  • the target molecule is added, and the target molecule and the aggregated metal nanoparticles are allowed to interact with each other.
  • the inventors of the present invention have confirmed that the aggregation promoter of the present invention not only increases the detection limit of SERS measurement but also increases the correlation between the injection amount of a sample that emits a SERS signal and the SERS signal intensity. That is, the aggregation promoter of the present invention has an effect of stabilizing SERS measurement.
  • the action of the aggregation accelerator of the present invention is not desired to be bound by a specific logic, but is considered to be due to the following mechanism.
  • a target molecule-metal nanoparticle complex is formed, and the metal nanoparticles are aggregated while involving the target molecule. It is done.
  • the formation of aggregates is observed even when the aggregation accelerator (organic acid) of the present invention is not used, but the distribution of aggregates is uneven and the SERS measurement results vary. It is mentioned that it occurred.
  • the aggregation accelerator (organic acid) of the present invention when used, uniformly distributed aggregates were formed and the SERS effect was enhanced (see Example 12).
  • the target molecule is a peptide
  • the peptide if the peptide is present in an excessive amount, this exceeds the aggregating action of the aggregation promoter (organic acid) of the present invention, and the formation of aggregates was not observed.
  • the aggregation promoter of the present invention may be used for any sample as long as SERS measurement can be performed. That is, the aggregation promoter of the present invention can be used for a sample that may contain a biomolecule, a sample separated by liquid chromatography or capillary electrophoresis, and other SERS measurements. Any sample can be used. That is, the SERS measurement using the aggregation accelerator of the present invention is performed as described in 1. above.
  • the present invention is not limited to the case of using the above-mentioned apparatus, and can be used for any surface enhanced Raman spectroscopy (SERS) method.
  • the target molecule to be analyzed needs to emit a SERS signal.
  • the target molecule preferably aggregates when mixed together with the metal nanoparticles, or interacts with the metal nanoparticles pre-aggregated.
  • the target molecule is, for example, a biomolecule that emits a SERS signal, a fragment of a biomolecule that emits a SERS signal, a biomolecule that binds to a low molecular compound that emits a SERS signal, or a biomolecule that binds to a low molecular compound that emits a SERS signal. It can be a fragment.
  • the target molecule can be contained in a fraction fractionated in advance by the sample separation unit of 1.1 above, for example, by liquid chromatography or capillary electrophoresis.
  • RAT8-AOMK is explained in 2.2.4 below.
  • the Raman spectroscopic method according to the present invention can perform so-called “on-line” analysis in which measurement is performed while a sample from a sample separation unit is fed.
  • the Raman spectroscopy according to the present invention can perform so-called “off-line” analysis in which a sample from a sample separation unit is sent to a plate, spotted on a plate, and the spot is measured.
  • FIG. 10 compares the characteristics of the online Raman detection method (A) and the offline Raman detection method (B). The left (A) in FIG.
  • the measurement 10 is on-line detection in which the liquid feeding is directly measured by Raman
  • the right (B) is off-line detection in which the liquid feeding is once spotted on the plate and then this is measured by Raman.
  • the measurement may be performed offline.
  • the measurement sensitivity of on-line Raman spectroscopy is in units of mM, but if off-line, the sensitivity is in units of ⁇ M (several pmol for peptides).
  • the solvent of the spot on the plate is dried and evaporated to eliminate the problem of background light. Can be avoided.
  • FIG. 11 illustrates one aspect of the apparatus according to the present invention.
  • the mixed sample is introduced into the sample separation unit, and the sample separation unit uses the fraction by the liquid chromatograph, and the obtained fraction is spotted on the plate.
  • the measurement sensitivity of Raman spectroscopic analysis can be improved by drying each spot on the plate and aggregating the sample. Measurement sensitivity is improved by about three orders of magnitude or more compared to the case where drying and aggregation are not performed (dissolved state). Further, since the Raman spectroscopic analysis is performed off-line, the measurement can be performed without being affected by the background light of the solvent used in the liquid chromatograph and without being restricted by the liquid feeding speed. After the Raman spectroscopic analysis, a part or all of the spots showing a Raman peak are subjected to mass spectrometry (MS).
  • MS mass spectrometry
  • Silent region When the Raman spectroscopic analysis is performed without fractionating the cell lysate, a region where a peak is detected and a region where a peak is not detected or hardly detected appear.
  • a region where a Raman peak is not detected or hardly detected when the cell lysate is subjected to Raman spectroscopic analysis is referred to as a “silent region”.
  • Raman peak of protein is mainly observed at about 800 ⁇ 1800 cm -1 and 2800 ⁇ 3000 cm -1, it is hardly detected in the 1800 ⁇ 2800 cm -1. These Raman peaks are all assigned to specific amino acid residues.
  • tryptophan-derived peaks are near 1011 cm -1 and 1554 cm -1
  • amide-derived peaks are around 1250 cm -1 and 1660 cm -1
  • CH 2 -derived peaks are around 1430 cm -1
  • CH 3 The derived peak appears in the vicinity of 2933 cm ⁇ 1 (see FIG. 6).
  • the silent region as used herein can be 1800-2800 cm ⁇ 1 .
  • Raman spectroscopic analysis is 500 cm -1 or higher, 700 cm -1 or higher, 1000 cm -1 or higher, 1200 cm -1 or higher, 1400 cm -1 or higher, 1600 cm -1 or higher, or 1800 cm -1 or higher, 3000 cm. less than -1, less than 2900 cm -1, less than 2800 cm -1, can be performed 2700 cm less than -1, or in the region of less than 2600 cm -1.
  • the silent region is basically the same regardless of the biomaterial used.
  • Mass Spectrometer is an apparatus that ionizes molecules contained in a sample by an appropriate ionization method and measures a mass spectrum of the molecules.
  • FIG. 3 shows an example of a mass spectrometer according to the present invention.
  • a mass spectrometer including the sample unit, the separation unit, and the analysis unit constitutes the mass analysis unit according to the present invention.
  • the sample portion first, the sample 14 is placed on the sample stage 13. Next, the sample is ionized by an appropriate ionization means, and the sample is caused to fly by electrostatic force.
  • the laser part 15 is illustrated as an ionization means.
  • the ions accelerated by the accelerating electrode 16 are separated in accordance with the mass-to-charge ratio by an electric or magnetic action in the separation unit, and then detected by the ion detector 17 in the analysis unit, whereby the mass spectrum. Can be obtained.
  • the ion detector 17 is preferably connected to a signal processor 18, and the obtained signal is preferably processed by an electronic computer.
  • the ion detector 17, the signal processing unit 18, and an arbitrary computer are collectively referred to as an “analysis unit” of the mass analyzer.
  • the mass spectrum obtained by processing the signal in the analysis unit usually represents the mass-to-charge ratio (m / z) as the horizontal axis and the detection intensity as the vertical axis.
  • Examples of ionization methods for mass spectrometry include matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), atmospheric pressure chemical ionization (ACPI), electron ionization (EI), and chemical ionization (CI). ) Law.
  • MALDI matrix-assisted laser desorption ionization
  • ESI electrospray ionization
  • ACPI atmospheric pressure chemical ionization
  • EI electron ionization
  • CI chemical ionization
  • a person skilled in the art can appropriately change and adapt the configuration of the mass spectrometer according to these ionization means.
  • a sample is mixed in a matrix such as an aromatic organic compound to produce a crystal, and ionization is performed by irradiating this with a laser.
  • the matrix to be used is not particularly limited, but ⁇ -cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA), trans-4-hydroxy-3-methoxycinnamic acid (ferulic acid), 3 -Hydroxypicolinic acid (HPA), 1,8-dihydroxy-9,10-dihydroanthracen-9-one (disranol), 2,5-dihydroxybenzoic acid (DHB) and the like.
  • CHCA ⁇ -cyano-4-hydroxycinnamic acid
  • SA sinapinic acid
  • ferulic acid trans-4-hydroxy-3-methoxycinnamic acid
  • HPA 3 -Hydroxypicolinic acid
  • 1,8-dihydroxy-9,10-dihydroanthracen-9-one diisranol
  • 2,5-dihydroxybenzoic acid DHB
  • the separation unit used for mass spectrometry separates the ionized sample.
  • Examples of the type of separation unit include a time-of-flight type, a magnetic field deflection type, a quadrupole type, an ion trap type, and a Fourier transform type.
  • TOF time-of-flight
  • an ionized sample is accelerated in a pulse manner to detect a time difference until it reaches a detector. The mass can be calculated from this time difference.
  • the acceleration electrode 16 shown in FIG. 3 is arranged only in a part of the space in which ions fly, so that acceleration is performed in a pulse manner.
  • the mass spectrometry may be MS / MS analysis.
  • MS / MS analysis mass spectrometry is performed in tandem. In this method, only a specific ion is taken out in the first separation section, cleaved, and the resulting fragment ions are analyzed in the second separation section. Fragment ion analysis can be performed on a single device or on two different devices. For example, when a peptide is obtained by digesting a protein with a protease and MS / MS analysis is performed on the peptide fragment, peaks in which the peptide is sequentially fragmented are detected, and the amino acid sequence of the peptide is determined from the mass information of those peaks. can do.
  • MS / MS analysis is a technique well known in the art. See, for example, A. K. Shukla et. Al., J. Mass Spectrom. 35, 1069 (2000).
  • the apparatus according to the present invention includes a liquid chromatograph, a Raman spectroscope, and a mass spectrometer (LC-R-MS).
  • LC-R-MS mass spectrometer
  • An example is shown in FIG.
  • the mixed sample is fractionated by liquid chromatography (LC), and the fraction containing low molecular weight compounds (drugs) is narrowed down by Raman spectroscopy.
  • a fraction showing a Raman peak can be analyzed with a mass spectrometer (MS) to identify a biomolecule that binds to a low molecular compound.
  • MS mass spectrometer
  • the apparatus according to the present invention comprises a capillary electrophoresis apparatus, a Raman spectrometer and a mass spectrometer (CE-R-MS).
  • CE-R-MS mass spectrometer
  • the basic principle of the present invention is the same as in the LC-R-MS except that the sample is separated by a capillary electrophoresis apparatus (CE).
  • CE capillary electrophoresis apparatus
  • liquid phase isoelectric focusing or the like can be used as the sample separation unit, and the same applies to the case where the sample separation unit is based on other separation means.
  • the sample separation unit, the Raman spectroscopic unit, and the mass spectrometry unit are connected in this order.
  • Linking means that the devices of the apparatus are connected so that the sample can be delivered.
  • the sample separation unit, the Raman spectroscopic unit, and the mass spectrometric unit are connected in this order.
  • the sample separated by the sample separation unit is introduced into the Raman spectroscopic unit, and then the Raman spectroscopic analysis is performed.
  • Means that the apparatus is configured to deliver samples in the order of introduction into the mass spectrometer. Delivery of the sample from the sample separating unit to the Raman spectroscopic unit and from the Raman spectroscopic unit to the mass spectrometric unit can be performed manually or by an automated apparatus.
  • the sample can be transferred continuously by a liquid feed line, or can be intermittently performed by spotting the sample once on a plate or the like, or by separating the sample into individual fractions by a fraction collector.
  • the sample separation unit, the Raman spectroscopic unit, and the mass spectrometric unit may be physically independent devices, and the sample (fraction) separated from the sample separation unit may be manually or automated by the Raman spectroscopic unit.
  • the apparatus or method according to the present invention is a system in which the sample (fraction) introduced and introduced from the Raman spectroscopic section into the mass spectrometric section is manually or by an automated apparatus.
  • the apparatus according to the present invention may be an apparatus in which a sample separation unit, a Raman spectroscopic unit, and a mass analysis unit are integrated. The apparatus according to the present invention having such a configuration can overcome the problems included in the prior art.
  • the present invention provides a method for identifying a biomolecule using the apparatus according to the present invention and a method for identifying a binding site between a biomolecule and a low molecular compound.
  • a biomolecule or a fragment thereof bound with a low molecular weight compound that can be identified by Raman spectroscopy is fractionated by a sample separation unit without requiring complicated pretreatment or the like.
  • Each of the fractions (droplets, etc.) fractionated can be arranged on a plate, dried and aggregated biomolecules or fragments thereof can be directly measured by the Raman spectroscopic unit. Thereafter, all the fractions or a part of the fractions specified to have a Raman peak can be directly analyzed by the mass spectrometer without any special treatment.
  • biomolecule refers to a protein, peptide, nucleic acid, sugar, or lipid that exists extracellularly or intracellularly.
  • the biomolecules referred to in this specification may be derived from any living body or organism, such as viruses, prokaryotes, eukaryotes, fungi, plants, higher plants, animals, insects, higher animals, mammals. They may be derived from animals, rodents such as mice and rats, primates such as monkeys and chimpanzees, humans, or cultured cells or tissues thereof.
  • a nucleic acid encompassed by a biomolecule refers to a single-stranded or double-stranded nucleic acid comprising at least 10, preferably 50, 300, 500, or 1000 or more bases, preferably a specific low It interacts with molecular compounds.
  • the nucleic acid may be DNA or RNA.
  • RNA includes tRNA, ribosomal RNA, and ribozymes.
  • the nucleic acid can include a promoter region, an enhancer region, a silencer region, and a terminator region.
  • the saccharide contained in the biomolecule referred to in the present specification includes a polysaccharide, and the polysaccharide preferably interacts with a specific low molecular weight compound.
  • sugars include proteoglycans or proteoglycan analogs such as hyaluronic acid, chitin, heparan sulfate, keratan sulfate, dermatan sulfate, sialic acid, and chondroitin sulfate.
  • the lipid contained in the biomolecule referred to in this specification includes lipids contained in the organisms exemplified above, and preferably interacts with a specific low molecular weight compound.
  • lipids examples include phospholipids such as sphingophospholipids and glycerophospholipids, glycolipids such as sphingoglycolipids and glyceroglycolipids, and complex lipids that form extracellular or cell membranes such as lipoprotein lipids, sulfolipids, or galactolipids. Can be mentioned.
  • the low molecular weight compound according to the present invention refers to a compound having a low molecular weight and capable of binding to or binding to a specific biomolecule.
  • the low molecular weight compound according to the present invention has a low molecular weight compared to a biomolecule.
  • the biomolecule viewed from the low molecular weight compound may be called a target.
  • Low molecular compounds or compounds that form the basis of low molecular compounds (also referred to as compounds to be analyzed) include drugs, drug candidate compounds, physiologically active substances, metabolites, vitamins, hormones, ligands that bind to specific receptor proteins, Also included are protein agonists, protein antagonists, compounds that bind to proteins through protein post-translational modification mechanisms, and the like. These include naturally occurring compounds and analogs (analogues) that are similar in chemical structure to them.
  • the low molecular compound according to the present invention may be any compound as long as it gives a scattering peak that can be distinguished from a biomolecule in Raman spectroscopy, or a scattering peak that can be distinguished from a biomolecule by Raman labeling.
  • Raman peak of low molecular weight compounds A compound that has a characteristic Raman peak or a Raman peak that can be distinguished from biomolecules that coexist in cells or in a mixture, especially biomolecules that are targets of low molecular weight compounds. If present, this can be used in the present invention as it is as a low molecular compound. Since such a low molecular weight compound can be detected by Raman spectroscopy as it is, there is an advantage that there is no need for modification with a fluorophore or the like. In addition, a region where a Raman peak derived from a compound is observed in the range of 500 to 1800 cm ⁇ 1 is sometimes referred to as a “fingerprint region”.
  • a substituent that has an extremely small influence on the binding to a biomolecule even when introduced into the compound is introduced. It can be used as a low molecular compound.
  • a substituent is also called a Raman label.
  • the substituent or the Raman label has a scattering spectrum in a silent region. As described above, the silent region is a wave number region in which little or no signal is observed in a Raman spectrum derived from a biomolecule.
  • the substituent or Raman label has a relatively strong Raman scattered light, and shows a characteristic peak in a wave number region different from a Raman peak derived from a biomolecule when detecting a target low molecular compound.
  • the alkynyl group an ethynyl group (CH ⁇ C-), propargyl (CH ⁇ CCH 2 -, also referred to as a 2-propynyl group), but-3-yn-1-yl group (HC ⁇ CCH 2 CH 2 -) , But-2-yn-1-yl group (CH 3 —C ⁇ CCH 2 —) and the like. Any of these can be the Raman label of the present invention.
  • the low molecular weight compound according to the present invention preferably has an alkynyl group, a nitrile group, or deuterium.
  • the Raman label may be introduced directly into the compound of interest or may be attached to the compound of interest through a suitable spacer molecule.
  • the alkynyl group may be introduced directly or as an alkynyl group (ethynylphenyl group) bonded to a phenyl group.
  • the spacer molecule is a phenyl group. Therefore, a compound that binds to a specific biomolecule but does not have a characteristic Raman peak or does not have a Raman peak that can be distinguished from a biomolecule is Raman-labeled by introducing the above-described substituent, and the compound according to the present invention.
  • Spacer molecules include methylene (-CH 2- ), ethylene (-CH 2 CH 2- ), propane-1,3-diyl (-CH 2 CH 2 CH 2- ), phenylene (-C 6 H 4 -), an oxyethylene group (-OCH 2 CH 2 -), oxypropylene group (-OCH 2 CH (CH 3) -) but the like are not limited to.
  • Acyloxymethyl ketone (AOMK) is known as a cysteine protease inhibitor. The principle is that AOMK modifies the cysteine residue at the active center of the enzyme protein and loses its activity as a protease (see FIG. 24).
  • a person skilled in the art determines that if a Raman label is introduced at a site away from the methyl ketone group in the AOMK compound, it does not affect the cysteine residue modification reaction so much, and the position for introducing the Raman label is determined. be able to.
  • a “Raman-labeled compound library” in which a Raman label is introduced comprehensively at any position in the compound is prepared, and the Raman-labeled compound library has a predetermined biomolecule binding activity, for example, protein inhibitory activity.
  • examples of the low molecular compound according to the present invention include drugs, drug candidate compounds, antibiotics, and agricultural chemicals that bind to such proteins or peptides.
  • bioactive substances such as metabolites, vitamins such as coenzymes, hormones, ligands that bind to specific receptor proteins, protein agonists, protein antagonists, and compounds that bind to proteins through protein post-translational modification mechanisms.
  • Such low molecular weight compounds are preferably Raman labeled or have characteristic Raman spectra that are distinguishable from other biomolecules.
  • the compound N-Boc-AOMK that binds to the protein cathepsin B introduces an alkyne group that is a kind of Raman label with 4-nitrophenyl-4-ethynylbenzyl carbonate, and the low molecular compound RAT8- Can be AOMK.
  • examples of the low molecular weight compound according to the present invention include intercalating drugs for double-stranded nucleic acids such as proflavine and actinomycin D, netropsin, destamycin, etc. Group-bonded drugs, and DNA-cleaving drugs such as calichemicin.
  • Such low molecular weight compounds are preferably Raman labeled or have characteristic Raman spectra that are distinguishable from other biomolecules.
  • examples of the low molecular weight compound include low molecular weight antibiotics exhibiting lectin-like activity such as pradomycin A, B, C, D, E, FA-1, FA-2, and benanomycin A. It is done.
  • Such low molecular weight compounds are preferably Raman-labeled or have a characteristic Raman spectrum that can be distinguished from other biomolecules.
  • the substances according to the present invention that bind to such sugars include C-type lectins such as R-type lectin, calnexin, calreticulin, selectin, collectin, galectin, legumes.
  • C-type lectins such as R-type lectin, calnexin, calreticulin, selectin, collectin, galectin, legumes.
  • examples include lectins composed of type I lectins such as lectins, L-type lectins, P-type lectins, annexins and siglecs, and sugar chain specific antibodies.
  • Such substances are also included in the low molecular weight compounds referred to in the present invention because they bind to biomolecules.
  • a specific antibody that binds to a sugar can introduce an alkyne group by incorporating an amino acid that has been genetically engineered to be alkyne-modified into a protein.
  • the low molecular weight compound according to the present invention includes a polyether antibiotic such as monensin, lasalocid, salinomycin, an anesthetic such as isoflurane, sevofuran, desflurane, vitamin, etc.
  • a polyether antibiotic such as monensin, lasalocid, salinomycin
  • an anesthetic such as isoflurane, sevofuran, desflurane, vitamin, etc.
  • fat-soluble vitamins such as A (retinoid), vitamin D, vitamin E, and vitamin K.
  • Such low molecular weight compounds are preferably Raman labeled or have characteristic Raman spectra that are distinguishable from other biomolecules.
  • the low molecular compound according to the present invention is a Raman-labeled amino acid.
  • the low molecular weight compound according to the present invention is a low molecular weight peptide having a Raman-labeled amino acid.
  • FIG. 6 shows an example of an alkyne-labeled peptide and its Raman spectrum.
  • the Raman spectroscopic unit according to the present invention can clearly identify both peptides.
  • Focusing on a low molecular weight peptide having physiological activity one or more amino acids among them are Raman-labeled, or a peptide in which a Raman-labeled amino acid is substituted is prepared.
  • this Raman labeled low molecular weight peptide is used, the biomolecule that binds to the peptide can be identified by the apparatus or method according to the present invention.
  • the binding site between the peptide and the biomolecule can be identified. That is, the target of a low molecular weight peptide (for example, peptide hormone) having physiological activity can be searched, and its action site can be identified.
  • Alkylated peptides can be prepared by solid phase synthesis (Fmoc) methods. Explaining in the above example, if the amino acid sequence added next to lysine (K) is propargylglycine (X) by solid-phase synthesis and the amino acid sequence is added in order from the C-terminal to TPCQPWQE, the resulting alkyne is obtained. Peptides can be obtained.
  • a peptide may be synthesized by a solid-phase synthesis method, and any side chain functional group in the peptide may be alkyned.
  • the bond includes a covalent bond, a coordinate bond, and an interaction.
  • a covalent bond refers to a chemical bond formed by a plurality of atoms sharing each other's electrons.
  • a coordinate bond refers to a chemical bond in which electrons are provided only from one of the atoms involved in the bond.
  • the interaction refers to an action based on an intermolecular force acting between two molecules, and includes an ion-ion interaction, an action caused by a hydrogen bond, a dipole interaction, a hydrophobic interaction, and a combination thereof.
  • Method for identifying the binding site between a biomolecule and a low molecular weight compound "Identifying" the binding site between a biomolecule and a low molecular weight compound is where the low molecular weight compound is bound or interacts with the biomolecule. It means to decide. When the apparatus according to the present invention is used, a binding site between a biomolecule and a low molecular compound can be identified.
  • the method for identifying a binding site between a biomolecule and a low molecular compound includes the following steps. (1) The fractionated biomolecule fragment bound to the low molecular weight compound is subjected to Raman spectroscopic analysis, and (2) all or a part of the fraction subjected to Raman spectroscopic analysis is subjected to mass spectrometry.
  • a fraction having a Raman peak derived from a low molecular weight compound bound to a biomolecule fragment is detected by Raman spectroscopic analysis, and a mass spectrometry result of the fraction having a Raman peak derived from a low molecular weight compound is obtained.
  • the binding site of the low molecular compound in the biomolecule is identified by collating with the mass information of the molecule.
  • a low molecular compound and a biomolecule are bound, and then the biomolecule bound to the low molecular compound can be fragmented and fractionated. Such a fraction can be used in the above step (1).
  • a biomolecule fragment refers to a unit obtained by cleaving a biomolecule, which is a polymer compound, at one or more sites to obtain a unit having a lower molecular weight.
  • a biomolecule when the biomolecule is a protein, it can be subjected to protease treatment to obtain a fragment (peptide) in which the peptide bond is cleaved.
  • protease include, but are not limited to, serine protease, aspartic protease, metalloprotease, cysteine protease and the like.
  • Biomolecules can also be chemically decomposed with cyanogen bromide, N-bromosuccinimide, hydroxylamine, and the like.
  • the biomolecule is a peptide.
  • the biomolecule contains a triglyceride lipid, it can be subjected to treatment with a lipolytic enzyme such as lipase to obtain a degraded fragment (fatty acid).
  • a lipolytic enzyme such as lipase
  • examples of the lipase include, but are not limited to, triacylglyceride lipase, phospholipase, lipoprotein lipase, esterase and the like. The same applies to other types of biomolecules.
  • enzymes that degrade sugar can be used, such as ⁇ -amylase, ⁇ -amylase, glucoamylase, isoamylase, pullulanase, maltotriohydrolase, ⁇ -glucosidase, cyclodextrin, glucanotransferase, Examples include, but are not limited to, amyloglucosidase, dextranase, ⁇ -galactosidase, sialidase, cellulase, ⁇ -mannosidase, ⁇ -mannosidase and the like.
  • a nucleic acid fragment can be obtained by treating with a nucleic acid degrading enzyme such as a restriction enzyme that specifically cleaves double-stranded DNA or a single-stranded RNA cleaving enzyme ribonuclease.
  • a nucleic acid degrading enzyme such as a restriction enzyme that specifically cleaves double-stranded DNA or a single-stranded RNA cleaving enzyme ribonuclease.
  • Fragmentation refers to the degradation of biomolecules into lower molecular weight fragments by appropriate degrading enzymes or physical or chemical treatment. Fragmentation can be performed by enzyme treatment or chemical treatment as described above. A person skilled in the art can appropriately select the enzyme or compound to be used and determine the treatment conditions.
  • FIG. 3 An example of an apparatus for identifying a binding site between a biomolecule and a low molecular compound is shown in FIG.
  • HPLC is connected to a UV detector, which is connected to a spotter, which is then connected to a Raman spectroscopic unit, and then this is connected to a mass spectrometric unit.
  • This apparatus can be used in a method for identifying a binding site between a biomolecule and a low molecular compound according to the present invention. This method will be described with reference to FIG. 18.
  • a biomolecule eg, protein
  • the obtained fragment (peptide) mixture is fractionated by HPLC in the sample separation section, and detected by a UV detector to obtain a UV chromatogram.
  • each fraction is spotted on a MALDI plate.
  • the arrayed peptide array is subjected to Raman spectroscopy and mapped according to Raman intensity. By subjecting the fraction showing a Raman signal to MALDI-MS and performing mass spectrometry, it is possible to identify a peptide to which a low molecular compound is bound, thereby identifying a binding site between the low molecular compound and the biomolecule.
  • RAT8-AOMK is an alkyne labeled cathepsin B inhibitor.
  • FIG. 19-1 schematically illustrates the procedure of bond analysis. As shown in the upper part of FIG. 19-1, RAT8-AOMK is first bound to cathepsin B and then fragmented (digested) by protease treatment.
  • screening can be performed with the Raman peak of the low-molecular compound itself.
  • screening can be performed with the Raman peak of the low molecular compound itself, and it can be detected which fraction contains the low molecular compound.
  • FIG. 18 and the present specification and drawings the configuration in which the sample separation unit has the UV detector is illustrated for convenience.
  • the UV detector of the sample separation unit is not essential for the apparatus or method according to the present invention, and the low molecular weight The compound can be detected by the Raman spectroscopic unit.
  • mass analysis results are obtained, and this is “verified” with biomolecule mass information to bind the low molecular compound in the biomolecule.
  • To identify the site in the example of protein, whether or not the mass spectrum result of the obtained peptide fragment matches the calculated mass of the region corresponding to a part of the protein from which the peptide is derived. By judging, it refers to identifying the binding site where the low molecular weight compound is bound in the protein.
  • a person skilled in the art can provide information on biomolecules such as proteins, peptides, nucleic acids, lipids and sugars as needed, including DDBJ / NIG, EMBL / EBI, GenBank / NCBI, NIAS DNA Bank, PIR, SWISS-PROT & TrEMBL , GenPept, PRF, Japan Glycoscience Integrated Database (JCGGDB), LipidBank, and other suitable known databases. Further, whether or not the amino acid sequences match can be determined using software such as Mascot (Matrix Science Inc.). Furthermore, the bound amino acid of a low molecular compound can also be confirmed by MS / MS analysis.
  • the screening method for identifying a biomolecule that binds to the low molecular weight compound according to the present invention includes the following steps. (1) A fraction containing a biomolecule bound to a low molecular compound was subjected to Raman spectroscopic analysis, a fraction containing the biomolecule bound to the low molecular compound was detected, and (2) subjected to Raman spectroscopic analysis. Subject all or part of the fraction to mass spectrometry.
  • the fraction having a Raman peak derived from a low molecular compound is detected by Raman spectroscopy, and the mass analysis result of the fraction having a Raman peak derived from the low molecular compound is obtained. Collation is performed to identify biomolecules that bind to the low molecular weight compound.
  • a low molecular compound is first added to a mixture containing a target biomolecule to bind the low molecular compound and the biomolecule, and then this can be fractionated by a sample separation means. . Such separated fractions can be used in step (1).
  • Biomolecules The screening method and binding site identification method according to the present invention can be used for various biomolecules including proteins, peptides, nucleic acids, sugars, and lipids.
  • the screening method according to the present invention can be used for protein screening. For example, in the case of screening an organism or virus whose base sequence of the entire genome has been decoded to determine which protein in a certain organism activity binds and acts with a low molecular weight compound having a certain drug activity, A mass analysis result of a protein that binds to the low molecular weight compound is obtained. Further, when the protein that binds to the low molecular weight compound is decomposed by protease treatment and fragmented into peptides, and mass analysis is performed, mass information of the peptide fragments can be obtained. Furthermore, the amino acid sequence of a peptide can be determined by performing MS / MS analysis.
  • the obtained amino acid sequence can be collated with the sequence information of any protein encoded in the entire genome sequence that has been decoded, and the protein that binds to the low molecular weight compound can be identified.
  • the binding site can also be identified by using the above-mentioned “3. Identification method of binding site between biomolecule and low molecular compound”. The same applies to other biomolecules such as nucleic acids, sugars or lipids, and when there is comprehensive mass information about various nucleic acids, sugars or lipids contained in a sample, the above method according to the present invention is carried out.
  • Mass spectrometry results of nucleic acids, sugars or lipids that bind to the low molecular compounds are obtained, and this can be collated with the comprehensive mass information to identify those that bind to the low molecular compounds. Hereinafter, these will be described.
  • nucleic acids The method according to the invention can also be used for nucleic acids. For example, when there is information on various nucleic acid molecules of a certain cell, when it is desired to determine which nucleic acid molecule binds to a low molecular compound, the nucleic acid molecule that binds to the low molecular compound is performed by carrying out the method according to the present invention. Mass information can be obtained. Further, by performing MS / MS analysis, a mass spectrum of nucleic acid sequentially decomposed can be obtained, and this can be collated with the aforementioned mass information to identify which nucleic acid molecule the low molecular weight compound binds to. In addition, after specifying the bound nucleic acid, the binding site can be determined by carrying out the method according to the present invention.
  • the method according to the invention can also be used for sugars.
  • the method according to the present invention is performed, and Mass information of the capsular polysaccharide that binds to the molecular compound can be obtained. It is also possible to obtain a mass spectrum of polysaccharides sequentially decomposed by performing MS / MS analysis, which can be collated with the aforementioned mass information to identify which capsular polysaccharide the low molecular weight compound binds to. .
  • the method according to the present invention can be performed to determine the binding site.
  • the method according to the invention can also be used for lipids.
  • the method according to the present invention when there is comprehensive information on the molecules constituting the lipid bilayer membrane of a cell, when it is desired to determine which lipid molecule a low molecular weight compound binds to, the method according to the present invention is performed, A mass spectrum of a lipid molecule that binds to a low molecular compound can be obtained. By comparing this with comprehensive information on the lipid, it is possible to identify which lipid molecule the low-molecular compound binds to. In addition, after identifying the bound lipid molecule, the method according to the present invention can be performed to determine the binding site.
  • a system using RAT8-AOMK as a low molecular compound and protein cathepsin B as a biomolecule is described as a representative example.
  • the biomolecules to which the apparatus and method according to the present invention are applied are not limited to proteins in principle.
  • the silent region is basically the same for other components of cells, such as nucleic acids, sugars, and lipids.
