WO2014024989A1 - クマルアミドの製造方法 - Google Patents

クマルアミドの製造方法 Download PDF

Info

Publication number
WO2014024989A1
WO2014024989A1 PCT/JP2013/071544 JP2013071544W WO2014024989A1 WO 2014024989 A1 WO2014024989 A1 WO 2014024989A1 JP 2013071544 W JP2013071544 W JP 2013071544W WO 2014024989 A1 WO2014024989 A1 WO 2014024989A1
Authority
WO
WIPO (PCT)
Prior art keywords
coumarinamide
ammonia
solution
producing
solvent
Prior art date
Application number
PCT/JP2013/071544
Other languages
English (en)
French (fr)
Inventor
淳平 岸本
淳 南野
栗原 宏征
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2013536734A priority Critical patent/JPWO2014024989A1/ja
Priority to US14/419,550 priority patent/US9527802B2/en
Priority to CA2880972A priority patent/CA2880972C/en
Priority to BR112015002466-1A priority patent/BR112015002466B1/pt
Publication of WO2014024989A1 publication Critical patent/WO2014024989A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/22Separation; Purification; Stabilisation; Use of additives
    • C07C231/24Separation; Purification

Definitions

  • the present invention relates to a method for producing coumarinamide, which produces coumarinamide from cellulosic biomass.
  • sugars used as fermentation raw materials for example, those derived from edible raw materials such as sugar cane, starch, sugar beet are used industrially.
  • sugars used as fermentation raw materials for example, those derived from edible raw materials such as sugar cane, starch, sugar beet are used industrially.
  • Cellulosic biomass mainly includes lignin, an aromatic polymer, and cellulose and hemicellulose, which are monosaccharide polymers.
  • a method for producing a sugar solution using cellulosic biomass as a raw material for example, a method of directly hydrolyzing cellulosic biomass using concentrated sulfuric acid or the like, or steaming, pulverizing, dilute sulfuric acid in advance to cellulosic biomass
  • a pretreatment-enzymatic saccharification method in which cellulose or hemicellulose is desorbed from lignin by pretreatment such as treatment, followed by hydrolysis with a saccharifying enzyme such as cellulase.
  • the pretreatment-enzymatic saccharification method generally has an advantage that the environmental load is small compared with the method of directly hydrolyzing the raw material, while the yield of sugar is low. Therefore, a pretreatment method using a treatment agent containing ammonia has been proposed as a pretreatment method with a low environmental load and a high sugar yield (see, for example, Patent Document 1).
  • the cellulosic biomass is obtained by the pretreatment method using the treatment agent containing ammonia. There has not been a thorough examination of the chemical reactions that occur in them and the resulting unique compounds.
  • ammonia-treated biomass obtained by treating cellulosic biomass with a treatment agent containing ammonia.
  • a treatment agent containing ammonia contains coumarinamide as a compound derived from cellulosic biomass, and a method for extracting high-purity coumarinamide from ammonia-treated biomass has been found.
  • the present invention has the following configurations [1] to [10].
  • a pretreatment step of treating cellulosic biomass with a treatment agent containing ammonia to obtain ammonia-treated biomass An extraction step of immersing the ammonia-treated biomass in a solvent containing at least water to elute the coumarinamide in the ammonia-treated biomass into the solvent to obtain a coumarinamide solution; And a crystallization step of precipitating the coumarinamide in the coumarinamide solution as crystals to obtain coumarinamide crystals.
  • the crystallization step includes a concentration step in which the coumarinamide solution is filtered through a reverse osmosis membrane before the crystals are precipitated from the coumarinamide solution, and the coumarinamide concentrate is recovered as a non-permeate.
  • the crystallization step includes a purification step of collecting the coumarinamide purified solution as a permeate by filtering the coumarinamide solution through a nanofiltration membrane before precipitating crystals from the coumarinamide solution.
  • the method for producing coumarinamide according to any one of [1] to [9].
  • high-purity coumarinamide can be obtained from ammonia-treated biomass obtained by treating cellulosic biomass with a treatment agent containing ammonia.
  • FIG. 1 is a flow chart showing an example of a method for producing coumarinamide according to the invention.
  • FIG. 2 is a diagram showing a result of analyzing an aromatic compound in an ammonia-treated biomass extract by HPLC.
  • FIG. 3 is a diagram showing a UV absorption spectrum of peak 1 of the ammonia-treated biomass extract.
  • FIG. 4 is a diagram showing a UV absorption spectrum of a coumarinamide preparation.
  • FIG. 5 is a diagram showing a UV absorption spectrum of peak 2 of the ammonia-treated biomass extract.
  • FIG. 6 is a diagram showing a UV absorption spectrum of a ferulamide preparation.
  • FIG. 1 is a flow chart showing an example of a method for producing coumarinamide according to the invention.
  • FIG. 2 is a diagram showing a result of analyzing an aromatic compound in an ammonia-treated biomass extract by HPLC.
  • FIG. 3 is a diagram showing a UV absorption spectrum of peak 1 of the ammonia-treated biomass extract
  • FIG. 7 is a diagram showing the change with time of the concentration of coumarinamide contained in the supernatant of the reaction solution during the saccharification reaction.
  • FIG. 8 is a diagram showing a change with time of the concentration of coumarinamide contained in the suspension supernatant in the extraction step.
  • FIG. 9 is a graph showing changes in operating pressure over time during the concentration of coumarinamide by reverse osmosis membranes at various temperatures.
  • FIG. 1 is a flow chart showing an example of a method for producing coumarinamide according to the present invention.
  • the method for producing coumarinamide according to the present invention includes the following steps.
  • cellulosic biomass is treated with a treatment agent containing ammonia to obtain ammonia-treated biomass.
  • cellulosic biomass means bagasse, switchgrass, napiergrass, Eliansus, corn stover (corn stover), corn cob (corn core), beet pulp, cottonseed shell, palm empty fruit bunch, rice It refers to herbaceous biomass such as straw, wheat straw, bamboo and straw, or trees such as birch, beech and poplar, and waste building materials.
  • pretreatment methods for cellulose-containing biomass include steaming, pulverization, explosion, acid treatment with an acidic solution such as sulfuric acid, alkali treatment with an alkali solution such as sodium hydroxide, treatment with ammonia (NH 3 ), enzyme And treatment with a compound containing an amino group (NH 2 ).
  • cellulosic biomass is pretreated using a treatment agent containing ammonia.
  • a treatment agent containing ammonia Conventionally, it has been known that coumaric acid is generated by pretreatment of cellulosic biomass. However, it has not been confirmed that coumarinamide is produced when cellulosic biomass is pretreated using a treatment agent containing ammonia. It is considered that coumaric acid derived from cellulose-containing biomass is amidated by ammonia by pretreatment with a treatment agent containing ammonia, thereby producing coumarate.
  • a compound containing an amino group can be used, and a combination of a compound containing ammonia or an amino group and another compound is used. May be.
  • the compound containing an amino group include methylamine, ethylamine, propylamine, butylamine, hydrazine, ethylenediamine, propanediamine, and butanediamine.
  • Examples of other compounds include carbon dioxide, nitrogen, ethylene, methane, ethane, propane, ethane, butane, pentane, hexane, toluene, benzene, phenol, dioxane, xylene, acetone, chloroform, carbon tetrachloride, ethanol, and methanol. , Propanol, butanol and the like.
  • the treatment agent containing ammonia may be a liquid, a gas, or a gas-liquid mixed phase.
  • Cellulose biomass excellent in enzymatic saccharification efficiency can be obtained even when ammonia in any state of liquid, gas, and gas-liquid mixed phase is used.
  • the treatment agent containing ammonia may be a supercritical ammonia fluid or a subcritical ammonia fluid.
  • the method of treatment using the supercritical ammonia fluid For example, cellulosic biomass and ammonia are introduced into a reactor such as an autoclave, and the inside of the reactor is heated and pressurized to superheat the ammonia. It can be carried out by bringing it to a critical state.
  • the harvested cellulosic biomass may be used as it is in the pretreatment step, but the cellulosic biomass is preliminarily cut, pulverized, etc., and the cellulosic biomass particles having an average particle size of a predetermined size or less. Then, it may be used for the pretreatment step.
  • the particle size of the cellulosic biomass By making the particle size of the cellulosic biomass small in advance, the handling becomes easy and the efficiency of the treatment with the treatment agent containing ammonia can be improved.
  • the particle diameter of the cellulosic biomass particles is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the diameter is preferably 5 mm or less, more preferably 1 mm or less, and further preferably 0.1 mm or less. preferable. If the particle size of the cellulosic biomass exceeds 5 mm, elution of coumarinamide into water may be insufficient in the extraction step described later. When the particle diameter of the cellulosic biomass is within the above range, elution of coumarinamide into water can be sufficiently achieved, and the amount of treatment agent containing ammonia can be reduced.
  • the harvested cellulosic biomass may be used as it is and pretreated using a treatment agent containing ammonia, but is not limited thereto, and the treatment agent containing ammonia used in the pretreatment step is not limited thereto.
  • the cellulosic biomass may be dried and used in the pretreatment step.
  • the pretreatment method of the present invention a method for treating cellulosic biomass with a treatment agent containing ammonia is used, but the above-mentioned other cellulosic biomass pretreatment methods may be used in combination.
  • the extraction step of the present invention the ammonia-treated biomass obtained in the pretreatment step is immersed in a solvent, and the coumarinamide in the ammonia-treated biomass is eluted in the solvent.
  • the solvent used for the extraction of coumarinamide from the ammonia-treated biomass is characterized by containing at least water.
  • the organic solvent such as pure ethanol or acetonitrile not containing water is used as the solvent, the coumarinamide is hardly extracted.
  • the solvent used in the extraction process may contain a polar organic solvent in addition to water.
  • the solvent contains a polar organic solvent in addition to water, there is an effect of increasing the extraction amount of coumarinamide.
  • the polar organic solvent include ethanol, acetonitrile, methanol, 1-propanol, 2-propanol, ethylene glycol, acetone, acrylonitrile, dimethyl sulfoxide, dimethylformamide and the like.
  • the solvent may contain one or more of the above polar organic solvents, but preferably contains at least ethanol or acetonitrile, and more preferably contains ethanol.
  • the solvent used for the coumarinamide extraction preferably contains 1 to 50% by volume of a polar organic solvent.
  • the proportion of the polar organic solvent in the solvent is less than 1% by volume, the effect of increasing the amount of extract of coumarinamide may not be sufficient. If it exceeds 50% by volume, the amount of extract of coumarinamide will increase even if the concentration of polar organic solvent is increased further. This is because not only does not increase, but also water-insoluble components such as lignin in the biomass are extracted, and the purity of coumarinamide may decrease.
  • the concentration of the polar organic solvent contained in water is preferably 1 to 10% by volume. When the concentration is 10% by volume or more, the nanofiltration membrane or the reverse osmosis membrane may be damaged by the polar organic solvent.
