WO2014024746A1 - 電磁鋼板、及び電磁鋼板の積層体からなる電動モータのステータコア - Google Patents

電磁鋼板、及び電磁鋼板の積層体からなる電動モータのステータコア Download PDF

Info

Publication number
WO2014024746A1
WO2014024746A1 PCT/JP2013/070740 JP2013070740W WO2014024746A1 WO 2014024746 A1 WO2014024746 A1 WO 2014024746A1 JP 2013070740 W JP2013070740 W JP 2013070740W WO 2014024746 A1 WO2014024746 A1 WO 2014024746A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electrical steel
processing
iron loss
depth
Prior art date
Application number
PCT/JP2013/070740
Other languages
English (en)
French (fr)
Inventor
宜郎 川下
保田 芳輝
粕川 実
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014529446A priority Critical patent/JPWO2014024746A1/ja
Publication of WO2014024746A1 publication Critical patent/WO2014024746A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the present invention relates to an electrical steel sheet used in a state where compressive stress acts as a core material for electrical equipment.
  • magnetic steel sheets used as iron cores for electric motors and the like are required to have excellent magnetic properties such as low iron loss and high magnetic flux density.
  • an electromagnetic steel sheet is used as an iron core of an electric motor or the like, generally, a plurality of non-oriented electrical steel sheets are laminated, and bolting, caulking, or the like is performed on the laminated body.
  • shrink fitting is often employed as a method for fixing the iron core of the stator portion composed of this laminate to the motor housing.
  • a compressive stress is generated in the iron core, and in particular near the outer peripheral portion of the stator portion due to shrink fitting, a compressive stress parallel to the plate surface of the electromagnetic steel sheet. Act.
  • JP2010-252463A discloses a structure control technique that makes an electromagnetic steel sheet an in-plane isotropic texture in which the magnetic moment can be distributed in the same direction in order to suppress deterioration of iron loss characteristics under compressive stress. .
  • iron loss reduction under compressive stress is proposed by surface processing of electrical steel sheets, but in any case, it is an essential requirement to provide grooves by surface processing. And, by providing the groove, it is expected to reduce the so-called classical eddy current loss caused by the induced current, but in actuality, the stress increases not only the eddy current but also the hysteresis loss. In some cases, the increase in iron loss may not be sufficiently suppressed.
  • an object of the present invention is to provide an electrical steel sheet in which an increase in iron loss is suppressed even under compressive stress.
  • FIG. 1 is a configuration diagram of a yoke type iron loss evaluation apparatus.
  • FIG. 2A is a plan view of the test piece.
  • FIG. 2B is an enlarged view of a portion A surrounded by a broken line in FIG. 2A.
  • FIG. 3A is a cross-sectional view of a test piece subjected to MRF processing.
  • FIG. 3B is a cross-sectional view of a test piece subjected to grinding.
  • FIG. 3C is a cross-sectional view of the test piece subjected to etching.
  • FIG. 4 is a table summarizing the results of the iron loss evaluation test.
  • FIG. 5 is a diagram showing the relationship between the processing-affected layer depth and the iron loss.
  • FIG. 6 is a diagram illustrating a part of a cross section of the electric motor perpendicular to the rotation axis.
  • the inventors evaluated the iron loss under compressive stress for the electromagnetic steel sheets subjected to various surface treatments.
  • FIG. 1 is a diagram showing a yoke type iron loss evaluation apparatus 10 used for iron loss evaluation of the present embodiment.
  • a stage 11 for fixing the test piece 1 is disposed in the exciting coil 12, and a yoke 13 is disposed so as to connect both ends of the exciting coil 12 in the axial direction. Further, a fixed clamp 15 and a movable clamp 16 for fixing the test piece 1 are arranged on the outer side of the connection portion of the yoke 13 with the exciting coil 12. A load cell 17 is connected to the movable clamp 16. The axial length of the exciting coil 12 is shorter than the longitudinal length of the test piece 1.
  • a buckling prevention plate 14 is disposed so as to face the stage 11.
