WO2014026440A1 - 等齿顶宽的单头变螺距螺杆转子 - Google Patents

等齿顶宽的单头变螺距螺杆转子 Download PDF

Info

Publication number
WO2014026440A1
WO2014026440A1 PCT/CN2012/084111 CN2012084111W WO2014026440A1 WO 2014026440 A1 WO2014026440 A1 WO 2014026440A1 CN 2012084111 W CN2012084111 W CN 2012084111W WO 2014026440 A1 WO2014026440 A1 WO 2014026440A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
tooth
curve
width
tooth top
Prior art date
Application number
PCT/CN2012/084111
Other languages
English (en)
French (fr)
Inventor
张志军
王德喜
张世伟
赵晶亮
Original Assignee
东北大学
辽阳博仕流体设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学, 辽阳博仕流体设备有限公司 filed Critical 东北大学
Publication of WO2014026440A1 publication Critical patent/WO2014026440A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • the invention relates to the technical field of screw-type oil-free vacuum pumps, in particular to a single-head variable pitch screw rotor with equal tooth top width. Background technique
  • the oil-free screw pump has the characteristics of wide pumping speed range, simple and compact structure, no friction in the pumping chamber components, long service life, low energy consumption and no oil pollution. It is widely used in semiconductor, pharmaceutical, food, chemical and other industrial fields.
  • the screw rotor is the most important pumping component in the screw vacuum pump, which directly determines the working performance and service life of the pump. Its processing and manufacturing cost accounts for nearly half of the total cost of the entire screw pump.
  • the profile design of the screw rotor is the most critical technology in the design of the entire screw pump. Among them, the single-head variable-pitch screw rotor has an internal pre-compressed exhaust mode, and has outstanding energy-saving and noise-reducing advantages compared with the equal-pitch screw rotor. Therefore, it is the designer and user of the oil-free screw vacuum pump.
  • Many technicians have designed a single-head variable pitch screw rotor profile in a variety of configurations.
  • the lead (pitch) of the screw rotor gradually decreases from the suction end to the exhaust end.
  • the tip width (and the corresponding root width) in the rotor profile is also gradually narrowed proportionally. Since the gap between the top surface of the rotor tooth and the inner surface of the pump is the most important leakage path between the gas stages during the exhaust process of the rotor, the width of the top of the rotor tooth type is equivalent to the depth of the leakage channel, and the width of the tip is wide. The wider the leaking channel, the stronger the barrier to interstage leakage, and the smaller the gas return flow between adjacent stages.
  • the tip width of the existing single-head variable pitch screw rotor type is gradually narrowed from the suction end to the exhaust end, and the blocking ability against the interstage leakage becomes weaker.
  • the closer to the exhaust end the greater the difference between the gas pressure and the interstage pressure.
  • the pressure difference between the suction end stages is small, and the tooth tip width is unnecessarily large, which in turn leads to The volume utilization coefficient of the pump is too small; when the pressure difference between the exhaust end stages is large, the tooth type tip width becomes smaller and the gas return flow is unreasonably increased. This directly results in a small utilization coefficient of the suction volume of the screw vacuum pump and a large amount of total backflow leakage, which results in a decrease in the ultimate vacuum of the main performance index of the screw vacuum pump and a decrease in the actual pumping rate.
  • an object of the present invention is to provide a single-head variable pitch screw rotor having an equal tooth top width, which ensures that during the process in which the minimum value of the rotor lead is linearly increased from the axial coordinate by the exhaust end.
  • the tooth tip width of the rotor is always constant, so that the rotor has stronger interstage leakage blocking capability and reduces the leakage flow backflow between the gas stages, thereby achieving the purpose of improving the ultimate vacuum degree and the actual effective pumping speed of the vacuum pump.
  • a single-head variable pitch screw rotor with an equal tooth top width wherein the tooth profile surface of the screw rotor is sequentially connected by a root surface, a helical tooth surface, a tooth top surface and a transition tooth surface.
  • the rotor spiral lead is aligned with the axial coordinate
  • the gas end increases linearly toward the suction end, and the axial width of the helical tooth surface gradually becomes larger, and the width of the tooth top surface remains unchanged.
  • the root surface, the inclined tooth surface, the tooth top surface and the transition tooth surface are right-handed lines formed by sequentially connecting the root circle curve, the involute curve, the addendum circle curve and the transition section curve.
  • the pitch is spirally developed to be generated.
  • the direction of the rotor axis pointing to the suction end of the rotor is the z-axis forward direction
  • the cylindrical coordinate system describing the rotor profile is established, the root circle curve, the involute curve, the tooth top
  • ⁇ 21 is an adjustment angle
  • the outer cycloid satisfies the following formula:
  • the axial root spiral curve, the involute curve, the addendum circle curve and the transition section curve axial spiral expansion process, the axial coordinate satisfies the following formula: Where A is the initial lead of the rotor at the exhaust end face, ⁇ 2 is the rotor end lead at the suction end face, L is the total length of the rotor; the helical lead ⁇ and the axial coordinate ⁇ satisfy the following formula:
  • ⁇ + (8)