  • the ammonia-treated biomass when the ammonia-treated biomass is immersed in a solvent, the ammonia-treated biomass may be hydrolyzed by appropriately adding a saccharifying enzyme.
  • a saccharifying enzyme By performing extraction while hydrolyzing the ammonia-treated biomass with a saccharifying enzyme, coumarinamide existing in the biomass is extracted, and the yield of coumarinamide can be improved.
  • saccharifying enzyme is a general term for enzymes having an activity of degrading cellulose and / or hemicellulose, particularly xylan, and cellobiohydrase, endoglucanase, exoglucanase, ⁇ -glucosidase, xylanase, Examples thereof include ⁇ -xylosidase and xyloglucanase.
  • a general cellulase can be used, but a cellobiohydrolase having a decomposition activity of crystalline cellulose or a saccharifying enzyme containing endoglucanase is preferable.
  • Trichoderma bacteria are microorganisms classified as filamentous fungi, and are microorganisms that secrete large amounts of various cellulases to the outside of cells.
  • the method of immersing the ammonia-treated biomass in the solvent is not particularly limited, and examples thereof include a method of stirring and mixing, a method of standing still, and the like. This is preferable.
  • the immersion time of the ammonia-treated biomass in the solvent is not particularly limited, but is preferably 1 minute to 60 minutes. If it is less than 1 minute, the extraction of coumarinamide may not be sufficient, and if it exceeds 60 minutes, the efficiency of extracting coumarinamide will not increase even if it takes more time.
  • the immersion time in this case is preferably 2 to 24 hours, and the ammonia-treated biomass is preferably sufficiently hydrolyzed.
  • the temperature at which ammonia-treated biomass is immersed in a solvent to extract coumarinamide is not particularly limited, but is preferably 40 to 80 ° C. This is because the coumarinamide is remarkably efficiently extracted at 40 ° C. or higher. This is presumably because lignin, tannin, polysaccharides, oligosaccharides and the like surrounding coumarinamide in ammonia-treated biomass are dissolved or released at the same temperature, but the reason is not clear. Moreover, even if it exceeds 80 ° C., the efficiency of the extraction of coumarinamide is not improved.
  • HMF hydroxymethylfurfural
  • the amount of the solvent used for the extraction of coumarinamide is not particularly limited, but it is preferable to use 2 to 30 kg of solvent with respect to 1 kg of the ammonia-treated biomass dry mass. If the amount of the solvent used for the extraction is in the range of 2 to 30 kg with respect to 1 kg of the dry weight of the ammonia-treated biomass, coumarinamide in the ammonia-treated biomass can be sufficiently extracted. If the amount of the solvent used for extraction is less than 2 kg per 1 kg of the dry weight of the ammonia-treated biomass, coumarinamide in the ammonia-treated biomass cannot be sufficiently extracted, and most of the solvent (water) is absorbed into the ammonia-treated biomass.
  • the amount of the solvent used for extraction exceeds 30 kg with respect to 1 kg of the ammonia-treated biomass dry mass, further increasing the amount of the solvent not only has no effect on the extracted amount of coumarinamide, but also described later.
  • the amount of the solvent to be treated at the time of concentration of coumarinamide in the crystallization process is increased, which is economically disadvantageous.
  • Crystallization step In the crystallization step of the present invention, the coumarinamide in the coumarinamide solution obtained in the extraction step is brought into a supersaturated state to precipitate coumarinamide crystals, and the coumarinamide is recovered.
  • crystallization means that the solute is crystallized by increasing the solute concentration, lowering the solubility of the solute, or combining these to bring the solution into a solution state in which the solute is dissolved above the solubility, that is, the supersaturated state. It refers to the method of depositing, growing and collecting.
  • the crystallization method in the crystallization step of the present invention is not particularly limited, and these can be used. Since the coumarinamide solution obtained in the extraction step contains a large amount of solids, it is preferable to remove these solids prior to coumarinamide crystallization.
  • the solid removal method is not particularly limited, and examples thereof include centrifugal separation, filter press, belt filter, microfiltration, mesh screen filtration, non-woven fabric filtration, and combinations thereof. Among the above, microfiltration can remove micron-order particles and can increase the purity of coumarinamide at the time of crystallization. Therefore, the final stage of solid matter removal is preferably microfiltration.
  • a method for concentrating the coumarinamide solution is not particularly limited, but a membrane separation capable of high concentration with energy saving, that is, a method of filtering the coumarinamide solution through the membrane and concentrating coumarinamide on the non-permeate side is preferably used.
  • a membrane separation capable of high concentration with energy saving that is, a method of filtering the coumarinamide solution through the membrane and concentrating coumarinamide on the non-permeate side is preferably used.
  • the membrane separation when concentrating the coumarinamide by membrane separation, if the coumarinamide crystal is precipitated during the membrane separation, the membrane causes clogging. Therefore, it is preferable to control so that coumarinamide is not precipitated during the membrane separation.
  • a reverse osmosis membrane can be used as a separation membrane for concentrating coumarinamide by membrane separation.
  • the reverse osmosis membrane is also called an RO membrane, and is a membrane generally defined as “a membrane having a desalting function including monovalent ions”.
  • a reverse osmosis membrane is a membrane that is considered to have ultra-fine voids of several angstroms to several nanometers, and is mainly used for removing ionic components such as seawater desalination and ultrapure water production.
  • a reverse osmosis membrane can be used for the purpose of concentrating the coumarinamide solution while removing coumarinamide to the non-permeation side while removing moisture to the permeation side.
  • the water removed to the permeate side when concentrating the coumarinamide solution contains almost no impurities, it can be reused for various purposes. For example, it can be reused as a solvent used in the above-described coumarinamide extraction step.
  • the reverse osmosis membrane for example, those described in WO2010 / 067785 can be used.
  • the shape of the reverse osmosis membrane used for concentrating the coumarinamide solution is not particularly limited, and a hollow fiber membrane module, a flat membrane, and a spiral module can be used. Among them, a spiral module can be preferably used. This is because the spiral module generally has high pressure resistance, so that coumaramide can be highly concentrated, and the treatment amount is large due to the large effective membrane area.
  • the temperature of the coumarinamide solution when concentrating coumarinamide using a reverse osmosis membrane is preferably 20 to 50 ° C. If it is 20 ° C. or higher, precipitation of coumarinamide hardly occurs and clogging of the film does not occur. On the other hand, if it is less than 20 ° C., precipitation of coumaramide remarkably occurs easily and the film easily clogs. In addition, if the concentration of coumarinamide is continued at a temperature exceeding 50 ° C., deterioration of the membrane may be accelerated.
  • the above-described general crystallization method can be used, and among them, cooling is preferably used. This is because, when crystallization is performed by cooling the coumarinamide solution, high-purity coumarinamide can be recovered with high yield at a relatively mild cooling temperature. The reason for this is considered to be due to the temperature dependence of solubility of coumarinamide as compared with other substances extracted from ammonia-treated biomass, but it is not clear.
  • the cooling temperature of the coumarinamide solution is preferably 15 ° C. or lower. This is because if it is 15 ° C. or less, the precipitation and growth of coumarinamide crystals is remarkable.
  • the cooling period is not particularly limited, but is preferably 5 hours to 10 days.
  • the time is less than 5 hours, the precipitation and growth of coumarinamide crystals is poor, and the amount of coumarinamide recovery decreases.
  • it exceeds 10 days crystals are not precipitated or grown for a long time, and the amount of coumarinamide recovered does not increase.
  • the coumarinamide solution is filtered through a nanofiltration membrane to obtain a coumarinamide purified solution as a permeate. Also good.
  • impurities can be removed from the coumarinamide solution, and the purity of coumarinamide crystals obtained during crystallization can be improved.
  • the nanofiltration membrane is also called a nanofilter (nanofiltration membrane, NF membrane), and is a membrane generally defined as “a membrane that transmits monovalent ions and blocks divalent ions”. .
  • the nanofiltration membrane is a membrane that is considered to have a minute gap of about several nanometers, and is mainly used for blocking minute particles, molecules, ions, salts, and the like in water.
  • impurities derived from biomass such as sugar are blocked on the non-permeating side, while the cou- malamide solution is purified by permeating the coumaramide solution to the permeating side.
  • the as a nanofiltration membrane the thing as described in WO2010 / 066785 can be used, for example.
  • the shape of the nanofiltration membrane used in the purification step is not particularly limited, and the same shape as the aforementioned reverse osmosis membrane can be used.
  • the coumarinamide crystal obtained by crystallization is recovered by solid-liquid separation.
  • the solid-liquid separation method is not particularly limited, and centrifugal separation, filter press, microfiltration, filtration with a mesh screen, filtration with a nonwoven fabric, filtration with filter paper, and combinations thereof can be used.
  • the purity of the recovered coumarinamide crystal is preferably 90% or more, more preferably 95% or more, and still more preferably 97% or more.
  • the coumarinamide crystal recovered by the solid-liquid separation has a high purity of 90% or more even when dried as it is, but the purity can be further improved by washing with water.
  • the temperature for washing with water is not particularly limited, but is preferably 5 to 20 ° C. If the temperature is lower than 5 ° C., the solubility of water-soluble impurities is poor, so that the impurities are not sufficiently removed. On the other hand, if the temperature exceeds 20 ° C., the solubility of coumarinamide increases and the yield of coumarinamide decreases.
  • crystallization can be measured by the method of the reference example 2 of the below-mentioned Example.
  • the efficiency of impurity removal can be further increased by pulverizing the coumarinamide crystals prior to washing with water.
  • the method of pulverization is not particularly limited, and a hammer mill, a wing mill, a ball mill, a stone mortar, a mortar, or a combination thereof can be used.
  • the coumarinamide crystal after washing with water is recovered again by the above-described solid-liquid separation method. Further, the above-described recovery by water washing, pulverization, and solid-liquid separation may be combined as appropriate, or may be repeated. By repeating the process, the purity of coumarinamide can be further increased.
  • Aromatic compound analysis The concentration of the aromatic compound (coumaric acid, coumarinamide, ferulamide) in the solution was quantified by comparison with a standard under the following HPLC conditions. At the same time, a UV absorption spectrum (measurement wavelength: 200 nm to 400 nm) of each detection peak was obtained.