  • the buckling prevention plate 14 is moved in the direction of the stage 11 by the pneumatic cylinders 18 disposed at both ends of the exciting coil 12 and presses the test piece 1 against the stage 11. This can prevent the test piece 1 from buckling when a compressive load is applied to the test piece 1. Although pressing was 200 kgf, it was confirmed that the presence or absence of pressing did not affect the iron loss.
  • FIG. 2A and FIG. 2B are diagrams showing an example of the test piece 1.
  • Specimen 1 was a single strip of electromagnetic steel sheet. Specifically, an electrical steel sheet equivalent to JIS35A300 having a thickness of 0.35 [mm] is cut into 180 [mm] ⁇ 30 [mm] with the rolling direction as the longitudinal direction, and surface processing is performed on one side of the cut steel sheet. The iron loss was evaluated. The processing conditions will be described later.
  • the test piece 1 is set on the stage 11 so that both ends protrude from the exciting coil 12, and one end of the test piece 1 is fixed by a fixed clamp 15 and the other end is fixed by a movable clamp 16. Further, the test piece 1 is pressed toward the stage 11 by the buckling prevention plate 14.
  • an alternating current is passed through the exciting coil 12 to measure the magnetization characteristics of the test piece 1.
  • measurement was performed by alternating magnetization at a magnetic flux density of 1.0 [T] and a frequency of 1.0 [kHz].
  • Processing method is as follows. Blasting and grinding have been adopted as processing classified as “no groove, with influence layer” where the cross section after processing is flat, has no grooves or irregularities, and the surface processing influence layer described later is formed. . Press processing, cutting processing, micro roll forming (MRF) processing is adopted as processing classified as “grooved, with affected layer” where the processed cross-section has grooves and irregularities and a surface processing affected layer is formed did. Etching and laser processing were adopted as the processing classified as “having a groove and no influence layer” in which a groove is formed in the cross section after processing but a surface processing influence layer is not formed.
  • MRF micro roll forming
  • the blasting process used microblasting using alumina beads.
  • the blasting device is MB2-ML-300 type manufactured by Shinto Kogyo Co., Ltd., and the alumina beads are white fused alumina WA grit NO.
  • the test piece was processed using a nozzle diameter of 150 [ ⁇ m], a nozzle feed rate of 2.0 [mm / s], a projection pressure of 0.4 [MPa], and a projection distance of 50 [mm].
  • the depth of the processing-affected layer was measured by processing the cross-sectional structure of the structure with an electron beam imaging microscope (EP-SIM: Electron Probe-Surface Imaging Microscope). In the observed image shown in FIG. The depth of the range that is being measured was measured as a processing-affected layer.
  • the EP-SIM used was ULTRA55 manufactured by Carl Zeiss.
  • FIG. 3 shows an example of an observation image by EP-SIM.
  • FIGS. 3A to 3C show cross sections when MRF processing, grinding processing, and etching are performed, respectively.
  • MRF processing not only grooves are formed on the surface, but also lattice strain is confirmed in the structure around the grooves. That is, a processing influence layer based on lattice distortion is confirmed in addition to the groove.
  • grinding no groove is formed on the surface, but a processing-affected layer based on lattice distortion is confirmed.
  • etching grooves are formed on the surface, but a processing-affected layer based on lattice distortion is not confirmed.
  • the grinding wheel was CBN80N100B, the grinding wheel rotation speed was 2850 [rpm], the grinding wheel peripheral speed was 1834 [rpm], and the grinding amount was 20 [ ⁇ m].
  • a single-edged blade-shaped jig having a 30 ° inclination is made of cemented carbide, and grooves 21 are formed at a pitch of 0.5 [mm] using a press with a stage capable of controlling the indentation depth and feed. .
  • the correlation between the indentation depth and the groove cross-sectional depth was investigated in advance, and the indentation depth was controlled with a target groove depth of 10 [ ⁇ m].
  • the groove cross-sectional depth for correlation investigation was measured with the three-dimensional shape measuring instrument.