  • the Raman spectrum of the HeLa cell is shown in FIG. The Raman peak is not particularly observed in the region of 1800 to 2800 cm ⁇ 1 , and it can be seen that the silent region is the same range in the cell lysate. See also Non-Patent Document 1.
  • the apparatus and method according to the present invention can be applied to biomolecules such as nucleic acids, sugars, and lipids, when a group having a peak in a silent region such as alkyne is used as a Raman label.
  • a solution containing biomolecules bound to low molecular weight compounds causes cells to take in low molecular weight compounds, bind them to intracellular biomolecules, and disrupt the cells. Can be prepared.
  • a solution containing a biomolecule bound to a low molecular compound can also be prepared by crushing cells, then adding the low molecular compound to the cell lysate and allowing it to bind to intracellular biomolecules.
  • the sample used in the method according to the present invention may be a fraction obtained by liquid chromatography using a low-boiling polar solvent and water as a separation solvent.
  • the low boiling polar solvent is as described in 1.1.1.
  • the fraction to be analyzed by Raman spectroscopy is a droplet as it is or a droplet mixed with a solvent. It is possible to prepare a spot for Raman spectroscopic analysis by arranging on a simple plate and evaporating the solvent contained in the droplet. Since the spots are prepared by evaporation of the solvent and the Raman spectroscopic analysis is performed with a Raman microscope, the plate preferably has a cleaned surface. The surface of the plate being cleaned means that there are no liquids, solid contaminants, inorganic or organic impurities, fingerprints, dust, cloudiness, scratches, etc. on the surface that would interfere with Raman spectroscopy.
  • Cleaning can be performed by washing the plate surface with water, an aqueous detergent containing a surfactant, or an organic solvent, and then drying the plate.
  • the plate used preferably has a water repellent surface. More preferably, the water-repellent surface of the plate is cleaned.
  • Water repellent means to repel water
  • the water repellent surface of a plate refers to the surface of the plate that repels water.
  • the water repellent surface can be realized, for example, by a process of applying a water repellent having a surface tension remarkably smaller than that of water, such as a fluorine water repellent or a silicone water repellent, to the plate.
  • the plate having a water repellent surface may be a plate made of metal, glass, quartz, calcium fluoride or magnesium fluoride, and preferably has little or no influence on the results of Raman spectroscopy and mass spectrometry.
  • the arrangement of the droplets on the plate can be performed using a micropipette. This operation can be performed manually or by automated equipment. Examples of the plate include, but are not limited to, a 96-well plate and a 384-well plate that are widely used in the art.
  • FIG. 13 shows an example of spotting the fraction sample on the plate. On the left side of FIG. 13, a solution fractionated by HPLC is fed and spotted on a plate. The order of spotting is only an example. As shown in the lower right of FIG. 13, as the droplets on the substrate dries, the peptides in the solution aggregate in a ring shape. When this ring portion is analyzed with a Raman microscope, a Raman spectrum can be obtained efficiently and with high sensitivity.
  • Raman spectroscopic analysis and mass spectrometry may be performed using commercially available plates, but it is also possible to prepare and use a microscope substrate fixing plate suitable for the sample stage of the Raman microscope.
  • . 14 and 15-1 show examples of plates that can be used in the apparatus according to the present invention.
  • the microscope substrate fixing plate is shown in the upper left of FIG.
  • the photograph is a multi-spot metal substrate viewed from the back.
  • the lower left of FIG. 14 shows the sample stage of the Raman microscope.
  • the right side of FIG. 14 shows a state where a microscope substrate fixing plate is mounted on the sample stage. In this state, Raman spectroscopic analysis is performed. Detecting a spot having the target Raman peak is also called Raman screening.
  • the fraction of the sample subjected to the Raman spectroscopic analysis is then subjected to mass spectrometry. Therefore, the plate used for the Raman spectroscopic analysis can be directly analyzed by the mass spectrometer. It is preferable. Therefore, the present inventors have developed a plate that can smoothly perform Raman spectroscopy and mass spectrometry of a spotted sample. Examples thereof are shown in FIGS. When this plate is used, the sample screened by the Raman spectroscopic unit can be directly analyzed by the mass spectrometric unit. In FIG. 16, it was confirmed that a quartz substrate advantageous for Raman measurement can be used as it is for MALDI-MS measurement. In the upper left of FIG.
  • the left spot is alkyne peptide 1 and the right spot is peptide 1.
  • the left arrow points to the alkyne peptide spot
  • the right arrow points to the peptide 1 spot.
  • the upper right of FIG. 16 shows the Raman spectra of alkyne peptide 1 and peptide 1, and both samples can be identified by the presence or absence of a Raman peak at 2123 cm ⁇ 1 .
  • the lower right of FIG. 16 is the MALDI-MS measurement result, and the mass difference between the alkyne peptide 1 and the unlabeled peptide 1 can be confirmed from the spectrum, which is in good agreement with the calculated value. This result corresponds to FIGS.
  • FIG. 17 shows a multi-spot substrate whose entire surface is made of quartz.
  • the substrate is treated with hydrochloric acid, sulfuric acid, nitric acid or the like, acid removed by washing with water, washed with a low boiling point solvent such as acetone, and dried.
  • the substrate needs to be clean on the surface, but is preferably water-repellent so that biological materials can aggregate at high density, such as dimethyldichlorosilane, trimethylchlorosilane, etc. in which no signal is observed in the silent region of the Raman spectrum.
  • the substrate can be produced by performing a water repellent treatment with a silicone water repellent or a fluorine water repellent. As shown in the lower left of FIG. 17, the substrate is fixed to the base with a magnet. This plate can be used in the method and apparatus according to the present invention.
  • the sample is directly used for the Raman spectroscopic unit.
  • Specific biomolecules or fragments can be easily detected or separated and identified.
  • the Raman spectroscopic unit is connected to the mass spectrometric unit, the fraction specified by the Raman spectroscopic analysis can be analyzed as it is by a subsequent mass spectrometer, thereby enabling sequencing of biomolecules and low molecular weight compounds.
  • the binding site can be easily identified. Sequencing refers to, for example, determination of an amino acid sequence when the biomolecule is a protein or peptide, and determination of the sequence of sugars constituting the polysaccharide when the biomolecule is a polysaccharide.
  • the apparatus or method according to the present invention can also be used for analysis of post-translational modification of proteins.
  • a protein when a protein is translated and then modified at a specific site with a lipid such as a farnesyl group or a palmitoyl group (for example, a cysteine residue in the case of a palmitoyl group), the lipid is Raman-labeled in the present invention.
  • a low molecular weight compound is used and used in the apparatus or method according to the present invention, a protein that binds to a Raman-labeled lipid can be identified, and the binding site thereof can also be identified.
  • the Raman-labeled lipid may be incorporated into the cell and bound to the target protein, or may be bound to the target protein in addition to the cell lysate.
  • the lipid is modified with a fluorophore, there is a problem that the cellular mechanism of protein post-translational modification does not recognize the fluorescently modified lipid and cannot perform subsequent analysis.
  • Non-patent Document 4 lipid is incorporated into cells and then modified with a fluorophore using a click reaction
  • Non-patent Document 5 a report example for specifying a protein that binds to the lipid by fluorescence analysis or click reaction to lipid
  • a biotin tag is introduced with and detected with streptavidin
  • these methods have problems of complicated handling, nonspecific reaction, and loss of target protein due to reaction operation.
  • a Raman-labeled lipid that has little or no influence on the cellular mechanism of protein post-translational modification is used, and a biomolecule that binds to the Raman-labeled lipid is identified. And its binding site can be identified.
  • the post-translational modification of the protein is a sugar modification.
  • the apparatus and method according to the present invention comprehensively search for biomolecules to identify those that bind to low molecular compounds, or bind biomolecules to low molecular compounds.
  • Site identification can be performed.
  • a low molecular weight compound can be selectively detected with high sensitivity by a Raman label having a Raman peak of the compound itself or a characteristic Raman peak such as an alkynyl group.
  • the low molecular weight compound can be used as it is, or the molecular weight of the tag added to the analysis target compound can be kept low, and compared with the conventional fluorescent labeling method using a large fluorophore.
  • the target biomolecule can be specifically identified / detected and identified without changing the biochemical properties of the compound.
  • Raman spectroscopic analysis according to the present invention not only low molecular compounds but also molecular vibration information derived from biomolecules can be obtained, so there is an advantage not found in the prior art that the coexistence of low molecular compounds and biomolecules can be confirmed. is there.
  • Non-patent Document 2 Non-patent Document 2
  • the conventional method of combining an alkyne tag with a click reaction has a problem that there is a loss of a target substance related to the click reaction operation and a non-specific reaction occurs.
  • the alkyne tag itself can be analyzed by Raman spectroscopy in the method according to the present invention, problems such as loss of the target substance and non-specific reactions that were included in the conventional method are solved.
  • the SERS method using the aggregation accelerator of the present invention is characterized in that the measurement sensitivity is increased and the detection limit is improved.
  • the distribution of aggregates is made uniform, so the correlation between the amount of sample to be measured and the SERS signal is improved, and variations in measurement are suppressed.
  • the long-time measurement which is a weak point of Raman measurement, can be shortened.
  • Trifluoroacetic acid (TFA) for sample separation in liquid chromatography is from Wako Pure Chemical Industries, Ltd., distilled water containing 0.1% formic acid, and acetonitrile (MeCN) containing 0.1% formic acid (FA) are from Kanto. Obtained from Chemical Co., Ltd. Note that acetonitrile and distilled water for semi-micro HPLC were obtained from Nacalai Tesque.
  • ⁇ Raman spectroscopy> An example of the measurement conditions is as follows. Wavelength: 532 nm, laser intensity: 30 mW, exposure time: 30 seconds, objective magnification: 40 times, numerical aperture: 0.75, in dry air, irradiation: spot irradiation.
  • the laser is focused on a ring area (dried, agglomerated and powdered) where the peptide is highly concentrated. The spectra were acquired five times for each spot and averaged to obtain one spectrum.
  • MALDI mass spectra were acquired using LTQ Orbitrap XL (Thermo Fisher Scientific) equipped with a MALDI ion source. Samples were mixed with ⁇ -cyano-4-hydroxycinnamic acid (CHCA) or 2,5-dihydroxybenzoic acid (DHB) (Bruker). MALDI mass spectra were acquired by FT mode (resolution 30,000 or 60,000). These spectra were acquired manually. The parameters are as follows: Scan range: m / z 800-4000, Laser energy ( ⁇ J): 2-4 (for CHCA) or 6-8 (for DHB).
  • Nano LC-MS and MS / MS were acquired using LTQ Orbitrap XL (Thermo Fisher Scientific) equipped with an ESI ion source.
  • a nano HPLC system (Ultimate 3000, DIONEX), a trap column (ZORBAX 300SB C18 (inside diameter 0.3 ⁇ 5 mm), Agilent) and a tip column (NTCC-360, inside diameter 0.075 mm, Nikyo Technos) were used.
  • Mobile phase A was distilled water containing 0.1% formic acid and 4% acetonitrile, and mobile phase B was acetonitrile containing 0.1% formic acid.
  • ESI mass spectra were acquired in FT mode (resolution 60,000) and MS / MS spectra were acquired in ion trap mode.
  • Database search for identifying proteins or modified peptides was performed by database MS / MS ion search (MatrixScience mascot search engine) using a peptide sequencing program (Protein Discoverer, Thermo Thermo Fisher Scientific).
  • Example 1 Raman spectroscopic analysis of a low molecular weight compound having a Raman label
  • a low molecular weight peptide having an amino acid sequence of EQWPQCPTXK SEQ ID NO: 4
  • a peptide in which X is isoleucine and a peptide in which X is propargylglycine were synthesized.
  • the former is called peptide 1
  • the latter is called alkyne peptide 1.
  • Peptide 1 was synthesized by the solid phase synthesis (Fmoc) method.
  • alkyne peptide 1 was also synthesized by solid phase synthesis (both peptides were synthesized at the RIKEN Brain Science Institute).
  • a commercial product was used as propargylglycine.
  • FIGS. 8-1 and 8-2 The results obtained by fractionating alkyne peptide 1 with a liquid chromatograph and then subjecting it to Raman spectroscopic analysis are shown in FIGS. 8-1 and 8-2.
  • Liquid chromatography and Raman spectroscopic analysis were performed using the methods and conditions described in [Experimental methods] above.
  • the sample was fractionated according to the retention time by liquid chromatography.
  • the result of measuring this with a UV detector is A in FIG.
  • FIG. 8B which is an enlarged view of this result, a UV peak was observed at 28 to 29 minutes, and peptides were detected.
  • D in Fig. 8-2 shows Raman spectra of fraction numbers 1 to 17.
  • a Raman peak characteristic of alkyne was observed in fractions 7 to 8.
  • FIG. 7 shows the mass analysis result of the sample subjected to Raman spectroscopic analysis.
  • a peak of alkyne peptide 1 was detected in the vicinity of m / z 1211, and a peak of peptide 1 was detected in the vicinity of m / z 1229.
  • FIG. 9 shows the results of separating the alkyne-labeled peptide and the unlabeled peptide from the mixture using the method according to the present invention.
  • the sample was fractionated according to the retention time by liquid chromatography. The result of measuring this with a UV detector is shown in FIG. 9-1A.
  • FIG. 9-1B which is an enlargement of this result, UV (280 nm) peaks were observed at 31 minutes and 33.2 minutes.
  • the results of Raman spectroscopy of these fractions are shown in FIG. 9-3G. A Raman peak was observed in fractions 3 and 4, and no significant peak was observed in fractions 12 and 13.
  • RAT8-AOMK low molecular weight compound RAT8-AOMK (S) -3- (2-((((4-ethynylbenzyl) oxy) carbonyl) amino) -3-phenylpropanamido) -2-oxopropyl 2 , 6-Dimethylbenzoate) (hereinafter referred to as RAT8-AOMK) was prepared by the following procedure.
  • the reaction was quenched with water saturated NaHCO 3 and ethyl acetate, extracted twice with ethyl acetate and dried over magnesium sulfate.
  • the organic layer was concentrated under reduced pressure, and then purified on a silica gel column using ethyl acetate / hexane (2/1) solvent to obtain colorless and amorphous bromomethyl ketone (1.55 g, 57%).
  • Raman spectroscopy was performed using a Raman microspectroscope (Nanophoton, Raman-11).
  • a laser with a wavelength of 532 nm was used as the laser light source.
  • the intensity of the laser was 30 mW on the sample surface after passing through the objective lens, and the exposure time was 30 seconds.
  • An objective lens with a magnification of 40 times and a numerical aperture of 0.75 was used. Point illumination was selected as the laser illumination pattern.
  • Raman spectra in the wavenumber range of 710-3100 cm -1 were acquired.
  • FIGS. The results of Raman spectroscopic analysis are shown in FIGS.
  • an alkyne-derived Raman peak was observed in the vicinity of 2100 cm ⁇ 1 as shown in the upper right of FIG.
  • Raman spectra at various sample concentrations are shown.
  • an alkyne-derived Raman peak was observed around 2109 cm ⁇ 1 as shown in the upper right of FIG.
  • concentrations is shown in the lower stage of FIG. 26, the Raman peak derived from protein other than the peak derived from alkyne was confirmed simultaneously.
  • Example 5 Liquid Chromatography ⁇ Nano LC-Probot>
  • the sample lot FL-S10 prepared by the above method was lyophilized and dissolved in 26 ⁇ l of water. 25 ⁇ l of 26 ⁇ l of the sample was injected into a nano LC (NanoFrontier nLC, Hitachi) equipped with a UV detector (MU701, GL science) and fractionated. The flow rate was 250 nL / min. Fractions were spotted on a MALDI plate (ITOP plate, Thermo) using a fraction collector (Probot, Dionnex) at a spotting rate of 20 seconds / spot. The result of UV chromatogram is shown in FIG. FIG. 20C shows the order in which the fractions are spotted. UV absorption was observed in fraction numbers 35-75 as shown in FIG. 20A. About this range, the Raman spectroscopic analysis and the mass spectrometry were performed in the following procedures next.
  • Example 6 MALDI mass spectral analysis of concentrated RAT8-AOMK-labeled cathepsin B spotted
  • FIG. 27 shows bright field images of fraction numbers 1 to 94 spotted on the MALDI plate. In the spot, the solvent was evaporated by a drying process, and the sample was concentrated.
  • the sample lot FL-S10 containing this concentrated RAT8-AOMK-labeled cathepsin B was measured by Raman spectroscopy. Since alkyne signals were detected from multiple spots, mass spectra were manually acquired from the same target plate using a MALDI-Orbitrap instrument.
  • FIG. 20A shows the relationship between the retention time in the UV chromatogram and the fraction number. Below that, a Raman spectrum plotting the peak intensity of alkyne (2107 cm ⁇ 1 ) is shown correspondingly (FIG. 20B). An alkyne signal was obtained for fractions 57-66, indicating the presence of a RAT8-AOMK labeled peptide.
  • Raman spectroscopy was performed using a Raman microspectroscope (Nanophoton, Raman-11). A laser with a wavelength of 532 nm was used as the laser light source. The intensity of the laser was 30 mW on the sample surface after passing through the objective lens, and the exposure time was 30 seconds. An objective lens with a magnification of 40 times and a numerical aperture of 0.75 was used. Point illumination was selected as the laser illumination pattern. Raman spectra in the wavenumber range of 710-3100 cm -1 were acquired. Silver nanoparticles were not used.
  • FIG. 21 shows the Raman spectrum obtained from fraction numbers 35-94.
  • the Raman spectrum is acquired 5 times for each spot, and the averaged Raman spectrum is shown.
  • the alkyne peak intensity of fraction numbers 35-75 is shown in FIG. 20C.
  • Fig. 27 shows bright field images of 94 sample spots on the MALDI plate.
  • the Raman measurement was performed with the Raman microscope focused on the agglomerated part. Fraction number 35 coincides with the starting point where the UV peak intensity begins to increase. After Raman measurement, MALDI mass spectrometry was performed for each spot according to the following procedure.
  • FIG. 28 is a mass spectrum of fraction number 56-60.
  • the theoretical m / z value of peptide A-2 (DQGSCGSCWAFGAVEAISDR + RAT8-AOMK) is shown at the bottom of FIG.
  • the region corresponding to the theoretical spectrum of peptide A-2 (bottom row) is shown in parentheses at the top. The strongest peak was detected in fraction number 57.
  • FIG. 29 is a mass spectrum of fraction numbers 58-62.
  • the theoretical m / z value of peptide B-1 (EIRDQGSCGSCWAFGAVEAISDR + carbamidomethyl + RAT8-AOMK) is shown at the bottom of FIG.
  • EIRDQGSCGSCWAFGAVEAISDR + carbamidomethyl + RAT8-AOMK is shown at the bottom of FIG.
  • FIG. 30 is a mass spectrum of fraction numbers 60-65.
  • the theoretical m / z value of peptide A-1 (DQGSCGSCWAFGAVEAISDR + carbamidomethyl + RAT8-AOMK) is shown at the bottom of FIG.
  • FIG. 31 shows a superposition of these results.
  • Peptide A-2 was found most frequently in fraction number 57, peptide B-1 in fraction number 60, and peptide A-1 in fraction number 62 (fraction number is the number of wells on the MALDI plate). Number).
  • FIG. 22 shows the MALDI mass spectrum obtained for the spots detected by Raman screening.
  • the left alkyne peak intensity map of FIG. 22-1 corresponds to the peak intensity profile of FIG.
  • the peak of the AOMK-labeled peptide was observed (A, B, C in FIG. 22-1).
  • FIG. 22-2 the experimental results are compared with the calculated values. From the fraction number that showed a Raman peak, a mass spectrum that closely matched the calculated mass of the peptide fragment bound with the low molecular compound RAT8-AOMK was obtained.
  • the mass spectrum of fraction number 62 showed a spectrum having a peak at m / z 2492 and the like, which was assigned to peptide A-1 (DQGSCGSCWAFGAVEAISDR + carbamidomethyl + RAT8-AOMK).
  • the calculated mass to charge ratio (m / z) of C 109 H 150 N 28 O 36 S 2 is 2492.0282 Da.
  • the mass spectrum of fraction number 60 was assigned to peptide B-1 (EIRDQGSCGSCWAFGAVEAISDR + carbamidomethyl + RAT8-AOMK).
  • the calculated m / z of C 126 H 180 N 34 O 41 S 2 is 2890.2559 Da.
  • the mass spectrum of fraction 57 was assigned to peptide A-2 (DQGSCGSCWAFGAVEAISDR + RAT8-AOMK).
  • the calculated m / z of C 107 H 147 N 27 O 35 S 2 is 2435.0067.
  • Mass spectrometry was performed on a spot where no alkyne signal was observed (fraction number 50), and an unlabeled peptide fragment was confirmed (peptide NGPVEGAFSVYSDFLLYK, SEQ ID NO: 5, 2004.98 Da). This indicates that MALDI mass spectral analysis can be performed on unlabeled peptides as well as labeled peptides.
  • the spots where AOMK-labeled peptide and unlabeled peptide were observed by MALDI mass spectrometry are roughly shown in FIG. Only peptide was detected in fraction number 50. In the vicinity of fraction number 57-66, an AOMK-labeled peptide was detected.
  • the intact RAT8-AOMK (neat) has two unique Raman peaks (bottom of FIG. 23A). One peak is 2106 cm ⁇ 1 , which is attributed to the alkyne vibration. Another peak is vibration due to the phenyl ring at 1610 cm ⁇ 1 .
  • the RAT8-AOMK (neat) as it is and the Raman spectrum of fraction numbers 35-75 are shown correspondingly. In fraction No. 57-66, a peak was observed at 1609 cm ⁇ 1 .
  • CHCA In MALDI-Orbitrap analysis, CHCA or DHB was used as a matrix.
  • CHCA is suitable for automatic analysis because it is easy to form a uniform co-crystal and a spectrum can be obtained with high sensitivity.
  • co-crystals of DHB are not uniform and are needle-like, but in many cases, the peptide coverage (inclusion range) of the protein is increased. Therefore, it is important to select a matrix according to the properties of the analysis sample and the purpose of measurement. Below, the theoretical mass of each peptide is described. The above experimental results agree well with these theoretical values.
  • Example 7 MALDI-MS / MS spectral analysis of spotted concentrated RAT8-AOMK-labeled cathepsin B
  • MS / MS analysis was performed using a MALDI-Orbitrap apparatus on the fraction that was measured by spectroscopy and the alkyne signal was detected.
  • FIG. 33 shows an MS / MS spectrum obtained from the fraction in which peptide A-1 (DQGSCGSCWAFGAVEAISDR + carbamidomethyl + RAT8-AOMK) was detected.
  • FIG. 14 The lower left of FIG. 14 shows the sample stage of the Raman microscope.
  • the right side of FIG. 14 shows a state where a microscope substrate fixing plate is mounted on the sample stage. In this state, Raman screening (Raman spectroscopic analysis) is performed.
  • a metal plate for MALDI manufactured by Thermo was used after confirming the cleaning of the surface.
  • a quartz substrate is advantageous for Raman measurement.
  • synthetic quartz Starbar Japan, ⁇ 25 mm ⁇ 0.17 mm
  • This can be used as it is for MALDI-MS measurement.
  • a quartz substrate advantageous for Raman measurement is shown on the left of FIG.
  • the results of spotting peptides and alkyne peptides on this substrate and performing Raman spectroscopic analysis are shown in the upper right of FIG.
  • a Raman peak specific to alkyne was observed at 2123 cm ⁇ 1 , whereas in the peptide, no Raman peak was observed in this region.
  • FIG. 16 shows the result of using this quartz substrate for MALDI-MS measurement as it is.
  • An alkyne peptide peak was detected in the vicinity of m / z 1211, and a peptide peak was detected in the vicinity of m / z 1229.
  • the materials used are a peptide whose amino acid sequence is EQWPQCPTXK (SEQ ID NO: 4), a peptide where X is isoleucine, and an alkyne peptide where X is propargylglycine.
  • the Raman spectrum of FIG. 6 corresponds to the upper right of FIG. 16, and the mass spectrum of FIG. 7 corresponds to the lower right of FIG.
  • FIG. 17 shows a multi-spot substrate made entirely of quartz.
  • the quartz substrate was fixed to the pedestal with a magnet as shown in the lower part of FIG.
  • Example 9 SERS Measurement Using Gold Nanoparticles
  • a gold nanoparticle dispersion liquid (EMGC50, BBI) having a diameter of 50 nm was dropped on a glass substrate and dried.
  • 1 ⁇ l of 6 mM RAT8-AOMK dissolved in DMSO was dropped onto the dried gold nanoparticle aggregate.
  • 1 ⁇ l of 6 mM RAT8-AOMK dissolved in DMSO was dropped on a glass substrate without gold nanoparticles.
  • Raman measurement was performed on each droplet.
  • a Raman microspectroscope (Nanophoton, Raman-11) was used.
  • a laser having a wavelength of 660 nm was used as the laser light source.
  • Line illumination was selected as the laser illumination pattern.
  • the intensity of the laser was 3.5 mW on the sample surface after passing through the objective lens, and the exposure time was 10 seconds.
  • As the objective lens an objective lens having a numerical aperture of 0.75 and a magnification of 40 times was used. 400 points of Raman spectra obtained along the line were averaged to obtain a spectrum for each droplet. Raman spectra in the wave number range of 1250-2400 cm -1 were acquired. The results are shown in FIG. The enhancement of Raman signal was confirmed by the use of gold nanoparticles.
  • Example 10 SERS measurement when mixed with silver nanoparticle dispersion 15 ⁇ l of silver nanoparticle dispersion (EMSC50, BBI) having a diameter of 40 nm and 15 ⁇ l of water in which 10 pmol of alkyne peptide 1 was dissolved were mixed. Injected into one compartment of a glass bottom well (EzView 384 well glass bottom assay plate, AGC technoglass). Similarly, a solution prepared by dissolving 10 pmol of silver nanoparticles and unlabeled peptide 1 was also injected into different compartments of the same well plate. The well plate was covered with tape and stored in a refrigerator (4 ° C.) for 1 day, and then Raman measurement was performed.
  • EMC50 silver nanoparticle dispersion
  • Raman spectroscopy a Raman microspectroscope (Nanophoton, Raman-11) was used. A laser with a wavelength of 532 nm was used as the laser light source. Line illumination was selected as the laser illumination pattern. The intensity of the laser was 240 mW on the sample surface after passing through the objective lens, the exposure time was 1 second / line, and 25 lines were measured per sample. As the objective lens, an objective lens having a numerical aperture of 0.75 and a magnification of 40 times was used. By averaging 10,000 Raman spectra of 1 line 400 points ⁇ 25 lines obtained along the line, Raman spectra in the wave number range of 710 to 3100 cm ⁇ 1 were obtained for each solution. The results are shown in FIG.
  • Example 11 and comparative example Comparison sample preparation when using the Raman spectroscopy of the present invention and when introducing a fluorophore via the conventional click reaction Cathepsin B (10 ⁇ g, CALBIOCHEM, catalog number 219362) was added to 100 ⁇ l Bogyo buffer (50 It was dissolved in mM acetic acid (pH 5.6), 5 mM MgCl2, 2 mM DTT). This was left to stand at room temperature for 15 minutes and mixed with 20 mM RAT8-AOMK in 1.0 ⁇ l DMSO. After incubating the mixture at 37 ° C. for 3 hours, the protein was incubated on ice for 3 hours and precipitated by TCA precipitation.
  • Cathepsin B 10 ⁇ g, CALBIOCHEM, catalog number 219362
  • Centrifugation was performed at 20000 G for 20 minutes to obtain a precipitate. After removing the supernatant, 1 ml of acetone was added, and centrifugation was performed at 20000 G for 15 minutes. Centrifugation and acetone treatment were repeated three times. After removing acetone for 30 seconds under vacuum, the precipitate was dissolved in 10 ⁇ l of denaturing buffer (7M GuHCl, 1M Tris-HCl (pH 8.5)).
  • Click-iT protein reaction buffer kit (C10276, Invitrogen) was used for the click reaction. 100 ⁇ l of 40 ⁇ M Alexa Fluor 488 azide was added. 50 ⁇ l of water was added and vortexed for 5 seconds. 10 ⁇ l of CuSO 4 (component B) was added and vortexed for 5 seconds. 10 ⁇ l of Click-iT reaction buffer additive 1 solution was added and vortexed for 5 seconds. This was left for 3 minutes. 20 ⁇ l of Click-iT reaction buffer additive 2 solution was added and vortexed for 5 seconds.
  • UV Chromatogram Acquisition 100 ⁇ l of the peptide mixture prepared as described above was lyophilized and dissolved in 50 ⁇ l of water. 50 ⁇ l solution was injected into the nano-LC system (nanoFrontier, Hitachi).
  • the experimental conditions for Raman spectroscopy without click reaction were 250 nl / min flow rate, 20 s / spot (Probot, Dionnex), 384 well glass bottom plate (EzView 384 well glass bottom assay plate, AGC technoglass For fluorescence analysis with click reaction, a flow rate of 250 nl / min, 20 s / spot (Probot, Dionnex) and 384-well water-repellent MALDI plates (ITOP, Thermo) It was a measurement.
  • UV chromatograms were acquired using a UV detector (MU701, GL science) at 215 nm. The gradients were 0 min 5%, 60 min 80%, 60.01 min 95%, 75 min 95%, 75.01 min 0%, 90 min 0%. The total planned fraction was 192.
  • the retention time from 20 to 85 minutes is shown.
  • the chart of the retention time of 41 to 57.5 minutes was expanded to the lower part of FIG.
  • the click reaction is used as a comparative example (2), a sample loss of 57.5 to 74.2% is observed as compared with the case (1) of the present invention that does not use the click reaction. It was done.
  • Raman Chromatogram Raman measurement was performed after the droplets on the 384 well glass bottom plate were dried.
  • a Raman microspectrophotometer (Nanophoton Co., Ltd., Raman-11) was used.
  • a laser with a wavelength of 532 nm was used as the laser light source.
  • Point illumination was selected as the laser illumination pattern.
  • the intensity of the laser was 180 mW on the sample surface after passing through the objective lens, and the exposure time was 30 seconds.
  • An objective lens having a numerical aperture of 0.75 and a magnification of 40 times was used. Spectra were acquired at different positions on the peptide aggregate 5 times per sample and averaged. The same measurement was performed for all 192 wells.
  • Fluorescence measurement was performed after the droplets on the 384-well water-repellent MALDI plate were dried. Fluorescence measurement was performed using a fluorescence imager (Pharos FX, Biorad). The excitation wavelength was selected to be 488 nm. A resolution of 50 ⁇ m was selected. In the obtained fluorescence image, the maximum value of the fluorescence intensity at each spot position was calculated at 192 points, and an intensity profile was created as a fluorescence chromatogram.
  • FIG. 37 shows the difference between the Raman chromatogram and the fluorescence chromatogram profile.
  • the holding time of 40 to 60 minutes is shown enlarged.
  • the fluorescence signal was seen at 47.5-51.0 minutes, whereas in the Raman chromatogram, the Raman signal was seen in a narrower range of 49.5-52.0 minutes.
  • many non-specific signals were observed before and after these three peaks.
  • Example 12 SERS measurement of TFA-added and TFA-free alkyne-labeled peptide 15 ⁇ l of alkyne-labeled peptide (alkyne peptide 1) containing 15 ⁇ l of 40 nm silver nanoparticles (EMSC40, manufactured by British Biocell International) at a predetermined concentration.
  • EQWPQCPTXK; X propargylglycine) /0.3% TFA aqueous solution and left at 4 ° C. for 1 day. SERS measurement was performed using this sample.
  • the SERS measurement was automatically performed using a Raman microspectroscope (Nanophoton Corporation, Raman-11) using a 532 nm excitation laser.
  • the laser output after the objective lens was 240 mW and the exposure time was 1 to 3 seconds.
  • An objective lens with a magnification of 40 times and a numerical aperture of 0.75 was used.
  • Line illumination was selected as the laser illumination pattern.
  • the alkyne intensity was obtained from a wave number of 1958 cm- 1 .
  • the sensitivity of detection of alkyne for SERS in the TFA-added system was 100 fmol (femtomole) on a peptide basis.
  • the TFA-free system For the TFA-free system, a sample was prepared in the same manner as the TFA-added system except that TFA was not added in the sample preparation, and SERS measurement was performed. As a result, the detection sensitivity of SERS was 3 pmol (picomoles) on a peptide basis. However, in the TFA-free system, the injection volume of alkyne peptide 1 did not necessarily correlate with the SERS intensity.
  • the detection sensitivity of alkyne is about 30 times higher and the SERS intensity is about 4 to 5 times higher than the detection sensitivity of the TFA-free system, and the operability of SERS measurement is greatly improved.
  • the injection volume of alkyne peptide 1 and the SERS intensity correlated well in the dynamic range of 100 to fmol to 100 pmol, and the measurement system was stabilized. This is presumably because the aggregates were uniformly distributed by the aggregation accelerator (organic acid) of the present invention.
  • Example 13 SERS measurement of TFA-added RAT8-AOMK-labeled cathepsin B
  • a labeled sample of cathepsin B with RAT8-AOMK was prepared in the same manner as in Example 3 and digested with trypsin. According to the procedure shown below, a sample containing RAT8-AOMK-labeled cathepsin B fragment was fractionated into TFA-added wells using nano LC-UV-probot, mixed with silver nanoparticles, aggregated, and SERS measurement was performed .
  • Sample fractionation was performed by freeze-drying the prepared 100 ⁇ l peptide mixture, dissolving it in a 50 ⁇ l solution, and injecting all the samples into Nano LC-UV-Probot.
  • Peptide separation with nano LC-UV-Probot was performed under the following conditions: Flow rate: 250 nl / min Fractionation: 384 well glass bottom plate (EzView 384 well glass bottom assay plate, AGC technoglass) Top, 20 seconds per spot UV chromatogram: 215 nm Concentration gradient: 0 minutes 5%, 60 minutes 80% / 60.01 minutes 95%, 75 minutes 95% / 75.01 minutes 0%, 90 minutes 0% Fractionation: 20 seconds per well The sample was fractionated into a glass bottom well plate containing 25 ⁇ l of 0.1% TFA aqueous solution in advance. The fractionated samples were each fractioned at 15 ⁇ l for SERS and 10 ⁇ l for mass spectrometry. 15 ⁇ l of 40 nm silver nanoparticles were added to the SERS sample, and the sample was left at 4 ° C. for 1 day for SERS measurement.
  • a Raman microspectroscope (Nanophoton Corporation, Raman-11) using a 532 nm excitation laser with line illumination was used, and automatic measurement was performed using HTS software.
  • the laser output after the objective lens was 130 mW, and the exposure time was 1 to 3 seconds.
  • An objective lens with a magnification of 40 times and a numerical aperture of 0.75 was used.
  • Line illumination was selected as the laser illumination pattern.
  • the alkyne intensity was obtained from a wave number between 1981 and 1900 cm- 1 .
  • the SERS measurement time was significantly shortened to 38 minutes / 192 wells because the addition of TFA made the distribution of peptide and silver nanoparticle aggregates uniform and the laser focus setting operation easier.
  • the apparatus and method according to the present invention can identify a biomolecule that binds to a low molecular compound, and can identify a binding site between the low molecular compound and the biomolecule. Therefore, by using the apparatus and method according to the present invention, it is possible to search for a protein that is a target of a drug in the field of drug discovery, and to identify a drug binding site in the protein. Furthermore, the present invention allows analysis of protein post-translational modifications in the field of biology. In addition, all or part of the amino acid sequence of the protein or peptide identified using the apparatus or method according to the present invention can be determined by MS / MS analysis. Further, the present invention enables highly sensitive SERS measurement.
  • Sample injection unit 2 Liquid feeding line 3: Fractionation unit 4: Liquid feeding line 5: Detection unit 6: Laser unit 7: Mirror 8: Objective lens 9: Sample 10: Sample stage 11: Spectrometer 12: Detection unit 13: Sample stage 14: Sample 15: Laser unit 16: Accelerating electrode 17: Detection unit 18: Signal processing unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、試料分離部、ラマン分光部及び質量分析部を有する装置を提供する。また本発明はラマン分光分析と質量分析を組み合わせた、生体分子を特定する方法、及び生体分子と低分子化合物との結合部位を同定する方法を提供する。さらに本発明は感度の改善された表面増強ラマン分光法を提供する。