  • A is the initial lead of the rotor at the exhaust end face of the rotor
  • ⁇ 2 is the rotor end lead at the end of the rotor suction
  • L is the total length of the rotor
  • the above-mentioned type line formula provided by the present invention belongs to a theoretical type line, and the actual profile line should reserve a necessary meshing gap on the basis of the type line.
  • the formula for calculating the above-mentioned profile is also included in the present invention.
  • the involute curve in the end face line is connected between the root circle curve and the addendum circle curve, and the circle diameter of the involute curve is ⁇ ) from the exhaust end to the suction end with the axial coordinate ⁇ Gradually smaller, satisfying the following formula: arctan
  • Pi Where A is a variable pitch coefficient.
  • the spiral spiral development direction of the rotor is left-handed or right-handed.
  • the single-head variable pitch screw rotor profile provided by the present invention has the following characteristics: The minimum value A of the exhaust lead from the exhaust end linearly increases with the axial coordinate to the maximum value of the suction end ⁇ 2 During the process, the tip width of the rotor remains constant.
  • the profile rotor has a relatively small tip width at the suction end, thereby forming a larger interstage suction volume and a larger volume utilization coefficient. It has a larger theoretical pumping speed under the same structural parameters; on the contrary, the profiled rotor has a relatively large tooth tip width at the exhaust end, and has a stronger interstage leakage blocking capability, which can cause gas phase leakage backflow. Lowering, thereby contributing to the improvement of the ultimate vacuum of the vacuum pump and the actual effective pumping speed.
  • FIG. 1 is a perspective view of an exhaust end end face of an equal-tooth top-width single-head variable-pitch screw rotor with a single cycloid as a transition curve;
  • FIG. 2 is a front view of a screw rotor generated according to the rotor end face profile shown in FIG.
  • FIG. 3 is a perspective view of an exhaust end end face of an equal-tooth top-width single-head variable pitch screw rotor with a double cycloid as a transition curve;
  • FIG. 4 is a front view of the screw rotor generated according to the rotor end face profile shown in FIG.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides a single-head variable pitch screw rotor having an equal tooth top width, and an end face profile at a certain cross section thereof is as shown in FIG.
  • the curve abc segment is the root circle curve 1
  • the curve cde segment is the involute curve 2
  • the curve efg segment is the addendum circle curve 3
  • the curve gha segment is the transition curve 4 composed of a single cycloid
  • the four segments of the curve are sequentially
  • the end c of the root curve abc is connected to the starting end c of the involute curve cde
  • the end e of the involute curve cde is connected to the starting end e of the addendum curve efg
  • the end of the addendum curve efg g is connected to the starting end g of the transition curve gha formed by a single cycloid
  • the end of the transition curve gha formed by a single cycloid is connected to the starting end a of the root
  • FIG. 2 The structure diagram of the equal-tooth top-width single-head variable-pitch screw rotor generated by the right-hand type line for the right-handed pitch pitch spiral expansion is shown in FIG. 2 .
  • the tooth profile of the screw rotor comprises a root surface 5, a helical tooth surface 6, a tooth top surface 7 and a concave tooth surface (transition surface generated by a single cycloid).
  • the spiral lead (pitch) of the rotor gradually increases from the right exhaust end to the left suction end, as shown in Fig. 2 ⁇ 3 > ⁇ 2 > ⁇ , which is proportional to the axial coordinate; but the tooth top surface 7
  • the width ⁇ is always the same, as shown in Fig.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides a single-head variable pitch screw rotor with an equal tooth top width.
  • the end face profile at a certain cross section is shown in FIG. 3, the curve abc segment is the root circle curve 1, and the curve cde segment is The involute curve 2, the curve efg segment is the addendum circle curve 3, the curve gha segment is the transition curve 9 composed of the double pendulum line, and the four segment curves are sequentially connected (for example, the end c of the root circle curve abc and the involute The starting end c of the line curve cde is connected, the end e of the involute curve cde is connected to the starting end e of the addendum circle curve efg, the starting end g of the transition curve gha formed by the end g of the addendum circle curve efg and a single cycloid The end of the transition curve gha formed by a single cycloid is connected to the starting end a of the root circle curve abc to form an end face
  • FIG. 4 The structure diagram of the equal-tooth top-width single-head variable-pitch screw rotor generated by the left-handed variable pitch helical expansion based on the end face type line is shown in FIG. 4 .
  • the tooth profile of the screw rotor comprises a root surface 5, a helical tooth surface 6, a tooth top surface 7 and a straight tooth surface (transition surface generated by a double cycloid) 10 .
  • the spiral lead (pitch) of the rotor gradually increases from the right exhaust end to the left suction end, as shown in Fig. 4, ⁇ 4> ⁇ 3>2> ⁇ 1, which is proportional to the axial coordinate;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种等齿顶宽的单头变螺距螺杆转子,该螺杆转子的齿型面由齿根面(5)、斜齿面(6)、齿顶面(7)和过渡齿面(8)依次连接构成,转子螺旋导程(P1,P2,P3)随轴向坐标由排气端向吸气端成线性增大,斜齿面的轴向宽度(L1,L2,L3)随之逐渐变大,而齿顶面的宽度(B1,B2,B3)始终保持不变。该转子在吸气端的齿顶宽度相对较小,从而形成更大的级间吸气容积,有较大的容积利用系数,在相同的结构参数下具有更大的理论抽速;同时,该转子在排气端的齿顶宽度相对较大,具有更强的级间泄漏阻挡能力,能够使气体级间泄漏返流量降低,从而有利于提高真空泵的极限真空度和实际有效抽速。