  • Cutting was performed at a cutting depth of 10 [ ⁇ m] and a cutting speed of 100 [mm / min].
  • a cemented carbide tool capable of machining 10 grooves with a pitch of 0.5 [mm] is manufactured, and each time one pass machining is performed using this tool, the workpiece is shifted by 10 [mm] in the lateral direction. Groove processing was applied to the entire surface.
  • the correlation between the load and the groove cross-sectional depth was investigated, and the load was set so that the indentation depth could be controlled with a groove depth of 10 [ ⁇ m] as a target.
  • the groove cross-sectional depth for the correlation investigation was measured with a three-dimensional shape measuring instrument.
  • Table 1 shows the above test results.
  • the value of the iron loss evaluation is shown as a relative value where 1 is the case without processing.
  • “Surface effect layer including irregularities” in Table 1 is the depth and plate thickness ratio of “groove + work effect layer” in FIG. 3A, and the depth and plate thickness of the process effect layer in FIG. In FIG. 3C, the thickness ratio of the groove depth.
  • Table 2 shows the test results for the test piece 1 obtained by performing MRF processing while changing the load and the number of passes, and having different depths of the processing-affected layer based on the groove depth and lattice distortion.
  • Table 3 shows the test results of the test piece 1 that has been grooved by etching and laser processing, for comparison. Both etching processing and laser processing are performed by a processing manufacturer, and grooves perpendicular to the magnetization direction are formed on the entire surface at a pitch of 0.5 [mm]. The groove depth was set to 15, 20, and 30 [ ⁇ m] as target values.
  • both the etching process and the laser processing are processing methods in which a processing influence layer does not occur, and therefore the numerical values in the column “surface processing influence layer including unevenness” in Table 3 are the depth of the groove and the plate thickness. Is the ratio.
  • FIG. 4 summarizes the relationship between the processing methods in Tables 1 and 3 and the iron loss reduction effect.
  • FIG. 5 summarizes the relationship between the depth of the processing-affected layer including the irregularities in Tables 1 and 2 and the iron loss reduction effect.
  • the domain structure When under the influence of compressive stress, the domain structure changes so that the magnetic domain orthogonal to the stress direction is enlarged due to the inverse effect of the magnetostriction (billy effect), and the domain wall becomes difficult to move. If a certain degree of processing-affected layer is provided in this state, the magnetic domain structure changes and a large number of magnetic domains having an orientation close to the stress direction are generated. For this reason, it is particularly advantageous in the rotation of the magnetization direction and the motion of the domain wall in a region where the magnetization is small, and an effect of reducing iron loss can be obtained.
  • the electrical steel sheet according to this embodiment is an electrical steel sheet used in an environment where compressive stress acts, and at least one surface of a region where compressive stress that affects iron loss acts acts on lattice distortion. Has a processing impact layer based. By having the processing-affected layer, the iron loss reduction effect can be obtained as described above.
  • the electromagnetic steel sheet is a non-oriented electrical steel sheet that is used as a stator core of a motor.
  • shrink fitting is performed in the manufacturing process, the effect of compressive stress is inevitable, so the iron loss reduction effect according to this embodiment is effective. It is.
  • the depth of the surface processing-affected layer including unevenness by machining is 1 [%] or more and 50 [%] or less of the plate thickness. If it is greater than 50 [%], the effect of increasing iron loss due to processing becomes larger than the effect of reducing iron loss due to the provision of a work-affected layer, so that it is difficult to obtain the effect of reducing iron loss under compressive stress. is there. In addition, if it is less than 1 [%], there is a problem that the effect of reducing the iron loss may not be obtained due to variations in the depth of the processing-affected layer.
  • the electrical steel sheet of the present embodiment may be a flat electrical steel sheet in which only a processing-affected layer is provided without providing a groove by blasting or grinding. Even if the surface is flat, there is variation in the surface shape after processing, but the size of the variation is much smaller than the variation in shape caused by groove processing. Accordingly, the space factor can be improved when the core is formed by laminating the electromagnetic steel sheets provided with the surface processing-affected layer in the range of 1 [%] to 50 [%] of the plate thickness. Further, when the groove is provided, the groove portion becomes a gap, but since no gap is generated by not providing the groove, the magnetic flux density can be improved. Furthermore, since no grooving is involved, an increase in iron loss due to excessive deepening of the work-affected layer cannot occur. In addition, since processing becomes easy, it is particularly advantageous when processing a large area.