Description

ラマン分光法を用いた生体分子の解析方法及び装置
 本発明は、低分子化合物と結合する生体分子、特に細胞内若しくは細胞外の生体分子を特定し、又は生体分子と低分子化合物との結合部位を同定する解析方法及び装置に関する。より詳細には、本発明は、試料分離部、ラマン分光部及び質量分析部を含む装置及びラマン分光分析と質量分析を組み合わせた生体分子を特定する方法、及び生体分子と低分子化合物との結合部位を同定する方法に関する。また、本発明は表面増強ラマン分光法に関する。
 毒性や薬効を有する低分子化合物(薬剤等)は、生体内でタンパク質等の生体分子に作用して生物活性を示す。低分子化合物に対する標的生体分子の生体内或いは細胞内での分布を調べ、その標的生体分子を特定し、作用する特異部位を解析して生物活性が発現する仕組みを解明することは、有効な治療法及び治療薬の開発やそれらの基盤となる生命研究においてきわめて重要である。
 標的生体分子の生体内又は細胞内での分布を調べる方法については、放射性化合物、りん光化合物や蛍光化合物を用いる分子イメージング、並びに生体分子自身の散乱光を検出するラマンイメージングが知られている。生体又は細胞内での分子イメージングは、疾病の状態や薬剤の動態等を理解するために重要な技術であり、近年急速に開発が進んでいる。ラマンイメージングでは、ラマン分光法を利用し、試料に照射したレーザーのラマン散乱光を検出し、その分布をイメージ化する。ラマンイメージングは、放射性化合物、りん光化合物や蛍光化合物を用いる分子イメージングに対し、非放射性で標的分子に対する影響が小さい低分子化合物を用いるため、細胞の動的状態をありのまま簡便に調べることができる。この場合、炭素―炭素三重結合を有するアルキン等を標識に用いると、標的分子に対する影響を最小限に抑えたまま、より高感度のイメージングが得られることが報告されている(非特許文献1)。非特許文献1は、核酸類似体である5-エチル-2’-デオキシウリジン(EdU)を細胞に取り込ませ、これが細胞核に取り込まれたことをラマン顕微鏡でのイメージングにより確認したことを記載している(非特許文献1、第6103頁図2、図4参照)。非特許文献1では、標識に特有のラマンピークが得られる波数でラマン像を得る。したがって得られるイメージは特定の波数のラマンピークの空間的な強度分布である。
 薬剤等の低分子化合物と当該化合物が標的とする生体分子を探索し、結合部位を同定する方法については、液体クロマトグラフと質量分析計を組み合わせたLC-MSが用いられている。LCで試料を分画し、分画試料を順次網羅的にMS、MS/MS解析に供して標的生体分子の特定や、結合部位の同定を行う。MS解析においては、低分子化合物の結合に由来する質量シフトを元に、標的となる生体分子を探索する。さらに、MS/MS解析により、ペプチドのアミノ酸配列等の情報を取得し、結合部位を同定できる。
 LC-MS等の分析法により、細胞中の標的生体分子を識別するには、(1)細胞に低分子化合物を取り込ませ、低分子化合物を細胞内の標的生体分子と結合させる、(2)細胞を破砕する、(3)細胞破砕液から標的生体分子を検出する、(4)標的生体分子を分析し、特定する過程、又は、(1)細胞を破砕する、(2)細胞破砕液に低分子化合物を混合し、標的生体分子と結合させる、(3)細胞破砕液を分画する、(4)標的生体分子を分析し、特定する、の一連の過程が必要とされる。また、生体分子と低分子化合物との結合部位を特定・同定する方法については、(1)低分子化合物を生体分子に結合する、(2)低分子化合物と結合した生体分子を断片化する、(3)結合断片を検出する、及び(4)結合断片を分析し、結合部位を同定する過程が求められる。
 しかしながら、上記の過程を経て得られる複雑な試料に対し、LC-MSを用いて網羅的に生体分子の探索を行い、配列決定や結合部位の特定を行うには、膨大な時間を要し、かつ誤りも出やすい。また、低分子化合物と生体分子の間の結合の様式が不明である場合、想定される質量シフトを元にした標的分子の探索は原理的に不可能となる。液体クロマトグラフの代わりにキャピラリー電気泳動装置を用いる方法(CE-MS)も考案されているが、LC-MSと同様に、網羅的に検出せざるをえないため、解析対象がきわめて多く、長時間の複雑な解析操作が要求される。
 細胞内標的分子を選択的に質量分析等の解析に供する手法として、低分子化合物を結合した担体を用いてアフィニティ精製し、標的分子を分離精製する方法が開発され、広く用いられている。また、標的生体分子と反応性の官能基を利用して共有結合を生成した後に、予め低分子化合物に導入された放射性、リン光又は蛍光性化合物等を調べることにより、結合した標的生体分子を特定する方法も用いられている。標的分子の結合部位を特定・同定する技術に関しても、蛍光団を低分子化合物に導入して観察する方法が広く用いられている。例えば、標識した薬剤とタンパク質との結合部位を特定・同定する方法に関し、蛍光団としてキサンチン色素(ローダミン、フルオレセイン又はロドール)、シアニン色素、クマリン色素又は複合色素を薬剤の標識として用いる方法が報告されている(特許文献1)。
 しかしながら、低分子化合物として放射性化合物を用いた場合、放射性同位体の化学的性質は基本的に同一であり標的分子の活性に対する影響はないが、使用できる設備が放射線管理施設に制限されること、さらに、結合部位を同定する過程等に使用法の制約が大きく、簡便な方法とは言いがたい。分子量の大きなりん光化合物や蛍光化合物を直接標的分子に結合する方法では、放射性化合物と異なり、使用制限は殆どないが、蛍光団の分子量が、低分子化合物と比較して大きくなることにより、低分子化合物の活性又は結合特性に影響を及ぼしうるという問題点がある。例えば抗癌剤の一種であるフルオロウラシル(5-FU)は分子量が130であるのに対して、典型的な蛍光団であるRhodamine 6Gの分子量は479である。5-FUをRhodamine 6Gで標識した場合、蛍光標識による抗癌剤5-FUの生理活性に影響が生じうる。また、Aglaiaという植物から抽出された抗癌剤フラバグリン(flavagline)では、癌細胞特異的に細胞増殖を阻害し、かつ抗癌剤は副作用を起こしにくいことから生体内での作用機序の解明が求められているが、蛍光団で標識すると薬剤活性が1/40以下に低下してしまうことが報告されている。非特許文献2の第5180頁右欄によると、フラバグリンが細胞増殖を50%抑制する濃度であるIC50は3 nMであるのに対して、蛍光標識したフラバグリンでのそれは130 nMまで低下する。さらに、非特許文献3においても、標的タンパク質に結合する分子16F16を蛍光団で修飾すると、その活性が消失することを報告している(非特許文献3、第901頁右欄13-17行)。
 上記の標識法の改良法として、まずアルキニル基を官能基として含む低分子化合物(アルキン)を標的生体分子に結合し、その後クリック反応により蛍光団を導入し、標的生体分子を酵素等により分解、断片化する方法が報告されている(非特許文献3、第902頁図3参照)。この方法を用いた場合、標的タンパク質の活性消失等の弊害は減少するが、操作が複雑であること、非特異的な結合反応があること、銅などの触媒が必要であること、並びに反応操作により標的分子のロスが生じることが問題となる。そのため、試料の量が十分でない場合などに、実用的に適用するには限界がある。細胞内でのタンパク質の翻訳後修飾を探索する方法に関しても、クリック反応を用いた例としてはパルミトイル脂質を細胞に取り込ませ、その後これを、クリック反応を用いて蛍光団で修飾し、蛍光分析により当該脂質に結合するタンパク質を特定する報告例(非特許文献4)や、ファルネシル脂質にクリック反応でビオチンタグを導入し、ストレプトアビジンで検出する報告例がある(非特許文献5)。しかしながらこれらの方法もクリック反応に伴う上記の問題を内包する。
 放射性物質や蛍光団による標識を介して標的分子を探索する手法と比較して、ラマン分光法は、分子振動情報を元に、標的分子を無標識で検出することができる。利用施設の制限もなく、低分子化合物の活性や結合特性への影響もないことから、ラマン分光法とLC-MSの組み合わせは、前述の種々の課題を克服する、新しい検出手法となりうる。これまでに、ラマン分光装置とマトリックス支援レーザー脱離イオン化質量分析計を組み合わせ、リゾチームを解析した例が報告されている(特許文献2、第27欄、図31及び請求項21)。しかしながら、特許文献2に記載の発明が解決しようとする課題は、ラマン分光分析の感度を高めることにあり、そのために試料を隔離された状態で凝集させる手法が開示されている。また、特許文献2で質量分析計が使用されているのは、ラマン分光で確認された結果を別の方法により再確認するためであり、低分子化合物と結合する生体分子の特定、結合部位の同定を目的とした本発明とは、基本的に異なる。
特開2009-192543号公報 米国特許第7,283,228号明細書
H. Yamakoshi et al., JACS, 133, 6102 (2011). F. Thuaud et al., J. Med. Chem. 52, 5176 (2009). B. G. Hoffstrom et al., Nature Chemical Biology, 6, 900 (2010). Brent R Martinら, Nature Methods 9, 84-89, (2012) Yoonjung Khoら, Proc Natl Acad Sci U S A. 2004; 101(34): pp. 12479-12484
 生体細胞に含まれる多種多様な生体分子の中のある生体分子に結合する標的分子を特定し、その結合部位を同定することは、各種疾病の有効な治療薬開発等においてきわめて重要な技術であるが、実用的かつ簡便な方法及びその解析装置は知られていない。
 従来技術のLC-MSやCE-MSは確立された技術であるが、網羅的に生体分子を探索し、配列決定や結合部位の特定を行うため、膨大な時間がかかり、かつ誤りが出やすい。
 生体分子と標的分子との質量スペクトルデータのin silico解析については、例えば、薬剤があるタンパク質に作用することが判明しているが、当該タンパク質中の当該薬剤が結合(作用)するアミノ酸残基の種類が特定されていない場合、既存の検索エンジン(例えば、Mascot. Matrix Science Inc. www.matrixscience.com 又はElectrophoresis, 20, (18), 3551-67 (1999))を用いたのでは、タンパク質結合部位の特定及び同定は非常に困難とされている。
 また、放射性同位体を含む分子やりん光化合物又は蛍光化合物が結合した分子を標識薬剤として用いる場合には、分子量の大きな蛍光団の導入により標的分子の活性(結合能)が低下又は消失しうること、並びに、りん光化合物や蛍光化合物が結合した分子は、クロマトグラフィー操作において非特異的にカラムに強固に結合し単離・回収が困難になりうるといった様々な問題がある。
 したがって、本発明は、実用的かつ簡便な方法で生体分子と結合する標的分子を特定し、その結合部位を同定する方法及び装置を提供することを課題とする。
 また、本発明は、感度を高めた表面増強ラマン分光(SERS)法を提供することを課題とする。
 本発明者らは、上記の従来技術の問題点を解決するため鋭意検討した結果、分画された試料をラマン分光分析に供し、その後質量分析に供することで低分子化合物と結合する生体分子を特定できること、及び低分子化合物と生体分子との結合部位を特定できることを見出し、本発明を完成させた。また凝集促進剤を用いることによりSERSの感度を増強できることを見出し、本発明を完成させた。すなわち、本発明は以下のとおりである。
[1] 低分子化合物と結合する生体分子を特定するため、又は、低分子化合物と生体分子との結合部位を同定するための装置であって、試料分離部、ラマン分光部及び質量分析部を有し、該試料分離部、ラマン分光部及び質量分析部がこの順序で連結されている前記装置。
[2] 試料分離部が液体クロマトグラフ又はキャピラリー電気泳動装置である、[1]記載の装置。
[3] 液体クロマトグラフが、順相、逆相、分子ふるい、及びイオン交換クロマトグラフからなる群より選択されるいずれか1種の高速液体クロマトグラフである、[2]記載の装置。
[4] ラマン分光部が、ラマン励起用レーザー光を照射するレーザー部及びラマン散乱光をスペクトル解析するスペクトル解析部を有する線形又は非線形ラマン分光装置である、[1]~[3]のいずれか記載の装置。
[5] 質量分析部が、イオン化方式としてマトリックス支援レーザー脱離イオン化法、エレクトロスプレーイオン化法又は大気圧化学イオン化法を用いる質量分析計を含む、[1]~[4]のいずれか記載の装置。
[6] 低分子化合物が、生体分子と識別可能なラマンピークを与える、[1]~[5]のいずれか記載の装置。
[7] 低分子化合物が、分子内にラマンスペクトルのサイレント領域に散乱スペクトルを有するアルキニル基、ニトリル基、ジアゾニオ基、イソシアン酸エステル基、イソニトリル基、ケテン基、カルボジイミド基、チオシアン酸エステル基、アジド基、ジアゾ基、アルキンジイル基及び重水素からなる群より選択される少なくとも1種の置換基を含む、[1]~[6]のいずれか記載の装置。
[8] 生体分子が、タンパク質、ペプチド、核酸、糖及び脂質からなる群より選択される少なくとも1種の生体分子である、[1]~[7]のいずれか記載の装置。
[9] [1]に記載の装置に用いるための、清浄化された面を有するプレート。
[10] 清浄化された面が撥水面を含む、[9]に記載のプレート。
[11] 金属、ガラス、石英、フッ化カルシウム、又はフッ化マグネシウム製である、[9]または[10]記載のプレート。
[12] 生体分子と低分子化合物との結合部位を同定する方法であって、以下の工程、
(1)分画された、低分子化合物と結合した生体分子の断片をラマン分光分析に供すること、及び
(2)ラマン分光分析に供した画分の全部又は一部を質量分析に供すること、
を含み、
 ラマン分光分析により生体分子断片と結合した低分子化合物由来のラマンピークを有する画分を検出し、低分子化合物由来ラマンピークを有する画分の質量分析結果を取得し、これを生体分子の質量情報と照合して、生体分子内の前記低分子化合物の結合部位を同定する方法。
[13] 低分子化合物と結合した生体分子を断片化し、分画することにより、前記分画された、低分子化合物と結合した生体分子断片を用意する、[12]記載の方法。
[14] 前記低分子化合物と結合した生体分子が、無細胞条件下で低分子化合物と生体分子とを混合することにより得られたものである、[12]又は[13]記載の方法。
[15] タンパク質分解酵素、ペプチド分解酵素、核酸分解酵素、糖分解酵素及び脂質分解酵素からなる群より選択される酵素又は化学的分解により生体分子を断片化する、[13]記載の方法。
[16] 低分子化合物と結合する生体分子を特定するスクリーニング方法であって、以下の工程、
(1)低分子化合物と結合した生体分子を含む画分をラマン分光分析に供すること、及び
(2)ラマン分光分析に供した画分の全部又は一部を質量分析に供すること、
を含み、
 ラマン分光分析により低分子化合物由来のラマンピークを有する画分を検出し、低分子化合物に由来するラマンピークを有する画分の質量分析結果を取得し、これを生体分子の質量情報と照合して、前記低分子化合物に結合する生体分子を特定する方法。
[17] 低分子化合物と結合した生体分子を含む試料を分画して、前記低分子化合物と結合した生体分子を含む画分を用意する、[16]記載の方法。
[18] 前記低分子化合物と結合した生体分子を含む試料が、(A)細胞に低分子化合物を取り込ませ、細胞内の生体分子と結合させ、該細胞を破砕することにより、又は(B)細胞を破砕し、細胞破砕液に低分子化合物を加え、細胞内の生体分子と結合させることにより、調製されたものである、[17]記載の方法。
[19]  低分子化合物が、生体分子と識別可能なラマンピークを与える、[12]~[18]のいずれか記載の方法。
[20] 低分子化合物が、分子内にラマンスペクトルのサイレント領域に散乱スペクトルを有するアルキニル基、ニトリル基、ジアゾニオ基、イソシアン酸エステル基、イソニトリル基、ケテン基、カルボジイミド基、チオシアン酸エステル基、アジド基、ジアゾ基、アルキンジイル基及び重水素からなる群より選択される少なくとも1種の置換基を含む、[12]~[19]のいずれか記載の方法。
[21] 生体分子が、タンパク質、ペプチド、核酸、糖及び脂質からなる群より選択される少なくとも1種の生体分子である、[12]~[20]のいずれか記載の方法。
[22] 分画を液体クロマトグラフ又はキャピラリー電気泳動により行う、[13]又は[17]記載の方法。
[23] 分画された前記画分を、そのままの液滴とし又は溶媒と混合した液滴とし、前記液滴を清浄化された面を有するプレート上に配列すること、及び前記液滴に含まれる溶媒を蒸発させることによりラマン分光分析に供するスポットを調製することを含む、[12]~[22]のいずれか記載の方法。
[24] プレートの前記清浄化された面が撥水面を含む、[23]に記載の方法。
[25] プレートが金属、ガラス、石英、フッ化カルシウム、又はフッ化マグネシウム製である、[23]又は[24]記載の方法。
[26] プレートに金、銀、プラチナ、パラジウム、アルミニウム、チタン及び銅からなる群より選択される金属ナノ粒子又は金属ナノ構造を用いる、[23]~[25]のいずれか記載の方法。
[27] 分画された画分を、金属ナノ粒子又は金属ナノ構造を含む溶液と混合し、そのままラマン分光分析に供する[23]に記載の方法。
[28] 分画された画分に、金属ナノ粒子又は金属ナノ構造と生体分子及び低分子化合物が結合した生体分子との均一な凝集体の形成を促進させる有機酸を添加する[26]及び[27]の方法。
[29] 有機酸が、トリフルオロ酢酸、ジフルオロ酢酸、モノフルオロ酢酸、トリフルオロメタンスルホン酸、ジフルオロメタンスルホン酸、3,3,3-トリフルオロプロピオン酸、トリクロロ酢酸、ジクロロ酢酸、モノクロロ酢酸、トリクロロメタンスルホン酸、ジクロロメタンスルホン酸、3,3,3-トリクロロプロピオン酸、ギ酸、酢酸、プロピオン酸、メタンスルホン酸、及びこれらの組合せからなる群より選ばれる、[28]の方法。
[30] 生体分子に結合する低分子化合物が、分子内にラマンスペクトルのサイレント領域に散乱スペクトルを有するアルキニル基、ニトリル基、ジアゾニオ基、イソシアン酸エステル基、イソニトリル基、ケテン基、カルボジイミド基、チオシアン酸エステル基、アジド基、ジアゾ基、アルキンジイル基及び重水素からなる群より選択される少なくとも1種の置換基を含む、[26]~[29]のいずれか記載の方法。
[31] (1)目的分子と有機酸とを含む溶液に金属ナノ粒子又は金属ナノ構造を添加し、形成される目的分子と金属ナノ粒子又は金属ナノ構造との複合体を凝集させる工程、及び
 (2)前記凝集体について表面増強ラマン分光(SERS)分析を行う工程、
を含む表面増強ラマン分光分析方法。
[32] (1)有機酸を含む溶液に金属ナノ粒子又は金属ナノ構造を添加して金属ナノ粒子又は金属ナノ構造を凝集させる工程、
 (2)前記凝集体に、目的分子を含む溶液を添加する工程、
 (3)工程(2)により得られた金属ナノ粒子又は金属ナノ構造と目的分子との複合体について表面増強ラマン分光(SERS)分析を行う工程、
を含む表面増強ラマン分光分析方法。
[33] 目的分子が、生体分子、生体分子の断片、サイレント領域にラマンピークを有する低分子化合物と結合した生体分子、又はサイレント領域にラマンピークを有する低分子化合物と結合した生体分子断片である、[31]又は[32]に記載の方法。
[34] 該生体分子はタンパク質、ペプチド、核酸、糖及び脂質からなる群より選択される少なくとも1種の生体分子である、[33]に記載の方法。
[35] 有機酸が、トリフルオロ酢酸、ジフルオロ酢酸、モノフルオロ酢酸、トリフルオロメタンスルホン酸、ジフルオロメタンスルホン酸、3,3,3-トリフルオロプロピオン酸、トリクロロ酢酸、ジクロロ酢酸、モノクロロ酢酸、トリクロロメタンスルホン酸、ジクロロメタンスルホン酸、3,3,3-トリクロロプロピオン酸、ギ酸、酢酸、プロピオン酸、メタンスルホン酸、及びこれらの組合せからなる群より選ばれる、[31]~[34]のいずれかの方法。
[36] 生体分子に結合する低分子化合物が、分子内にラマンスペクトルのサイレント領域に散乱スペクトルを有するアルキニル基、ニトリル基、ジアゾニオ基、イソシアン酸エステル基、イソニトリル基、ケテン基、カルボジイミド基、チオシアン酸エステル基、アジド基、ジアゾ基、アルキンジイル基及び重水素からなる群より選択される少なくとも1種の置換基を含む、[33]~[35]のいずれかに記載の方法。
[37] 目的分子を含む溶液が、液体クロマトグラフ又はキャピラリー電気泳動により分画された画分である、[31]~[36]のいずれかに記載の方法。
[38] 表面増強ラマン分光(SERS)分析を行う前に、凝集体を含む溶液の液滴を、清浄化された面を有するプレート上に配列すること、及び前記液滴に含まれる溶媒を蒸発させることにより表面増強ラマン分光分析に供するスポットを調製することを含む、[31]~[37]のいずれかに記載の方法。
[39] [31]~[38]のいずれかに記載の表面増強ラマン分光(SERS)分析法に供した溶液又は画分の全部又は一部を、さらに質量分析に供することを含む分析方法。
 本明細書は本願の優先権の基礎である日本国特許出願2012-181140号の明細書および/または図面に記載される内容を包含する。
 本発明に係る液体クロマトグラフィー-ラマン分光-質量分析(LC-R-MS)又はキャピラリー電気泳動-ラマン分光-質量分析(CE-R-MS)装置は、従来知られていない新規の生体分子解析装置であり、網羅的に生体分子を探索し、配列決定や結合部位の特定を行う従来の液体クロマトグラフィー-質量分析(LC-MS)やキャピラリー電気泳動-質量分析(CE-MS)装置等に比べ、処理時間を短縮でき、かつ精度が高い優れた解析装置である。また、本発明に係る方法を用いると、ラマン分光分析及び質量分析により測定対象に関する相補的な情報を取得することができ、より迅速かつ確実に標的となる生体分子を特定できる。さらに、本発明の凝集促進剤を用いたSERS法は、測定感度が上昇しており検出限界が改善されている。また本発明の凝集促進剤を用いたSERS法では、測定する試料の量とSERSシグナル強度との相関性が向上しており、測定のばらつきが抑制されている。
 本発明に係るラマン分光部は、試料を改変せずに、非破壊的に非接触でラマン分光装置により測定を行うことができる。本発明は特徴的なラマンピークを有するラマン標識により、低分子化合物を選択的に高感度で検出することができる。例えば生体にはアルキン分子のような三重結合を有する化合物や重水素はほとんど存在しないことから、アルキンや重水素をラマン標識として用いた場合、細胞破砕液のような複雑な混合物中から低分子化合物と結合した目的の生体分子を特定することができる。サイレント領域にラマンピークを有する他種のラマン標識についても同様である。
 本発明に係るラマン分光分析を行うと、低分子化合物のみならず生体分子由来の分子振動情報も得られるため、低分子化合物と生体分子との共存を確認できるという利点がある。従来の蛍光標識法では、単一チャネルの蛍光強度から低分子化合物の有無を確認するのに対し、本発明に係るラマン分光法では、多次元の振動分光情報が得られるため、複数の散乱ピーク強度から、低分子化合物及び生体分子両者の共存の有無を確認することができ、さらに、ペプチド等の場合にはスペクトルの形状から骨格構造や側鎖の情報を得ることもできる。
 本発明に係る方法は、低分子化合物をそのまま用いるか、又は分析対象化合物に付加するタグの分子量を低く抑えることができることから、大きな蛍光団を使用する従来の蛍光標識法と比較して、低分子化合物の生化学的特性を変化させずに、標的となる生体分子を特異的に識別・検出でき、特定できる。すなわち、本発明のラマン標識を用いた場合は、蛍光団と比較して修飾によるアーティファクトが小さい。また、質量分析部でタンパク質やペプチドの質量スペクトルを取得し、これに基づいて低分子化合物と標的生体分子との結合部位を同定することができる。また、MS/MS分析法を用いた質量分析によりタンパク質又はペプチドのアミノ酸配列を決定することもできる。さらに、タンパク質翻訳後修飾の解析も可能である。
 従来のアルキンタグをクリック反応と組み合わせた方法(非特許文献2等)では、クリック反応操作に関連する目的化合物のロスがあり、また非特異的反応が生じるという問題もあった。これに対し、本発明に係る方法では、分析対象化合物をそのまま低分子化合物としてラマン分光法に用いるか、又は分析対象化合物にアルキンタグを付加したものを低分子化合物とし、これをそのままラマン分光法に供するため、従来法が内包していた問題は解消されている。
本発明に係る試料分離部の一例を示す図である。 本発明に係るラマン分光部の一例を示す図である。この図では顕微ラマン分光装置を示した。 本発明に係る質量分析部の一例を示す図である。 ラマン分光法で取得した薬剤のラマンスペクトルを示す図である。低分子化合物(パクリタキセル)自身の分子振動がピークとして検出される。 本発明に係るLC-R-MS装置を示す図である。 アルキン標識ペプチドと非標識ペプチドのラマンスペクトルを示す図である。スペクトル中にはペプチド由来のラマンピークの帰属を示す。(1)がアルキン標識されたペプチドであり、(2)が非標識のペプチドである。 アルキン標識ペプチドと非標識ペプチドの質量スペクトルを示す図である。 アルキン標識ペプチドの検出について示す図である。 図8-1Cに対応する各画分のラマンスペクトルである。 アルキン標識ペプチドと非標識ペプチドの分離、ラマン分光、及び質量分析について示す図である。AのUVクロマトグラムを拡大したものがBである。Cは各画分のラマンスペクトル(図9-3G)から得られたアルキンのピークを示す。 Dは画分番号4の質量スペクトル、Eは画分番号12の質量スペクトルを示す。Fは画分1~16の1211.5m/zと1229/6m/zの強度を示す。 図9-1Cに対応する各画分のラマンスペクトルである。 オンラインでのラマン測定とオフラインでのラマン測定を比較した図である。Aがオンラインラマン検出法であり、Bがオフラインラマン検出法である。 本発明の一態様に係る装置を示す図である。 SERSの効果について示す図である。RAT8-AOMKのSERSおよびラマンスペクトル(曝露時間10秒)を見ると、直径40nmの銀ナノ粒子を用いた場合、RAT8-AOMKのラマン強度が103以上増大した。 マルチスポット金属基板とスポッティングした試料を示す図である。上段中央の模式図のように分画試料のスポッティングを行う。右上は384マルチスポット金属基板である。右下には基板上の液滴が乾燥するに伴い溶液中のペプチドが凝集する写真を示す。 本発明に係る装置に使用可能なプレートの例を示す図である。左上は顕微鏡用の基板固定プレートである。左下はラマン顕微鏡試料ステージである。右下の模式図のようにラマンスクリーニングを行う。 本発明に係る質量分析装置を示す図である。左がMALDI-LTQ-Orbitrapである。ラマン分光法でスクリーニングした試料をそのままMALDIイオン源搭載型質量分析計で解析しうる。 384ウェルプレート上に配置されたスポットのアルキン強度分布を示す。 ラマン計測に有利な石英基板をそのままMALDI-MS測定に利用できることを示す図である。 全面が石英でできたマルチスポット基板を示す図である。これによりラマン計測を高感度化し、かつ試料をそのままMALDI-MSI計測に用いることができる。石英は磁石で固定する。 本発明に係る装置の構成を示す図である。 カテプシンBとRAT8-AOMKの結合解析を示す図である。 384ウェルプレート上に配置されたスポットのアルキン強度分布を示す。 UVクロマトグラムとラマンクロマトグラムの対応関係を示す図である。上段のAはUVクロマトグラムを示す。右下のBはラマンクロマトグラムであり、画分番号は上段と対応している。左下のCはプレート上のスポッティングの順序を示す。 画分番号35~94のラマンスペクトルを示す図である。画分番号57~66では特徴的なラマンピークが2106 cm-1付近に観察された。 ラマン分光後のスポットについての質量分析結果を示す図である。ラマンピークが得られたスポットから、ラマン標識を有する低分子化合物が結合したペプチドが検出された。Aは画分番号62、Bは60、Cは57である。 図22-2では、Aに画分番号62に対応する実験値と計算値を示す。Bは画分番号60に対応する実験値と計算値を示す。Cは画分番号57に対応する実験値と計算値を示す。 RAT8-AOMK自身のラマンスペクトルと、画分番号35-75のスペクトルの比較をAに示す。 Cでは1609 cm-1及び2107 cm-1でのラマンピーク強度を示す。点線がフェニル環由来の1609 cm-1の強度であり実線がアルキン由来の2107 cm-1の強度である。 RAT8-AOMK標識されたペプチドと非標識のペプチドの分布を示す図である。図24の下にはRAT8-AOMKのカテプシンBとの結合の前後の構造と分子量を示す。 RAT8-AOMKのラマンスペクトルを示す図である。2100(cm-1)付近にアルキン由来のラマンピークが観察された。 RAT8-AOMK結合カテプシンBのラマンスペクトルを示す図である。下段のスペクトルの2800~3100(cm-1)にはタンパク質由来のラマンピークが見られ、2100(cm-1)付近にはアルキン由来のラマンピークが見られる。アルキン由来のラマンピークの拡大図を右上に示す。 94の試料スポットの明視野像を示す図である。 画分番号56-60番(ペプチドA-2)のMALDI質量スペクトルを示す図である。縮尺は4E6に固定した。ペプチドA-2(切断ミスなし, + RAT8-AOMK), m/z 2435.0067。 画分番号58-62(ペプチドB-1)のMALDI質量スペクトルを示す図である。縮尺は2E7に固定した。ペプチドB-1(切断ミス1ヶ所, + RAT8-AOMK + CAM), m/z 2890.2559。 画分番号60-65(ペプチド A-1)のMALDI質量スペクトルを示す図である。縮尺は2E7に固定した。ペプチドA-1(切断ミスなし, + RAT8-AOMK + CAM), m/z 2492.0282。 図27-29の結果をまとめた図である。画分番号50-69の標的ペプチドのイオンカウント数を示す。横軸は画分番号であり、縦軸がイオンカウント数である。 HeLa細胞のラマンスペクトルを示す図である。サイレント領域が1800-2800 cm-1に確認された。励起波長は532 nmとした。 RAT8-AOMK結合ペプチドA-1のMS/MSスペクトルを示す図である。 金ナノ粒子を用いた場合のRAT8-AOMKのSERSスペクトルを示す。励起波長は660nmとした。上のスペクトルは金ナノ粒子ありの場合、下のスペクトルは金ナノ粒子無しの場合である。 銀ナノ粒子の分散液をアルキン標識・非標識ペプチドの水溶液と混合してSERS測定した結果を示す。上のスペクトルはアルキン標識ペプチドのものであり、下のスペクトルは通常のペプチドのものである。 クリック反応で蛍光団を導入する場合とラマン分光の場合を比較した結果を示す。図の下段のUVクロマトグラム(1)が本発明のラマン分光の場合であり、UVクロマトグラム(2)がクリック反応で蛍光団を導入した場合である。クリック反応の場合、57.5~74.2%のサンプルの減少が見られた。 クリック反応で蛍光団を導入する場合とラマンの場合を比較した結果を示す。黒塗りの丸がラマンクロマトグラムの場合、白抜きの丸がクリック反応で蛍光団を導入したUVロマトグラムの場合である。
 以下、図面を参照しながら本発明を詳細に説明する。
1. 本発明に係る装置
 本発明に係る装置は、試料分離部、ラマン分光部及び質量分析部を有する。試料分離部、ラマン分光部及び質量分析部はこの順序で連結されている。試料分離部の例を図1に、ラマン分光部の例を図2に、質量分析部の例を図3に示す。これらについてそれぞれ説明する。
1.1 試料分離部
 本発明に係る試料分離部は、試料中の様々な分子を互いに分離することができるものである。試料分離部の具体例としては、限定するものではないが、液体クロマトグラフ及びキャピラリー電気泳動装置等が挙げられる。また試料分離部を等電点電気泳動装置とすることもできる。試料とは、測定対象の化合物を含む可能性のあるサンプルをいう。本発明に係る試料分離部の一例を図1に示す。まず試料注入部1から分画部3へと送液ライン2により試料が送液される。次いで分画部3にて分画が行われる。分画部3は、各種クロマトグラフィーカラム、液体クロマトグラフィーカラムや電気泳動用キャピラリーを有しうるがこれらに限られない。次いで分画された画分は送液ライン4中を送液されて検出部5に送られる。検出部5は、例えば紫外(UV)光検出器であり得る。検出部5での検出手段は非破壊検査であることが好ましい。図1では分離された画分はさらに次のラマン分光部へと連結されていることを右向きの矢印で示してある。本発明に係る装置では、試料分離部で分画された試料を、ラマン分光分析により検出することも可能であるため、図1における検出部5は省略することも可能である。すなわち図1は単なる例示であり、検出部5は試料分離部に必須の構成要素ではない。
1.1.1 液体クロマトグラフ
 液体クロマトグラフとは、移動相として液体を使用するクロマトグラフをいう。液体クロマトグラフにおいて、移動相中に含まれる物質は、固相担体との相互作用の程度の違いに基づき異なる速度で固相担体が充填されたカラムから溶離又は溶出する。この溶離速度の違いを利用して移動相中に含まれる特定の物質を他の物質から分離する。液体クロマトグラフ分離の原理はどのようなものであってもよく、例えば分配、吸着、分子排斥、分子ふるい、イオン交換等が挙げられる。またクロマトグラフは順相であっても逆相であってもよい。好ましくは、液体クロマトグラフは、移動相として高圧に加圧した液体を用いる高速液体クロマトグラフィー(HPLC)である。液体クロマトグラフにおいては移動相として、溶質を溶解するものであればどのような溶媒を用いてもよく、水、水溶液、塩類を含む水溶液、有機溶媒、メタノール、エタノールやイソプロパノール,n-プロパノール等のアルコール、アセトニトリル、ジクロロメタン、トリクロロメタン、酢酸、トリフルオロ酢酸、トリクロロ酢酸、アセトン、シクロヘキサノン、メチルエチルケトン、酢酸エチル、炭酸ジメチル、炭酸ジエチル、イソオクタン、n-ヘキサン、n-ヘプタン、ジエチルエ-テル、シクロヘキサン、トルエン、テトラヒドロフラン、ベンゼン、ジオキサン、ジメチルホルムアミド、ジメチルスルホキシド等及びこれらの適当な組合せが挙げられる。
 液体クロマトグラフの移動相として水を主成分とする水溶液を用いる場合、当該水溶液に含まれる塩基性化合物はカラムに存在する残存シラノールに吸着し、クロマトグラムのピークがテーリングすることがある。これを防止するために、トリフルオロ酢酸等の酸を添加して分離を行うことがある。このような酸は、下記に説明するように、液体クロマトグラフ後、分離操作に用いた溶媒を除去することにより、次の工程に供される試料中から除くことができる。
 本発明では溶媒の有無にかかわらずラマン測定を行うことができるが、溶媒を除去し乾燥した状態で生体成分のラマン測定を行う場合(オフラインラマン測定)には、ラマン測定前に用いられる溶媒、例えばクロマトグラムの移動相の溶媒の主成分として低沸点極性溶媒の使用が望ましい。このような低沸点極性溶媒は蒸発させることで容易に除去できるからである。低沸点極性溶媒としては、沸点が低く、なおかつ極性を有する溶媒をいい、例えばアセトニトリル、メタノール、ジクロロメタン、トリクロロメタン等が挙げられる。したがって液体クロマトグラフに用いる移動相としては低沸点極性溶媒が好ましい。移動相として物理化学的性質の異なる複数種の溶媒を組み合わせ、それらの混合比を変化させることにより分離溶液に濃度勾配をもたらし、これにより試料の分離能を高めることもできる。液体クロマトグラフ後に、分離操作に用いた溶媒を蒸発させることにより、ラマン測定に供する試料からは、液体クロマトグラフに用いた溶媒を除くことができる。当業者であれば分離する試料に応じて、適宜、分離溶媒やかける濃度勾配といった条件を設定することができる。