Description

等齿顶宽的单头变螺距螺杆转子
技术领域
本发明涉及螺杆式无油真空泵技术领域,特别涉及一种等齿顶宽的单头变螺距螺杆转子。 背景技术
无油螺杆泵具有抽速范围宽、 结构简单紧凑、 抽气腔元件无摩擦、 寿命长、 能耗低、 无 油污染等特点, 广泛应用于半导体、 医药、 食品、 化工等工业领域。 螺杆转子是螺杆真空泵 中最关键的抽气部件, 直接决定着泵的工作性能和使用寿命, 其加工制造成本约占整个螺杆 泵总成本近一半。 螺杆转子的型线设计则是整个螺杆泵设计中的最关键技术。 其中单头变螺 距的螺杆转子, 因其具有内部预压縮的排气方式, 与等螺距螺杆转子相比, 具有突出的节能 降噪优点, 因此备受无油螺杆真空泵的设计者和使用者的青睐。 已有许多技术人员设计出了 多种结构形式的单头变螺距螺杆转子型线。
尽管已有的单头变螺距螺杆转子型线的结构构成多种多样, 但其共同的结构特征是: 随 着螺杆转子的导程 (节距) 由吸气端向排气端逐渐变小的过程中, 转子齿型中的齿顶宽 (以 及对应的齿根宽) 也随之等比例地逐渐变窄。 由于转子齿顶面与泵体内表面之间的间隙是转 子排气过程中气体级间返流的最主要泄漏通道, 而转子齿型的齿顶宽则相当于该泄漏通道的 深度, 齿顶宽越宽, 泄漏通道越深, 对级间泄漏的阻挡能力越强, 则相邻两级之间的气体返 流量就越小。 已有的单头变螺距螺杆转子型线的齿顶宽由吸气端向排气端逐渐变窄, 则对级 间泄漏的阻挡能力越来越弱。 而螺杆真空泵在工作过程中, 越靠近排气端, 气体压力和级间 压力差就越大, 结果出现在吸气端级间压力差小时, 齿型齿顶宽不必要地很大, 反而导致泵 的容积利用系数偏小; 而在排气端级间压力差很大时, 齿型齿顶宽反倒变小导致气体返流量 增大的不合理状况。 这直接造成螺杆真空泵的吸气容积利用系数小和总体返流泄漏量大, 从 而导致螺杆真空泵的主要性能指标极限真空度降低和实际抽气速率下降的后果。
如果在螺杆转子型线设计过程中, 有意保持转子齿型齿顶宽始终不变, 则可以有效地避 免上述问题的出现, 从而提高螺杆真空的抽气性能指标。
发明内容
针对现有技术存在的问题, 本发明的目的是提供一种等齿顶宽的单头变螺距螺杆转子, 保证在转子导程由排气端的最小值随轴向坐标线性增大的过程中, 转子的齿顶宽始终保持不 变, 以使转子具有更强的级间泄漏阻挡能力, 降低气体级间泄漏返流量, 从而达到有利于提 高真空泵的极限真空度和实际有效抽速的目的。
本发明的技术方案是这样实现的: 一种等齿顶宽的单头变螺距螺杆转子, 该螺杆转子的 齿型面由齿根面、 斜齿面、 齿顶面和过渡齿面依次连接构成, 转子螺旋导程随轴向坐标由排 气端向吸气端成线性增大, 斜齿面的轴向宽度随之逐渐变大, 而齿顶面的宽度始终保持不变。 所述的齿根面、 斜齿面、 齿顶面和过渡齿面, 是由齿根圆曲线、 渐开线曲线、 齿顶圆曲 线和过渡段曲线依次连接构成的端面型线作右旋变螺距螺旋展开而生成。
以螺杆转子排气端面的轴心作为坐标原点,以转子轴线指向转子吸气端方向为 z轴正向, 建立描述转子型线的圆柱坐标系 , 齿根圆曲线、渐开线曲线、 齿顶圆曲线和过渡段曲线 满足如下条件:
齿根圆曲线, 满足如下公式:
r = d/2
(1) θ = ΐ1+τ 式中, 为矢径坐标, 为转角坐标, d为齿根圆直径, r为螺旋展开角, 为形式 渐开线线曲线, 满足如下公式:
r = t2
(2) θ = τ +
Figure imgf000004_0001
Figure imgf000004_0002
式中, α(Ζ;)为渐开线基圆直径, e为转子节圆直径, 且有 6 = (6? + ))/2; 2为形式参数; 齿顶圆曲线, 满足如下公式: r = D/2