  • the above “flat steel plate” preferably has a 10-point average roughness Rz of 30 [ ⁇ m] or less, a reference length of 25 [mm], and an evaluation length of 40 [mm] or more.
  • Rz is preferably 20 [ ⁇ m] or less, more preferably 10 [ ⁇ m] or less.
  • the electrical steel sheet of this embodiment can be used for an electric motor.
  • FIG. 6 shows a part of a cross section orthogonal to the rotation axis of the electric motor 30 using the non-oriented electrical steel sheet of the present embodiment described above as a stator core.
  • the electric motor 30 includes an annular back yoke 32, a stator core 34 having a plurality of teeth 33 protruding from the back yoke 32 toward the inner peripheral side, and a rotor 36 disposed coaxially within the stator core 34. .
  • a slot 35 is formed between adjacent teeth 33, and a coil wound around the teeth 33 is stored therein.
  • the stator core 34 is fitted with the stator core 34 in a state in which the case 31 is expanded by heating, so-called shrink fitting, or is fitted in the case 31 in a state in which the stator core 34 is contracted by cooling, so-called cold fitting. To fix.
  • the iron loss reduction effect under compressive stress by surface processing tends to be large when the magnetic flux density is low. Therefore, by providing a work-affected layer on the back yoke 32 of the stator core 34 fixed by shrink fitting, an increase in iron loss due to shrink fitting can be suppressed, and a small and highly efficient electric motor 30 can be obtained. Further, the increase in iron loss can be similarly suppressed by using the non-oriented electrical steel sheet of the present embodiment for the stator core 34 to be placed under compressive stress by being fitted by cold fitting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 圧縮応力が作用する環境で使用する電磁鋼板において、少なくとも鉄損特性に影響を与える程度の圧縮応力が作用する領域の、少なくとも一方の面に、ブラスト加工や研削砥石による平面研削加工等といった機械加工を施すことによって、格子歪みに基づく表面加工影響層を設ける。

Description

電磁鋼板、及び電磁鋼板の積層体からなる電動モータのステータコア