1.1.2 キャピラリー電気泳動
 キャピラリー電気泳動法とは、電気泳動を十分に細い毛細管の中で行い、試料中に含まれる物質を分離する方法をいう。毛細管を用いることで対流の発生を抑制でき、通常の電気泳動と比較して物質の分離能を高めることができる。キャピラリー電気泳動装置は、典型的には毛細管及び電圧印加部を有する。通常は毛細管の一方が試料注入部であり、他方は試料溶出部である。例えば図1の試料分離部で説明すると、試料は試料注入部1から注入され、分画部3のキャピラリーにて分離され、検出部5に送液される。試料溶出部は適宜、検出部及び/又はフラクションコレクターに連結されていてもよい。このキャピラリー電気泳動には、キャピラリーゾーン電気泳動(CZE)、ミセル導電クロマトグラフィー(MEKC)、キャピラリーゲル電気泳動(CGE)やキャピラリー等電点電気泳動(cIEF)等も含まれる。当業者であれば、キャピラリー電気泳動に用いる溶媒やキャピラリーの種類、印加電圧などの運転条件を適当に設定することができる。キャピラリー電気泳動により分画した画分は、上記液体クロマトグラフと同様に、溶媒を蒸発させ、乾燥状態で次の工程に供することができる。
1.2 ラマン分光部
 本明細書にいうラマン分光部とは、ラマン励起用レーザー光を照射するレーザー部とラマン散乱光をスペクトル解析するスペクトル解析部を含む線形又は非線形ラマン分光装置である。図2に本発明に係るラマン分光部の一例として顕微ラマン分析装置を示す。試料台10の上に試料9を配置し、これをラマン顕微装置で分析する。レーザー部6からラマン励起用レーザー光が照射され、これがダイフロイックフィルター7で反射されて対物レンズ8により焦点を合わせた試料9に照射される。ラマン散乱光は分光器11により分光され、検出部12において電荷結合素子(CCD)のような検出機構により検出される。スペクトル解析部は、図2のラマン散乱スペクトルを取得するための分光器11、検出部12及び任意の電子計算部を有する。図2では集光されるラマン散乱光を分光器11に入る上向きの矢印で示してある。集光には適宜入射スリットやレンズが使用され得る。図2はあくまで一例であり、本発明に係るラマン分光部は顕微ラマン分析装置に限らず、分散型レーザーラマン分光分析装置、FT-ラマン分光分析装置等の公知のあらゆるラマン分光分析装置を包含する。例えば本発明に係るラマン分光部に含まれるスペクトル解析部は、ラマン散乱光を分光器の代わりに干渉計で検出する機器を備えていてもよい。また、ラマン散乱光の検出部に透過波長帯を限定したフィルターを使用し、フィルターを透過してきた散乱光を、分光器等を介さず、直接CCDのような検出機構により検出する構成でもよい。この場合、波長可変フィルターを用いれば、透過波長帯を走査することでラマンスペクトルの取得も可能となる。さらに、ラマン励起用レーザーに波長可変レーザー光源を用い、励起レーザー光の波長を走査することで、ラマンスペクトルを取得する構成でもよい。分光器であれ干渉計であれ、フィルターであれ、また励起レーザー光の走査であれ、いずれの構成でもラマン散乱光を検出することで、対象試料における特定のラマンピークの強度や、ラマンスペクトルの情報を得ることができる。また、図2に示されるように試料を試料台に載せる構成とは別に、試料を送液ラインで送液し、いわゆる「オンライン」で測定を行うこともできる。当業者であれば、得られたラマンスペクトルのパターン(プロファイル)から、適宜、試料中の目的分子の存在/不在を解析することができる。解析は手作業で又は電子計算機の補助により行うこともできる。ラマン励起用レーザーとしては、半導体レーザー、ダイオード励起固体(DPSS)レーザー、ガスレーザー、液体レーザー等を用いることができるが、これらに限定されない。
1.2.1 ラマン分光分析
 ラマン分光分析は当技術分野において周知の技術であり、例えば浜口宏夫、平川暁子 編 ラマン分光法(日本分光学会出版、測定法シリーズ17)にその原理が解説されている。簡単に説明すると、ラマン分光法は、化学物質にレーザー光などの光を入射したときに、散乱光の中の入射光の波長とは異なる波長の光が発生する、いわゆる「ラマン効果」を利用して行う分光分析法である。ラマン散乱光の振動数と入射光の振動数の差をラマンシフトという。ラマンシフトは分子の構造に特有であるため、ラマンシフトを測定することで分子構造に関する知見が得られる。また、化学構造が解明されている分子のラマンスペクトルを予め測定してプロファイルを取得しておき、ある試料中に当該分子が存在するか否かをその試料のラマンスペクトルパターンと前記プロファイルとを比較することにより検出することができる。検出するとは、ある試料中にある化合物が存在することを確認することをいう。ラマン分光法には非破壊分析法であるという利点がある。線形ラマン分光とは、入射光強度に比例する強度をもつラマン散乱分光、別名自発ラマン散乱分光ともいう。非線形ラマン分光とは、高次の非線形光学効果によるラマン分光で、入射光の強度の2次以上に比例する強度をもつラマン散乱分光をいう。ラマン分光法としては、誘導ラマン散乱、ハイパーラマン散乱、コヒーレント・反ストークスラマン散乱などの非線形ラマン分光法が挙げられる。ラマンスペクトルの一例を図4に示す。図4に示されているように、パクリタキセル自身の分子振動がピークとして検出される。この例でのラマン分光分析はJ.Ling et al., Applied Optic, 41, (28), 6006(2002).に記載されている。Renishaw Model 2000ラマン分光システム、Ti:サファイアレーザーを用いて測定した。試料は粉体であり、20倍レンズ、 30秒露光にて測定を行った。
1.2.2 表面増強ラマン分光(SERS)
 本発明は、ある実施形態において、表面増強ラマン分光(SERS)を用いたラマン分光分析法を提供する。ある実施形態において本発明の表面増強ラマン分光(SERS)は本発明に係る装置又は方法に用いることができる。ラマン分光法では、散乱光が弱いため一般的に長時間の測定が必要とされることがあるが、SERSを用いるとラマンシグナルを増強でき、迅速な測定が可能となる。SERSはラマン分光法の1つとして知られており、金属粒子コロイド又は金属を含む基材を用いてラマン分光分析を行う。このとき、金属の表面プラズモンがレーザーにより励起され、その結果、金属を取り囲む電磁場が増大し、電磁場に比例して生じるラマンシグナルを増強する。さらに、金属表面近傍の分子と金属間には、電子の授受を含む化学的な相互作用を生じ、ラマンシグナルを増強する。上記の電磁気学的・化学的増強メカニズムのいずれか、又は両方が作用することにより、測定されるラマンシグナルが大幅に増強される。SERSに用いる金属としては、鉄、コバルト、ニッケル、スズ、インジウム、ゲルマニウム、銅、銀、金、プラチナ、パラジウム、アルミニウム、チタン、ルテニウム等が挙げられるが、これらに限られない。金属は金属ナノ粒子、金属ナノ構造又は金属ナノ構造物とすることができる。また、試料に金属膜を被覆する処理を行うこともできる。この被覆処理は独立に行うこともでき、又は前記被覆処理を行う処理室を本発明に係るラマン分光部の一部とすることもできる。SERSの効果の一例を図12に示す。図12には直径40 nmの銀ナノ粒子を用いるとRAT8-AOMKのラマンピークの強度が103以上増大したことが示されている。露光時間は10秒であった。図12左において下のスペクトルが銀粒子を使用しなかったものであり、上のスペクトルが銀粒子を使用したときに得られたものである。図12中央も同様である。別の例として図34に金ナノ粒子を用いた場合のSERSスペクトルを示す。図34の下のスペクトルが金ナノ粒子無し、上のスペクトルが金ナノ粒子を使用した結果である。このように本発明のSERS効果は銀ナノ粒子に限られず、金ナノ粒子等、金属ナノ粒子全般を用いた場合にラマンシグナルが増強すると考えられる。SERS試料は、市販の銀ナノ粒子分散水溶液を清浄化した基板にスポッティング後乾燥し、その上から試料を重層するか、試料溶液に銀ナノ粒子分散水溶液を混合するか、又は混合した試料をスポッティング後乾燥することにより調製できる。さらに、基板としては、スピンコート法等機械的塗布法で銀ナノ粒子分散水溶液を基板一面に塗布、乾燥したものを用いることができる。また、金属ナノ粒子の径は、特に制限なく、小さい方が好ましい。ここで、粒子の直径(径)とは、当該粒子と同じ容積を有する球体の直径に等しい長さとする。また、直径40 nmの粒子とは多数の粒子の前記のようにして得られる直径を平均した値が40 nmであることをいう。金属ナノ構造には、ナノロッド、ナノワイヤ、ナノキューブ、ナノプリズム、シェル構造等様々な形状があり、それらの大きさも同様に小さい方が好ましい。金属ナノ構造の大きさは、当該構造の長手方向の長さをいうものとする。また金属ナノ構造のサイズが40 nmであるとは、種々の金属ナノ構造の大きさの平均が40 nmであることをいう。金属粒子、金属ナノ構造又は金属ナノ構造物のサイズは光によって金属中で振動する電子の平均自由行程以下であることが好ましく、具体的には金属粒子の場合には当該粒子の直径が、金属ナノ構造又は金属ナノ構造物の場合には当該ナノ構造の長さが200 nm以下であり、より好ましくは100 nm以下、さらに好ましくは50 nm以下である。
 このようにSERS効果を利用するとラマンスペクトルのシグナルが増強され、実用的なレベルの感度でシグナルを検出することができる。
1.2.2.1 凝集促進剤
 SERS測定をする際に、金属ナノ粒子又は金属ナノ構造と生体分子及び低分子化合物に結合した生体分子との均一な凝集体の形成を促進させるために有機酸を添加することができる。有機酸添加に起因して、均一に分布した凝集体が形成されると、SERS効果が高まるとともに、ラマン分光測定に用いるレーザーの焦点設定操作が容易となり測定時間を大幅に短縮することができる。そのため、自動測定に極めて有利となる。本明細書では、このようなSERS効果を高めるために添加する酸のことを便宜上、凝集促進剤、又は添加剤と呼ぶことがある。
 本発明に用いる凝集促進剤(有機酸)としては、分子中にフッ素又は塩素原子を含むハロゲン化有機酸、例えばトリフルオロ酢酸、ジフルオロ酢酸、モノフルオロ酢酸、トリフルオロメタンスルホン酸、ジフルオロメタンスルホン酸又は3,3,3-トリフルオロプロピオン酸等の含フッ素有機酸やトリクロロ酢酸、ジクロロ酢酸、モノクロロ酢酸、トリクロロメタンスルホン酸、ジクロロメタンスルホン酸又は3,3,3-トリクロロプロピオン酸等の含塩素有機酸、ギ酸、酢酸、メタンスルホン酸、プロピオン酸等の炭化水素系の有機酸を用いることができるが、これらの中で、トリフルオロ酢酸、ジフルオロ酢酸、トリフルオロメタンスルホン酸、ジフルオロメタンスルホン酸、3,3,3-トリフルオロプロピオン酸、ギ酸、酢酸、プロピオン酸又はメタンスルホン酸が好ましい。臭素又ははヨウ素原子を分子中に含む有機酸は、含フッ素や含塩素化合物に比べ分解性がより高く、分解生成物とアルキニル基等との反応のためSERSに対し殆ど効果を示さないか、むしろ阻害効果があると考えられるので好ましくない。また、本発明の凝集促進剤(有機酸)の添加量としては、均一な凝集体の形成が促進されればよく、例えば、0.001~10 mol%、0.01~1 mol%、好ましくは0.05~0.5 mol%である。
 当業者であれば、種々の有機酸を目的分子と共に含む複数の溶液又は種々の濃度の有機酸を目的分子と共に含む複数の溶液を用意し、これらを金属ナノ粒子と混合し、該溶液を液滴としてプレート上に配列し、その明視野像を顕微鏡観察することにより凝集体の形成やその均一性を容易に確認できる。これにより本発明に用いることのできる有機酸を確認し得る。また適当な有機酸の添加量を決定し得る。このようなスクリーニングは、プレート上に多数のスポットを調製することによりルーチンな作業のみで、例えば自動化された装置を用いて、ハイスループットで行うことができる。
 本発明の凝集促進剤は次のように使用することができる。ある実施形態では、本発明の凝集促進剤及び目的分子を含む水溶液を金属ナノ粒子と混合し、その後、目的分子-金属ナノ粒子複合体を凝集させる。別の実施形態では本発明の凝集促進剤を含むが目的分子を含まない水溶液を金属ナノ粒子と混合し、その後、金属ナノ粒子を凝集させる。次いで目的分子を添加し、目的分子と凝集金属ナノ粒子とを相互作用させる。本発明の凝集促進剤は、SERS測定の検出限界を高めるのみならず、SERSシグナルを発する試料の注入量とSERSシグナル強度との相関性を高める効果があることを本発明者らは確認した。すなわち、本発明の凝集促進剤はSERS測定を安定化させる効果を有する。
 本発明の凝集促進剤の作用は、特定の論理に拘束されることを望まないが、次のような機序によるものと考えられる。本発明の凝集促進剤(有機酸)及び目的分子を含む溶液に金属ナノ粒子を添加し混合すると、目的分子-金属ナノ粒子複合体が形成され、金属ナノ粒子が目的分子を巻き込みながら凝集すると考えられる。この機序の裏付けとして、本発明の凝集促進剤(有機酸)を使用しない場合であっても凝集体の形成は観察されるが、凝集体の分布は不均一でありSERS測定結果にばらつきが生じたことが挙げられる。これに対して本発明の凝集促進剤(有機酸)を使用すると均一に分布した凝集体が形成されSERS効果が高まった(実施例12参照)。また、目的分子がペプチドの場合、ペプチドが過剰量存在するとこれが本発明の凝集促進剤(有機酸)の凝集化作用を上回り、凝集体の形成が観察されなかった、という結果が挙げられる。
1.2.2.2 本発明の凝集促進剤を用いた表面増強ラマン分光(SERS)
 本発明の凝集促進剤はSERS測定を行うことが可能で有れば、どのような試料に対して使用してもよい。すなわち、本発明の凝集促進剤は、生体分子を含み得る試料や、液体クロマトグラフ又はキャピラリー電気泳動により分離された試料に対して使用できるのはもちろんのこと、SERS測定を行うことのできる他のあらゆる試料についても使用できる。つまり本発明の凝集促進剤を用いたSERS測定は、上記1.の装置を用いる場合に限定されず、あらゆる表面増強ラマン分光(SERS)法に用いることができる。ただし、分析する目的分子はSERSシグナルを発するものである必要がある。また、目的分子は好ましくは金属ナノ粒子と一緒に混合すると凝集するか、又は予め凝集させた金属ナノ粒子と相互作用するものである。この場合、目的分子は例えばSERSシグナルを発する生体分子、SERSシグナルを発する生体分子の断片、SERSシグナルを発する低分子化合物と結合した生体分子、又はSERSシグナルを発する低分子化合物と結合した生体分子の断片であり得る。目的分子は、予め上記1.1の試料分離部により、例えば液体クロマトグラフィーやキャピラリー電気泳動により分画された画分に含まれ得る。
 RAT8-AOMKについては下記2.2.4に説明する。
1.2.3 オンラインラマン検出及びオフラインラマン検出
 本発明に係るラマン分光法は、試料分離部からの試料を送液しながら測定を行う、いわゆる「オンライン」分析が可能である。また、本発明に係るラマン分光法は、試料分離部からの試料を送液後、プレートにスポッティングし、そのスポットについて測定を行う、いわゆる「オフライン」分析も可能である。図10にオンラインラマン検出法(A)とオフラインラマン検出法(B)の特徴を比較して示す。図10の左(A)が送液をそのままラマン計測するオンライン検出であり、右(B)が送液を一旦プレート上にスポッティングし、次いでこれをラマン計測するオフライン検出である。例えばオンラインで測定を行った場合にラマンピークの強度が十分でないときは、測定をオフラインで行ってもよい。一般にオンラインでのラマン分光法の測定感度はmM単位であるが、オフラインであれば感度はμM単位(ペプチドで数pmol)である。また、測定をオンラインで行う場合には溶媒の背景光が混入するという問題があるのに対して、オフラインであれば、プレート上のスポットの溶媒を乾燥させて蒸発させることで背景光の問題を回避できる。オンライン測定の場合は、プレート上へのスポッティングの必要がなく、装置の構成が簡便ですむという利点がある。当業者であれば、ラマンスペクトルの測定をオンラインで行うのが好ましいか、オフラインで行うのが好ましいか、試料濃度や測定条件に応じて適宜判断することができる。また、これに応じて装置の構成を適宜変更することができる。
 本発明に係る装置の一態様を図11に例示する。この態様では、混合試料を試料分離部に導入し、試料分離部では液体クロマトグラフにより分画を用い、得られた画分をプレート上にスポッティングする。プレート上で各スポットを乾燥させて試料を凝集させることにより、ラマン分光分析の測定感度を向上させることができる。乾燥、凝集を行わなかった場合(溶解状態)と比較して、測定感度は約3桁以上向上する。また、ラマン分光分析をオフラインで行うため、液体クロマトグラフに用いる溶媒の背景光による影響がなく、さらに送液速度による制限を受けることなく測定を行うことができる。ラマン分光分析後、ラマンピークを示した一部のスポット又は全部のスポットを質量分析(MS)に供する。
1.2.4 サイレント領域
 細胞破砕液を分画せずにそのままラマン分光分析すると、ピークが検出される領域と検出されない又はほとんど検出されない領域が現れる。細胞破砕液をラマン分光分析したときに、ラマンピークが検出されない又はほとんど検出されない領域のことを本明細書において「サイレント領域」という。例えばタンパク質のラマンピークは主に800~1800 cm-1及び2800~3000 cm-1付近に見られ、1800~2800 cm-1にはほとんど検出されない。これらのラマンピークはいずれも特定のアミノ酸残基に帰属されている。例えばトリプトファン由来のピークは1011 cm-1 及び1554 cm-1付近に、アミド由来のピークは1250 cm-1及び1660 cm-1付近に、CH2由来のピークは1430 cm-1付近に、CH3由来のピークは2933 cm-1付近に現れる(図6参照)。しかしながら、1800~2800 cm-1という波長領域では、生体分子由来のラマンピークはほとんど観察されない。したがって、本明細書でいうサイレント領域とは、1800~2800 cm-1でありうる。また、ラマン分光分析は、500 cm-1以上、700 cm-1以上、1000 cm-1以上、1200 cm-1 以上、1400 cm-1以上1600 cm-1以上又は1800 cm-1以上、3000 cm-1未満、2900 cm-1未満、2800 cm-1 未満、2700 cm-1 未満、又は2600 cm-1未満の領域で行うことができる。サイレント領域は用いる生体材料によらず、基本的に同一である。
1.3 質量分析部
 質量分析部とは、適当なイオン化法により試料中に含まれる分子をイオン化し、当該分子の質量スペクトルを測定する装置をいう。図3に本発明に係る質量分析部の一例を示す。試料部、分離部、分析部を合わせた質量分析計が本発明に係る質量分析部を構成する。試料部ではまず試料ステージ13に試料14を載せる。次に試料を適当なイオン化手段によりイオン化し、静電力によって装置内を飛行させる。図3ではイオン化手段としてレーザー部15を例示してある。加速電極16により加速させて飛行するイオンを分離部において電気的又は磁気的な作用等により質量電荷比に応じて分離し、その後それを分析部におけるイオン検出器17で検出することで、質量スペクトルを得ることができる。イオン検出器17は好ましくは信号処理部18に接続されており、得られた信号は好ましくは電子計算機により処理される。本明細書では、イオン検出器17、信号処理部18及び任意の電子計算機を合わせて質量分析器の「分析部」という。分析部で信号を処理して得られる質量スペクトルは通常、質量電荷比(m/z)を横軸、検出強度を縦軸として表す。質量分析のためのイオン化方式としては、例えばマトリックス支援レーザー脱離イオン化(MALDI)法、エレクトロスプレーイオン化(ESI)法、大気圧化学イオン化(ACPI)法、電子イオン化(EI)法、化学イオン化(CI)法等が挙げられる。当業者であれば、これらのイオン化手段に応じて適宜、質量分析装置の構成を変更し、適合化することができる。一例としてMALDI法では、芳香族有機化合物などのマトリックス中に試料を混合して結晶を作製し、これにレーザーを照射することでイオン化を行う。用いるマトリックスとしては、特に限定するものではないが、α-シアノ-4-ヒドロキシ桂皮酸(CHCA)、シナピン酸(SA)、trans-4-ヒドロキシ-3-メトキシケイ皮酸(フェルラ酸)、3-ヒドロキシピコリン酸(HPA)、1,8-ジヒドロキシ-9,10-ジヒドロアントラセン-9-オン(ジスラノール)及び2,5-ジヒドロキシ安息香酸(DHB)等が挙げられる。MALDI法はタンパク質などの高分子化合物であっても分子を破壊することなく安定してイオン化することができるという利点がある。
1.3.1 質量分離部
 質量分析に用いる分離部ではイオン化された試料を分離する。分離部の種類としては、飛行時間型、磁場偏向型、四重極型、イオントラップ型及びフーリエ変換型等が挙げられる。飛行時間型(TOF)の分離部を備えた質量分析では、イオン化した試料をパルス的に加速し、検出器に到達するまでの時間差を検出する。この時間差から質量を算出することができる。この場合、図3に示す加速電極16はイオンが飛行する空間の一部のみに配置されることでパルス的に加速が行われ、イオンが飛行する空間の大部分では電場・磁場はかけられていない。これらの分離部は上記イオン化法のいずれと組み合わせてもよいが、特にMALDIとTOFの組合せが好ましい。このような構成をMALDI-TOF型質量分析器と呼ぶことがある。
1.3.2 MS/MS分析
 本発明のある実施形態において、質量分析は、MS/MS分析とすることができる。MS/MS分析では質量分析をタンデムに行う。この方法では第一の分離部で特定のイオンだけを取り出し、これを解裂させ、生じたフラグメントイオンを第二の分離部で分析する。フラグメントイオンの分析は単一の装置でも行うことができ、又は異なる2つの装置で行ってもよい。例えばタンパク質をプロテアーゼで消化してペプチドを取得し、当該ペプチド断片についてMS/MS分析を行うと、ペプチドが順次フラグメント化されたピークが検出され、それらのピークの質量情報からペプチドのアミノ酸配列を決定することができる。MS/MS分析は当技術分野で周知の手法である。例えば、A. K. Shukla et. al., J. Mass Spectrom. 35, 1069 (2000)等を参照されたい。
1.4 本発明に係る装置の構成について
 ある実施形態において、本発明に係る装置は、液体クロマトグラフ、ラマン分光装置及び質量分析計(LC-R-MS)を有する。その一例を図5に示す。混合試料を液体クロマトグラフ(LC)により分画し、ラマン分光法により低分子化合物(薬剤)が存在する画分を絞り込む。さらにラマンピークを示した画分を質量分析計(MS)で分析し、低分子化合物と結合する生体分子を特定することができる。別の実施形態において、本発明に係る装置は、キャピラリー電気泳動装置、ラマン分光装置及び質量分析計(CE-R-MS)を有する。この場合も試料の分離をキャピラリー電気泳動装置(CE)により行う他はLC-R-MSの場合と同様であり、本発明の基本的な原理は同じである。これらの他、試料分離部として液相等電点電気泳動等を使用することもでき、試料分離部が他の分離手段による場合についても同様である。
 本発明に係る装置では、試料分離部、ラマン分光部及び質量分析部は、この順序で連結されている。連結とは、試料の受け渡しができるように装置の機器どうしが接続されていることをいう。試料分離部、ラマン分光部及び質量分析部がこの順序で連結されているとは、具体的には試料分離部で分離された試料はラマン分光部に導入され、次いでラマン分光分析を行った試料は質量分析部に導入される、という順番で試料が受け渡されるよう装置が構成されていることをいう。試料分離部からラマン分光部、及びラマン分光部から質量分析部への試料の受け渡しは手動で又は自動化された装置により行うことができる。試料の受け渡しは送液ラインで連続的に行うこともでき、又は試料を一旦プレート等にスポッティングしたり、フラクションコレクターで個別の画分に分離することで断続的に行うこともできる。
 したがって試料分離部、ラマン分光部及び質量分析部は物理的に各々独立した装置であってもよく、試料分離部から分離された試料(画分)が手動又は自動化された装置によりラマン分光部に導入され、ラマン分光部からの分析された試料(画分)が手動又は自動化された装置により質量分析部に導入されるシステムも本発明に係る装置又は方法に包含される。あるいは本発明に係る装置を、試料分離部、ラマン分光部及び質量分析部が組み込まれ一体化された装置とすることもできる。このような構成を有する本発明に係る装置は、先行技術が内包する問題点を克服することができる。
2. 本発明に係る方法
 本発明は、本発明に係る装置を用いて生体分子を特定する方法、及び生体分子と低分子化合物との結合部位を同定する方法を提供する。
 すなわち、本発明に係る方法によれば、煩雑な前処理等を必要とすることなく、ラマン分光法によって識別可能な低分子化合物が結合した生体分子又はその断片を、試料分離部により分画し、それぞれ分画された画分(液滴等)をプレート上に配列し、乾燥し凝集した生体分子又はその断片をそのままラマン分光部で測定することができる。その後、全ての画分又はラマンピークを有することが特定された一部の画分を特段の処理をせずにそのまま質量分析部にて解析することができる。
2.1 生体分子
 本発明に係る装置又は方法は生体分子を分析するものである。本明細書でいう「生体分子」とは、細胞外又は細胞内に存在する、タンパク質、ペプチド、核酸、糖又は脂質をいう。本明細書でいう生体分子はどのような生体又は生物に由来するものであってもよく、例えばウイルス、原核生物、真核生物、真菌類、植物、高等植物、動物、昆虫、高等動物、哺乳動物、マウスやラット等のげっ歯類、サルやチンパンジー等の霊長類、ヒト、又はこれらの培養細胞や培養組織由来であってもよい。本明細書でいう生体分子に包含されるタンパク質及びペプチドは、天然及び/又は合成アミノ酸がペプチド結合により結合している高分子化合物をいう。本明細書でいう生体分子に包含される核酸は、少なくとも10、好ましくは50、300、500、又は1000以上の塩基を含む、一本鎖又は二本鎖の核酸をいい、好ましくは特定の低分子化合物と相互作用するものである。核酸はDNAであってもよく、又はRNAであってもよい。RNAにはtRNAやリボソームRNA、リボザイムも含まれる。核酸はプロモーター領域、エンハンサー領域、サイレンサー領域、ターミネーター領域を含むものであり得る。これらは好ましくは特定の転写調節因子、転写開始因子などと結合するものである。本明細書でいう生体分子に含まれる糖は、多糖類を包含し、この多糖類は好ましくは特定の低分子化合物と相互作用するものである。糖の例としては、ヒアルロン酸、キチン、ヘパラン硫酸、ケラタン硫酸、デルマタン硫酸、シアル酸、コンドロイチン硫酸等のプロテオグリカン或いはプロテオグリカン類縁体が挙げられる。本明細書でいう生体分子に含まれる脂質は、上記に例示した生物に含まれる脂質を包含し、好ましくは特定の低分子化合物と相互作用するものである。脂質の例としては、スフィンゴリン脂質、グリセロリン脂質等のリン脂質、スフィンゴ糖脂質、グリセロ糖脂質等の糖脂質、リポタンパク脂質、スルホ脂質又はガラクト脂質等の細胞外或いは細胞膜を形成する複合脂質が挙げられる。
2.2 低分子化合物
 本発明に係る低分子化合物とは、分子量が低く、特定の生体分子に結合する化合物又は結合する可能性がある候補化合物をいう。ある実施形態において本発明に係る低分子化合物は生体分子と比較して分子量が低い。ある低分子化合物が特定の生体分子に結合する場合、低分子化合物からみた生体分子のことを標的と呼ぶことがある。低分子化合物、又は低分子化合物の基となる化合物(分析対象化合物ともいう)には、薬剤、薬剤候補化合物、生理活性物質、代謝物質、ビタミン、ホルモン、特定の受容体タンパク質に結合するリガンド、タンパク質のアゴニスト、タンパク質のアンタゴニスト、タンパク質翻訳後修飾機構によりタンパク質に結合する化合物等も含まれる。これらには、天然に存在する化合物及びそれらと化学構造が類似するアナログ(類似体)が含まれる。本発明に係る低分子化合物は、ラマン分光において、生体分子と識別可能な散乱ピークを与えるもの、またはラマン標識により生体分子と識別可能な散乱ピークを与えるものであれば、いかなる化合物でもよい。
2.2.1 低分子化合物のラマンピーク
 特徴的なラマンピークや、細胞中や混合物中に共存する生体分子、特に低分子化合物の標的となる生体分子と識別できるようなラマンピークを有する化合物であれば、これをそのまま低分子化合物として本発明に使用することができる。このような低分子化合物は、そのままラマン分光により検出できるため、蛍光団等による修飾の必要がないという利点がある。また、500~1800 cm-1の範囲で、化合物に由来するラマンピークが認められる領域を「フィンガープリント(指紋)領域」ということがある。
2.2.2 ラマン標識
 また、特徴的なラマンピークを有しない化合物については、当該化合物に導入しても生体分子との結合に対する影響がきわめて小さい置換基を導入し、これを本発明に係る低分子化合物として使用することができる。このような置換基をラマン標識ともいい、好ましくは前記置換基又はラマン標識はサイレント領域に散乱スペクトルを有するものである。サイレント領域は上記に説明したとおり、生体分子由来のラマンスペクトルにおいてシグナルがほとんど又は全く観察されない波数領域である。前記置換基又はラマン標識はラマン散乱光が比較的強く、標的低分子化合物を検出する際に生体分子由来のラマンピークと異なる波数域に特徴的なピークを示すため、標的である低分子化合物を高感度かつ選択的に検出するのに好都合である。これらは蛍光団等で修飾する必要がなくそのままラマン分光法で検出できる。サイレント領域に散乱スペクトルを有する置換基としては、アルキニル基、ニトリル基(-C≡N)、重水素(C-D、C-D2、C-D3)、ジアゾニオ基(-N+≡N)、イソシアン酸エステル基(-N=C=O)、イソニトリル基(-N+≡C-)、ケテン基(>C=C=O)、カルボジイミド基(-N=C=N-)、チオシアン酸エステル基(-N=C=S)、アジド基(-N=N+=N-)、ジアゾ基(>C+=N-=N)、アルキンジイル基、エチニレン基(-C≡C-)、1,3-ブタジイニレン(-C≡CC≡C-)等を含む化合物が挙げられるがこれらに限定されない(浜口宏夫、平川暁子 編 ラマン分光法(日本分光学会 測定法シリーズ17)も参照されたい)。アルキニル基としては、エチニル基(CH≡C-)、プロパルギル基(CH≡CCH2-、2-プロピニル基ともいう)、ブタ-3-イン-1-イル基(HC≡CCH2CH2-)、ブタ-2-イン-1-イル基(CH3-C≡CCH2-)などが挙げられるがこれらに限定されない。これらはいずれも本発明のラマン標識となり得る。本発明に係る低分子化合物は、好ましくはアルキニル基、ニトリル基、又は重水素を有する。
2.2.3 スペーサー
 ラマン標識は目的の化合物に直接導入してもよく、又は適当なスペーサー分子を介して目的の化合物に結合させることもできる。例えば目的の化合物にアルキニル基を導入したい場合、アルキニル基を直接導入してもよく、又はフェニル基と結合したアルキニル基(ethynylphenyl基)として導入することもできる。この場合、スペーサー分子はフェニル基である。したがって特定の生体分子に結合するが特徴的なラマンピークを有しない又は生体分子と識別できるようなラマンピークを有しない化合物は、上記置換基を導入することによりラマン標識して、本発明に係る装置又は方法に使用することができる。当業者であれば、適当なスペーサー分子を用いて化合物をラマン標識することができる。スペーサー分子としては、メチレン基(-CH2-)、エチレン基(-CH2CH2-)、プロパン-1,3-ジイル基(-CH2CH2CH2-)、フェニレン基(-C6H4-)、オキシエチレン基(-OCH2CH2-)、オキシプロピレン基(-OCH2CH(CH3)-)等が挙げられるがこれらに限られない。
2.2.4 ラマン標識方法
 当業者であれば、化合物の構造に鑑み、どの位置にどのようなラマン標識を導入すればよいか、適宜選択することができる。また、有機合成の分野における通常の技術を有する当業者であれば、適宜、ラマン標識された化合物を合成し、本発明に係る低分子化合物とすることができる。具体例を用いて説明すると、当業者であれば、有機合成の分野における通常の技術を用いてカテプシンBの阻害剤であるアシルオキシメチルケトン(AOMK)をアルキンでラマン標識し、AOMK誘導体(以下、RAT8-AOMKともいう)を合成することができる。このRAT8-AOMKはカテプシンBに結合し、その酵素活性を阻害する。RAT8-AOMKのカテプシンB阻害活性はIC50=0.3 μMである。RAT8-AOMK合成は、N-Boc-AOMK(IC50=0.05 μM)を4-ニトロフェニル-4-エチニルベンジルカルボネートと反応させることにより得ることができる。アシルオキシメチルケトン(AOMK)はシステインプロテアーゼ阻害剤として知られている。その原理は、AOMKにより酵素タンパク質の活性中心のシステイン残基が修飾され、プロテアーゼとしての活性が失われる、というものである(図24参照)。
Figure JPOXMLDOC01-appb-C000001
 そこで当業者であれば、AOMK化合物中のメチルケトン基から離れた部位にラマン標識を導入すれば、システイン残基修飾反応に対してさほど影響を及ぼさないと考え、ラマン標識を導入する位置を決定することができる。また、網羅的に化合物中の任意の位置にラマン標識を導入した「ラマン標識化合物ライブラリー」を作製し、当該ラマン標識化合物ライブラリーについて、所定の生体分子結合活性、例えばタンパク質阻害活性を有するか否かスクリーニングすることにより、種々の候補化合物の中からラマン標識が導入され、かつ標的タンパク質と結合する化合物を選択し、本発明に係る低分子化合物とすることができる。
2.2.5 低分子化合物の例
 生体分子がタンパク質又はペプチドである場合、本発明に係る低分子化合物としては、そのようなタンパク質又はペプチドに結合する、薬剤、薬剤候補化合物、抗生物質、農薬等の生理活性物質、代謝物質、補酵素等のビタミン、ホルモン、特定の受容体タンパク質に結合するリガンド、タンパク質のアゴニスト、タンパク質のアンタゴニスト、タンパク質翻訳後修飾機構によりタンパク質に結合する化合物等が挙げられる。このような低分子化合物は、好ましくはラマン標識されているか、又は他の生体分子と識別可能な特徴的なラマンスペクトルを有する。一例として、タンパク質カテプシンBに結合する化合物N-Boc-AOMKは、4-ニトロフェニル-4-エチニルベンジルカルボネートによりラマン標識の一種であるアルキン基を導入し、本発明に係る低分子化合物RAT8-AOMKとすることができる。
 生体分子が核酸である場合、本発明に係る低分子化合物としては、そのような核酸に結合する、プロフラビン、アクチノマイシンD等の二重鎖核酸に対するインターカレート型薬剤、ネトロプシン、デスタマイシン等のグループ結合型の薬剤、カリケミシン等のDNA切断薬剤等が挙げられる。このような低分子化合物は、好ましくはラマン標識されているか、又は他の生体分子と識別可能な特徴的なラマンスペクトルを有する。
 生体分子が糖である場合、低分子化合物としてはプラディマイシンA、B、C、D,E、FA-1、FA-2,ベナノマイシンA等のレクチン様活性を示す低分子の抗生物質が挙げられる。
 このような低分子化合物は、好ましくはラマン標識されているか、又は他の生体分子と識別可能な特徴的なラマンスペクトルを有する。