(3) θ = ΐ, + τ 式中, /)为齿顶圆直径, 3为形式参数; 过渡段曲线为具有自啮合特性的连接齿顶圆与齿根圆的任意一种曲线, 该曲线的最优选 择方案包括单一摆线过渡曲线和双摆线过渡曲线, 其中, 单一摆线过渡曲线, 满足如下公式: a , e2+D2/4-t4 2 1 e2-D2/4 + t4 2 (4) θ = τ + arccos arccos- eD 2et41 式中, ^为形式参数;; 双摆线过渡曲线, 包括内摆线和外摆线, 其中, 内摆线满足如下公式: e2+D2/4-t4 2 21 e2-D2/4 + t4 2 (5) θ = τ + arccos arccos
eD 2etA 式中, 421为形式参数, Α21为调节角; 外摆线满足如下公式:
Ω 5e2-4t4 2 22 3e2+4t4 2 (6) Θ τ— arccos ; h arccos -
Ae Set,
齿根圆曲线、 渐开线曲线、 齿顶圆曲线和过渡段曲线轴向螺旋展开过程, 轴向坐标满足 如下公式:
Figure imgf000005_0001
式中, A为排气端面处的转子初始导程, Ρ2为吸气端面处的转子终止导程, L为转子的 总长度; 所述的螺旋导程 Ρ与轴向坐标 ζ, 满足如下公式:
Ρ2~Ρι
Ρ=Ρ + (8) 式中, A为转子排气端面处的转子初始导程, Ρ2为转子吸气端面处的转子终止导程, L 为转子的总长度;
本发明所提供的以上型线公式属于理论型线, 其实际型线应该在该型线的基础上预留必 要的啮合间隙。 直角坐标系形式或者其它形式坐标系,所表述的上述型线的计算公式亦属于本发明之列。 所述的端面型线中的渐开线曲线连接于齿根圆曲线和齿顶圆曲线之间, 该渐开线曲线的 发生圆直径 ζ)由排气端向吸气端随轴向坐标 ζ逐渐变小, 满足如下公式: arctan
Figure imgf000005_0002
3π-τ +— ln[exp(/lr) - ]
Pi 式中, A为变螺距系数。 所述转子螺旋展开方向为左旋或右旋。
本发明的有益效果: 本发明所提供的单头变螺距螺杆转子型线, 具有如下特点: 在转子 导程由排气端的最小值 A随轴向坐标线性增大至吸气端的最大值 Ρ2的过程中,转子的齿顶宽 始终保持不变。 与已有的各种单头变螺距螺杆转子相比, 该型线转子在吸气端的齿顶宽度相 对较小, 从而形成更大的级间吸气容积, 有较大的容积利用系数, 因此在相同的结构参数下 具有更大的理论抽速; 反之, 该型线转子在排气端的齿顶宽度却相对较大, 具有更强的级间 泄漏阻挡能力, 能够使气体级间泄漏返流量降低, 从而有利于提高真空泵的极限真空度和实 际有效抽速。 附图说明
图 1是以单一摆线为过渡曲线的等齿顶宽单头变螺距螺杆转子的排气端端面型线视图; 图 2是依据图 1所示转子端面型线所生成的螺杆转子主视图;
图 3是以双摆线为过渡曲线的等齿顶宽单头变螺距螺杆转子的排气端端面型线视图; 图 4是依据图 3所示转子端面型线所生成的螺杆转子主视图;
图中, 1. 齿根圆曲线; 2. 渐开线曲线; 3. 齿顶圆曲线; 4. 单一摆线构成的过渡曲 线; 5.齿根面; 6.斜齿面; 7.齿顶面; 8. 凹齿面; 9.双摆线构成的过渡曲线; 10. 直齿面。 具体实施方式
下面结合附图及实施例对本发明作进一步详细说明。
实施例一:
本实施方式给出一种等齿顶宽的单头变螺距螺杆转子,在其某一横截面处的端面型线如 图 1所示。 曲线 abc段为齿根圆曲线 1, 曲线 cde段为渐开线曲线 2, 曲线 efg段为齿顶圆曲 线 3, 曲线 gha段为由单一摆线构成的过渡曲线 4, 四段曲线按顺序相接 (如齿根圆曲线 abc 的末端 c与渐开线曲线 cde的起始端 c连接, 渐开线曲线 cde的末端 e与齿顶圆曲线 efg的 起始端 e连接, 齿顶圆曲线 efg的末端 g与单一摆线构成的过渡曲线 gha的起始端 g连接, 单一摆线构成的过渡曲线 gha的末端与齿根圆曲线 abc的起始端 a连接, 构成端面型线)。
基于该端面型线作右旋变螺距螺旋展开所生成的等齿顶宽单头变螺距螺杆转子的结构图 如图 2所示。 由图 2中可以看出, 该螺杆转子的齿型面包括齿根面 5、 斜齿面 6、 齿顶面 7和 凹齿面(由单一摆线所生成的过渡曲面) 8。 转子的螺旋导程(节距) 由右侧排气端向左侧吸 气端逐渐变大, 如图 2中所示 Ρ3 > Ρ2 > Λ, 与轴向坐标成正比; 但其齿顶面 7的宽度 Β却始 终不变, 如图 2中所示 β4 = β3 = β2 = β1 = β ; 而斜齿面 6所占据的轴向长度则越来越长, 如 图 2中所示 4 > 3 > 2 > 。 , 依据公式(1)〜公式 (9)的计算公式,本实施例给出某种型号无油螺杆真空泵的等齿顶宽 单头变螺距螺杆转子的结构参数如下: 齿顶圆直径 D = 186 mm; 齿根圆直径 d = 62 mm; 节 圆直径 e = + Z))/2 = 124mm; 排气端面处的转子初始导程 Α =70 mm; 吸气端面处的转子 终止导程 Ρ2= 160 mm; 齿顶宽 i? = 28mm; 转子工作区总长度 L = 480 mm。 其结构图如图 2 所示, 其螺旋圈数为 4.4圈。
实施例二:
本实施方式给出一种等齿顶宽的单头变螺距螺杆转子, 在其某一横截面处的端面型线如 图 3所示, 曲线 abc段为齿根圆曲线 1, 曲线 cde段为渐开线曲线 2, 曲线 efg段为齿顶圆曲 线 3, 曲线 gha段为由双摆线构成的过渡曲线 9, 四段曲线按顺序相接 (如齿根圆曲线 abc的 末端 c与渐开线曲线 cde的起始端 c连接, 渐开线曲线 cde的末端 e与齿顶圆曲线 efg的起 始端 e连接, 齿顶圆曲线 efg的末端 g与单一摆线构成的过渡曲线 gha的起始端 g连接, 单 一摆线构成的过渡曲线 gha的末端与齿根圆曲线 abc的起始端 a连接, 构成端面型线)。
基于该端面型线作左旋变螺距螺旋展开所生成的等齿顶宽单头变螺距螺杆转子的结构图 如图 4所示。 由图 4中可以看出, 该螺杆转子的齿型面包括齿根面 5、 斜齿面 6、 齿顶面 7和 直齿面 (由双摆线所生成的过渡曲面) 10。 转子的螺旋导程 (节距) 由右侧排气端向左侧吸 气端逐渐变大, 如图4中所示^4>^3> 2>^1,与轴向坐标成正比; 但其齿顶面 7的宽度 B 却始终不变,如图 2中所示 β4 = S3 = β2 = βΐ = β ;而斜齿面 6所占据的轴向长度则越来越长, 如图 2中所示 4> 3> 2> 。
依据公式(1)〜公式 (9)的计算公式, 本实施方式给出某种型号无油螺杆真空泵的等齿顶 宽单头变螺距螺杆转子的结构参数如下: 齿顶圆直径 Ζ) = 188 mm; 齿根圆直径《f = 66 mm; 节圆直径6 = (^ + ))/2 = 1271111 ; 排气端面处的转子初始导程 p。= 80 mm; 吸气端面处的转 子终止导程 Ρ2= 160 mm; 齿顶宽 i? = 28mm; 转子工作区总长度 L = 520 mm。 其结构图如图 4所示, 其螺旋圈数为 4.5圈。
虽然以上描述了本发明的具体实施方式, 但是本领域内的熟练技术人员应当理解, 这些 仅是举例说明, 可以对这些实施方式做出多种变更或修改, 而不背离本发明的原理和实质。 本发明的范围仅由所附权利要求书限定。