 本発明は、電気機器の鉄心材料として、圧縮応力が作用する状態で使用される電磁鋼板に関する。
 各種電気機器の高効率化を図るうえで、電動モータ等の鉄心として使用される電磁鋼板には、低鉄損や高磁束密度等といった優れた磁気特性が求められる。
 ところで、電動モータ等の鉄心として電磁鋼板を使用する際には、一般的には複数の無方向性電磁鋼板を積層し、この積層体にボルト締めや、かしめ等が施される。また、製造工程の合理化等の観点から、この積層体で構成されるステータ部の鉄心をモータハウジングに固定する方法として焼き嵌めが多く採用されている。このようにボルト締め、かしめ、または焼き嵌め等された状態では、鉄心に圧縮応力が発生し、特に焼きばめによって、ステータ部の外周部近傍には、電磁鋼板の板面に平行な圧縮応力が作用する。
 電磁鋼板は歪みが生じると磁気特性が変化し、圧縮応力が作用する場合には鉄損が増大、つまり鉄損特性が劣化することが知られている。
 そこで、圧縮応力下における鉄損特性の劣化を抑制するために、電磁鋼板を磁気モーメントが等方向に分布できる面内等方的な集合組織にする組織制御技術がJP2010-252463Aに開示されている。
 JP2010-252463Aによれば、電磁鋼板の表面加工により、圧縮応力下での鉄損低減が提案されているが、いずれも表面加工により溝を設けることが必須の要件となっている。そして、溝を設けることで、いわゆる、誘導電流に起因する古典的渦電流損失の低減が期待されているが、実際には応力によって、渦電流だけでなくヒステリシス損失も増大しているため、溝を設けることでは鉄損増加を十分に抑制できない場合がある。
 そこで、本発明では、圧縮応力下においても鉄損の増加が抑制される電磁鋼板を提供することを目的とする。
図1は、継鉄型鉄損評価装置の構成図である。 図2Aは、試験片の平面図である。 図2Bは、図2Aの破線で囲んだ部分Aを拡大した図である。 図3Aは、MRF加工を施した試験片の断面図である。 図3Bは、研削加工を施した試験片の断面図である。 図3Cは、エッチングを施した試験片の断面図である。 図4は、鉄損評価試験の結果をまとめた図である。 図5は、加工影響層深さと鉄損との関係を示す図である。 図6は、電動モータの、回転軸に直交する断面の一部を示す図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 本発明をするにあたり、発明者らは、種々の表面加工を施した電磁鋼板について、圧縮応力下での鉄損を評価した。
 図1は、本実施形態の鉄損評価に用いる継鉄型鉄損評価装置10を示す図である。
 試験片1を固定するステージ11が励磁コイル12内に配置され、励磁コイル12の軸方向の両端を接続するように継鉄13が配置される。そして、継鉄13の励磁コイル12との接続部よりさらに外側には、試験片1を固定するための固定クランプ15及び可動クランプ16が配置される。可動クランプ16にはロードセル17が接続されている。なお、励磁コイル12の軸方向長さは試験片1の長手方向長さよりも短い。
 励磁コイル12内には、ステージ11と対向するように座屈防止板14が配置される。この座屈防止板14は、励磁コイル12の両端に配置された空気圧シリンダ18によってステージ11方向に可動し、試験片1をステージ11に押圧する。これにより試験片1に圧縮荷重をかけた際に試験片1が座屈することを防止できる。押圧は200kgfとしたが、押圧の有無は鉄損に影響を与えないことを確認した。
 図2(A)、図2(B)は、試験片1の一例を示す図である。
 試験片1は、短冊形の電磁鋼板の単板を用いた。具体的には、板厚0.35[mm]、のJIS35A300相当の電磁鋼板を、圧延方向を長手方向として180[mm]×30[mm]に切り出し、切り出した鋼板の片面に表面加工を施して鉄損評価に供した。なお、加工条件については後述する。
 上記のような構成の継鉄型鉄損評価装置10による鉄損評価方法について説明する。
 試験片1を両端が励磁コイル12から突出するようにステージ11上にセットし、試験片1の一方の端部は固定クランプ15により、他方の端部は可動クランプ16により固定する。さらに座屈防止板14により試験片1をステージ11方向に押圧する。
 そして、ロードセル17により圧縮荷重をかけることによって試験片1に圧縮応力を発生させた状態で、励磁コイル12に交番電流を流して試験片1の磁化特性を測定する。ここでは、試験片1の長手方向に30[MPa]の圧縮応力が作用した状態で、磁束密度1.0[T]、周波数1.0[kHz]で交番磁化させて測定を行った。
 次に、試験片1に施す表面加工の加工条件について説明する。