 また、必ずしも分子量が低いわけではないが、そのような糖に結合する本発明に係る物質としては、R型レクチン、カルネキシン、カルレティキュリン、セレクチン、コレクチン等のC型レクチン、ガレクチン、豆科レクチン、L型レクチン、P型レクチン、アネキシン、シグレック等のI型レクチンからなるレクチン類や糖鎖の特異抗体等が挙げられる。このような物質も、生体分子に結合することから、本発明でいう低分子化合物に包含される。糖に結合する特異抗体は、遺伝子工学的にアルキン修飾されたアミノ酸をタンパク質に組み込むことによりによりアルキン基を導入することができる。
 生体分子が脂質である場合、本発明に係る低分子化合物としては、そのような脂質に作用する、モネンシン、ラサロシッド、サリノマイシン等のポリエーテル系抗生物質、イソフルラン、セボフラン、デスフルラン等の麻酔剤、ビタミンA(レチノイド)、ビタミンD、ビタミンE、ビタミンK等の脂溶性ビタミン等が挙げられる。このような低分子化合物は、好ましくはラマン標識されているか、又は他の生体分子と識別可能な特徴的なラマンスペクトルを有する。
 ある実施形態において、本発明に係る低分子化合物はラマン標識されたアミノ酸である。別の実施形態において、本発明に係る低分子化合物はラマン標識されたアミノ酸を有する低分子量ペプチドである。図6にアルキン標識ペプチドの一例とそのラマンスペクトルを示す。アミノ酸配列がEQWPQCPTXK(配列番号4)において、Xがイソロイシンであるペプチド(以下、ペプチド1という。図6では(2)。)とXがプロパルギルグリシンであるペプチド(以下、アルキンペプチド1という。図6では(1)。)のラマンスペクトルを示す。アルキン化されたペプチドのスペクトルでは2123 cm-1にアルキン固有のラマンピークが観察されたのに対して、非標識ペプチドではこの領域にラマンピークは観察されなかった。このように本発明に係るラマン分光部は両ペプチドを明確に識別することができる。この原理を利用すれば以下のような態様が可能となる。生理活性のある低分子量ペプチドに着目し、そのうちの1以上のアミノ酸をラマン標識するか、ラマン標識されたアミノ酸で置換したペプチドを用意する。このラマン標識された低分子量ペプチドを使用すると、本発明に係る装置又は方法により、当該ペプチドと結合する生体分子を特定することができる。また、当該ペプチドと生体分子の結合部位を同定することができる。つまり生理活性を有する低分子量ペプチド(例えばペプチドホルモン)の標的を探索でき、その作用部位を同定できる。アルキン化されたペプチドは、固相合成(Fmoc)法により調製することができる。上記の例で説明すると、固相合成法によりリジン(K)の次に付加するアミノ酸をプロパルギルグリシン(X)とし、さらにアミノ酸配列がTPCQPWQEをC末端から順に付加すれば、結果的にアルキン化されたペプチドを得ることができる。別の例として固相合成法でペプチドを合成しておき、当該ペプチド中の任意の側鎖官能基をアルキン化してもよい。
2.3 低分子化合物と生体分子との結合
 本明細書において低分子化合物と生体分子とが「結合した」という場合、結合には、共有結合、配位結合及び相互作用が含まれ、低分子化合物による生体分子中の特定の部位への結合をいう。共有結合とは、複数の原子が互いの電子を共有することによる化学結合をいう。配位結合とは、結合に関与する原子の一方からのみ電子が提供される化学結合をいう。相互作用とは、2つの分子の間に働く分子間力に基づく作用をいい、イオン間相互作用、水素結合による作用、双極子相互作用、疎水性相互作用、及びこれらの組合せが挙げられる。
3. 生体分子と低分子化合物との結合部位の同定方法
 生体分子と低分子化合物との結合部位を「同定する」とは、低分子化合物が生体分子のどこに結合しているか、又はどこと相互作用するか、を決定することをいう。本発明に係る装置を使用すると生体分子と低分子化合物との結合部位を同定することができる。
 生体分子と低分子化合物との結合部位を同定する方法は、次の工程を含む。 
(1)分画された、低分子化合物と結合した生体分子断片をラマン分光分析に供すること、及び
(2)ラマン分光分析に供した画分の全部又は一部を質量分析に供すること。
 この方法では、ラマン分光分析により生体分子断片と結合した低分子化合物由来のラマンピークを有する画分を検出し、低分子化合物由来ラマンピークを有する画分の質量分析結果を取得し、これを生体分子の質量情報と照合して、生体分子内の前記低分子化合物の結合部位を同定する。
 この方法の前段階としてまず低分子化合物と生体分子とを結合させ、次いで低分子化合物と結合した生体分子を断片化し、分画することができる。このような分画を上記工程(1)に用いることができる。低分子化合物と生体分子とを結合させるには、例えば無細胞条件下で低分子化合物と生体分子とを混合することが好ましい。
3.1 生体分子の断片
 本明細書において生体分子の断片とは、高分子化合物である生体分子の結合を1以上の箇所で切断し、より分子量の低い単位にしたものをいう。例えば生体分子がタンパク質である場合、これをプロテアーゼ処理に供してペプチド結合が切断された断片(ペプチド)を得ることができる。プロテアーゼとしては、セリンプロテアーゼ、アスパラギン酸プロテアーゼ、メタロプロテアーゼ、システインプロテアーゼ等が挙げられるがこれらに限定されない。また、臭化シアン、N-ブロモサクシンイミド、ヒドロキシルアミン等により生体分子を化学的に分解することもできる。生体分子がペプチドである場合についても同様である。生体分子がトリグリセリド脂質を含む場合は、これをリパーゼ等の脂質分解酵素での処理に供して分解された断片(脂肪酸)を得ることができる。リパーゼとしてはトリアシルグリセリドリパーゼ、ホスホリパーゼ、リポタンパクリパーゼ、エステラーゼ等が挙げられるがこれらに限定されない。他種の生体分子についても同様である。生体分子が糖であれば、糖を分解する酵素が使用可能であり、α-アミラーゼ、β-アミラーゼ、グルコアミラーゼ、イソアミラーゼ、プルラナーゼ、マルトトリオヒドロラーゼ、α-グルコシダーゼ、シクロデキストリン、グルカノトランスフェラーゼ、アミログルコシダーゼ、デキストラナーゼ、β‐ガラクトシダーゼ、シアリダーゼ、セルラーゼ、α―マンノシダーゼ、β―マンノシダーゼ等が挙げられるが、これらに限定されない。生体分子が核酸であれば、二重鎖DNAを特異的に切断する制限酵素等のデオキシリボヌクレアーゼ、一重鎖RNA切断酵素のリボヌクレアーゼ等の核酸分解酵素で処理し、核酸断片を得ることができる。断片化とは、適当な分解酵素や物理的又は化学的処理により生体分子をより分子量の低い断片に分解することをいう。断片化は上記のような酵素処理や化学的処理により行うことができる。当業者であれば適宜、用いる酵素や化合物等を選択し、処理条件を決定することができる。
3.2 生体分子と低分子化合物との結合部位を同定するための構成
 生体分子と低分子化合物との結合部位を同定するための装置の例を図18に示す。装置の構成としては、HPLCがUV検出器に連結され、これがスポッターに連結され、次にこれがラマン分光部に連結され、次いでこれが質量分析部に連結されている。この装置は、本発明に係る生体分子と低分子化合物との結合部位を同定する方法に使用することができる。この方法について図18を参照しながら説明すると、まず生体分子(例えばタンパク質)を低分子化合物と結合させる。次いでこれを適当なプロテアーゼ処理により断片化(消化)する。得られた断片(ペプチド)の混合物を試料分離部のHPLCで分画し、UV検出器で検出してUVクロマトグラムを得る。次にそれぞれの画分をMALDI用プレート上にスポッティングする。配列されたペプチドアレイをラマン分光分析に供し、ラマン強度にしたがってマッピングする。ラマンシグナルを示した画分をMALDI-MSに供して質量分析を行うことで、低分子化合物が結合したペプチドが特定でき、これにより低分子化合物と生体分子との結合部位が同定できる。
3.2.1 カテプシンBとRAT8-AOMKの結合解析
 結合部位の同定について具体例を用いて説明する。本発明者らは3.の方法を用いて生体分子カテプシンBと低分子化合物RAT8-AOMKの結合部位を解析した。RAT8-AOMKはアルキン標識されたカテプシンB阻害剤である。図19-1上段では結合解析の手順を模式化した。図19-1上段に示すように、まずRAT8-AOMKをカテプシンBに結合させ、次いでこれをプロテアーゼ処理により断片化(消化)する。HPLC分画を経て、プレートに画分をスポッティングし、スポットを乾燥させた後、ラマン分光分析を行う。図19-2の左にアルキン強度の分布が模式的に示されており、強度の高い画分を質量分析に供する。質量分析により種々のペプチドの質量スペクトルが得られ、これを解析することで、どのペプチド断片にRAT8-AOMKが結合しているか特定でき、これによりRAT8-AOMKがカテプシンBに結合している部位を同定できる。
 また、スクリーニングは低分子化合物自身のラマンピークでも可能である。本発明に係る装置又は方法では、低分子化合物自身のラマンピークでスクリーニングが可能であり、どの画分に低分子化合物が含まれているか検出できる。したがって図18をはじめ、本明細書及び図面において便宜上試料分離部がUV検出器を有する構成を例示したが、試料分離部のUV検出器は本発明に係る装置又は方法に必須ではなく、低分子化合物の検出はラマン分光部でも可能である。
3.3 質量分析結果と生体分子に関する質量情報との照合
 本明細書において質量分析結果を取得し、これを生体分子の質量情報と「照合」して、生体分子内の前記低分子化合物の結合部位を同定する、とは、タンパク質の例で説明すると、取得されたペプチド断片の質量スペクトル結果が、当該ペプチドが由来するタンパク質の一部に相当する領域の計算上の質量と一致するか否か判断することにより、低分子化合物がタンパク質中のどこに結合しているか結合部位を同定することをいう。当業者であれば、必要に応じてタンパク質、ペプチド、核酸、脂質や糖のような生体分子に関する情報をDDBJ / NIG、EMBL / EBI、GenBank / NCBI、NIAS DNA Bank、PIR、SWISS-PROT & TrEMBL、GenPept、PRF、日本糖鎖科学統合データベース(JCGGDB)、LipidBank等の適当な公知のデータベースから取得することができる。また、アミノ酸配列が一致しているか否かはMascot(Matrix Science Inc.)等のソフトウエアを用いて決定することができる。さらに、MS/MS解析により、低分子化合物の結合アミノ酸を確認することもできる。
4. 低分子化合物と結合する生体分子を特定するスクリーニング方法
 本発明に係る装置を使用すると、低分子化合物と結合する生体分子を特定することができる。本発明に係る低分子化合物と結合する生体分子を特定するスクリーニング方法は、以下の工程を含む。  
(1)低分子化合物と結合した生体分子を含む画分をラマン分光分析に供し、前記低分子化合物と結合した生体分子を含む画分を検出すること、及び
(2)ラマン分光分析に供した画分の全部又は一部を質量分析に供すること。
 この方法ではラマン分光分析により低分子化合物由来のラマンピークを有する画分を検出し、低分子化合物に由来するラマンピークを有する画分の質量分析結果を取得し、これを生体分子の質量情報と照合して、前記低分子化合物に結合する生体分子を特定する。
 例えば工程(1)の前段階として、まず目的の生体分子を含む混合物に低分子化合物を添加して低分子化合物と生体分子とを結合させ、次いでこれを試料分離手段により分画することができる。分離されたこのような画分を工程(1)に使用できる。
4.1 生体分子について
 本発明に係るスクリーニング方法及び結合部位同定方法は、タンパク質、ペプチド、核酸、糖、脂質を含む種々の生体分子に用いることができる。
4.1.1 タンパク質について
 本発明に係るスクリーニング方法はタンパク質のスクリーニングに使用することができる。例えば全ゲノムの塩基配列が解読されている生物又はウイルスについて、ある薬剤活性を有する低分子化合物が、当該生物又はウイルス中のどのタンパク質と結合し作用するかスクリーニングする場合、上記方法を実施すると、前記低分子化合物と結合するタンパク質の質量分析結果が得られる。また、前記低分子化合物と結合するタンパク質を、プロテアーゼ処理により分解し、ペプチドに断片化した後質量分析を行うと、当該ペプチド断片の質量情報が得られる。さらに、MS/MS分析にかけることで、ペプチドのアミノ酸配列が決定できる。得られたアミノ酸配列を、解読されている全ゲノム配列中にコードされているあらゆるタンパク質の配列情報と照合し、前記低分子化合物と結合するタンパク質を特定することができる。ペプチドについても同様である。さらに、上記「3.生体分子と低分子化合物との結合部位の同定方法」を用いると、その結合部位を同定することもできる。他の生体分子、例えば核酸、糖又は脂質についても同様であり、ある試料中に含まれる種々の核酸、糖又は脂質について網羅的な質量情報がある場合に本発明に係る上記方法を実施すると、低分子化合物と結合する核酸、糖又は脂質の質量分析結果が得られ、これを前記網羅的な質量情報と照合して、低分子化合物と結合するものを特定することができる。以下、これらについて説明する。
4.1.2. 核酸について
 本発明に係る方法は核酸に使用することもできる。例えばある細胞の種々の核酸分子の情報がある場合において、低分子化合物がどの核酸分子と結合するか決定したいときは、本発明に係る方法を実施して、前記低分子化合物と結合する核酸分子の質量情報を得ることができる。またMS/MS分析を行うことによって核酸を順次分解したものの質量スペクトルを得ることもでき、これを前述の質量情報と照合して前記低分子化合物がどの核酸分子と結合するか特定できる。また、結合した核酸を特定した後、本発明に係る方法を実施してその結合部位を決定することもできる。
4.1.3 糖について
 本発明に係る方法は糖に使用することもできる。例えばある病原菌の複数の莢膜多糖類の構造が解明されている場合において、低分子化合物がどの莢膜多糖類と結合するか決定したいときは、本発明に係る方法を実施して、前記低分子化合物と結合する莢膜多糖類の質量情報を得ることができる。またMS/MS分析を行うことによって多糖類を順次分解したものの質量スペクトルを得ることもでき、これを前述の質量情報と照合して前記低分子化合物がどの莢膜多糖類と結合するか特定できる。また、結合した莢膜多糖類を特定した後、本発明に係る方法を実施してその結合部位を決定することもできる。
4.1.4 脂質について
 本発明に係る方法は脂質にも使用可能である。例として、細胞の脂質二重膜を構成する分子に関する網羅的な情報がある場合に、低分子化合物がどの脂質分子と結合するか決定したいときは、本発明に係る方法を実施して、前記低分子化合物と結合する脂質分子の質量スペクトルを得ることができる。これを前記脂質に関する網羅的な情報と照合して、前記低分子化合物がどの脂質分子と結合するか特定できる。また、結合した脂質分子を特定した後、本発明に係る方法を実施して、その結合部位を決定することもできる。
 本明細書では低分子化合物としてRAT8-AOMKを使用し、生体分子としてタンパク質カテプシンBを使用した系を代表的な実施例として記載した。しかしながら、本発明に係る装置及び方法の適用対象となる生体分子は、その原理上、タンパク質に限定されない。なぜならば細胞の他の構成要素である核酸、糖、脂質についても、サイレント領域は基本的に同一であり、よって適当なラマン標識を低分子化合物に用いれば、原理的に、サイレント領域を有する核酸、糖、脂質の混合物中から、低分子化合物と結合した核酸、糖、脂質をラマン分光分析により識別することが可能だからである。ここで、HeLa細胞のラマンスペクトルを図32に示す。1800~2800 cm-1という領域にラマンピークは特に見られず、サイレント領域は細胞破砕液においても同一の範囲であることがわかる。非特許文献1も参照されたい。
 より具体的に説明すると、生体内には炭素-炭素三重結合はほとんど存在せず、よってサイレント領域に出現するアルキンのラマンピークはサンプルが生体由来であればどのような測定対象であっても検出可能である。したがって本発明に係る装置及び方法は、アルキンのようなサイレント領域にピークを有する基をラマン標識として使用すると、核酸、糖、脂質といった生体分子にも適用可能である。
4.2 分析する低分子化合物と結合した生体分子の調製
 低分子化合物と結合した生体分子を含む溶液は、細胞に低分子化合物を取り込ませ、細胞内の生体分子と結合させ、該細胞を破砕することにより調製することができる。また、低分子化合物と結合した生体分子を含む溶液は、細胞を破砕し、次いで細胞破砕液に低分子化合物を加え、細胞内の生体分子と結合させることにより調製することもできる。
4.3 液体クロマトグラフを利用した分画
 本発明に係る方法に用いる試料は、分離溶媒として低沸点極性溶媒及び水を用いる液体クロマトグラフにより分画したものであってもよい。低沸点極性溶媒は1.1.1に記載したとおりである。
4.4 プレートを利用したスポットの調製とスポッティングの効果
 本発明に係る方法に関し、ラマン分光分析しようとする画分は、そのままの液滴とし又は溶媒と混合した液滴とし、前記液滴を適当なプレート上に配列すること、及び前記液滴に含まれる溶媒を蒸発させることによりラマン分光分析に供するスポットを調製することができる。溶媒の蒸発によりスポットを調製すること、及びラマン分光分析をラマン顕微鏡にて行うことから、プレートは清浄化された面を有することが好ましい。プレートの面が清浄化されているとは、ラマン分光分析の支障となるような液体、固体汚染物、無機、有機不純物、指紋、ゴミ、曇り、キズなどが面の上にないことをいう。清浄化は、水、界面活性剤を含む水性洗浄剤、又は有機溶媒によりプレート表面を洗浄し、その後プレートを乾燥させることにより行うことができる。また、用いるプレートは好ましくは、撥水面を有する。プレートの撥水面が清浄化されていればさらに好ましい。撥水とは水をはじくことをいい、プレートの撥水面とは、プレートの水をはじく面をいう。撥水面は、例えばプレートにフッ素系撥水剤やシリコーン系撥水剤のような水より著しく表面張力の小さい撥水剤を塗布する処理により実現することができる。撥水面を有するプレートは金属、ガラス、石英、フッ化カルシウム又はフッ化マグネシウム製のプレートであってもよく、好ましくはラマン分光分析及び質量分析の結果に影響をほとんど又は全く及ぼさないものである。液滴のプレート上への配列は、マイクロピペットを用いて行うことができる。この操作は手動で又は自動化された装置により行うことができる。プレートとしては当技術分野で広く用いられている96ウェルプレートや384ウェルプレート等が挙げられるが、これらに限られない。プレート上への分画試料のスポッティングの例を図13に示す。図13左では、HPLCで分画した溶液を送液し、これをプレート上にスポッティングする。スポッティングの順番はあくまで一例である。図13右下に示すように、基板上の液滴が乾燥するに伴い、溶液中のペプチドが環状に凝集する。このリング部分をラマン顕微鏡で分析すると効率よく、高感度でラマンスペクトルを得ることができる。
4.4.1 ラマン顕微鏡用プレート
 ラマン分光分析及び質量分析は、市販のプレートを用いて行ってもよいが、ラマン顕微鏡の試料ステージに適合する顕微鏡用基板固定プレートを作製して用いることもできる。図14及び図15-1に本発明に係る装置に使用可能なプレートの例を示す。図14の左上には顕微鏡用基板固定プレートを示す。写真はマルチスポット金属基板を背面からみたものである。図14の左下はラマン顕微鏡の試料台を示す。図14の右は試料台に顕微鏡用基板固定プレートを装着した状態である。この状態でラマン分光分析を行う。目的のラマンピークを有するスポットを検出することをラマンスクリーニングともいう。
 本発明に係る装置及び方法では、ラマン分光分析を行った試料の画分は、次に質量分析に供されるため、ラマン分光分析に用いたプレートは、そのまま質量分析計で解析できるものであることが好ましい。そこで本発明者らはスポットされた試料のラマン分光、質量分析をスムーズに行うプレートを開発した。その一例を図15-1~図17に示す。このプレートを用いると、ラマン分光部でスクリーニングした試料をそのまま質量分析部で解析することができる。図16ではラマン計測に有利な石英基板をそのままMALDI-MS測定に利用できることを確認した。図16の左上では、左のスポットがアルキンペプチド1であり、右のスポットがペプチド1である。図16の左下では左の矢印がアルキンペプチドのスポットを指しており、右の矢印がペプチド1のスポットを指している。図16右上はアルキンペプチド1及びペプチド1のラマンスペクトルであり、2123 cm-1におけるラマンピークの有無により両試料を識別することができる。また図16右下がMALDI-MS測定結果であり、アルキンペプチド1と、非標識のペプチド1の質量差がスペクトルから確認でき、計算上の値とよく一致する。この結果は図6及び7に対応する。図7及び図16右下の質量スペクトルからは、同一試料をラマン分光分析した後、そのままMALDI法で分析できることが確認された。図17には全面が石英でできたマルチスポット基板を示す。基板は塩酸、硫酸または硝酸等により処理後、水洗により酸除去し、アセトン等低沸点溶媒により洗浄、乾燥する。基板は、表面の清浄性が必要であるが、さらに生体物質が高密度で凝集できるように撥水性であることが好ましく、ラマンスペクトルのサイレント領域にシグナルが認められないジメチルジクロロシラン、トリメチルクロロシラン等のシリコーン系撥水剤やフッ素系撥水剤等により撥水処理を行い、製造することができる。基板は、図17左下に示すように、磁石で台座に固定する。このプレートは、本発明に係る方法及び装置に用いることができる。
5. 本発明の利用法
 本発明において、試料を試料分離部の液体クロマトグラフ又はキャピラリー電気泳動装置により分画後、その試料を直接ラマン分光部に用いることが従来の技術にない特徴であり、これにより、特定の生体分子或いは断片を容易に検出又は分離し特定することができる。さらに、ラマン分光部は質量分析部と連結されているため、ラマン分光分析により特定された画分をそのまま後続する質量分析計により解析することができ、これにより生体分子の配列決定や低分子化合物との結合部位の同定が簡便にできる。配列決定とは、例えば生体分子がタンパク質又はペプチドの場合はアミノ酸配列の決定をいい、生体分子が多糖類の場合は多糖類を構成する糖の配列の決定をいう。
 本発明に係る装置又は方法は、タンパク質の翻訳後修飾の解析にも使用することができる。例えばあるタンパク質が翻訳された後、ファルネシル基やパルミトイル基のような脂質により特定の部位で(例えばパルミトイル基であればシステイン残基で)修飾される場合、前記脂質をラマン標識して本発明に係る低分子化合物とし、これを本発明に係る装置又は方法に用いると、ラマン標識された脂質と結合するタンパク質を特定することができ、さらにその結合部位も特定できる。ラマン標識された脂質は細胞に取り込ませて標的タンパク質と結合させてもよく、又は細胞破砕液に加えて標的タンパク質と結合させることもできる。従来法では、脂質を蛍光団で修飾すると、タンパク質翻訳後修飾の細胞メカニズムでは当該蛍光修飾脂質が認識されず、その後の分析ができないという問題があった。改良法として脂質を細胞に取り込ませ、その後これをクリック反応を用いて蛍光団で修飾し、蛍光分析により当該脂質に結合するタンパク質を特定する報告例(非特許文献4)や、脂質にクリック反応でビオチンタグを導入し、ストレプトアビジンで検出する報告例もある(非特許文献5)。しかしながらこれらの方法では複雑なハンドリングや非特異的反応の問題、反応操作による標的タンパク質のロスの問題があった。これに対して本発明に係る装置又は方法を用いると、タンパク質翻訳後修飾の細胞メカニズムにほとんど又は全く影響を及ぼさないラマン標識された脂質を使用し、前記ラマン標識脂質と結合する生体分子を特定でき、その結合部位を同定できる。タンパク質翻訳後修飾が糖による修飾の場合も同様である。
6. 本発明の有利な効果
 以上をまとめると、本発明に係る装置及び方法は、網羅的に生体分子を探索して低分子化合物と結合するものを特定し、又は生体分子と低分子化合物との結合部位の同定を行うことができる。本発明は化合物自身のラマンピーク、又はアルキニル基等特徴的なラマンピークを有するラマン標識により、低分子化合物を選択的に高感度で検出することができる。
 本発明に係る方法では、低分子化合物をそのまま用いるか、又は分析対象化合物に付加するタグの分子量を低く抑えることができ、大きな蛍光団を使用する従来の蛍光標識法と比較して、低分子化合物の生化学的特性を変化させずに、標的となる生体分子を特異的に識別・検出でき、特定できる。また本発明に係るラマン分光分析を行うと、低分子化合物のみならず生体分子由来の分子振動情報も得られるため、低分子化合物と生体分子との共存を確認できるという従来技術にはない利点がある。
 さらに、従来のアルキンタグをクリック反応と組み合わせた方法(非特許文献2等)では、クリック反応操作に関連する目的物質のロスがあり、また非特異的反応が生じる等の問題があった。これに対し、本発明に係る方法ではアルキンタグ自身をラマン分光法で分析できることから、従来法が内包していた目的物質のロスや非特的反応等の問題は解消される。
 さらに、本発明の凝集促進剤を用いたSERS法は、測定感度が上昇し、検出限界が改善されるという特徴を有する。また、本発明の凝集促進剤を用いたSERS法では、凝集体の分布が均一化されるため、測定する試料の量とSERSシグナルとの相関性が向上しており、測定のばらつきが抑制され、ラマン測定の弱点である長時間の測定を短縮化することができる。
 以下の実施例は、例示のみを意図したものであり、本発明の技術的範囲を限定するものではない。
 材料及び方法について説明する。他の材料や試薬は特に断らない限り、市販されているか、又は当技術分野で慣用の手法、公知文献の手順に従って入手又は調製する。
[材料]
 液体クロマトグラフィーでの試料分離のためのトリフルオロ酢酸(TFA)は和光純薬工業株式会社から、0.1 %ギ酸を含有する蒸留水、及び0.1 %ギ酸(FA)を含有するアセトニトリル(MeCN)は関東化学株式会社から入手した。なお、セミマイクロHPLCのためのアセトニトリル及び蒸留水については、ナカライテスク社から入手した。
[実験手法]
<液体クロマトグラフィー>
 液体クロマトグラフィーの一例は次のとおりである。試料を用意し、UV検出器を備えたHPLC (Ultimate3000、 DIONEX)に注入し、フラクションコレクター(Probot、 DIONEX)で分画した。流速は50 μl/分とした。必要に応じて、分離溶媒に0.1 % TFAを含む蒸留水―アセトニトリル混合溶媒を用い、アセトニトリル濃度勾配をかけた。
<ラマン分光分析>
 測定条件の一例は次のとおりである。波長:532 nm、 レーザー強度: 30 mW、 露光時間: 30秒、対物倍率: 40倍、開口数:0.75、乾燥空気中、 照射: 点照射。レーザーの焦点は、ペプチドが高度に濃縮されているリング領域(乾燥・凝集して粉体の状態)に合わせる。各スポットについて5回反復してスペクトルを取得し、平均化して1つのスペクトルを得た。
<MALDI-Orbitrap>
 MALDI質量スペクトルは、MALDIイオン源を備えたLTQ Orbitrap XL (Thermo Fisher Scientific社)を用いて取得した。サンプルは、α-シアノ-4-ヒドロキシ桂皮酸(CHCA)又は2,5-ジヒドロキシ安息香酸(DHB) (Bruker社)と混合した。MALDI質量スペクトルはFTモードにより取得した(分解能30,000又は60,000)。こうしたスペクトルは手動で取得した。パラメーターは次のとおりである。スキャン範囲: m/z 800-4000、 レーザーエネルギー(μJ): (CHCAについては)2-4又は(DHBについては)6-8。
<ナノフローHPLC-エレクトロスプレーイオン化質量分析(ナノLC-MS)>
 本発明に係るLC-R-MSと比較するために、LC-MSを次の手順で行う。ナノLC-MS及びMS/MSは、ESIイオン源を備えたLTQ Orbitrap XL(Thermo Fisher Scientific)を用いて取得した。ナノHPLCシステム(Ultimate 3000, DIONEX), トラップカラム(ZORBAX 300SB C18 (内径0.3 × 5 mm), Agilent)及びtip column (NTCC-360、内径0.075 mm、日京テクノス)を用いた。移動相Aは、0.1%ギ酸、4%アセトニトリルを含む蒸留水であり、移動相Bは0.1%ギ酸を含むアセトニトリルであった。サンプルを0.1% TFA又は適当な濃度の n-デシル-β-D-グルコピラノシド (DG) (MP Biomedicals)で希釈し、200 nL/分の流速で移動相Bが0-80%/30分のグラジエント法を用いて溶出させた。ESI質量スペクトルはFTモードで取得し(分解能60,000)、MS/MSスペクトルはイオントラップモードで取得した。
 タンパク質又は修飾されたペプチドを同定するためのデータベース検索は、ペプチド配列決定プログラム(Protein Discoverer, Thermo Fisher Scientific)を用いてデータベースMS/MSイオン検索(MatrixScience社のmascot検索エンジン)により行った。
[実施例1]
ラマン標識を有する低分子化合物のラマン分光分析
 アミノ酸配列がEQWPQCPTXK(配列番号4)である低分子量ペプチドにおいて、XがイソロイシンであるペプチドとXがプロパルギルグリシンであるペプチドを合成した。以下、本実施例において前者をペプチド1、後者をアルキンペプチド1と呼ぶ。ペプチド1は、固相合成(Fmoc)法により合成した。同様にアルキンペプチド1も固相合成法により合成した(いずれのペプチドも(独)理化学研究所脳科学総合研究センターにおいて合成)。プロパルギルグリシンは市販品を用いた。これらの構造を図6の上段に示す。
 アルキンペプチド1を液体クロマトグラフで分画した後、ラマン分光分析に供した結果を図8-1、図8-2に示す。液体クロマトグラフィーとラマン分光分析は上記[実験手法]に記載した手法及び条件で行った。まず液体クロマトグラフィーで保持時間に応じて試料を分画した。これをUV検出器で測定した結果が図8-1のAである。この結果を拡大した図8-1のBでは28~29分にUVピークが見られ、ペプチドが検出された。図8-2のDに画分番号1~17のラマンスペクトルを示す。画分番号7~8にアルキンに特徴的なラマンピークが観察された。このようにUV分光分析とラマン分光分析の結果は一致しており、ラマン分光分析によりアルキン標識ペプチドを検出できることが示された。
 次に、ペプチド1とアルキンペプチド1を個別にラマン分光分析し、そのスペクトルを重ね合わせた結果を図6下段に示す。実験条件は、上記[実験手法]に記載したとおりであった。また、試料は粉体であった。図6下段を見ると、アルキンペプチド1のスペクトル(1)では2123 cm-1にアルキン固有のラマンピークが観察されたのに対して、非標識のペプチド1ではこの領域にラマンピークは観察されなかった((2))。このようにペプチド1とアルキンペプチド1のラマンスペクトルは明確に区別できた。
 次に、ラマン分光分析に供した上記のペプチド1とアルキンペプチド1の試料をそのまま質量分析法により解析できることを確認した。実験条件は、上記[実験手法]に記載したとおりであった。ラマン分光分析に供した試料の質量分析結果を図7に示す。m/z 1211付近にアルキンペプチド1のピークが検出され、m/z 1229付近にペプチド1のピークが検出された。
 次に混合物中に含まれるアルキンペプチド1と非標識のペプチド1を分離できるか確認した。図9に、本発明に係る方法を用いて混合物中からアルキン標識ペプチドと非標識ペプチドを分離した結果を示す。まず液体クロマトグラフィーで保持時間に応じて試料を分画した。これをUV検出器で測定した結果が図9-1Aである。この結果を拡大した図9-1BではUV(280 nm)ピークが31分と33.2分に観察された。これらの画分をラマン分光した結果を図9-3Gに示す。画分3、4ではラマンピークが観察され、画分12、13では有意のピークは観察されなかった。したがって図9-1Bにおける31分のピーク(画分3、4)がアルキン標識ペプチドに帰属され、33.2分のピーク(画分12、13)が非標識ペプチドに帰属される。これらの結果は、画分4及び12の質量分析の結果(それぞれ図9-2D及びE)とも合致する。実験条件は、上記[実験手法]に記載したとおりであった。
[実施例2] 低分子化合物RAT8-AOMKの調製
 (S)-3-(2-((((4-エチニルベンジル)オキシ)カルボニル)アミノ)-3-フェニルプロパンアミド)-2-オキソプロピル2,6-ジメチルベンゾエート)(以下、RAT8-AOMKという)は、次の手順により調製した。
NBoc-AOMK合成
 メチルエチル2-(2-((tert-ブトキシカルボニル)アミノ)-3-フェニルプロパンアミド)アセテート (2.0 g, 5.7 mmol)のTHF(29 ml)及びメタノール(29 ml)溶液に19 mlの10%水酸化ナトリウムを加え、10℃で10分間撹拌した。反応後7.5% 塩酸で中和し、ジクロロメタンで6回抽出した。減圧下に溶媒除去後THF (27 ml)溶液とし、N-メチルモルホリン(970 μl, 8.8 mmol)及びクロロギ酸イソブチル(1.05 ml, 8.1 mmol)を加え、10℃、30分間撹拌後、ジアゾメタン/ジエチルエーテルを加えた。3時間以上室温にて撹拌し、33% HBrの酢酸 (10.5 ml) 及び水 (10.5 ml)溶液を滴下し、0 ℃、10 分間撹拌した。反応を水飽和のNaHCO3及び酢酸エチルで停止し、酢酸エチルで2回抽出し、硫酸マグネシウムで乾燥した。有機層を減圧下で濃縮後、酢酸エチル/ヘキサン(2/1)溶媒を用いてシリカゲルカラムで精製し、無色、非結晶状のブロモメチルケトン(1.55 g、 57%)を得た。
 ブロモメチルケトン(1.5 g、3.76 mmol)/DMF (9.4 ml)溶液に、KF(874 mg、 15.0 mmol)及び2,6-ジメチル安息香酸(733 mg、 4.89 mmol)を加え、室温で24時間撹拌反応した。DMFを減圧留去後、ジクロロメタン及び水を加え、分離後水層をジクロロメタンで2回抽出した。有機層を減圧下で濃縮後、酢酸エチル/ヘキサン(2/1)溶媒を用いてシリカゲルカラムで精製し、無色、非晶質のNBoc-AOMK (952 mg、54%)を得た。
[α]D 26- 3.03 (c 0.760, CHCl3)
1H-NMR (400 MHz, CDCl3) δ: 7.31-7.19 (6H, m), 7.04 (2H, d, J = 7.7 Hz), 6.83 (1H, brs), 5.11 (1H, d, J = 7.8 Hz), 4.88 (2H, s), 4.47 (1H, brs), 4.21 (2H, m), 3.10 (2H, m), 2.37 (6H, s), 1.39 (9H, s)
13C-NMR (100 MHz, CDCl3) δ: 198.6, 171.8, 168.9, 155.4, 136.4, 135.5, 132.1, 129.8, 129.2, 128.6, 127.7, 127.0, 80.3, 66.6,
55.6, 46.6, 38.2, 28.2, 19.8
MS (ESI) m/z値: 491 [(M+Na)+]
HRMS (ESI) 計算値 C26H32N2O6Na: 491.2153(実測値: 491.2165)。
RAT8-AOMK合成