  • Instrument Hitachi high-performance liquid chromatograph Lachrom elite (manufactured by Hitachi, Ltd.) Column: Synergi 2.5 ⁇ m Hydro-RP 100A (Phenomenex) Detection method: Diode Array Detector flow rate: 0.6 mL / min Temperature: 40 ° C
  • the volume was increased to the marked line using a 50 volume% acetonitrile / water mixed solution.
  • the coumarinamide concentration in a solution obtained by diluting the obtained solution 20 times using pure water was analyzed according to Reference Example 1, and then the coumarinamide purity was calculated according to the following formula (1). Moreover, the coumaric-amide yield was computed according to following formula (2).
  • the input biomass dry mass is the dry mass of the total amount of the ammonia-treated biomass subjected to the extraction process of the present invention.
  • Kumaramide purity (%) Measured value of coumarinamide concentration (mg / L) / 100 (mg / L) ⁇ 100 (1)
  • Kumaramide yield (mg / kg) Dry Kumaramide powder mass (mg) ⁇ Cumaramide purity (%) / (Input biomass dry mass (kg) ⁇ 100) (2).
  • Example 1 Production and identification of coumarinamide crystals [A. Preparation of ammonia-treated biomass extract crystals]
  • Pretreatment step (1.1) Cellulose biomass pulverization Eliansus was used as the cellulosic biomass. The Eliansus was pulverized using a cutter mill while controlling the particle size with a screen having an opening of 4 mm. The average particle diameter (d50) measured by the laser diffraction method was about 975 ⁇ m. The ground Eliansus was dried overnight at a temperature of 40 ° C. and a reduced pressure of 5 kPa. The moisture content of the Elianthus after drying was about 0.5% by mass based on the mass of the Elianthus after drying.
  • pressurized ammonia was introduced into a separate pressure vessel, and the ammonia was heated to a temperature slightly higher than 120 ° C. Then, ammonia was introduced into the autoclave so that the pressure became 1.2 MPa at a temperature of 120 ° C. by opening a valve installed in a pipe connecting the autoclave and the pressure vessel. Under this temperature and pressure conditions, the cellulose chip was treated with ammonia under stirring for 2.5 hours. Thereafter, the pressure was released to discharge ammonia, and nitrogen gas was further circulated through the autoclave to remove ammonia remaining in the cellulose chip particles, thereby obtaining pretreated biomass. This was used as ammonia-treated biomass.
  • peak 3 was found to be coumaric acid because it coincided with the HPLC elution time of the coumaric acid sample.
  • the elution times of the remaining two compounds are HMF (hydroxymethylfurfural), furfural, vanillin, acetovanillone, ferulic acid, which are known as aromatic compounds contained in the cellulosic biomass pretreatment product.
  • Coniferyl aldehyde and guaiacol did not match. Therefore, these two types of peaks (peak 1 and peak 2) were separated by HPLC, and the molecular weight was analyzed by LC / MS (LCMS-IT-TOF and LC20A, manufactured by Shimadzu).
  • the molecular weights were 163.063 and 193.074, respectively. It is known that coumaric acid and ferulic acid are contained in various biomasses, and these are expected to produce a coumarinamide and ferulamide by condensation reaction with ammonia molecules, respectively.
  • the molecular weights calculated from the structural formulas of coumarinamide and ferulamide are 163.172 and 193.198, respectively, which coincide with the molecular weights obtained by the LC / MS, and therefore the remaining amount contained in the ammonia-treated biomass extract. Two types of peaks (peak 1 and peak 2) were estimated to be coumarinamide and ferulamide.
  • FIGS. 3 to 6 show the UV absorption spectra of Peak 1 and Peak 2 of the ammonia-treated biomass extract, the coumarinamide sample, and the ferulamide sample, which were obtained when HPLC was performed.
  • the measurement wavelength was 200 to 400 nm.
  • FIGS. 3 and 4 the UV absorption spectra of the peak 1 of the ammonia-treated biomass extract and the coumarinamide preparation matched.
  • FIGS. 5 and 6 the UV absorption spectra of the peak 2 of the ammonia-treated biomass extract and the ferulamide preparation coincided.
  • peak 1 and peak 2 contained in the ammonia-treated biomass extract are coumarinamide and ferulamide, respectively, and the ammonia-treated biomass contains a large amount of these compounds.
  • Table 1 shows the component analysis results of the ammonia-treated biomass extract.
  • Example 2 Concentration of Kumaramide Using Reverse Osmosis Membrane (1) Ammonia-treated biomass extraction in the same manner as in Example 1 up to the pretreatment step, (2) extraction step, and (3.1) purification / concentration step The liquid was purified. The obtained liquid was filtered at 25 ° C. using a reverse osmosis membrane (UTC-80, manufactured by Toray Industries, Inc.) to concentrate the ammonia-treated biomass extract. Filtration was performed by adjusting the operating pressure as needed so that the membrane permeation flux was 0.5 m / day by cross-flow filtration, and was terminated when the liquid volume was concentrated to about half. When the obtained concentrated liquid was cooled to 15 ° C. and allowed to stand for 1 day, precipitation of crystals was confirmed.
  • UTC-80 reverse osmosis membrane
  • the crystals were separated with a sieve having an opening of 500 ⁇ m. 1 L of water was added to the crystals thus obtained, suspended at room temperature, and then separated again with a sieve having an opening of 500 ⁇ m. The obtained crystal was dried at 50 ° C. for a whole day and night, and further dried under reduced pressure at 10 kPa for about 6 hours to obtain a coumarinamide dry crystal.
  • Table 2 shows the results obtained by analyzing the purity and yield of the obtained coumarinamide crystals by the method described in Reference Example 2. Table 2 summarizes the coumarinamide purity and yield due to differences in the extraction, purification, and concentration steps. As is clear from Table 2, the yield of coumarinamide was improved when coumarinamide concentration was performed using a reverse osmosis membrane as compared with the heating evaporation method.
  • Example 3 Kumaramide extraction with warm water (1) Pretreatment process of Example 1 except that the temperature of the extraction process is 10 ° C, 20 ° C, 30 ° C, 40 ° C, 50 ° C, 70 ° C, 90 ° C, respectively. And (2) an ammonia-treated biomass extract was obtained in the same manner as in the extraction step. Table 3 shows the results of component analysis of the ammonia-treated biomass extract extracted at each temperature under the HPLC conditions described in Reference Example 1. As is apparent from Table 3, the concentration of coumarinamide in the biomass extract increases as the temperature during extraction increases, but the extraction concentration is poor below 40 ° C., whereas the extraction concentration is markedly increased above 40 ° C. Further, the extraction concentration almost reached the upper limit at 70 ° C., and it did not increase even when the temperature was raised further.
  • Example 4 Extraction of coumarinamide with a solvent containing a polar organic solvent (1) Pretreatment step and (2) Extraction step of Example 1 except that 10% ethanol aqueous solution and 10% acetonitrile aqueous solution are used as extraction solvents, respectively.
  • Ammonia-treated biomass extract was obtained in the same manner.
  • Table 4 shows the results of component analysis of the liquid extracted with each extraction solvent under the HPLC conditions described in Reference Example 1. Table 4 summarizes the coumarinamide concentration in the ammonia-treated biomass extract when different extraction solvents are used.
  • Example 5 Purification of Kumaramide by Nanofiltration Membrane
  • the ammonia-treated biomass extract after removing solids was filtered with a filter press and a microfiltration membrane prior to concentration with a reverse osmosis membrane, and then further nanofiltration membrane (UTC-80, manufactured by Toray Industries, Inc.) was used at 25 ° C. to obtain a dried coumarinamide crystal in the same manner as in Example 2, except that coumarinamide was purified.
  • Filtration with a nanofiltration membrane was performed by adjusting the operating pressure as needed so that the membrane permeation flux was 0.5 m / day by cross-flow filtration, and was terminated when the operating pressure reached 6 MPa.
  • Table 2 shows the results obtained by analyzing the purity and yield of the obtained coumarinamide crystals by the method described in Reference Example 2. As is clear from Table 2, the purity of the coumarinamide crystal was improved in Example 5 in which the coumarinamide was purified with the nanofiltration membrane as compared with Example 2 in which the coumarinamide was not purified with the nanofiltration membrane.
  • Example 6 Enzymatic saccharification in the extraction step 9 kg of water is added to 1 kg of the dry mass of the ammonia-treated biomass obtained by the method described in (1) Pretreatment step of Example 1, and a small amount of concentrated sulfuric acid is added thereto.
  • a cellulase preparation derived from Trichoderma reesei (Accel Lace Duet, manufactured by Genencor) as a saccharifying enzyme is 1/100 of the amount of enzyme protein relative to the dry mass of ammonia-treated biomass.
  • FIG. 7 shows the results of analyzing the change with time of the coumarinamide concentration contained in the supernatant of the reaction solution during the saccharification reaction according to Reference Example 1.
  • the coumarinamide concentration in the solution increased as the enzymatic saccharification reaction proceeded.
  • Table 2 shows the results of analyzing the purity and yield of the obtained dried coumarinamide crystals by the method described in Reference Example 2.
  • Example 6 in which enzymatic saccharification was performed in the extraction step improved the yield of coumarate compared to Example 2 in which enzymatic saccharification was not performed.
  • Example 7 Immersion time Except that the stirring time was 24 hours, coumaric amide was extracted from ammonia-treated biomass by the same method as (1) the pretreatment step and (2) the extraction step of Example 1. .
  • FIG. 8 shows the results of analyzing the time-dependent change of the concentration of coumarinamide contained in the suspension supernatant during extraction according to Reference Example 1. As is apparent from FIG. 8, the coumarinamide concentration in the extract gradually increased until about 60 minutes from the start of immersion, but thereafter became a substantially constant value.
  • Example 8 Cooling temperature in crystallization step Example 2 except that the concentrated liquid by the reverse osmosis membrane was cooled and allowed to stand for 1 day at 5 ° C, 10 ° C, 20 ° C, and 25 ° C, respectively.
  • Coumaric dry crystals were obtained in the same manner.
  • Table 5 shows the results of measuring the purity and yield of the obtained coumarinamide crystals according to the method of Reference Example 2.
  • Table 5 summarizes the coumarinamide purity and coumarinamide yield depending on the cooling temperature in the crystallization process. As is apparent from Table 5, the yield of coumaramide was improved at 10 ° C. and further improved at 5 ° C. as compared to Example 2 in which the temperature during cooling was 15 ° C. In both cases of 20 ° C. and 25 ° C., no coumarinamide crystals were precipitated.
  • Example 9 Temperature at the time of filtration in the concentration step
  • the temperature at the time of concentration by the reverse osmosis membrane was set to 10 ° C, 15 ° C, 20 ° C, 25 ° C, 30 ° C, respectively.
  • the coumarinamide extract was concentrated.
  • FIG. 9 shows the change over time in the operating pressure during concentration. In all cases of 10 ° C., 15 ° C., and 20 ° C., crystal precipitation was visually confirmed during the concentration.
  • the operating pressure increased rapidly compared to the cases of 20 ° C., 25 ° C., and 30 ° C., and film clogging occurred due to the precipitation of coumarinamide crystals. It was inferred that
  • the coumarinamide obtained in the present invention has high purity and can be used for production of various chemical products using coumarinamide as a starting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