Claims

1、一种等齿顶宽的单头变螺距螺杆转子,其特征在于:该螺杆转子的齿型面由齿根面 (5)、 斜齿面 (6)、齿顶面 (7)和过渡齿面 (8)依次连接构成, 转子螺旋导程 (P1,P2,P3)随轴向坐标由 排气端向吸气端成线性增大, 斜齿面 (6)的轴向宽度 (L1,L2,L3)随之逐渐变大, 而齿顶面(7) 的宽度 (Bl, B2, B3)始终保持不变。
2、根据权利要求 1所述的等齿顶宽的单头变螺距螺杆转子, 其特征在于: 所述的齿根面 (5)、 斜齿面 (6)、 齿顶面 (7)和过渡齿面 (8), 是由齿根圆曲线 (abc)、 渐开线曲线(cde)、 齿 顶圆曲线(efg)和过渡段曲线(gha)依次连接构成的端面型线作变螺距螺旋展开而生成。
3、根据权利要求 1所述的等齿顶宽的单头变螺距螺杆转子, 其特征在于: 所述的螺旋导 程 P与轴向坐标 z, 满足如下公式:
Figure imgf000008_0001
式中, Pl为转子排气端面处的转子初始导程, ^为转子吸气端面处的转子终止导程, L 为转子的总长度;
4、 根据权利要求 2所述的等齿顶宽的单头变螺距螺杆转子, 其特征在于: 所述的端面型 线中的渐开线曲线(cde)连接于齿根圆曲线 (abc)和齿顶圆曲线(ef g)之间,该渐开线曲线(cde) 的发生圆直径 ζ)由排气端向吸气端随轴向坐标 ζ逐渐变小, 满足如下公式:
Figure imgf000008_0002
式中, 为转子齿顶圆直径, 为渐开线基圆直径, e为转子节圆直径, i?为齿顶宽。
5、 根据权利要求 2所述的等齿顶宽的单头变螺距螺杆转子,其特征在于: 所述的端面型 线中连接齿顶圆曲线 (ef g)和齿根圆曲线 (abc)的过渡曲线 (gha)为具有自啮合特性的任意曲
6、 根据权利要求 1所述的等齿顶宽的单头变螺距螺杆转子, 其特征在于: 转子螺旋展开 方向为左旋或右旋。
PCT/CN2012/084111 2012-08-14 2012-11-06 等齿顶宽的单头变螺距螺杆转子 WO2014026440A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210290588.XA CN102808771B (zh) 2012-08-14 2012-08-14 等齿顶宽的单头变螺距螺杆转子
CN201210290588.X 2012-08-14