 N-Boc-AOMK (83 mg、177 μmol)のジクロロメタン (0.75 ml)溶液にトリフルオロ酢酸を加え30分間撹拌した。溶媒を減圧除去し、THF(0.74 ml)溶液として4-ニトロフェニル-4-エチニルベンジルカルボネート(35 mg、118 μmol)、 N,N-ジイソプロピルエチルアミン(160 μl、1.6 mmol)及び4-ジメチルアミノピリジン(14 mg、0.12 mmol)を加えて室温で2時間撹拌した。反応後、水及び酢酸エチルを加え、水層と有機層を分離し、水層を2回酢酸エチルで抽出し、硫酸マグネシウムで乾燥した。有機層を減圧下で濃縮後、シリカゲルカラムで精製した。続いてゲルろ過し、無色、非晶質のRAT8-AOMK (34.7 mg、 56 %)を得た。
 [α]D 23+ 0.66 (c 0.915, CHCl3
1H-NMR (400 MHz, CDCl3) δ: 7.43 (2H, d, J = 8.3 Hz), 7.28-7.16 (8H,m), 7.04 (2H, d, J = 7.8 Hz), 6.75 (1H, brs), 5.50 (1H, brd, J = 7.2 Hz), 5.06 (1H, d, J = 12.7 Hz), 5.00 (1H, d, J = 12.7 Hz), 4.86(2H, s), 4.53 (1H, m), 4.17 (2H, m), 3.09 (2H, m), 3.09 (1H, s), 2.36 (6H, s)
13C-NMR (100 MHz, CDCl3) δ: 198.6, 171.3,169.0, 155.8, 136.8, 136.1, 135.6, 132.2, 132.1, 129.9, 129.2, 128.7, 127.7, 127.7, 127.1, 121.9, 83.2, 77.6, 66.6, 66.5, 56.0, 46.5,38.4, 19.9 
MS (ESI) m/z値: 549 [(M+Na)+]
HRMS (ESI) 計算値C31H30N2O6Na: 549.1996(実測値: 549.2012)。
[実施例3] RAT8-AOMKによるカテプシンBの標識
 RAT8-AOMK標識されたカテプシンBを含む試料ロットFL-S10は次の手順で調製した。カテプシンB (6 μg, 約200 pmol, CALBIOCHEM カタログ番号219362)を300 μlの標識バッファー(50 mM酢酸(pH 5.6), 5 mM MgCl2, 2 mM ジチオトレイトール(DTT))中に溶解させた。これを室温で15分静置した後、3.0μlのジメチルスルホキシド(DMSO)に溶解した2 mM RAT8-AOMKを3 μl加えた。この混合物を37℃で3時間インキュベートした後、タンパク質(カテプシンB)をTCA沈殿法により沈殿させた。得られた沈殿を20 μlの変性バッファー(7 M グアニジン塩酸塩(GuHCl)), 1M Tris-HCl (pH 8.5))に溶解させ、37℃で1時間インキュベートした。DTT及びヨードアセトアミド(IAA)による還元とアルキル化の後、1.5 μlのトリプシン(100 ng/μl)を試料に添加し、37℃で数時間インキュベートした。ロットFL-S10を下記で、最終サンプルとよぶことがある。最終サンプルの9/10をスポッティング実験に使用した。
[実施例4] RAT8-AOMK及びRAT8-AOMK標識カテプシンBのラマンスペクトルの測定
 調製したRAT8-AOMK試料そのもの、及びRAT8-AOMK標識カテプシンBを含む試料そのもののラマンスペクトルを測定した。
 ラマン分光はラマン顕微分光装置(ナノフォトン株式会社、Raman-11)を用いて行った。レーザー光源は波長532 nmのレーザーを用いた。レーザーの強度は、対物レンズ透過後の試料面で30 mWであり、露光時間は30秒であった。倍率40倍、開口数0.75の対物レンズを用いた。レーザーの照明パターンはポイント照明を選択した。710~3100 cm-1の波数範囲のラマンスペクトルを取得した。
 SERSのために40 nm銀ナノ粒子Silver: 25 μl of silver colloids (40 nm、 EMSC40、ブリティシュ バイオセル インターナショナル製) を使用した。
 ラマン分光分析の結果を図25及び図26に示す。RAT8-AOMK自身のラマンスペクトルを分析したところ、図25の右上に示されるように、アルキン由来のラマンピークが2100 cm-1付近に観察された。図25下段では、種々の試料濃度でのラマンスペクトルを示す。また、RAT8-AOMK標識カテプシンBのラマンスペクトルを分析したところ、図26の右上に示されるように、アルキン由来のラマンピークが2109 cm-1付近に観察された。また、図26下段には、種々の試料濃度でのラマンスペクトルを示すが、アルキン由来のピークの他、タンパク質由来のラマンピークも同時に確認された。
 銀ナノ粒子を用いたSERSの結果を図12に示す。直径40 nmの銀ナノ粒子を用いるとRAT8-AOMKのラマンピークの強度が103以上増大した。露光時間は10 秒であった。図12左において強度の低いスペクトルが銀粒子を使用しなかったものであり、強度の強いスペクトルが銀粒子を使用したときに得られたものである。図12中央も同様である。銀ナノ粒子は、EMSC40(ブリティシュ バイオセル インターナショナル製)を使用した。これと等重量のエタノールとを混合した混合液0.5 μlをガラス基板に滴下し、乾燥後その上にDMSOに溶解したRAT8-AOMK溶液0.5 μlを滴下し、SERS測定を行った。
[実施例5] 液体クロマトグラフィー
<ナノLC-Probot>
 上記の方法で調製した試料ロットFL-S10を凍結乾燥させ、26 μlの水に溶解させた。試料26 μl中の25 μlをUV検出器 (MU701、 GL science)を備えたナノLC(NanoFrontier nLC、 Hitachi社製)に注入し分画した。流速は250 nL/分とした。画分はフラクションコレクター(Probot、 Dionnex)を用いて20 秒/スポットというスポッティング速度でMALDI用プレート(ITOP plate, Thermo)にスポッティングした。UVクロマトグラムの結果を図20のAに示す。図20のCは画分をスポッティングした順番を示す。図20Aに示されているとおり画分番号35~75にUV吸収が観察された。この範囲について、次にラマン分光分析及び質量分析を以下の手順で行った。
[実施例6] スポッティングした濃縮RAT8-AOMK標識カテプシンBのMALDI質量スペクトル分析
 濃縮RAT8-AOMK標識カテプシンB(ロットFL-S10)を含む溶液をナノLC-UV-probotによりMALDI用プレートにスポッティングした(250 nl/分、20 秒/ウェル、約200 pmol)。図27にMALDI用プレートにスポッティングした画分番号1~94の明視野像を示す。スポットでは乾燥工程により溶媒を蒸発させ、試料を濃縮した。この濃縮されたRAT8-AOMK標識カテプシンBを含む試料ロットFL-S10をラマン分光法により測定した。複数のスポットからアルキンシグナルが検出されたので、MALDI-Orbitrap装置を用いて同じ標的プレートから質量スペクトルを手動で取得した。
<ラマン分光分析>
 ラマン分光分析は、実施例5に記載のように行った。結果は図21及び23に示す。
<MALDI MS分析>
マトリクス: DHB
質量範囲: m/z800-4,000
質量スペクトル取得モード: フーリエ変換(FT)、分解能30,000、レーザーエネルギー 5~8μJ
<LCによる試料の分離及びUVでの検出>
 ナノLC-UV-probotを用いてRAT8-AOMK標識カテプシンBの断片を含む試料を分画した。ナノLCに注入した試料のUVクロマトグラム結果を図20Aに示す。便宜上、保持時間30分~60分の領域を拡大して示す。UV検出は214 nmにて行った。使用した溶媒は水-アセトニトリルであった。この実験ではアセトニトリル濃度(勾配)を60分で5%から80%へと線形に増大させた。カテプシンBの出発量は200 pmol (3 μg)であった。最終サンプル(ロットFL-S10)の9/10をナノLCに注入した。これらの画分をMALDI用プレートにスポッティングした。LCでの溶出時間が30分である時点から開始して、20秒間隔で画分を回収し、これらの画分をスポッティングした。合計の画分数は94であった。図20AではUVクロマトグラムでの保持時間と画分番号の関係を示す。その下にアルキン(2107 cm-1)のピーク強度をプロットしたラマンスペクトルを対応して示す(図20B)。画分番号57-66についてアルキンシグナルが得られ、RAT8-AOMK標識されたペプチドの存在が示された。
<ラマン分光分析の手法及び結果>
 ラマン分光はラマン顕微分光装置(ナノフォトン株式会社、Raman-11)を用いて行った。レーザー光源は波長532 nmのレーザーを用いた。レーザーの強度は、対物レンズ透過後の試料面で30 mWであり、露光時間は30秒であった。倍率40倍, 開口数0.75の対物レンズを用いた。レーザーの照明パターンはポイント照明を選択した。710~3100 cm-1の波数範囲のラマンスペクトルを取得した。銀ナノ粒子は使用しなかった。
 画分番号35-94から得られたラマンスペクトルを図21に示す。各スポットについて5回反復してラマンスペクトルを取得し、平均したラマンスペクトルを示す。また、画分番号35-75のアルキンピーク強度を図20Cに示す。
 図27にMALDI用プレート上の94の試料スポットの明視野像を示す。ラマン測定は凝集部にラマン顕微鏡の焦点を合わせて行った。画分番号35はUVピーク強度が増大し始める開始点と一致する。ラマン測定の後、各スポットについてMALDI質量分析を以下の手順で行った。
 上記のようにラマン測定した各スポットに関して、質量分析を行った結果を図28-図31に示す。図28は画分番号56-60の質量スペクトルである。ペプチドA-2(DQGSCGSCWAFGAVEAISDR+RAT8-AOMK)の理論上のm/z値を図28の最下段に示す。この理論上のペプチドA-2のスペクトル(最下段)と対応する領域を最上段の括弧で示す。画分番号57で最も強いピークが検出された。図29は画分番号58-62の質量スペクトルである。ペプチドB-1(EIRDQGSCGSCWAFGAVEAISDR+カルバミドメチル+RAT8-AOMK)の理論上のm/z値を図29の最下段に示す。図30は画分番号60-65の質量スペクトルである。ペプチドA-1(DQGSCGSCWAFGAVEAISDR+カルバミドメチル+RAT8-AOMK)の理論上のm/z値を図30の最下段に示す。これらの結果を重ね合わせたものを図31に示す。ペプチドA-2は画分番号57に、ペプチドB-1は画分番号60に、ペプチドA-1は画分番号62に最も多く見られた(画分番号はMALDI用プレート上でのウェルの番号である)。
 このように主として3種のAOMK標識されたペプチドを検出した。それぞれが異なる保持時間を示したことから、アルキンピークは比較的広い範囲に観察された。3種のペプチドを以下にまとめる。  
画分番号56-60 [57]: ペプチドA-2、DQGSCGSCWAFGAVEAISDR (+RAT8-AOMK)
画分番号59-67 [60]: ペプチドB-1、EIRDQGSCGSCWAFGAVEAISDR (+RAT8-AOMK, +カルバミドメチル)
画分番号61-69 [62]: ペプチドA-1、DQGSCGSCWAFGAVEAISDR (+RAT8-AOMK, +カルバミドメチル)
([]内の番号は最も強いイオンピークが観察された画分である)。
 図22は、ラマンスクリーニングにより検出されたスポットについて得られたMALDI質量スペクトルを示す。図22-1の左のアルキンピーク強度マップは、図20のピーク強度プロファイルに対応する。アルキンシグナルが得られた画分の質量スペクトルでは、AOMK標識ペプチドのピークが観察された(図22-1のA、B、C)。図22-2では、それぞれの実験結果と計算上の値を比較して示す。ラマンピークを示した画分番号からは、低分子化合物RAT8-AOMKが結合したペプチド断片の計算上の質量とよく一致する質量スペクトルが得られた。例えば画分番号62の質量スペクトルはm/z 2492等にピークを有するスペクトルを示し、これはペプチドA-1 (DQGSCGSCWAFGAVEAISDR+カルバミドメチル+RAT8-AOMK)に帰属された。C109 H150 N28O36 S2の計算上の質量電荷比(m/z)は2492.0282 Daである。画分番号60の質量スペクトルは、ペプチドB-1 (EIRDQGSCGSCWAFGAVEAISDR+カルバミドメチル+RAT8-AOMK)に帰属された。C126 H180 N34O41 S2の計算上のm/zは2890.2559 Daである。画分番号57の質量スペクトルはペプチドA-2 (DQGSCGSCWAFGAVEAISDR+RAT8-AOMK)に帰属された。C107 H147 N27 O35 S2の計算上のm/zは2435.0067である。
 アルキンシグナルが観察されなかったスポット(画分番号50)について質量分析を行ったところ、非標識のペプチド断片が確認された(ペプチドNGPVEGAFSVYSDFLLYK、配列番号5、2004.98 Da)。このことは、MALDI質量スペクトル分析を標識化ペプチドのみならず非標識ペプチドについて行うことができることを示す。MALDI質量分析によりAOMK標識されたペプチドと非標識のペプチドが観察されたスポットを図24に大まかに示す。画分番号50ではペプチドのみが検出された。画分番号57-66付近ではAOMK標識されたペプチドが検出された。
 さらに、AOMK標識されたペプチドをスクリーニングするために、異なるラマンピークを使用できるか調査した。そのままのRAT8-AOMK(neat)は2つの固有のラマンピークを有する(図23Aの下段)。1つのピークは2106 cm-1でありこれはアルキンの振動に帰属される。もう一つのピークは1610 cm-1におけるフェニル環による振動である。図23Aの上段及び中段では、そのままのRAT8-AOMK(neat)と画分番号35-75のラマンスペクトルを対応して示す。画分番号57-66では1609 cm-1にピークが観察できた。図23Cは2107 cm-1及び1609 cm-1でラマンスペクトルを測定したときのピーク強度プロファイルを示す。アルキン及びフェニル環のラマンピークの両方が画分番号57~66付近で重なって出現した。フェニル環のラマンピークは、強度はいくぶん低いものの、アルキンと類似するプロファイルを示す。このことは、アルキンのみならず、アルキン標識されていない元の化合物のフェニル環に由来するラマンピークもラマンスクリーニングに使用できることを示す。ただし、アミノ酸の一種であるフェニルアラニンは1602 cm-1にラマンピークを示すことが知られている。したがって、フィンガープリント領域でタンパク質/ペプチド由来のラマンシグナルがバックグラウンドに現れるため、それらの存在に注意を払う必要がある。
 MALDI-Orbitrap分析では、CHCAもしくはDHBをマトリクスとして使用した。一般に、CHCAは、均一な共結晶を形成するのが容易であり、高感度でスペクトルを得ることができるため、自動分析に適している。他方、DHBの共結晶は均一ではなく針状であるが、多くの場合、タンパク質のペプチドカバレージ(包含範囲)が増大する。したがって解析試料の性質や測定の目的に応じてマトリクスを選択することが重要である。以下に、各ペプチドの理論上の質量を記載する。上記の実験結果はこれらの理論上の値とよく一致した。
<理論上のカテンプシンBのトリプシン分解ペプチド:アミノ酸配列と元素組成/質量>
ペプチドA, 切断ミス:なし
DQGSCGSCWAFGAVEAISDR; C85 H127N25 O31 S2
*モノアイソトピック質量2057.857 Da, 平均質量2059.197 Da
(* モノアイソトピック質量は対象分子を構成する各元素の主同位体のみに基づく質量をいう。)
ペプチドB, 切断ミス:1ヶ所
EIRDQGSCGSCWAFGAVEAISDR; C102 H157N31 O36 S2
モノアイソトピック質量2456.085 Da, 平均質量2457.654 Da
<各修飾による増加>
カルバミドメチル(Cys) 
モノアイソトピック質量57.021464 Da, 平均質量57.0513 Da 
組成H3 C2 N O
RAT8-AOMK (Cys) 
モノアイソトピック質量376.142307 Da, 平均質量376.4052 Da 
組成C22 H20 N2O4
<計算されたm/z>
ペプチドA系列
ペプチドA-1
DQGSCGSCWAFGAVEAISDR ; C109 H150 N28 O36 S2
カルバミドメチル(Cys); RAT8-AOMK (Cys)
モノアイソトピックm/z 2492.0282
ペプチドA-2
DQGSCGSCWAFGAVEAISDR ; C107 H147 N27 O35 S2
RAT8-AOMK (Cys)
モノアイソトピックm/z 2435.0067
ペプチドB系列
ペプチドB-1
EIRDQGSCGSCWAFGAVEAISDR; C126 H180N34 O41 S2
カルバミドメチル (Cys); RAT8-AOMK (Cys)
モノアイソトピックm/z 2890.2559。
[実施例7] スポッティングした濃縮RAT8-AOMK標識カテプシンBのMALDI-MS/MSスペクトル分析
 実施例6で示した濃縮RAT8-AOMK標識カテプシンBと同様の実験条件でMALDI用プレートにスポッティングした試料をラマン分光法により測定し、アルキンシグナルが検出された画分に対して、MALDI-Orbitrap装置を用いてMS/MS分析を行った。図33は、ペプチドA-1 (DQGSCGSCWAFGAVEAISDR +カルバミドメチル+RAT8-AOMK)が検出された画分から得られたMS/MSスペクトルを示す。得られたフラグメントイオンを解析したところ、ペプチドのC末端から数えて12番目トリプトファン残基のN末端で開裂したC末端側フラグメントイオン (y12)と、13番目システイン残基のN末端側で開裂したC末端側フラグメントイオン(y13)の間に、RAT8-AOMKの質量に相当する376.1 Daとシステイン残基に相当する103.0 Daの和から、脱水による18.0 Daを引いた質量数の差が見られることが分かった。一方、C末端から数えて15番目グリシン残基のN末端で開裂したC末端側フラグメントイオン(y15)と、16番目システイン残基のN末端側で開裂したC末端側フラグメントイオン(y16)の間に、カルバミドメチルの質量に相当する57.0 Daとシステインに相当する103.0 Daの和に相当する質量数の差が見られることが分かった。上記の結果から、ペプチド DQGSCGSCWAFGAVEAISDRに含まれる2つのシステイン残基のうち、C末端から数えて13番目のシステイン残基が、RAT8-AOMKによる修飾を受けていることが決定された。  
<MALDI MS/MS分析>
マトリクス: CHCA
質量範囲: m/z200-3,000
質量スペクトル取得モード:フーリエ変換(FT)、分解能15,000、レーザーエネルギー 5~8 μJ
MS/MS方式: HCD (higher energy collision dissociation)
<MS/MS分析に供するペプチド>
ペプチドA-1
[実施例8] 金属基板及び石英基板
 本発明者らは、スポットされた試料のラマン分光及び質量分析をスムーズに行うプレートを開発した。図14にスポットされた試料のラマン分光及び質量分析をスムーズに行うプレートを示す。図14の左上には顕微鏡用基板固定プレートを示す。写真はマルチスポット金属基板を背面からみたものである。図14の左下はラマン顕微鏡の試料台を示す。図14の右は試料台に顕微鏡用基板固定プレートを装着した状態である。この状態でラマンスクリーニング(ラマン分光分析)を行う。マルチスポット金属基板は、MALDI用金属プレート(Thermo社製)を、表面の清浄化を確認し用いた。
 ラマン計測には石英基板が有利である。石英基板は、合成石英(Starbar Japan製、φ25 mm×0.17 mm)を、表面の清浄化を確認し用いた。これはMALDI-MS測定にそのまま使用することができる。図16の左にラマン計測に有利な石英基板を示す。この基板にペプチドとアルキンペプチドをスポッティングし、ラマン分光分析を行った結果を図16の右上に示す。アルキンペプチドでは2123 cm-1にアルキン固有のラマンピークが観察されたのに対して、ペプチドではこの領域にラマンピークは観察されなかった。また、図16の右下には、この石英基板をそのままMALDI-MS測定に使用した結果を示す。m/z 1211付近にアルキンペプチドのピークが検出され、m/z 1229付近にペプチドのピークが検出された。このように本発明に係る石英基板を用いると、ラマン分光に供した試料をそのまま質量分析に供することができ、両ペプチドを明確に識別することができた。用いた材料はアミノ酸配列がEQWPQCPTXK(配列番号4)であるペプチドにおいて、Xがイソロイシンであるペプチド、とXがプロパルギルグリシンであるアルキンペプチドである。図6のラマンスペクトルは図16右上に対応し、図7の質量スペクトルは図16右下に対応する。
 図17には全面が石英でできたマルチスポット基板を示す。この石英基板は図17下に示すように、磁石で台座に固定した。
[実施例9] 金ナノ粒子を用いたSERS測定
 直径50 nmの金ナノ粒子分散液(EMGC50, BBI)をガラス基板に滴下し、乾燥させた。乾燥した金ナノ粒子凝集体の上に、DMSOに溶解した6mM RAT8-AOMKを1 μl滴下した。比較のために、金ナノ粒子のないガラス基板上にも、同様にDMSOに溶解した6mM RAT8-AOMKを1 μl滴下した。それぞれの液滴に対して、ラマン測定を行った。ラマン分光は、ラマン顕微分光装置(ナノフォトン株式会社, Raman-11)を用いた。レーザー光源は波長660nmのレーザーを用いた。レーザーの照明パターンはライン照明を選択した。レーザーの強度は、対物レンズ透過後の試料面で3.5 mWであり、露光時間は10秒であった。対物レンズには開口数0.75、倍率40倍の対物レンズを用いた。ラインに沿って得られた400点のラマンスペクトルを平均して、それぞれの液滴に対するスペクトルとした。1250~2400cm-1の波数範囲のラマンスペクトルを取得した。結果を図34に示す。金ナノ粒子の使用によりラマンシグナルの増強が確認された。
[実施例10] 銀ナノ粒子分散液と混合した場合のSERS測定
 直径40 nmの銀ナノ粒子分散液(EMSC50, BBI) 15 μlと、アルキンペプチド1を10 pmol溶解した水15 μlとを混合し、ガラスボトムウェル(EzView 384ウェル ガラス底アッセイプレート、AGCテクノグラス)の内の1区画に注入した。同様に、銀ナノ粒子と非標識のペプチド1を10pmol溶解した溶液も、同一ウェルプレートの異なる区画に注入した。ウェルプレートにテープで蓋をして、冷蔵庫(4℃)で1日保存した後、ラマン測定を行った。ラマン分光は、ラマン顕微分光装置(ナノフォトン株式会社, Raman-11)を用いた。レーザー光源は波長532nmのレーザーを用いた。レーザーの照明パターンはライン照明を選択した。レーザーの強度は、対物レンズ透過後の試料面で240 mWであり、露光時間は1秒/ラインで、1サンプルにつき25ライン測定した。対物レンズには開口数0.75、倍率40倍の対物レンズを用いた。ラインに沿って得られた1 line 400点× 25 lineの10000個のラマンスペクトルを平均して、それぞれの溶液に対して、710~3100cm-1の波数範囲のラマンスペクトルを取得した。結果を図35に示す。
[実施例11及び比較例]
本発明のラマン分光法を用いた場合と、従来法のクリック反応を介して蛍光団を導入する場合の比較
試料調製
 カテプシンB (10 μg, CALBIOCHEM, カタログ番号219362)を100 μlのBogyoバッファー(50 mM酢酸(pH5.6)、5 mM MgCl2、2 mM DTT)に溶解させた。これを室温で15分静置し、1.0 μlのDMSO中20 mM RAT8-AOMKと混合した。この混合物を37℃で3時間インキュベート後、該タンパク質を氷上で3時間インキュベートしてTCA沈降により沈降させた。沈殿物を取得するために、20000 G、20分の遠心分離を行った。上清を除いた後、1 mlのアセトンを加え、遠心分離を20000 Gにて15分行った。遠心分離とアセトン処理は3回反復して行った。真空下で30秒にわたりアセトンを除去した後、該沈殿物を10μlの変性バッファー(7M GuHCl, 1M Tris-HCl (pH 8.5))に溶解させた。
 クリック反応には、Click-iTタンパク質反応バッファーキット(C10276, Invitrogen)を使用した。100 μlの40 μM Alexa Fluor 488 アジドを加えた。水を50μl加え、5秒ボルテックス撹拌した。10 μlのCuSO4 (成分B)を加え、5秒ボルテックス撹拌した。10 μlのClick-iT反応バッファー添加物1溶液(additive 1 solution)を加え、5秒間ボルテックス撹拌した。これを3分静置した。20 μlのClick-iT反応バッファー添加物2溶液(additive 2 solution)を加え、5秒間ボルテックス撹拌した。
 次いでこれを回転機を用いて20分にわたりエンド-オーバー-エンド(end-over-end)回転させる。600 μlのメタノールを添加し、ボルテックス撹拌を短時間行った。150 μlのクロロホルムを添加し、ボルテックス撹拌を短時間行った。400 μlの精製水を添加し、ボルテックス撹拌を短時間行った。18000 Gにて5分遠心分離を行い、上清を除いた。メタノールを450 μl加え、ボルテックス撹拌を短時間行った。18000 Gにて5分遠心分離を行った。上清を廃棄した。メタノールを450 μl加え、ボルテックス撹拌を短時間行った。18000 Gにて5分遠心分離を行い、次いで上清を廃棄した。ペレットを15分間、空気乾燥させ、10 μlの変性バッファー(7M GuHCl, 1M Tris-HCl (pH 8.5))を加えた。各サンプルについて、10 μlの変性バッファー(7M GuHCl, 1M Tris-HCl (pH 8.5))を添加し、合計溶液を20 μlとした。クリック反応有り及び無しの両方について、20 μl中の19 μlを37℃で1時間に渡りインキュベートした。DTT及びIAAによる還元とアルキル化の後に、サンプルを37℃で6時間インキュベートした。次いで水を加え27 μlの0.1 % DGを添加することによりサンプル溶液を266 μlとした。3.0 μlのトリプシン(100ng/μl)をサンプルに加え、37℃で一晩静置した。
UVクロマトグラム取得
 上記のように調製した100 μlのペプチド混合物を凍結乾燥させ、50 μlの水に溶解させた。50 μl溶液をナノ-LCシステム(nanoFrontier, Hitachi)に注入した。実験条件は、クリック反応無しでのラマン分光分析については、250 nl/分の流速、20 s/spot (Probot, Dionnex)で、384ウェルガラス底プレート (EzView 384 ウェルガラス底アッセイプレート、AGCテクノグラス)での測定というものであり、クリック反応有りでの蛍光分析については、250 nl/分の流速、20 s/spot (Probot, Dionnex)で、384ウェル撥水性MALDIプレート(ITOP, Thermo)での測定というものであった。1画分当たり1.5 μlの水をプロボット(probot)のサイドポートから加えることで、ガラスウェルプレート上の水滴が安定して分配されるよう補助した。UVクロマトグラムはUV検出器(MU701, GL science)を215 nmにて使用して取得した。勾配は、0分 5 %、60分 80 %、60.01分 95 %、75分 95 %、75.01分 0 %、90分 0 %というものであった。合計画分数は192であった。図中には20~85 分での保持時間を示した。図36上段に示すUVクロマトグラムにおけるピーク高を比較するために、41~57.5 分の保持時間のチャートを図36下段に拡大した。図36の下段に示されるように、比較例としてクリック反応を用いた場合(2)は、クリック反応を用いない本発明の場合(1)と比較して、57.5~74.2 %のサンプル喪失が観察された。
ラマンクロマトグラムの取得
 384ウェルガラス底プレート上の液滴が乾燥するのを待って、ラマン測定を行った。ラマン分光はラマン顕微分光装置(ナノフォトン株式会社, Raman-11)を用いた。レーザー光源は波長532 nmのレーザーを用いた。レーザーの照明パターンはポイント照明を選択した。レーザーの強度は、対物レンズ透過後の試料面で180 mWであり、露光時間は30秒であった。対物レンズには開口数0.75, 倍率40倍の対物レンズを用いた。1サンプルにつき5回、ペプチド凝集体上の異なる位置でスペクトルを取得し、その平均をとった。192ウェル全てについて同様の測定をおこなった。710~3100 cm-1の波数範囲のラマンスペクトルを取得した。得られたスペクトルに対して移動平均によるスムージングをかけた。アルキン由来のラマンピークのピークトップ2108 cm-1から、ピーク底部の2091 cm-1の値を引き算して、各ウェルにおけるアルキンのラマン強度を算出し、ラマンクロマトグラムとして強度プロファイルを作成した。
蛍光クロマトグラムの取得
 384ウェル撥水性 MALDIプレート上の液滴が乾燥するのを待って、蛍光測定を行った。蛍光測定は、蛍光イメージャー(Pharos FX, Biorad)を用いて行った。励起波長は488 nmを選択した。分解能は50 μmを選択した。得られた蛍光画像において、各スポット位置における蛍光強度の最大値を192点算出し、蛍光クロマトグラムとして強度プロファイルを作成した。
 ラマンクロマトグラムと蛍光クロマトグラムのプロファイルの違いを図37に示す。図37下段では保持時間40~60分を拡大して示す。特徴的な3本のピークについて、蛍光クロマトグラムの場合、蛍光シグナルは47.5~51.0分に見られ、一方、ラマンクロマトグラムの場合、ラマンシグナルは49.5~52.0分のより狭い範囲に見られた。また、蛍光クロマトグラムではこれら3本のピークの前後に多くの非特異的シグナル(ノイズ)が認められた。これらのことは、大分子量の蛍光団を用いてクリック反応を行いUVクロマトグラフィーで試料を分離した場合(比較例)よりも、蛍光団を用いない本発明のラマンクロマトグラフィーで分離した場合の方が、目的試料の分離に対する特異性が高いことを示す。
[実施例12] TFA添加系及びTFA無添加系アルキン標識ペプチドのSERS測定
 15 μlの40 nm銀ナノ粒子(EMSC40、ブリティシュ バイオセル インターナショナル製)を所定濃度にした15 μlのアルキン標識ペプチド(アルキンペプチド1; EQWPQCPTXK; X=プロパギルグリシン)/0.3 %TFA水溶液に加え、4℃で1日放置した。この試料を用いてSERS測定を行った。
 SERS測定は、532 nm励起レーザーを用いたラマン顕微分光装置(ナノフォトン株式会社、Raman-11)を使用し自動測定した。対物レンズ後のレーザー出力は240 mW、露光時間は1~3秒であった。倍率40倍、開口数0.75の対物レンズを用いた。レーザーの照明パターンはライン照明を選択した。アルキン強度は1958 cm-1の波数から取得した。その結果、TFA添加系のSERSのアルキン検出感度はペプチドベースで100 fmol(フェムトモル)であった。
 TFA無添加系については、試料調製においてTFAを添加しない以外は上記TFA添加系と同様の操作にて試料を調製し、SERS測定を行った。その結果、SERSの検出感度はペプチドベースで3 pmol(ピコモル)であった。ただし、TFA無添加系では、アルキンペプチド1の注入容量はSERS強度と必ずしも相関しなかった。
 TFA添加系では、TFA無添加系の検出感度に比べ、アルキンの検出感度は30倍程度高く、またSERS強度も4~5倍程度増大し、SERS測定の操作性において大幅な向上が認められた。さらにTFA添加系では、100 fmol~100pmolというダイナミックレンジにおいて、アルキンペプチド1の注入容量とSERS強度とが良好に相関し、測定系が安定化した。これは、本発明の凝集促進剤(有機酸)により、凝集体が均一に分布したためと考えられる。
[実施例13] TFA添加系RAT8-AOMK標識カテプシンBのSERS測定
 実施例3と基本的に同様の操作でRAT8-AOMKによるカテプシンBの標識試料を調製し、トリプシン消化した。以下に示す手順に従って、ナノLC-UV-probotを用いてRAT8-AOMK標識カテプシンBの断片を含む試料をTFA添加したウェルに分画した後、銀ナノ粒子と混合、凝集しSERS測定を行った。
 試料の分画は、調製した100 μlのペプチド混合物を凍結乾燥し、50 μl溶液に溶解し、全試料をナノLC-UV-Probotに注入して行った。
 ナノLC-UV-Probotによるペプチドの分離は、次のような条件で行った:
流速: 250 nl/min
分画: 384ウェルガラスガラス底プレート (EzView 384 ウェルガラス底アッセイプレート、AGCテクノグラス)
上、スポットあたり20秒
UVクロマトグラム: 215 nm
濃度勾配: 0分 5 %、60分 80 %/60.01分 95 %、75分 95 %/ 75.01分 0 %、90分 0 %
分画: ウェルあたり20秒
 予め25 μlの0.1 %TFA水溶液を含むガラスボトムウェルプレートに試料を分画した。分画された試料は、それぞれSERS用に15 μl、質量分析用に10 μl分別した。SERS用試料には15 μlの40 nm銀ナノ粒子を加え、4℃で1日放置後SERS測定を行った。
 SERS測定は、ライン照明で532 nm励起レーザーを用いたラマン顕微分光装置(ナノフォトン株式会社、Raman-11)を使用し、HTSソフトウェアを用いて自動測定を行った。対物レンズ後のレーザー出力は130 mW、露光時間は1~3秒であった。倍率40倍、開口数0.75の対物レンズを用いた。レーザーの照明パターンはライン照明を選択した。アルキン強度は1981~1900 cm-1の波数から取得した。
 SERS測定時間は、TFA添加によりペプチド及び銀ナノ粒子の凝集体の分布が均一になり、レーザー焦点の設定操作が容易になったため、38分/192ウェルと大幅に短縮された。
 続いて、分画した試料のうち、SERS測定でアルキンシグナルが認められたもう一方の試料の質量分析を行い、RAT8-AOMKにより標識されたカテプシンB断片を確認した。
 本発明に係る装置及び方法は、低分子化合物と結合する生体分子を特定することができ、また、低分子化合物と生体分子との結合部位を同定することができる。したがって本発明に係る装置及び方法を用いて、創薬分野において薬剤の標的となるタンパク質を探索することができ、また当該タンパク質中の薬剤結合部位を同定することができる。さらに、本発明により生物学分野においてタンパク質翻訳後修飾の解析が可能となる。また、本発明に係る装置又は方法を用いて特定されたタンパク質又はペプチドのアミノ酸配列の全部又は一部をMS/MS分析により決定することができる。さらに、本発明により高感度のSERS測定が可能となる。
1:試料注入部
2:送液ライン
3:分画部
4:送液ライン
5:検出部
6:レーザー部
7:ミラー
8:対物レンズ
9:試料
10:試料台
11:分光器
12:検出部
13:試料ステージ
14:試料
15:レーザー部
16:加速電極
17:検出部
18:信号処理部
配列番号1:ヒトカテプシンB
配列番号2:ペプチドA-2
配列番号3:ペプチドB-1
配列番号4:ペプチド1
配列番号5:非標識のペプチド断片
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (39)