 セルロース系バイオマスをアンモニアを含む処理剤で処理して得られるクマルアミドの回収方法を確立することを課題とする。本発明のクマルアミドの製造方法は、セルロース系バイオマスを、アンモニアを含む処理剤で処理してアンモニア処理バイオマスを得る前処理工程と、前記アンモニア処理バイオマスを、少なくとも水を含む溶媒に浸漬して、前記アンモニア処理バイオマス中のクマルアミドを前記溶媒中に溶出せしめ、クマルアミド溶液を得る抽出工程と、前記クマルアミド溶液中のクマルアミドを結晶として析出させ、クマルアミド結晶を得る晶析工程と、を含むことを特徴とする。

Description

クマルアミドの製造方法
 本発明は、セルロース系バイオマスからクマルアミドを製造するクマルアミドの製造方法に関する。
 糖を原料とした化学品の発酵生産プロセスは、種々の工業原料生産に利用されている。現在、発酵原料となる糖としては、例えば、さとうきび、澱粉、テンサイなどの食用原料に由来するものが工業的に使用されている。しかしながら、今後は世界人口の増加により食用原料が不足し、価格が高騰することが懸念され、再生可能な非食用資源、すなわちセルロース系バイオマスから効率的に糖液を製造するプロセスの構築が課題となっている。
 セルロース系バイオマスは、主に芳香族系重合物のリグニンと、単糖の重合物であるセルロースやヘミセルロースを含む。セルロース系バイオマスを原料とした糖液の製造方法として、例えば、濃硫酸などを用いて直接原料であるセルロース系バイオマスを加水分解する方法や、セルロース系バイオマスに予め蒸煮処理、微粉砕処理、希硫酸処理などの前処理を施してセルロースやヘミセルロースをリグニンから脱離した後、セルラーゼ等の糖化酵素により加水分解を行う前処理-酵素糖化法等がある。
 前処理-酵素糖化法は、一般に、直接原料を加水分解する方法と比べて環境負荷が小さいという利点を有する一方、糖の収率は低い。そこで、環境負荷が小さく、かつ高い糖収率が得られる前処理方法として、アンモニアを含む処理剤を用いた前処理方法が提案されている(例えば、特許文献1参照)。
特開2008-161125号公報
 しかしながら、前述のアンモニアを含む処理剤を用いた前処理方法によりセルロース系バイオマスの酵素糖化効率が向上することが知られている一方で、アンモニアを含む処理剤を用いた前処理方法によりセルロース系バイオマス中で起こる化学反応や、その結果として生じる特有の化合物について十分な検討はなされていなかった。
 本発明ではかかる状況を鑑み、アンモニアを含む処理剤で処理して得られるセルロース系バイオマス由来の物質を同定し、その回収方法について確立することを課題とする。
 上述した課題を解決し、目的を達成するために、本発明者らは、セルロース系バイオマスを、アンモニアを含む処理剤で処理したアンモニア処理バイオマス中の化合物について鋭意検討を行った。その結果、アンモニアを含む処理剤で前処理したアンモニア処理バイオマスには、セルロース系バイオマス由来の化合物としてクマルアミドが含まれることを見いだすとともに、アンモニア処理バイオマスから高純度のクマルアミドを抽出する方法を見いだし、本発明を完成した。
 すなわち、本発明は以下の[1]~[10]の構成を有する。
[1] セルロース系バイオマスを、アンモニアを含む処理剤で処理してアンモニア処理バイオマスを得る前処理工程と、
 前記アンモニア処理バイオマスを、少なくとも水を含む溶媒に浸漬して、前記アンモニア処理バイオマス中のクマルアミドを前記溶媒中に溶出せしめ、クマルアミド溶液を得る抽出工程と、
 前記クマルアミド溶液中のクマルアミドを結晶として析出させ、クマルアミド結晶を得る晶析工程と、を含むことを特徴とする、クマルアミドの製造方法。
[2] 前記晶析工程で回収されるクマルアミド結晶は、純度90%以上であることを特徴とする、[1]に記載のクマルアミドの製造方法。
[3] 前記抽出工程で使用する前記溶媒の温度は、40℃以上であることを特徴とする、[1]または[2]に記載のクマルアミドの製造方法。
[4] 前記抽出工程で使用する溶媒は、少なくとも1種の極性有機溶媒を含むことを特徴とする、[1]~[3]のいずれかに記載のクマルアミドの製造方法。
[5] 前記溶媒は、前記極性有機溶媒として少なくともエタノールを含むことを特徴とする、[4]に記載の糖液の製造方法。
[6] 前記晶析工程は、前記クマルアミド溶液から結晶を析出させる前に、前記クマルアミド溶液を逆浸透膜に通じて濾過し、非透過液としてクマルアミド濃縮液を回収する濃縮工程を含むことを特徴とする、[1]~[5]のいずれかに記載のクマルアミドの製造方法。
[7] 前記逆浸透膜に通じて濾過するクマルアミド溶液の液温が20℃以上であることを特徴とする、[6]に記載のクマルアミドの製造方法。
[8] 前記晶析工程は、前記クマルアミド溶液を15℃以下に冷却してクマルアミドの結晶を析出させることを特徴とする、[1]~[7]のいずれかに記載のクマルアミドの製造方法。
[9] 前記抽出工程は、前記アンモニア処理バイオマスを溶媒に浸漬する際、糖化酵素を添加することによりアンモニア処理バイオマスの加水分解を行うことを特徴とする、[1]~[8]のいずれかに記載のクマルアミドの製造方法。
[10]前記晶析工程は、前記クマルアミド溶液から結晶を析出させる前に、前記クマルアミド溶液をナノろ過膜に通じて濾過し、透過液としてクマルアミド精製液を回収する精製工程を含むことを特徴とする、[1]~[9]のいずれかに記載のクマルアミドの製造方法。
 本発明によれば、セルロース系バイオマスを、アンモニアを含む処理剤で処理したアンモニア処理バイオマスより、高純度のクマルアミドを得ることができる。
図1は、発明に係るクマルアミドの製造方法の一例を示すフローチャートである。 図2は、アンモニア処理バイオマス抽出液中の芳香族化合物をHPLCにて分析した結果を示す図である。 図3は、アンモニア処理バイオマス抽出液のピーク1のUV吸収スペクトルを示す図である。 図4は、クマルアミド標品のUV吸収スペクトルを示す図である。 図5は、アンモニア処理バイオマス抽出液のピーク2のUV吸収スペクトルを示す図である。 図6は、フェルラアミド標品のUV吸収スペクトルを示す図である。 図7は、糖化反応中の反応液上清に含まれるクマルアミド濃度の経時変化を示す図である。 図8は、抽出工程における懸濁液上清に含まれるクマルアミドの濃度の経時変化を示す図である。 図9は、さまざまな温度における逆浸透膜によるクマルアミドの濃縮の際の操作圧の経時変化を示す図である。
 以下、本発明について図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態により本発明が限定されるものではない。
 本発明に係るクマルアミドの製造方法について、図面を参照して説明する。図1は、本発明に係るクマルアミドの製造方法の一例を示すフローチャートである。図1に示すように、本発明に係るクマルアミドの製造方法は、以下の工程を含む。
(1)セルロース系バイオマスを、アンモニアを含む処理剤で処理して、アンモニア処理バイオマスを得る前処理工程(ステップS1)
(2)前記アンモニア処理バイオマスを、少なくとも水を含む溶媒に浸漬して、前記アンモニア処理バイオマス中のクマルアミドを前記溶媒中に溶出せしめ、クマルアミド溶液を得る抽出工程(ステップS2)
(3)前記クマルアミド溶液中のクマルアミドを結晶として析出させ、クマルアミド結晶を得る晶析工程(ステップS3)
 以下、本発明を実施するための形態について工程順に説明する。
(1)前処理工程
 まず、本発明の前処理工程では、セルロース系バイオマスを、アンモニアを含む処理剤で処理し、アンモニア処理バイオマスを得る。本明細書において、セルロース系バイオマスとは、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー(トウモロコシの茎葉)、コーンコブ(トウモロコシの芯)、ビートパルプ、綿実殻、パーム空果房、稲わら、麦わら、竹、笹などの草本系バイオマス、あるいはシラカバ、ブナ、ポプラなどの樹木、廃建材などのことである。
 一般に、セルロース含有バイオマスの前処理方法としては、蒸煮処理、微粉砕処理、爆砕処理、硫酸などの酸性溶液による酸処理、水酸化ナトリウムなどアルカリ溶液によるアルカリ処理、アンモニア(NH)による処理、酵素処理、アミノ基(NH)を含む化合物による処理などが挙げられる。これらの前処理方法の中でも、本発明の前処理工程においては、アンモニアを含む処理剤を用いてセルロース系バイオマスを前処理する。従来からセルロース系バイオマスの前処理によってクマル酸が生じることは知られていたが、セルロース系バイオマスを、アンモニアを含む処理剤を用いて前処理した場合、クマルアミドが生じることは確認されていなかった。アンモニアを含む処理剤による前処理により、セルロース含有バイオマス由来のクマル酸がアンモニアによってアミド化され、クマルアミドを生じると考えられる。
 本発明の前処理工程において使用するアンモニアを含む処理剤としては、アンモニア以外に、アミノ基を含む化合物を使用することができ、アンモニアやアミノ基を含む化合物とその他の化合物を複数組み合わせて使用してもよい。アミノ基を含む化合物としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヒドラジン、エチレンジアミン、プロパンジアミン、ブタンジアミンなどが挙げられる。その他の化合物としては、例えば、二酸化炭素、窒素、エチレン、メタン、エタン、プロパン、エタン、ブタン、ペンタン、ヘキサン、トルエン、ベンゼン、フェノール、ジオキサン、キシレン、アセトン、クロロホルム、四塩化炭素、エタノール、メタノール、プロパノール、ブタノールなどが挙げられる。
 本発明において、アンモニアを含む処理剤は、液体、気体、気液混合相のいずれであってもよい。液体、気体、気液混合相のいずれの状態のアンモニアを用いた場合でも酵素糖化効率に優れたセルロース系バイオマスを得ることができる。また、アンモニアを含む処理剤は、超臨界アンモニア流体又は亜臨界アンモニア流体でもよい。超臨界アンモニア流体を用いて処理する方法としては、特に制限はなく、例えば、セルロース系バイオマスとアンモニアとを、オートクレーブ等の反応器内に導入し、反応器内を加熱加圧して、アンモニアを超臨界状態にすることにより行うことができる。
 本発明においては、収穫したセルロース系バイオマスはそのまま前処理工程に使用してもよいが、セルロース系バイオマスを予め裁断、粉砕等して、平均粒子径が所定の大きさ以下のセルロース系バイオマスの粒子としてから前処理工程に使用してもよい。セルロース系バイオマスの粒子径を予め小さくしておくことで、取り扱いが容易となると共に、アンモニアを含む処理剤による処理の効率の向上を図ることができる。