Publications (1)

Publication Number Publication Date
WO2014026440A1 true WO2014026440A1 (zh) 2014-02-20

Family

ID=47232592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084111 WO2014026440A1 (zh) 2012-08-14 2012-11-06 等齿顶宽的单头变螺距螺杆转子

Country Status (2)

Country Link
CN (1) CN102808771B (zh)
WO (1) WO2014026440A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108071585A (zh) * 2017-11-08 2018-05-25 台州学院 一种二段式螺杆真空泵转子
CN109989921A (zh) * 2019-05-23 2019-07-09 萨震压缩机(上海)有限公司 一种节能双螺杆型线
CN113530819A (zh) * 2021-08-19 2021-10-22 爱景节能科技(上海)有限公司 一种变型线双螺杆转子结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103939363A (zh) * 2014-05-13 2014-07-23 毛中义 一种涡轮增压鼓风机
CN104454523B (zh) * 2014-11-25 2016-07-20 巫修海 一种螺杆真空泵的螺杆
CN111734632B (zh) * 2020-08-10 2021-01-29 宁波鲍斯能源装备股份有限公司 双螺杆转子组及真空泵
CN111878397B (zh) * 2020-09-28 2021-02-19 宁波鲍斯能源装备股份有限公司 一种变螺距螺杆的空压机和膨胀机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667370A (en) * 1994-08-22 1997-09-16 Kowel Precision Co., Ltd. Screw vacuum pump having a decreasing pitch for the screw members
WO2002008609A1 (de) * 2000-07-25 2002-01-31 Ateliers Busch Sa Zwillingsschraubenrotoren und solche enthaltende verdrängermaschinen
WO2002103205A1 (de) * 2001-06-19 2002-12-27 Ralf Steffens Profilkontur der spindelroteren einer spindelpumpe
JP2010174672A (ja) * 2009-01-28 2010-08-12 Taiko Kikai Industries Co Ltd スクリュー式流体装置、およびスクリュー回転子構造
CN102808772A (zh) * 2012-08-14 2012-12-05 东北大学 一种等齿顶宽的单头变螺距螺杆转子
CN202756246U (zh) * 2012-08-14 2013-02-27 辽阳博仕流体设备有限公司 一种等齿顶宽的单头变螺距螺杆转子
CN202756247U (zh) * 2012-08-14 2013-02-27 辽阳博仕流体设备有限公司 等齿顶宽的单头变螺距螺杆转子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792294A (en) * 1986-04-11 1988-12-20 Mowli John C Two-stage screw auger pumping apparatus
JP3593365B2 (ja) * 1994-08-19 2004-11-24 大亜真空株式会社 ねじれ角可変型歯車
ES2219956T3 (es) * 1999-07-19 2004-12-01 Sterling Fluid Systems (Germany) Gmbh Maquina volumetrica para medios comprimibles.
JP2001193677A (ja) * 2000-01-11 2001-07-17 Asuka Japan:Kk スクリュー流体機械
CN102521423B (zh) * 2011-09-28 2013-12-11 东北大学 一种单头等螺距螺杆转子的动平衡设计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667370A (en) * 1994-08-22 1997-09-16 Kowel Precision Co., Ltd. Screw vacuum pump having a decreasing pitch for the screw members
WO2002008609A1 (de) * 2000-07-25 2002-01-31 Ateliers Busch Sa Zwillingsschraubenrotoren und solche enthaltende verdrängermaschinen
WO2002103205A1 (de) * 2001-06-19 2002-12-27 Ralf Steffens Profilkontur der spindelroteren einer spindelpumpe
JP2010174672A (ja) * 2009-01-28 2010-08-12 Taiko Kikai Industries Co Ltd スクリュー式流体装置、およびスクリュー回転子構造
CN102808772A (zh) * 2012-08-14 2012-12-05 东北大学 一种等齿顶宽的单头变螺距螺杆转子
CN202756246U (zh) * 2012-08-14 2013-02-27 辽阳博仕流体设备有限公司 一种等齿顶宽的单头变螺距螺杆转子
CN202756247U (zh) * 2012-08-14 2013-02-27 辽阳博仕流体设备有限公司 等齿顶宽的单头变螺距螺杆转子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG, YAN: "CNC 4-axis milling of varying pitch screws", MACHINIST METAL CUTTING, February 2011 (2011-02-01), pages 66 - 69 *
ZHANG, YAN: "NC Turning the Varying Pitch Screw with Equal Thread Crest Width Based on the GSK980TD CNC System", MECHANICAL ENGINEER, October 2009 (2009-10-01), pages 97 - 99 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108071585A (zh) * 2017-11-08 2018-05-25 台州学院 一种二段式螺杆真空泵转子
CN109989921A (zh) * 2019-05-23 2019-07-09 萨震压缩机(上海)有限公司 一种节能双螺杆型线
CN113530819A (zh) * 2021-08-19 2021-10-22 爱景节能科技(上海)有限公司 一种变型线双螺杆转子结构
CN113530819B (zh) * 2021-08-19 2023-02-21 爱景节能科技(上海)有限公司 一种变型线双螺杆转子结构