 表面加工は、溝形状を付与する場合は、図2(A)、図2(B)に示すように、0.5[mm]ピッチで全面に磁化方向に対して直交する溝を付与した。
 加工方法は、次の通りである。加工後の断面が平坦で溝や凹凸を有せず、かつ、後述する表面加工影響層が形成される「溝なし、影響層有」に分類される加工として、ブラスト加工と研削加工を採用した。加工後の断面に溝や凹凸があり、かつ表面加工影響層が形成される「溝有、影響層有」に分類される加工として、プレス加工、切削加工、マイクロロールフォーミング(MRF)加工を採用した。加工後の断面に溝は形成されるものの、表面加工影響層が形成されない「溝有、影響層無し」に分類される加工として、エッチング、レーザ加工を採用した。
 ブラスト加工は、アルミナビーズを用いたマイクロブラスト処理を採用した。ブラスト装置は新東工業株式会社製MB2-ML-300型、アルミナビーズは白色溶融アルミナWAグリットNO.150、粒子径約100[μm]を用い、ノズル送り速度2.0[mm/s]、投射圧力0.4[MPa]、投射距離50[mm]として試験片を加工した。
 加工影響層深さは、電子線表面イメージング顕微鏡(EP-SIM:Electron Probe-Surface Imaging Microscope)により加工断面組織観察を行ない、後述する図3に示す観察像において、溝の底面から格子歪が導入されている範囲の深さを加工影響層として計測した。なお、使用したEP-SIMは、カールツアイス社製ULTRA55である。
 図3は、EP-SIMによる観察像の例を示している。図3(A)-(C)は、それぞれ、MRF加工、研削加工、エッチングを施した場合の断面を示している。MRF加工の場合には、表面に溝が形成されるだけでなく、溝周辺の組織に格子歪が確認される。つまり溝の他に格子歪みに基づく加工影響層が確認される。また、研削加工を施した場合には、表面に溝は形成されないが、格子歪みに基づく加工影響層が確認される。これらに対して、エッチングを施した場合は、表面に溝は形成されるものの、格子歪みに基づく加工影響層は確認されない。
 研削加工は、平面研削盤を用いて実施した。研削砥石はCBN80N100B、砥石回転数は2850[rpm]、砥石周速度は1834[rpm]、研削量は20[μm]とした。
 プレス加工は、30°傾斜を有する片刃の刃物状冶具を超硬にて作製し、押し込み深さと送りを制御できるステージ付きのプレスを用いて、0.5[mm]ピッチで溝21を成形した。予め、押し込み深さと溝断面深さとの相関を調査し、溝深さは10[μm]を目標として押し込み深さを制御した。なお、相関調査のための溝断面深さは、3次元形状測定器により測定した。
 切削加工は、切り込み深さ10[μm]、切削速度100[mm/min]で実施した。
 MRF加工は、0.5[mm]ピッチの10本の溝加工が可能な超硬製工具を作製し、これを用いて1パス加工する毎に横方向へ10[mm]ずらし、試験片の全面に溝加工を施した。プレス加工の場合と同様に、荷重と溝断面深さの相関を調査し、溝深さ10[μm]を目標に押し込み深さを制御できるよう、荷重を設定した。相関調査の為の溝断面深さは、3次元形状測定器により測定した。
 表1は、上記の試験結果を示している。鉄損評価の値は、加工無しの場合を1とした相対値で示している。
 表1の「凹凸を含む表面加工影響層」は、図3(A)では「溝+加工影響層」の深さ及び板厚比、図3(B)では加工影響層の深さ及び板厚比、図3(C)では溝深さの板厚比、ということになる。
Figure JPOXMLDOC01-appb-T000001
 上記の結果によれば、溝や凹凸が発生しないブラスト加工や研削加工でも、表面加工影響層が板厚の1[%]以上に及べば、圧縮応力下で鉄損が低減することがわかる。
 表2は、MRF加工を荷重とパス回数を変化させて実施することで得られる、溝深さ及び格子歪みに基づく加工影響層の深さが異なる試験片1についての試験結果を示している。
Figure JPOXMLDOC01-appb-T000002
 上記の結果によれば、凹凸を含む加工影響深さが板厚比の50[%]以下であれば、圧縮応力下で鉄損が低減することがわかる。
 表3は、比較の為に行った、エッチング加工とレーザ加工により溝加工を施した試験片1についての試験結果を示している。エッチング加工とレーザ加工は、いずれも加工メーカに依頼し、磁化方向に対して直交する溝を0.5[mm]ピッチで全面に形成したものである。溝深さは、15、20、30[μm]を目標値とした。
 なお、上述したように、エッチング加工とレーザ加工は、いずれも加工影響層が生じない加工方法なので、表3の「凹凸を含む表面加工影響層」欄の数値は、溝の深さ及び板厚比である。