  1.  低分子化合物と結合する生体分子を特定するため、又は、低分子化合物と生体分子との結合部位を同定するための装置であって、試料分離部、ラマン分光部及び質量分析部を有し、該試料分離部、ラマン分光部及び質量分析部がこの順序で連結されている前記装置。
  2.  試料分離部が液体クロマトグラフ又はキャピラリー電気泳動装置である、請求項1記載の装置。
  3.  液体クロマトグラフが、順相、逆相、分子ふるい、及びイオン交換クロマトグラフからなる群より選択されるいずれか1種の高速液体クロマトグラフである、請求項2記載の装置。
  4.  ラマン分光部が、ラマン励起用レーザー光を照射するレーザー部及びラマン散乱光をスペクトル解析するスペクトル解析部を有する線形又は非線形ラマン分光装置である、請求項1~3のいずれか1項記載の装置。
  5.  質量分析部が、イオン化方式としてマトリックス支援レーザー脱離イオン化法、エレクトロスプレーイオン化法又は大気圧化学イオン化法を用いる質量分析計を含む、請求項1~4のいずれか1項記載の装置。
  6.  低分子化合物が、生体分子と識別可能なラマンピークを与える、請求項1~5のいずれか1項記載の装置。
  7.  低分子化合物が、分子内にラマンスペクトルのサイレント領域に散乱スペクトルを有するアルキニル基、ニトリル基、ジアゾニオ基、イソシアン酸エステル基、イソニトリル基、ケテン基、カルボジイミド基、チオシアン酸エステル基、アジド基、ジアゾ基、アルキンジイル基及び重水素からなる群より選択される少なくとも1種の置換基を含む、請求項1~6のいずれか1項記載の装置。
  8.  生体分子が、タンパク質、ペプチド、核酸、糖及び脂質からなる群より選択される少なくとも1種の生体分子である、請求項1~7のいずれか1項記載の装置。
  9.  請求項1に記載の装置に用いるための、清浄化された面を有するプレート。
  10.  清浄化された面が撥水面を含む、請求項9に記載のプレート。
  11.  金属、ガラス、石英、フッ化カルシウム、又はフッ化マグネシウム製である、請求項9または10記載のプレート。
  12.  生体分子と低分子化合物との結合部位を同定する方法であって、以下の工程、
    (1)分画された、低分子化合物と結合した生体分子の断片をラマン分光分析に供すること、及び
    (2)ラマン分光分析に供した画分の全部又は一部を質量分析に供すること、
    を含み、
     ラマン分光分析により生体分子断片と結合した低分子化合物由来のラマンピークを有する画分を検出し、低分子化合物由来ラマンピークを有する画分の質量分析結果を取得し、これを生体分子の質量情報と照合して、生体分子内の前記低分子化合物の結合部位を同定する前記方法。
  13.  低分子化合物と結合した生体分子を断片化し、分画することにより、前記分画された、低分子化合物と結合した生体分子断片を用意する、請求項12記載の方法。
  14.  前記低分子化合物と結合した生体分子が、無細胞条件下で低分子化合物と生体分子とを混合することにより得られたものである、請求項12又は13記載の方法。
  15.  タンパク質分解酵素、ペプチド分解酵素、核酸分解酵素、糖分解酵素及び脂質分解酵素からなる群より選択される酵素又は化学的分解により生体分子を断片化する、請求項13記載の方法。
  16.  低分子化合物と結合する生体分子を特定するスクリーニング方法であって、以下の工程、
    (1)低分子化合物と結合した生体分子を含む画分をラマン分光分析に供すること、及び
    (2)ラマン分光分析に供した画分の全部又は一部を質量分析に供すること、
    を含み、
     ラマン分光分析により低分子化合物由来のラマンピークを有する画分を検出し、低分子化合物に由来するラマンピークを有する画分の質量分析結果を取得し、これを生体分子の質量情報と照合して、前記低分子化合物に結合する生体分子を特定する前記方法。
  17.  低分子化合物と結合した生体分子を含む試料を分画して、前記低分子化合物と結合した生体分子を含む画分を用意する、請求項16記載の方法。
  18.  前記低分子化合物と結合した生体分子を含む試料が、(A)細胞に低分子化合物を取り込ませ、細胞内の生体分子と結合させ、該細胞を破砕することにより、又は(B)細胞を破砕し、細胞破砕液に低分子化合物を加え、細胞内の生体分子と結合させることにより、調製されたものである、請求項17記載の方法。
  19.  低分子化合物が、生体分子と識別可能なラマンピークを与える、請求項12~18のいずれか1項記載の方法。
  20.  低分子化合物が、分子内にラマンスペクトルのサイレント領域に散乱スペクトルを有するアルキニル基、ニトリル基、ジアゾニオ基、イソシアン酸エステル基、イソニトリル基、ケテン基、カルボジイミド基、チオシアン酸エステル基、アジド基、ジアゾ基、アルキンジイル基及び重水素からなる群より選択される少なくとも1種の置換基を含む、請求項12~19のいずれか1項記載の方法。
  21.  生体分子が、タンパク質、ペプチド、核酸、糖及び脂質からなる群より選択される少なくとも1種の生体分子である、請求項12~20のいずれか1項記載の方法。
  22.  分画を液体クロマトグラフ又はキャピラリー電気泳動により行う、請求項13又は17記載の方法。
  23.  分画された前記画分を、そのままの液滴とし又は溶媒と混合した液滴とし、前記液滴を清浄化された面を有するプレート上に配列すること、及び前記液滴に含まれる溶媒を蒸発させることによりラマン分光分析に供するスポットを調製することを含む、請求項12~22のいずれか1項記載の方法。
  24.  プレートの前記清浄化された面が撥水面を含む、請求項23に記載の方法。
  25.  プレートが金属、ガラス、石英、フッ化カルシウム、又はフッ化マグネシウム製である、請求項23又は24記載の方法。
  26.  プレートに金、銀、プラチナ、パラジウム、アルミニウム、チタン及び銅からなる群より選択される金属ナノ粒子又は金属ナノ構造を用いる、請求項23~25のいずれか1項記載の方法。
  27.  分画された画分を、金属ナノ粒子又は金属ナノ構造を含む溶液と混合し、そのままラマン分光分析に供する請求項23に記載の方法。
  28.  分画された画分に、金属ナノ粒子又は金属ナノ構造と生体分子及び低分子化合物が結合した生体分子との均一な凝集体の形成を促進させる有機酸を添加する請求項26及び27の方法。
  29.  有機酸が、トリフルオロ酢酸、ジフルオロ酢酸、モノフルオロ酢酸、トリフルオロメタンスルホン酸、ジフルオロメタンスルホン酸、3,3,3-トリフルオロプロピオン酸、トリクロロ酢酸、ジクロロ酢酸、モノクロロ酢酸、トリクロロメタンスルホン酸、ジクロロメタンスルホン酸、3,3,3-トリクロロプロピオン酸、ギ酸、酢酸、プロピオン酸、メタンスルホン酸、及びこれらの組合せからなる群より選ばれる、請求項28の方法。
  30.  生体分子に結合する低分子化合物が、分子内にラマンスペクトルのサイレント領域に散乱スペクトルを有するアルキニル基、ニトリル基、ジアゾニオ基、イソシアン酸エステル基、イソニトリル基、ケテン基、カルボジイミド基、チオシアン酸エステル基、アジド基、ジアゾ基、アルキンジイル基及び重水素からなる群より選択される少なくとも1種の置換基を含む、請求項26~29のいずれか記載の方法。
  31.  (1)目的分子と有機酸とを含む溶液に金属ナノ粒子又は金属ナノ構造を添加し、形成される目的分子と金属ナノ粒子又は金属ナノ構造との複合体を凝集させる工程、及び
     (2)前記凝集体について表面増強ラマン分光(SERS)分析を行う工程、
    を含む表面増強ラマン分光分析方法。
  32.  (1)有機酸を含む溶液に金属ナノ粒子又は金属ナノ構造を添加して金属ナノ粒子又は金属ナノ構造を凝集させる工程、
     (2)前記凝集体に、目的分子を含む溶液を添加する工程、
     (3)工程(2)により得られた金属ナノ粒子又は金属ナノ構造と目的分子との複合体について表面増強ラマン分光(SERS)分析を行う工程、
    を含む表面増強ラマン分光分析方法。
  33.  目的分子が、生体分子、生体分子の断片、サイレント領域にラマンピークを有する低分子化合物と結合した生体分子、又はサイレント領域にラマンピークを有する低分子化合物と結合した生体分子断片である、請求項31又は32に記載の方法。
  34.  該生体分子はタンパク質、ペプチド、核酸、糖及び脂質からなる群より選択される少なくとも1種の生体分子である、請求項33に記載の方法。
  35.  有機酸が、トリフルオロ酢酸、ジフルオロ酢酸、モノフルオロ酢酸、トリフルオロメタンスルホン酸、ジフルオロメタンスルホン酸、メタンスルホン酸、3,3,3-トリフルオロプロピオン酸、トリクロロ酢酸、ジクロロ酢酸、モノクロロ酢酸、トリクロロメタンスルホン酸、ジクロロメタンスルホン酸、3,3,3-トリクロロプロピオン酸、ギ酸、酢酸、プロピオン酸、メタンスルホン酸、及びこれらの組合せからなる群より選ばれる、請求項31~34のいずれか1項の方法。
  36.  生体分子に結合する低分子化合物が、分子内にラマンスペクトルのサイレント領域に散乱スペクトルを有するアルキニル基、ニトリル基、ジアゾニオ基、イソシアン酸エステル基、イソニトリル基、ケテン基、カルボジイミド基、チオシアン酸エステル基、アジド基、ジアゾ基、アルキンジイル基及び重水素からなる群より選択される少なくとも1種の置換基を含む、請求項33~35のいずれか1項に記載の方法。
  37.  目的分子を含む溶液が、液体クロマトグラフ又はキャピラリー電気泳動により分画された画分である、請求項31~36のいずれか1項に記載の方法。
  38.  表面増強ラマン分光(SERS)分析を行う前に、凝集体を含む溶液の液滴を、清浄化された面を有するプレート上に配列すること、及び前記液滴に含まれる溶媒を蒸発させることにより表面増強ラマン分光分析に供するスポットを調製することを含む、請求項31~37のいずれか1項に記載の方法。
  39.  請求項31~38のいずれか1項に記載の表面増強ラマン分光(SERS)分析法に供した溶液又は画分の全部又は一部を、さらに質量分析に供することを含む分析方法。
PCT/JP2013/071844 2012-08-17 2013-08-13 ラマン分光法を用いた生体分子の解析方法及び装置 WO2014027652A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/422,055 US10338078B2 (en) 2012-08-17 2013-08-13 Method and apparatus for analyzing biomolecules using Raman spectroscopy
CA2882003A CA2882003C (en) 2012-08-17 2013-08-13 Method and apparatus for analyzing biomolecules using raman spectroscopy
JP2014530555A JP6429318B2 (ja) 2012-08-17 2013-08-13 ラマン分光法を用いた生体分子の解析方法及び装置
EP13879362.5A EP2887061B1 (en) 2012-08-17 2013-08-13 Method for biomolecule analysis using raman spectroscopy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012181140 2012-08-17
JP2012-181140 2012-08-17