Also Published As

Publication number Publication date
CN102808771B (zh) 2015-01-07
CN102808771A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2014026440A1 (zh) 等齿顶宽的单头变螺距螺杆转子
US8827669B2 (en) Screw pump having varying pitches
TWI480466B (zh) 用於正排量外齒輪泵之轉子的齒形
CN105422448A (zh) 一种变齿宽变螺距的螺杆转子
CN202926637U (zh) 一种干式螺杆真空泵转子型线
CN105971877A (zh) 一种锥形螺杆转子及其双螺杆真空泵
JP2009519405A5 (zh)
CN113153742B (zh) 一种变型线双螺杆转子及其设计方法
CN205805908U (zh) 一种锥形螺杆转子及其双螺杆真空泵
CN210218104U (zh) 一种涡旋压缩机的变截面涡旋齿
CN106286296B (zh) 一种双螺杆压缩机转子的齿型
CN105952641A (zh) 一种三段式螺杆转子及其双螺杆真空泵
CN202756246U (zh) 一种等齿顶宽的单头变螺距螺杆转子
CN107084131A (zh) 一种基于偏心圆渐开线的全光滑螺杆转子
CN105485014A (zh) 一种等螺距变齿宽的螺杆转子
WO2014026439A1 (zh) 一种等齿顶宽的单头变螺距螺杆转子
CN205277808U (zh) 一种变齿宽变螺距的螺杆转子
CN110285053B (zh) 一种涡旋压缩机的变截面涡旋齿及其型线设计方法
Jünemann et al. Optimisation of screw spindle vacuum pumps with variable rotor pitch regarding load-lock operation
CN110645172A (zh) 一种螺杆真空泵转子及螺杆真空泵
KR102621304B1 (ko) 복합 스크류 로터
JP4839443B2 (ja) スクリュー真空ポンプ
JP5692034B2 (ja) オイルポンプロータ
CN111779674B (zh) 一种多叶罗茨泵转子型线
JP2003161277A (ja) 多段ドライ真空ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/07/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12882934

Country of ref document: EP

Kind code of ref document: A1