 セルロース系バイオマスの粒子の粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5mm径以下が好ましく、1mm径以下がより好ましく、0.1mm径以下が更に好ましい。セルロース系バイオマスの粒子の粒子径が、5mm径を超えると、後述の抽出工程においてクマルアミドの水への溶出が不十分となることがある。セルロース系バイオマスの粒子の粒子径が上記範囲内の場合には、クマルアミドの水への溶出を十分にでき、またアンモニアを含む処理剤の使用量を少なくできる。
 本発明においては、収穫したセルロース系バイオマスをそのまま使用してアンモニアを含む処理剤を用いて前処理してもよいが、これに限定されるものではなく、前処理工程に用いるアンモニアを含む処理剤の回収を図る観点から、セルロース系バイオマスを乾燥してから前処理工程で使用するようにしてもよい。
 本発明の前処理方法として、セルロース系バイオマスを、アンモニアを含む処理剤で処理する方法を用いているが、上述の他のセルロース系バイオマスの前処理方法を併用してもよい。
(2)クマルアミド抽出工程
 本発明の抽出工程では、前処理工程で得たアンモニア処理バイオマスを溶媒に浸漬し、アンモニア処理バイオマス中のクマルアミドを溶媒中に溶出せしめる。本発明の抽出工程では、アンモニア処理バイオマスからのクマルアミド抽出に使用する溶媒は、少なくとも水を含むことを特徴とする。溶媒として、水を含まない純粋なエタノールやアセトニトリルなどの有機溶媒を使用した場合、クマルアミドはほとんど抽出されない。これは、セルロース系バイオマス由来のクマルアミドが、セロオリゴ糖、キシロオリゴ糖やペクチンなど水溶性の化合物で覆われており、これらの化合物が有機溶媒に不溶な為、クマルアミドが抽出されないものと考えられるが、その理由は明確ではない。クマルアミドの抽出に使用する水としては特に制限はないが、純水、水道水、工業用水、河川水、雨水などが好ましく使用される。また、本発明によりクマルアミドを回収した残液を、後述の逆浸透膜処理により再生した水も好ましく使用される。
 また、抽出工程で使用する溶媒は、水のほかに極性有機溶媒を含んでもよい。溶媒が、水に加えて極性有機溶媒を含むことにより、クマルアミドの抽出量を増大させる効果がある。極性有機溶媒としては、エタノール、アセトニトリル、メタノール、1-プロパノール、2-プロパノール、エチレングリコール、アセトン、アクリロニトリル、ジメチルスルホキシド、ジメチルホルムアミドなどが挙げられる。溶媒は、上記の極性有機溶媒を1種類または2種類以上含んでいてもよいが、少なくともエタノールまたはアセトニトリルを含むことが好ましく、エタノールを含むことがより好ましい。クマルアミド抽出に使用する溶媒は、極性有機溶媒を1~50体積%の割合で含むことが好ましい。溶媒中の極性有機溶媒の割合が、1体積%未満ではクマルアミド抽出量の増大効果が十分でない場合があり、また、50体積%を超える場合、それ以上極性有機溶媒濃度を高めてもクマルアミド抽出量は増大しないばかりでなく、リグニンなどバイオマス中の水不溶性成分を抽出してしまい、クマルアミドの純度が低下してしまうことがあるためである。また、後述の晶析工程において、晶析に先立ち、クマルアミドを後述のナノろ過膜に通じて濾過してより精製する場合や、後述の逆浸透膜に通じて濾過してより濃縮する場合には、水中に含まれる極性有機溶媒濃度は1~10体積%であることが好ましい。10体積%以上の濃度では、ナノろ過膜や逆浸透膜が、極性有機溶媒によって損傷してしまうことがある。
 本発明の抽出工程において、アンモニア処理バイオマスを溶媒に浸漬する際には、糖化酵素を適宜添加することにより、アンモニア処理バイオマスを加水分解してもよい。アンモニア処理バイオマスを糖化酵素により加水分解しながら抽出を行なうことにより、バイオマス内部に存在するクマルアミドが抽出され、クマルアミドの収率を向上させることができる。
 本明細書において、糖化酵素(セルラーゼ)とは、セルロースおよび/またはヘミセルロース、特にキシランを分解する活性を有する酵素の総称であり、セロビオハイドラーゼ、エンドグルカナーゼ、エキソグルカナーゼ、β-グルコシダーゼ、キシラナーゼ、β-キシロシダーゼ、キシログルカナーゼなどを例示することができる。本発明において使用するセルラーゼとしては、一般的なセルラーゼを使用できるが、好ましくは、結晶性セルロースの分解活性を有するセロビオハイドロラーゼ、あるいはエンドグルカナーゼを含む糖化酵素であることが好ましい。こうした糖化酵素として、トリコデルマ属細菌由来の糖化酵素が好適である。トリコデルマ属細菌とは、糸状菌に分類される微生物であり、細胞外に、多種のセルラーゼを大量に分泌する微生物である。
 本発明の抽出工程において、アンモニア処理バイオマスの溶媒への浸漬方法は特に限定されず、攪拌混合を行う方法と、静置する方法などが挙げられるが、攪拌混合を行うほうがより効率よくクマルアミドを抽出することができるため、好ましい。また、特に前述のセルラーゼ添加によるバイオマス加水分解を行う場合は、攪拌混合を行うほうがバイオマス加水分解の効率が高められ、クマルアミドの抽出効率はより高められるため、好ましい。
 本発明の抽出工程において、アンモニア処理バイオマスの溶媒への浸漬時間は特に限定されないが、1分から60分が好ましい。1分未満ではクマルアミドの抽出が十分ではない場合があり、60分を超える場合はそれ以上時間をかけてもクマルアミドの抽出の効率は上がらないためである。ただし、抽出工程において、前述の糖化酵素添加によるバイオマス加水分解を行う場合は、時間と共にアンモニア処理バイオマス中のセルロースやヘミセルロースが分解され、より多くのクマルアミドが液中に溶出する。したがって、この場合の浸漬時間は、2時間~24時間とし、十分にアンモニア処理バイオマスを加水分解させることが好ましい。
 本発明の抽出工程において、アンモニア処理バイオマスを溶媒に浸漬し、クマルアミドを抽出する際の温度としては特に制限はないが、40~80℃が好ましい。40℃以上においてクマルアミドが格段に効率よく抽出されるためである。これは、アンモニア処理バイオマス中のクマルアミドを取り囲むリグニンやタンニン、多糖、オリゴ糖などが、同温度にて溶解あるいは遊離するためだと推察されるが、理由は明確ではない。また、80℃を超えてもクマルアミド抽出の効率が向上せず、更に100℃を超える場合、熱によりアンモニア処理バイオマス中の多糖やリグニンなどが分解を起こし、ヒドロキシメチルフルフラール(HMF)、フルフラール、蟻酸、酢酸、バニリンなどの不純物を生じるため好ましくない。
 本発明の抽出工程において、クマルアミドの抽出に使用する溶媒の量に特に制限はないが、アンモニア処理バイオマス乾燥質量1kgに対して、2~30kgの溶媒を使用することが好ましい。抽出に使用する溶媒の量がアンモニア処理バイオマス乾燥質量1kgに対して2~30kgの範囲内であれば、アンモニア処理バイオマス中のクマルアミドを十分に抽出することができる。抽出に使用する溶媒の量が、アンモニア処理バイオマス乾燥質量1kgに対して2kg未満ではアンモニア処理バイオマス中のクマルアミドを十分抽出できず、またほとんどの溶媒(水)がアンモニア処理バイオマス中に吸収されてしまい、クマルアミド溶液の回収が困難になることがある。また、抽出に使用する溶媒の量が、アンモニア処理バイオマス乾燥質量1kgに対して30kgを超える場合、それ以上溶媒の量を増やしてもクマルアミドの抽出量に対して効果がないばかりでなく、後述の晶析工程におけるクマルアミドの濃縮の際に処理する溶媒の量が増えてしまい、経済的に不利である。
(3)晶析工程
 本発明の晶析工程において、抽出工程で得られるクマルアミド溶液中のクマルアミドを過飽和状態とすることによってクマルアミド結晶を析出せしめ、クマルアミドを回収する。一般に晶析とは、溶質濃度を高めるか、溶質の溶解度を低下させるか、あるいはこれらを組み合わせることなどにより、溶質が溶解度以上に溶けた溶液状態、すなわち過飽和状態とすることにより、溶質を結晶として析出・成長させ、回収する方法を指す。一般的な晶析方法としては、溶質濃度を高める方法として加熱蒸発、減圧乾燥、凍結乾燥などが挙げられ、溶解度を低下させる方法として冷却、化学反応、加圧などが挙げられる。本発明の晶析工程における晶析方法は特に限定されず、これらを使用することができる。なお、抽出工程で得たクマルアミド溶液には固形物が多量に含まれているため、クマルアミドの晶析に先立ってこれらの固形物を除去しておくことが好ましい。固形物の除去方法は特に限定されないが、遠心分離、フィルタープレス、ベルトフィルター、精密ろ過、メッシュスクリーンによるろ過、不織布によるろ過およびその組み合わせなどが挙げられる。上記の中でも、精密ろ過はミクロンオーダーの粒子を除去することができ、晶析時のクマルアミド純度を高めることができるので、固形物除去の最終段は精密ろ過とすることが好ましい。
 本発明の晶析工程において、クマルアミド溶液から結晶を析出させる前に、クマルアミド溶液をあらかじめ濃縮する濃縮工程を行なうことが好ましい。クマルアミド溶液の濃縮方法は特に限定されないが、省エネルギーで高濃縮できる膜分離、すなわちクマルアミド溶液を膜に通じて濾過して、非透過液側でクマルアミドを濃縮する方法が好ましく用いられる。なお、膜分離によってクマルアミドの濃縮を行う場合、膜分離中にクマルアミド結晶が析出してしまうと膜が目詰まりを引き起こすため、膜分離中にはクマルアミドを析出させないように制御することが好ましい。
 クマルアミドを膜分離によって濃縮する分離膜としては、逆浸透膜を使用できる。逆浸透膜とはRO膜とも呼ばれるものであり、「一価のイオンを含めて脱塩機能を有する膜」と一般的に定義される膜である。逆浸透膜は、数オングストロームから数ナノメートル程度の超微小空隙を有していると考えられる膜で、主として海水淡水化や超純水製造などイオン成分除去に用いられる。本発明においては、クマルアミドを非透過側に阻止する一方で、水分を透過側に除去して、クマルアミド溶液を濃縮する目的で逆浸透膜を使用できる。また、クマルアミド溶液を濃縮する際に透過側に除去された水は、ほとんど不純物を含まないため、様々な用途に再利用することができる。例えば前述のクマルアミド抽出工程に使用する溶媒として再利用することも可能である。逆浸透膜としては、例えば、WO2010/067785号に記載のものを使用することができる。