Figure JPOXMLDOC01-appb-T000003
 上記の結果によれば、溝が深くても、格子歪みに基づく加工影響層が無い場合には、鉄損低減効果はほとんど得られないことがわかる。
 図4は、表1、表3の加工方法と鉄損低減効果の関係をまとめたものである。また、図5は、表1、表2の凹凸を含む加工影響層の深さと鉄損低減効果の関係をまとめたものである。
 図4に示すように、表面加工により溝を設けるか否かによらず、加工影響層を有していれば、すなわち、格子歪みによる加工影響層を有していれば、鉄損低減の効果が得られる。一方、溝を設けた場合でも、加工影響層が無ければ鉄損低減の効果は得られない。
 図5に示すように、溝の深さを含む加工影響層の深さが、板厚の50[%]を超えると、鉄損低減効果は得られない。これは、圧縮応力に起因する鉄損増加は加工影響層を設けることで抑制できるものの、加工度合が高まることで加工による鉄損増大の影響が大きくなるためと考えられる。
 なお、加工影響層を設けることによる鉄損低減効果については、明確な原理は不明であるが、以下のように考えることができる。
 圧縮応力の影響を受けると、磁歪の逆効果(ビラリ効果)によって、応力方向に対して直交する磁区が肥大化するように磁区構造が変化して、磁壁が動きにくくなる。その状態で、ある程度の加工影響層を設けると、磁区構造が変化し、応力方向にも近い方位を有する磁区が多数発生する。そのため、特に、磁化が小さい領域での磁化方向の回転や磁壁の運動において有利になり、鉄損低減効果が得られる。
 次に、上述した実験結果及び考察に基づいて決定した本実施形態の電磁鋼板について説明する。
 本実施形態の電磁鋼板は、圧縮応力が作用する環境で使用する電磁鋼板であって、少なくとも、鉄損に影響を与える程度の圧縮応力が作用する領域の、少なくとも一方の面に、格子歪みに基づく加工影響層を有する。加工影響層を有することにより、上述したように鉄損低減効果が得られる。
 特に、電磁鋼板がモータのステータコアとして用いられる無方向性電磁鋼板であり、製造工程において焼き嵌めを行なう場合には、圧縮応力の影響が不可避となるので、本実施形態による鉄損低減効果が有効である。
 本実施形態の電磁鋼板は、機械加工による凹凸を含む表面加工影響層の深さが、板厚の1[%]以上50[%]以下である。50[%]より大きい場合には、加工影響層を設けることによる鉄損低減効果よりも、加工による鉄損増大の影響が大きくなるため、圧縮応力下における鉄損低減効果が得られにくいからである。また、1[%]未満の場合には、加工影響層深さのバラツキによって、鉄損低減効果が得られないおそれがあるという問題が生じるからである。
 本実施形態の電磁鋼板は、ブラスト加工や研削加工により溝を設けずに加工影響層のみを設けた平坦な電磁鋼板としてもよい。平坦であっても加工後の表面形状にはバラツキはあるが、そのバラツキの大きさは、溝加工により生じる形状のバラツキに比べれば大幅に小さい。したがって、板厚の1[%]以上50[%]以下の範囲の表面加工影響層を設けた電磁鋼板を積層してコアを成形する場合に、占積率を向上させることができる。また、溝を設けると溝部分が空隙になるが、溝を設けないことで空隙が発生しないので、磁束密度を向上させることができる。さらに、溝加工を伴わないので、加工影響層が過度に深くなることによる鉄損増大が生じ得ない。なお、加工が容易になるため、特に大面積を加工する場合に有利である。
 上記の「平坦な鋼板」とは、十点平均粗さRzで30[μm]以下、基準長さ25[mm]、評価長さ40[mm]以上であることが望ましい。好ましくはRzで20[μm]以下、より好ましくは10[μm]以下である。
 また、本実施形態の電磁鋼板は電動モータに用いることができる。
 図6は、上述した本実施形態の無方向性電磁鋼板をステータコアに使用した電動モータ30の、回転軸に対して直交する断面の一部を示している。電動モータ30は、円環状のバックヨーク32及びバックヨーク32から内周側に突出する複数のティース33を有するステータコア34と、ステータコア34の内部に同軸に配置されたロータ36を含んで構成される。隣り合うティース33の間にはスロット35が形成され、ここに、ティース33に巻き回されたコイルが格納される。
 この電動モータ30において、ステータコア34は、ケース31を加熱により膨張させた状態でステータコア34を嵌めこむ、いわゆる焼き嵌め、またはステータコア34を冷却により収縮させた状態でケース31に嵌めこむ、いわゆる冷やし嵌めにより固定する。