Publications (1)

Publication Number Publication Date
WO2014027652A1 true WO2014027652A1 (ja) 2014-02-20

Family

ID=50685600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071844 WO2014027652A1 (ja) 2012-08-17 2013-08-13 ラマン分光法を用いた生体分子の解析方法及び装置

Country Status (5)

Country Link
US (1) US10338078B2 (ja)
EP (1) EP2887061B1 (ja)
JP (1) JP6429318B2 (ja)
CA (1) CA2882003C (ja)
WO (1) WO2014027652A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330397A (zh) * 2014-10-24 2015-02-04 东南大学 具有晶体有序结构的表面增强拉曼散射基底及其应用
CN111426743A (zh) * 2020-04-21 2020-07-17 四川大学 银纳米球材料在maldi-tof ms检测小分子代谢产物中的应用
WO2022123968A1 (ja) * 2020-12-07 2022-06-16 株式会社堀場製作所 ラマン分析用プレート、ラマン分析装置、分析システム、及びラマン分析方法
WO2022209074A1 (ja) * 2021-03-30 2022-10-06 株式会社島津製作所 分析システム、分析方法及び分析システム用プログラム
WO2022209072A1 (ja) * 2021-03-30 2022-10-06 株式会社島津製作所 分析システム、分析システム用表示方法、及び、分析システム用プログラム
WO2022209075A1 (ja) * 2021-03-30 2022-10-06 株式会社島津製作所 分析システム及び分析システム用プログラム
WO2022209073A1 (ja) * 2021-03-30 2022-10-06 株式会社島津製作所 分析システム、分析方法、及び分析システム用プログラム

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408892B2 (en) 2013-06-18 2022-08-09 The Trustees Of Columbia University In The City Of New York Devices, compositions and methods for imaging with raman scattering
WO2019183348A1 (en) * 2018-03-21 2019-09-26 The Trustees Of Columbia University In The City Of New York Devices, compositions and methods for imaging with raman scattering and for super-multiplex vibrational imaging
US9784687B2 (en) * 2014-10-18 2017-10-10 Dong-Shyogn Pan Examination method to apprais corundum that has undergone beryllium diffusion treatment
JP6845148B2 (ja) 2015-03-06 2021-03-17 マイクロマス ユーケー リミテッド 電気外科的応用のための液体トラップ又は分離器
US11270876B2 (en) 2015-03-06 2022-03-08 Micromass Uk Limited Ionisation of gaseous samples
KR101934663B1 (ko) 2015-03-06 2019-01-02 마이크로매스 유케이 리미티드 급속 증발 이온화 질량 분광분석 (“reims”) 디바이스에 커플링된 이온 분석기용 유입구 기기장치
KR102092047B1 (ko) 2015-03-06 2020-03-24 마이크로매스 유케이 리미티드 생체내 내시경 조직 식별 도구
US11289320B2 (en) 2015-03-06 2022-03-29 Micromass Uk Limited Tissue analysis by mass spectrometry or ion mobility spectrometry
WO2016142691A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Rapid evaporative ionisation mass spectrometry ("reims") and desorption electrospray ionisation mass spectrometry ("desi-ms") analysis of swabs and biopsy samples
US11282688B2 (en) 2015-03-06 2022-03-22 Micromass Uk Limited Spectrometric analysis of microbes
WO2016142675A1 (en) * 2015-03-06 2016-09-15 Micromass Uk Limited Imaging guided ambient ionisation mass spectrometry
GB2553941B (en) * 2015-03-06 2021-02-17 Micromass Ltd Chemically guided ambient ionisation mass spectrometry
WO2016142685A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Collision surface for improved ionisation
WO2016142692A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Spectrometric analysis
GB2551669B (en) 2015-03-06 2021-04-14 Micromass Ltd Physically guided rapid evaporative ionisation mass spectrometry ("Reims")
EP3726562B1 (en) 2015-03-06 2023-12-20 Micromass UK Limited Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue
CN108700590B (zh) 2015-03-06 2021-03-02 英国质谱公司 细胞群体分析
CN104914089B (zh) * 2015-06-18 2017-10-27 清华大学 用表面增强拉曼光谱对痕量混合物进行半定量分析的方法
GB201517195D0 (en) 2015-09-29 2015-11-11 Micromass Ltd Capacitively coupled reims technique and optically transparent counter electrode
JP6534215B2 (ja) * 2016-01-05 2019-06-26 日本電子株式会社 測定方法
EP3353534B1 (en) * 2016-02-28 2022-01-26 Hewlett-Packard Development Company, L.P. Breakdown of sample substance molecular bonds and collection of surface enhanced luminescence
EP3443354A1 (en) 2016-04-14 2019-02-20 Micromass UK Limited Spectrometric analysis of plants
CN106248648B (zh) * 2016-07-10 2019-10-15 复旦大学 金为核银为壳的“拉曼静默区”基底及其制备方法与应用
CN106226285B (zh) * 2016-10-07 2019-10-15 复旦大学 一种金为核多巴胺为壳的“拉曼静默区”基底及其制备方法和应用
CN106908547B (zh) * 2017-03-18 2019-07-09 天津市星河科技有限公司 油田地层水中硫氰酸根的离子色谱检测方法
JP6985730B2 (ja) * 2017-11-17 2021-12-22 株式会社日立ハイテクサイエンス 試料分析システム、表示方法及び試料分析方法
KR20210052389A (ko) 2018-08-27 2021-05-10 리제너론 파마슈티칼스 인코포레이티드 다운스트림 정제에서의 라만 분광법의 사용
EP3917382A4 (en) * 2019-01-31 2022-11-16 Cytoveris Inc. METHOD AND SYSTEM FOR DETECTING CANCER TISSUE AND TUMORS RIMS USING RAMAN SPECTROSCOPY
CN111830004A (zh) * 2019-04-18 2020-10-27 中国科学院微电子研究所 一种检测拉曼信号的方法
US20220236237A1 (en) * 2019-05-31 2022-07-28 Shin Nippon Biomedical Laboratories, Ltd. Mass spectrometry method using chromatography-mass spectrometry device
CN110376379B (zh) * 2019-08-19 2022-07-12 福建师范大学 一种分子印迹结合静默区内标sers技术高精度检测cea的方法
US20220065791A1 (en) * 2020-09-01 2022-03-03 Cytoveris Inc. Stimulated raman spectroscopy based multiplexed virtual immunohistology using alkynic, nitrile, or azide probes
US11536664B2 (en) 2021-03-31 2022-12-27 King Faisal University Method for detecting a biomolecule by surface-enhanced Raman spectroscopy
CN113447468B (zh) * 2021-06-10 2022-03-01 深圳市海泰仪器设备有限公司 一种显微拉曼系统用光谱采集探头
CN114235781A (zh) * 2021-12-22 2022-03-25 上海海洋大学 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法
ES2948214B2 (es) * 2022-02-14 2024-02-07 Univ Valladolid Sistema y proceso de preparacion y distribucion de muestras para analisis combinado mediante espectroscopia raman y cromatografia liquida

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045350A (ja) * 2002-07-16 2004-02-12 Horiba Ltd ガス分析システムおよびガス分析方法
JP2004530867A (ja) * 2001-03-01 2004-10-07 ニューメキシコ ステート ユニバーシティ テクノロジー トランスファー コーポレーション ナノ粒子、マイクロキャビティ、および半連続金属膜を使用した光デバイスおよび光学的方法
JP2005524849A (ja) * 2002-05-07 2005-08-18 ノースウエスタン ユニバーシティ ラマン分光分析のフィンガープリントを備えた分析物質検出用のナノ粒子プローブ
JP2006503268A (ja) * 2002-07-25 2006-01-26 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア マイクロx線蛍光発光を使用した化学物質をスクリーニングするためのフロー方法及び装置
JP2007171003A (ja) * 2005-12-22 2007-07-05 Fujifilm Corp 質量分析用基板並びに分析方法および装置
US7283228B2 (en) 2003-04-11 2007-10-16 Purdue Research Foundation Process and apparatus for segregation and testing by spectral analysis of solid deposits derived from liquid mixtures
JP2009192543A (ja) 2002-03-12 2009-08-27 Enzo Life Sciences Inc 標識試薬と標識された標的、標的標識法、および核酸の測定と分析におけるこれらの使用のための他の方法
JP2010078482A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 質量分析用基板および質量分析方法
JP2012181140A (ja) 2011-03-02 2012-09-20 Toyota Motor Corp リーク試験装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0835446B1 (en) * 1995-06-26 2003-04-09 Perseptive Biosystems, Inc. High speed, automated, continuous flow, multi-dimensional molecular selection and analysis
WO2005031301A2 (en) * 2003-07-10 2005-04-07 Parallax Biosystems, Inc. Raman signature probes and their use in the detection and imaging of molecular processes and structures
US20060134714A1 (en) * 2004-07-12 2006-06-22 Narayan Sundararajan Detection and identification of peptide and protein modifications
US20070099256A1 (en) 2005-10-28 2007-05-03 Narayan Sundararajan Chemical derivatization, detection, and identification of peptide and protein modifications
US20080003576A1 (en) 2006-06-30 2008-01-03 Jingwu Zhang Assay platforms and detection methodology using surface enhanced Raman scattering (SERS) upon specific biochemical interactions
US7605916B2 (en) * 2006-09-21 2009-10-20 Intel Corporation Online analyte detection by surface enhanced Raman scattering (SERS)

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530867A (ja) * 2001-03-01 2004-10-07 ニューメキシコ ステート ユニバーシティ テクノロジー トランスファー コーポレーション ナノ粒子、マイクロキャビティ、および半連続金属膜を使用した光デバイスおよび光学的方法
JP2009192543A (ja) 2002-03-12 2009-08-27 Enzo Life Sciences Inc 標識試薬と標識された標的、標的標識法、および核酸の測定と分析におけるこれらの使用のための他の方法
JP2005524849A (ja) * 2002-05-07 2005-08-18 ノースウエスタン ユニバーシティ ラマン分光分析のフィンガープリントを備えた分析物質検出用のナノ粒子プローブ
JP2004045350A (ja) * 2002-07-16 2004-02-12 Horiba Ltd ガス分析システムおよびガス分析方法
JP2006503268A (ja) * 2002-07-25 2006-01-26 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア マイクロx線蛍光発光を使用した化学物質をスクリーニングするためのフロー方法及び装置
US7283228B2 (en) 2003-04-11 2007-10-16 Purdue Research Foundation Process and apparatus for segregation and testing by spectral analysis of solid deposits derived from liquid mixtures
JP2007171003A (ja) * 2005-12-22 2007-07-05 Fujifilm Corp 質量分析用基板並びに分析方法および装置
JP2010078482A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 質量分析用基板および質量分析方法
JP2012181140A (ja) 2011-03-02 2012-09-20 Toyota Motor Corp リーク試験装置

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Raman Spectroscopy Method", THE SPECTROSCOPICAL SOCIETY OF JAPAN
A. K. SHUKLA, J. MASS SPECTRUM., vol. 35, 2000, pages 1069
B. G. HOFFSTROM ET AL., NATURE CHEMICAL BIOLOGY, vol. 6, 2010, pages 900
BRENT R MARTIN ET AL., NATURE METHODS, vol. 9, 2012, pages 84 - 89
F. THUAUD ET AL., J. MED. CHEM., vol. 52, 2009, pages 5176
H. YAMAKOSHI ET AL., JACS, vol. 133, 2011, pages 6102
J. LING ET AL., APPLIED OPTIC, vol. 41, no. 28, 2002, pages 6006
MASCOT: "Electrophoresis", vol. 20, 1999, MATRIX SCIENCE INC., pages: 3551 - 67
YAMAKOSHI H. ET. AL: "IMAGING OF EDU, AN ALKYNE-TAGGED CELL PROLIFERATION PROBE", RAMAN MICROSCOPY, J. AM CHEM SOC., 27 April 2011 (2011-04-27), pages 6102 - 6105, XP055232088 *
YOONJUNG KHO ET AL., PROC NATL ACAD SCI U.S.A., vol. 101, no. 34, 2004, pages 12479 - 12484

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330397A (zh) * 2014-10-24 2015-02-04 东南大学 具有晶体有序结构的表面增强拉曼散射基底及其应用
CN111426743A (zh) * 2020-04-21 2020-07-17 四川大学 银纳米球材料在maldi-tof ms检测小分子代谢产物中的应用
WO2022123968A1 (ja) * 2020-12-07 2022-06-16 株式会社堀場製作所 ラマン分析用プレート、ラマン分析装置、分析システム、及びラマン分析方法
WO2022209074A1 (ja) * 2021-03-30 2022-10-06 株式会社島津製作所 分析システム、分析方法及び分析システム用プログラム
WO2022209072A1 (ja) * 2021-03-30 2022-10-06 株式会社島津製作所 分析システム、分析システム用表示方法、及び、分析システム用プログラム
WO2022209075A1 (ja) * 2021-03-30 2022-10-06 株式会社島津製作所 分析システム及び分析システム用プログラム
WO2022209073A1 (ja) * 2021-03-30 2022-10-06 株式会社島津製作所 分析システム、分析方法、及び分析システム用プログラム

Also Published As

Publication number Publication date
EP2887061A1 (en) 2015-06-24
CA2882003A1 (en) 2014-02-20
US20150192590A1 (en) 2015-07-09
US10338078B2 (en) 2019-07-02
CA2882003C (en) 2020-11-10
EP2887061B1 (en) 2023-09-27
EP2887061A4 (en) 2016-04-20
JPWO2014027652A1 (ja) 2016-07-28
JP6429318B2 (ja) 2018-11-28

Similar Documents

Publication Publication Date Title
JP6429318B2 (ja) ラマン分光法を用いた生体分子の解析方法及び装置
Wu et al. On-tissue derivatization via electrospray deposition for matrix-assisted laser desorption/ionization mass spectrometry imaging of endogenous fatty acids in rat brain tissues
Ando et al. Alkyne-tag SERS screening and identification of small-molecule-binding sites in protein
Harkin et al. On‐tissue chemical derivatization in mass spectrometry imaging
Dreger Subcellular proteomics
Vismeh et al. Localization and quantification of drugs in animal tissues by use of desorption electrospray ionization mass spectrometry imaging
Walch et al. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology
Wang et al. Hydroxyflavones as a new family of matrices for MALDI tissue imaging
Harada et al. Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope
Wang et al. Improved MALDI imaging MS analysis of phospholipids using graphene oxide as new matrix
Altelaar et al. Imaging mass spectrometry at cellular length scales
Marty et al. Ultra-thin layer MALDI mass spectrometry of membrane proteins in nanodiscs
Go et al. Selective metabolite and peptide capture/mass detection using fluorous affinity tags
Erba et al. Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry
Kuo et al. Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles
Delcourt et al. Spatially-resolved top-down proteomics bridged to MALDI MS imaging reveals the molecular physiome of brain regions
Hanrieder et al. Spatial neuroproteomics using imaging mass spectrometry
US20070099256A1 (en) Chemical derivatization, detection, and identification of peptide and protein modifications
US20060134714A1 (en) Detection and identification of peptide and protein modifications
US20050040328A1 (en) Reduction of matrix interference for MALDI mass spectrometry analysis
Guo et al. Enhancement of on-tissue chemical derivatization by laser-assisted tissue transfer for MALDI MS imaging
Gagnon et al. Targeted mass spectrometry imaging: Specific targeting mass spectrometry imaging technologies from history to perspective
Strnad et al. The use of 1, 5-diaminonaphthalene for matrix-assisted laser desorption/ionization mass spectrometry imaging of brain in neurodegenerative disorders
Müller et al. Dual-polarity SALDI FT-ICR MS imaging and Kendrick mass defect data filtering for lipid analysis
Takyi-Williams et al. Application of paper spray–MS in PK studies using sunitinib and benzethonium as model compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2882003

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014530555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14422055

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013879362

Country of ref document: EP