 クマルアミド溶液の濃縮に使用する逆浸透膜の形状は特に限定されず、中空糸膜モジュール、平膜、スパイラルモジュールが使用できるが、なかでもスパイラルモジュールが好ましく使用できる。スパイラルモジュールは一般に耐圧性が高いためクマルアミドを高度に濃縮でき、また有効膜面積が大きいことにより処理量も大きいためである。
 逆浸透膜を用いてクマルアミドを濃縮する際のクマルアミド溶液の温度は20~50℃が好ましい。20℃以上では、クマルアミドの析出が起こりにくく膜の目詰まりを生じず、一方、20℃未満ではクマルアミドの析出が格段に起こりやすく、膜が目詰まりを生じやすい。また、50℃を超える温度でクマルアミドの濃縮を続けると、膜の劣化が早まることがある。
 クマルアミド溶液を濃縮した後のクマルアミド溶液の晶析には、前述の一般的な晶析方法を使用できるが、中でも冷却が好ましく用いられる。クマルアミド溶液の冷却により晶析を行なう場合、比較的温和な冷却温度で、高純度のクマルアミドを収率よく回収できるためである。この理由としては、アンモニア処理バイオマスから抽出される他の物質と比較し、クマルアミドは溶解度の温度依存性が高いためであると考えられるが、明確ではない。
 本発明の晶析工程において、クマルアミド溶液の冷却の温度としては、15℃以下とすることが好ましい。15℃以下であればクマルアミド結晶の析出・成長が著しいためである。
 本発明の晶析工程において、冷却の期間は特に限定されないが、5時間~10日が好ましい。5時間未満の場合クマルアミド結晶の析出・成長が乏しく、クマルアミド回収量は少なくなる。一方10日間を超える場合は、それ以上はほとんど結晶が析出・成長せず、クマルアミド回収量は増加しないため、やはり好ましくない。
 本発明の晶析工程において、クマルアミドの晶析または前記逆浸透膜によるクマルアミド溶液の濃縮に先立ち、クマルアミド溶液をナノ濾過膜に通じて濾過し、透過液としてクマルアミド精製液を得る精製工程を行なってもよい。精製工程を行なうことにより、クマルアミド溶液から不純物を除去することができ、晶析の際に得られるクマルアミド結晶の純度を向上することができる。ナノ濾過膜とは、ナノフィルター(ナノフィルトレーション膜、NF膜)とも呼ばれるものであり、「一価のイオンは透過し、二価のイオンを阻止する膜」と一般に定義される膜である。ナノ濾過膜は、数ナノメートル程度の微小空隙を有していると考えられる膜で、主として、水中の微小粒子や分子、イオン、塩類等を阻止するために用いられる。本発明では、クマルアミド溶液をナノろ過膜に供することにより、糖を初めとするバイオマス由来の不純物を非透過側に阻止する一方で、クマルアミド溶液を透過側へと透過させることによりクマルアミド溶液が精製される。ナノ濾過膜としては、例えば、WO2010/067785号に記載のものを使用することができる。
 精製工程で使用するナノ濾過膜の形状としては特に限定されず、前述の逆浸透膜と同様の形状のものを使用できる。
 晶析により得られたクマルアミド結晶は、固液分離により回収される。固液分離方法は特に限定されず、遠心分離、フィルタープレス、精密ろ過、メッシュスクリーンによるろ過、不織布によるろ過、濾紙によるろ過およびその組み合わせなどが使用できる。
 本発明の晶析工程において、回収されるクマルアミド結晶の純度は、90%以上が好ましく、95%以上がより好ましく、97%以上が更に好ましい。
 本発明の晶析工程において、前記固液分離により回収されたクマルアミド結晶は、そのまま乾燥させても90%以上の高純度となるが、水洗浄により更に純度を向上できる。クマルアミドは水への溶解度に乏しく、水洗いによって水溶性の不純物が優先的に取り除かれるためである。水洗いの温度は特に限定されないが、5~20℃が好ましい。5℃未満では、水溶性の不純物の溶解度が乏しいために十分に不純物が除去されず、一方、20℃を超えるとクマルアミドの溶解度が上昇し、クマルアミドの収率が低下してしまうためである。なお、クマルアミド結晶の純度は、後述の実施例の参考例2の方法によって測定することができる。
 また、クマルアミド結晶は水洗いに先立って粉砕することにより、更に不純物除去の効率を高めることができる。粉砕の方法は特に限定されないがハンマーミル、ウイングミル、ボールミル、石臼、乳鉢、あるいはその組み合わせなどが使用できる。
 水洗浄後のクマルアミド結晶は、上述の固液分離方法などにより再度回収される。また、前述の水洗浄や粉砕、固液分離による回収は適宜組み合わせてもよく、また繰返し行ってもよい。繰り返し実施することにより更にクマルアミドの純度を高めることができる。
(参考例1)HPLC分析条件
 本実施例において、溶液中の有機酸、芳香族化合物の濃度は、以下のHPLC条件により分析を行った。
(1)有機酸分析条件
 溶液中の酢酸の濃度は、下記に示すHPLC条件で、標品との比較により定量した。
機器:日立高速液体クロマトグラフ Lachrom elite(株式会社日立製作所製)
カラム:GL-C610H-S(株式会社日立製作所製)
移動相:3mM 過塩素酸
反応液:ブロモチモールブルー溶液
検出方法:UV-VIS検出器
流速 移動相:0.5mL/min  反応液:0.6mL/min
温度:60℃
(2)芳香族化合物分析
 溶液中の芳香族化合物(クマル酸、クマルアミド、フェルラアミド)の濃度は、下記に示すHPLC条件で、標品との比較により定量した。また、同時に各検出ピークのUV吸収スペクトル(測定波長:200nm~400nm)を得た。
機器:日立高速液体クロマトグラフ Lachrom elite(株式会社日立製作所製)
カラム:Synergi 2.5μm Hydro‐RP 100A(Phenomenex社製)
検出方法:Diode Array 検出器
流速:0.6 mL/min
温度:40℃
(参考例2)クマルアミド純度・収率の測定
 本発明の晶析工程により得られたクマルアミド結晶全量を5kPaにて約6時間減圧乾燥し、乾燥クマルアミド結晶を得た。乾燥クマルアミド結晶全量を乳鉢で十分すりつぶしたあと、更に5kPaにて一昼夜減圧乾燥を行い、乾燥クマルアミド粉体を得た。乾燥クマルアミド粉体全量の質量を、電子天秤を用いて測定後、乾燥クマルアミド粉体の一部を精密天秤にて1000mg計りとり、50体積%アセトニトリル/水混合溶液に溶解後、500mL容量のメスフラスコ内で、50体積%アセトニトリル/水混合溶液を用いて標線までメスアップした。得られた溶液を、純水を使用して20倍希釈した溶液中のクマルアミド濃度を、参考例1に従って分析後、クマルアミド純度を下記式(1)に従って算出した。また、クマルアミド収率を下記式(2)に従って算出した。なお、投入バイオマス乾燥質量とは、本発明の抽出工程に供したアンモニア処理バイオマス全量の乾燥質量のことである。
クマルアミド純度(%)=クマルアミド濃度測定値(mg/L)/100(mg/L)×100・・・(1)
クマルアミド収率(mg/kg)=乾燥クマルアミド粉体質量(mg)×クマルアミド純度(%)/(投入バイオマス乾燥質量(kg)×100)・・・(2)。
(実施例1)クマルアミド結晶の製造・同定
[A.アンモニア処理バイオマス抽出物結晶の作製]
(1)前処理工程
(1.1)セルロース系バイオマスの粉砕処理
 セルロース系バイオマスとしてエリアンサスを用いた。前記エリアンサスを4mmの目開きを有するスクリーンで粒度を制御しながらカッターミルを用いて粉砕した。レーザー回折法で測定した平均粒子径(d50)は、約975μmであった。粉砕後のエリアンサスを、温度40℃、5kPaの減圧下にて一昼夜乾燥した。乾燥後のエリアンサスの含水率は乾燥後のエリアンサスの質量を基準として0.5質量%程度であった。
(1.2)セルロース系バイオマスのアンモニアを含む処理剤での処理
 (1.1)で得られた粉砕・乾燥後のエリアンサス(セルロースチップ)を、アンモニアを含む処理剤としてのアンモニアにより前処理を行った。内容積が約5Lの攪拌装置を備えたステンレス・スチール製オートクレーブに、前記セルロースチップを200g充填した。次に、オートクレーブ内への加圧窒素ガスの導入/脱圧を繰り返して、オートクレーブ内の空気を除去し、窒素ガスへと置換した。その後このオートクレーブを120℃まで昇温した。昇温後、オートクレーブ内を脱圧し、更に減圧にして窒素ガスを排気した。一方、別途の圧力容器に加圧アンモニアを導入し、120℃よりやや高い温度までこのアンモニアを昇温した。その後、前記オートクレーブと前記圧力容器とを連結する配管に設置したバルブを開くことにより、前記オートクレーブに、温度120℃において圧力1.2MPaとなるようにアンモニアを導入した。この温度、圧力条件にて2.5時間、攪拌下にセルロースチップをアンモニアにより処理した。その後、脱圧してアンモニアを排出し、更に窒素ガスをオートクレーブに流通させてセルロースチップ粒子中に残留したアンモニアを除去し、前処理バイオマスを得た。これをアンモニア処理バイオマスとして用いた。
(2)抽出工程
 (1.2)で得たアンモニア処理バイオマス乾燥質量1kgに、抽出溶媒として9kgの水を添加し、20℃にて30分間攪拌した。攪拌後の懸濁液を、アンモニア処理バイオマス抽出液として以下の工程に使用した。
(3)晶析工程
(3.1)精製・濃縮
 (2)抽出工程で得た前記アンモニア処理バイオマス抽出液に含まれる固形物をフィルタープレス処理(藪田産業製、MO-4)により除去して精製工程を行なった。更に、細孔径0.22μmの精密ろ過膜に供することにより、ミクロンオーダーの不溶性粒子を除去した。このようにして得られた液を、常圧下で過熱・沸騰させ、液量がおよそ半分になるまで溶媒を蒸発させることにより濃縮工程(加熱蒸発)を行なった。
(3.2)晶析
 (3.1)で濃縮したアンモニア処理バイオマス抽出液を、15℃で1日間放置したところ、結晶の析出が確認された。前記結晶を、目開き500μmの篩にて分離した。このようにして得られた結晶に、1Lの水を加え、常温にて懸濁した後、再度目開き500μmの篩にて分離した。得られた結晶を、50℃にて一昼夜乾燥させ、更に10kPaにて約6時間減圧乾燥を行い、乾燥結晶を得た。
[B.アンモニア処理バイオマス抽出物の同定]
 (2)抽出工程で得られたアンモニア処理バイオマス抽出液を、参考例1の有機酸分析条件に記載のHPLC条件にて分析した結果、主要な有機酸成分として、酢酸が含まれることが分かった。また、同様に参考例1の芳香族化合物分析条件に記載のHPLC条件にて分析した結果、図2に示すように、主要なピークが3つ(ピーク1、ピーク2、ピーク3)検出された。
 これらのうち、ピーク3は、クマル酸標品のHPLC溶出時間と一致したためクマル酸であることが判明した。また、残り2つの化合物(ピーク1、ピーク2)の溶出時間は、セルロース系バイオマス前処理物に含まれる芳香族化合物として知られているHMF(ヒドロキシメチルフルフラール)、フルフラール、バニリン、アセトバニロン、フェルラ酸、コニフェリルアルデヒド、グアヤコールのいずれの標品とも一致しなかった。そこで、HPLCによりこれら2種のピーク(ピーク1、ピーク2)を分取し、LC/MS(LCMS‐IT‐TOFおよびLC20A、Shimadzu社製)にて分子量を分析した。
 その結果、分子量はそれぞれ163.063、193.074であることが判明した。種々のバイオマス中にはクマル酸、フェルラ酸が含まれることが知られており、これらはアンモニア分子と縮合反応してそれぞれクマルアミド、フェルラアミドを生成することが予想される。クマルアミド、フェルラアミドの構造式から算出される分子量は、各々163.172、193.198であり、上記LC/MSで得られた分子量と一致することから、アンモニア処理バイオマス抽出液に含まれる残りの2種のピーク(ピーク1およびピーク2)は、クマルアミド、フェルラアミドであることが推定された。
 そこで、クマルアミドおよびフェルラアミド標品に関して、委託合成(委託先:VSN社合成研究所)し、合成した標品について参考例1の芳香族化合物分析条件に記載のHPLC条件にて分析し、溶出時間を測定した。その結果、アンモニア処理バイオマス抽出液中のピーク1と標品混合液中のクマルアミド標品の溶出時間(3.74分)、およびアンモニア処理バイオマス抽出液中のピーク2と標品混合液中のフェルラアミド標品の溶出時間(5.25分)が完全に一致した(図2参照)。
 HPLCを行った際に得られた、アンモニア処理バイオマス抽出液のピーク1およびピーク2と、クマルアミド標品およびフェルラアミド標品との各々のUV吸収スペクトルを図3~図6に示す。また、測定波長は200~400nmとした。図3、4に示すように、アンモニア処理バイオマス抽出液のピーク1とクマルアミド標品とのUV吸収スペクトルは一致した。また、図5、6に示すように、アンモニア処理バイオマス抽出液のピーク2とフェルラアミド標品とのUV吸収スペクトルは一致した。
 以上の分析の結果より、アンモニア処理バイオマス抽出液に含まれるピーク1およびピーク2は、それぞれクマルアミド、フェルラアミドであり、アンモニア処理バイオマスには、これらの化合物が多く含まれていることが判明した。表1に、アンモニア処理バイオマス抽出液の成分分析結果を示す。
Figure JPOXMLDOC01-appb-T000001
 (3)晶析工程により得られた結晶を適量溶解した50体積%アセトニトリル/水混合溶液を、参考例1の芳香族化合物分析条件に記載のHPLC条件にて分析した結果、単一のピークが得られ、その溶出時間はクマルアミドと一致した。また、HPLC分析の際に得られたピークのUV吸収スペクトルは、クマルアミド標品とのUV吸収スペクトルと一致した。以上より、(3)晶析工程により得られた結晶は、クマルアミド結晶であることが判明した。前記クマルアミド結晶につき、参考例2に従い純度および収率を分析した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(実施例2)逆浸透膜によるクマルアミド濃縮
 (1)前処理工程、(2)抽出工程、および(3.1)精製・濃縮工程の精製工程まで実施例1と同様にして、アンモニア処理バイオマス抽出液を精製した。得られた液を、逆浸透膜(UTC-80、東レ株式会社製)を用いて、25℃にて濾過することにより、アンモニア処理バイオマス抽出液を濃縮した。濾過は、クロスフロー濾過にて膜透過流束が0.5m/日となるように操作圧を随時調節して行い、液量がおよそ半分まで濃縮された時点で終了させた。得られた濃縮液を15℃に冷却して1日間放置したところ、結晶の析出が確認された。前記結晶を、目開き500μmの篩にて分離した。このようにして得られた結晶に、1Lの水を加え、常温にて懸濁した後、再度目開き500μmの篩にて分離した。得られた結晶を、50℃にて一昼夜乾燥させ、更に10kPaにて約6時間減圧乾燥を行い、クマルアミド乾燥結晶を得た。得られたクマルアミド結晶の純度および収率を、参考例2に記載の方法により分析した結果を表2に示す。表2は、抽出工程、精製工程、および濃縮工程の違いによるクマルアミドの純度および収率をまとめたものである。表2から明らかなように、加熱蒸発法と比較して、逆浸透膜によるクマルアミド濃縮を行った場合の方がクマルアミドの収率が向上した。
(実施例3)温水によるクマルアミド抽出
 抽出工程の温度をそれぞれ10℃、20℃、30℃、40℃、50℃、70℃、90℃とすること以外、実施例1の(1)前処理工程、および(2)抽出工程と同様の方法でアンモニア処理バイオマス抽出液を得た。それぞれの温度で抽出したアンモニア処理バイオマス抽出液を、参考例1記載のHPLC条件により成分分析を行った結果を表3に示す。表3から明らかなように、バイオマス抽出液中のクマルアミド濃度は抽出時の温度が高いほど高くなるが、40℃未満では抽出濃度が乏しく、一方40℃以上では格段に抽出濃度が大きくなった。また、抽出濃度は70℃でほぼ上限に達しており、それ以上温度を上げても増えなかった。
Figure JPOXMLDOC01-appb-T000003
(実施例4)極性有機溶媒を含む溶媒によるクマルアミドの抽出
 抽出溶媒として10%エタノール水溶液、10%アセトニトリル水溶液をそれぞれ用いること以外、実施例1の(1)前処理工程、および(2)抽出工程と同様の方法でアンモニア処理バイオマス抽出液を得た。それぞれの抽出溶媒で抽出した液を、参考例1記載のHPLC条件にて成分分析を行った結果を表4に示す。表4は、異なる抽出溶媒を使用した場合のアンモニア処理バイオマス抽出液中のクマルアミド濃度をまとめたものである。
Figure JPOXMLDOC01-appb-T000004
(比較例1)純粋な有機溶媒によるクマルアミドの抽出
 抽出溶媒として純エタノール、純アセトニトリルをそれぞれ用いること以外、実施例1の(1)前処理工程、および(2)抽出工程と同様の方法でアンモニア処理バイオマス抽出液を得た。それぞれの抽出溶媒で抽出した液を、参考例1記載のHPLC条件にて成分分析を行った結果を表4に示す。表4より明らかなように、抽出溶媒として純水を使用した実施例1に比べ、10%エタノール、10%アセトニトリルを使用した実施例4は、抽出液中のクマルアミド濃度が増加しており、特にエタノールでその効果は著しかった。一方、純粋なエタノール、アセトニトリルを使用した比較例1では、ほとんどクマルアミドが回収されなかった。
(実施例5)ナノろ過膜によるクマルアミドの精製
 固形物を除去した後のアンモニア処理バイオマス抽出液を、逆浸透膜による濃縮に先立ち、フィルタープレス、精密ろ過膜によりろ過した後、さらに、ナノろ過膜(UTC-80、東レ株式会社製)を用いて25℃にてろ過を行い、クマルアミドを精製したこと以外、実施例2と同様の方法によりクマルアミド乾燥結晶を得た。ナノろ過膜によるろ過は、クロスフロー濾過にて膜透過流束が0.5m/日となるように操作圧を随時調節して行い、操作圧が6MPaに達した時点で終了した。得られたクマルアミド結晶の純度および収率を、参考例2に記載の方法により分析した結果を表2に示す。表2から明らかなように、ナノろ過膜によるクマルアミドの精製を行った実施例5は、ナノろ過膜によるクマルアミドの精製を行わなかった実施例2と比較して、クマルアミド結晶の純度が向上した。
(実施例6)抽出工程における酵素糖化
 実施例1の(1)前処理工程に記載の方法により得られたアンモニア処理バイオマス乾燥質量1kgに対して水9kgを添加し、これに少量の濃硫酸を加えてpHを5に調整した後、糖化酵素としてトリコデルマ・リーセイ由来のセルラーゼ製剤(アクセルレース・デュエット、Genencor社製)を、アンモニア処理バイオマス乾燥質量に対し、酵素タンパク質質量で100分の1の量を添加し、50℃で24時間撹拌して糖化反応を行った。得られた懸濁液を、アンモニア処理バイオマス抽出液とし、実施例2記載の方法と同様に処理し(精製・濃縮、晶析)、乾燥クマルアミド結晶を得た。
 図7に糖化反応中の反応液上清に含まれるクマルアミド濃度の経時変化を、参考例1に従い分析した結果を示す。図7から明らかなように、酵素糖化反応が進むにつれて溶液中のクマルアミド濃度が増加していた。
 また、得られた乾燥クマルアミド結晶の純度および収率を、参考例2に記載の方法により分析した結果を表2に示す。表2から明らかなように、抽出工程において酵素糖化を行った実施例6は、酵素糖化を行わなかった実施例2と比較してクマルアミドの収率が向上した。
(実施例7)浸漬時間
 攪拌時間を24時間とすること以外、実施例1の(1)前処理工程、および(2)抽出工程と同様の方法により、アンモニア処理バイオマスからのクマルアミド抽出を行った。図8に抽出中の懸濁液上清に含まれるクマルアミドの濃度の経時変化を、参考例1に従い分析した結果を示す。図8から明らかなように、浸漬開始60分程度までは抽出液中のクマルアミド濃度は徐々に上昇するが、それ以降はほぼ一定の値となった。
(実施例8)晶析工程における冷却温度
 逆浸透膜による濃縮液を冷却し、1日間放置する際の温度をそれぞれ5℃、10℃、20℃、25℃とすること以外、実施例2と同様の方法でクマルアミド乾燥結晶を得た。得られたクマルアミド結晶につき、参考例2の方法に従い純度および収率を測定した結果を表5に示す。表5は、晶析工程の冷却温度によるクマルアミド純度およびクマルアミド収率をまとめたものである。表5から明らかなように、冷却時の温度を15℃とした実施例2と比較して、10℃の場合ではクマルアミドの収率が向上しており、5℃では更に向上した。また、20℃、25℃の場合はどちらもクマルアミド結晶が析出しなかった。
Figure JPOXMLDOC01-appb-T000005
(実施例9)濃縮工程におけるろ過時の温度
 濃縮工程において、逆浸透膜による濃縮の際の温度をそれぞれ10℃、15℃、20℃、25℃、30℃とすること以外、実施例4と同様の方法で、クマルアミド抽出液の濃縮を行った。濃縮時の操作圧の経時変化を図9に示す。なお、10℃、15℃、20℃の条件ではいずれも濃縮中に結晶の析出が目視で確認された。図9から明らかなように、10℃、15℃のろ過温度では、20℃、25℃、30℃の場合と比較して操作圧が急上昇しており、クマルアミド結晶の析出により膜目詰まりが生じたと推察された。
 本発明で得られたクマルアミドは、純度が高く、クマルアミドを出発原料とする様々な化成品生産に使用することができる。

Claims (10)

  1.  セルロース系バイオマスを、アンモニアを含む処理剤で処理してアンモニア処理バイオマスを得る前処理工程と、
     前記アンモニア処理バイオマスを、少なくとも水を含む溶媒に浸漬して、前記アンモニア処理バイオマス中のクマルアミドを前記溶媒中に溶出せしめ、クマルアミド溶液を得る抽出工程と、
     前記クマルアミド溶液中のクマルアミドを結晶として析出させ、クマルアミド結晶を得る晶析工程と、
     を含むことを特徴とする、クマルアミドの製造方法。
  2.  前記晶析工程において回収されるクマルアミド結晶は、純度90%以上であることを特徴とする請求項1に記載のクマルアミドの製造方法。
  3.  前記抽出工程において使用する前記溶媒の温度は、40℃以上であることを特徴とする請求項1または2に記載のクマルアミドの製造方法。
  4.  前記抽出工程において使用する前記溶媒は、少なくとも1種の極性有機溶媒を含むことを特徴とする、請求項1~3のいずれかに記載のクマルアミドの製造方法。
  5.  前記溶媒は、前記極性有機溶媒として少なくともエタノールを含むことを特徴とする、請求項4に記載のクマルアミドの製造方法。
  6.  前記晶析工程は、前記クマルアミド溶液から結晶を析出させる前に、前記クマルアミド溶液を逆浸透膜に通じて濾過し、非透過液としてクマルアミド濃縮液を回収する濃縮工程を含むことを特徴とする、請求項1~5のいずれかに記載のクマルアミドの製造方法。
  7.  前記逆浸透膜に通じて濾過するクマルアミド溶液の液温は、20℃以上であることを特徴とする請求項6に記載のクマルアミドの製造方法。
  8.  前記晶析工程は、前記クマルアミド溶液を15℃以下に冷却してクマルアミドの結晶を析出させることを特徴とする、請求項1~7のいずれかに記載のクマルアミドの製造方法。
  9.  前記抽出工程は、前記アンモニア処理バイオマスを前記溶媒に浸漬する際、糖化酵素を添加することによりアンモニア処理バイオマスの加水分解を行うことを特徴とする、請求項1~8のいずれかに記載のクマルアミドの製造方法。
  10.  前記晶析工程は、前記クマルアミド溶液から結晶を晶析させる前に、前記クマルアミド溶液をナノろ過膜に通じて濾過し、透過液としてクマルアミド精製液を回収する精製工程を含むことを特徴とする、請求項1~9のいずれかに記載のクマルアミドの製造方法。
PCT/JP2013/071544 2012-08-10 2013-08-08 クマルアミドの製造方法 WO2014024989A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013536734A JPWO2014024989A1 (ja) 2012-08-10 2013-08-08 クマルアミドの製造方法
US14/419,550 US9527802B2 (en) 2012-08-10 2013-08-08 Method of manufacturing coumaramide
CA2880972A CA2880972C (en) 2012-08-10 2013-08-08 Method for manufacturing coumaramide
BR112015002466-1A BR112015002466B1 (pt) 2012-08-10 2013-08-08 Método para fabricar p-cumaramida

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012178550 2012-08-10
JP2012-178550 2012-08-10

Publications (1)

Publication Number Publication Date
WO2014024989A1 true WO2014024989A1 (ja) 2014-02-13

Family

ID=50068209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071544 WO2014024989A1 (ja) 2012-08-10 2013-08-08 クマルアミドの製造方法

Country Status (5)

Country Link
US (1) US9527802B2 (ja)
JP (1) JPWO2014024989A1 (ja)
BR (1) BR112015002466B1 (ja)
CA (1) CA2880972C (ja)
WO (1) WO2014024989A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143651A (zh) * 2023-03-08 2023-05-23 西北农林科技大学 一种牡丹雄蕊三香豆酰亚精胺的高效分离纯化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111451A1 (ja) * 2010-03-10 2011-09-15 東レ株式会社 精製糖水溶液の製造方法および化学品の製造方法
WO2011162009A1 (ja) * 2010-06-24 2011-12-29 東レ株式会社 精製糖水溶液の製造方法
WO2013018694A1 (ja) * 2011-07-29 2013-02-07 東レ株式会社 糖液の製造方法
WO2013122051A1 (ja) * 2012-02-13 2013-08-22 Jx日鉱日石エネルギー株式会社 糖液の製造方法、糖液及びエタノールの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109121B2 (ja) 2006-12-28 2012-12-26 国立大学法人 東京大学 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用セルロース及びその製造方法
WO2010067785A1 (ja) 2008-12-09 2010-06-17 東レ株式会社 糖液の製造方法
EP2536275A1 (en) * 2010-02-16 2012-12-26 UWM Research Foundation, Inc. Methods of reducing virulence in bacteria

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111451A1 (ja) * 2010-03-10 2011-09-15 東レ株式会社 精製糖水溶液の製造方法および化学品の製造方法
WO2011162009A1 (ja) * 2010-06-24 2011-12-29 東レ株式会社 精製糖水溶液の製造方法
WO2013018694A1 (ja) * 2011-07-29 2013-02-07 東レ株式会社 糖液の製造方法
WO2013122051A1 (ja) * 2012-02-13 2013-08-22 Jx日鉱日石エネルギー株式会社 糖液の製造方法、糖液及びエタノールの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BOWMAN M. J. ET AL.: "Liquid chromatography- mass spectrometry investigation of enzyme- resistant xylooligosaccharide structures of switchgrass associated with ammonia pretreatment, enzymatic saccharification, and fermentation.", BIORESOURCE TECHNOLOGY, vol. 110, 28 January 2012 (2012-01-28), pages 437 - 447 *

Also Published As

Publication number Publication date
CA2880972A1 (en) 2014-02-13
US20150218087A1 (en) 2015-08-06
CA2880972C (en) 2020-08-11
US9527802B2 (en) 2016-12-27
BR112015002466B1 (pt) 2020-03-24
JPWO2014024989A1 (ja) 2016-07-25
BR112015002466A2 (ja) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2013122051A1 (ja) 糖液の製造方法、糖液及びエタノールの製造方法
CN103459615B (zh) 糖液的制造方法
BR112013022233B1 (pt) métodos para produzir um líquido de açúcar e para produzir um produto químico
EP2749656B1 (en) Method of manufacturing sugar solution
CN101863950A (zh) 一种从油茶饼粕中提取茶皂素的方法
CA2869298C (en) Method for producing sugar solution
BR112013024571B1 (pt) Método para a produção de um líquido de açúcar
BR112014031038B1 (pt) Métodos para produzir um líquido de açúcar e para produzir uma substância química
CN108993424B (zh) 一种多孔木质素吸附剂的制备及再生方法
WO2014103185A1 (ja) 濃縮糖化液製造方法
US20130337552A1 (en) Fermentation apparatus that uses biomass as feedstock
WO2014024989A1 (ja) クマルアミドの製造方法
JP4064359B2 (ja) 燐酸とリグノセルロース加水分解生成物とを分離する方法及びグルコースの製造方法
JPWO2019189651A1 (ja) 精製糖液の製造方法
JP5935941B2 (ja) 糖液の製造方法
CN107406866B (zh) 糖液的制造方法
EP3356563B1 (en) Methods of enriching arabinose fractions
WO2021153585A1 (ja) 糖液の製造方法
CN111204900B (zh) 一种综合利用天然阿魏酸生产废水的方法
RU2646115C2 (ru) Способ повышения выхода в процессе производства декстрозы с использованием мембранной технологии
JPWO2021153585A5 (ja)
CN114525318A (zh) 一种复合酶耦合连续纳滤膜分离甜菜多糖和甜菜碱的方法
KR101418827B1 (ko) 분리막을 이용한 당용액의 제조방법
Kyllönen et al. Available online at www. sciencedirect. com

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013536734

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2880972

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14419550

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827785

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015002466

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015002466

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150203