 ところで、表面加工による、圧縮応力下での鉄損低減効果は、磁束密度が低い場合に大きい傾向がある。そこで、焼き嵌めにより固定されるステータコア34のバックヨーク32に加工影響層を付与することにより、焼き嵌めによる鉄損の増大を抑制し、小型高効率な電動モータ30を得ることができる。また、冷やし嵌めにより嵌め込まれることで圧縮応力下におかれることになるステータコア34に本実施形態の無方向性電磁鋼板を用いることでも、同様に鉄損の増大を抑制できる。
 なお、上記説明では、試験片1の片面に機械加工等を施した場合について説明したが、両面に機械加工を施した場合も、同様に表面加工影響層による鉄損低減効果が得られる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2012年8月6日に日本国特許庁に出願された特願2012-173795に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (7)

  1.  圧縮応力が作用する環境で使用する電磁鋼板において、
     少なくとも鉄損特性に影響を与える程度の圧縮応力が作用する領域の少なくとも一方の面に、格子歪みに基づく表面加工影響層を有する電磁鋼板。
  2.  請求項1に記載の電磁鋼板において、無方向性である電磁鋼板。
  3.  請求項1または2に記載の電磁鋼板において、
     前記表面加工影響層は機械加工により設けたものであって、
     前記表面加工影響層の深さは、機械加工により表面に形成した凹凸の深さを含めて、板厚の1%以上50%以下である電磁鋼板。
  4.  請求項3に記載の電磁鋼板において、
     前記機械加工により加工面を平坦に仕上げることによって、前記表面加工影響層を表面にも設けた電磁鋼板。
  5.  請求項4に記載の電磁鋼板において、
     表面加工影響層の板表面からの深さが、板厚の1%以上50%以下である電磁鋼板。
  6.  請求項1から5のいずれかに記載の電磁鋼板において、
     電動モータのステータとして使用し、前記表面加工影響層を有する部分をバックヨーク部とする電磁鋼板。
  7.  請求項1から6のいずれかに記載の電磁鋼板の積層体からなる電動モータのステータコア。
PCT/JP2013/070740 2012-08-06 2013-07-31 電磁鋼板、及び電磁鋼板の積層体からなる電動モータのステータコア WO2014024746A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014529446A JPWO2014024746A1 (ja) 2012-08-06 2013-07-31 無方向性電磁鋼板の製造方法及び電動モータのステータコアの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012173795 2012-08-06
JP2012-173795 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014024746A1 true WO2014024746A1 (ja) 2014-02-13

Family

ID=50067977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070740 WO2014024746A1 (ja) 2012-08-06 2013-07-31 電磁鋼板、及び電磁鋼板の積層体からなる電動モータのステータコア

Country Status (2)

Country Link
JP (1) JPWO2014024746A1 (ja)
WO (1) WO2014024746A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230209A (ja) * 1988-03-10 1989-09-13 Nkk Corp 積層鉄芯用電磁鋼板
JP2010215991A (ja) * 2009-03-18 2010-09-30 Jfe Steel Corp 無方向性電磁鋼板
JP2010252463A (ja) * 2009-04-14 2010-11-04 Jfe Steel Corp ステータコアおよびモータ
JP2011233731A (ja) * 2010-04-28 2011-11-17 Nissan Motor Co Ltd 無方向性電磁鋼板、無方向性電磁鋼板の積層体、及びこの積層体からなる電動モータのステータコア
JP2012135123A (ja) * 2010-12-22 2012-07-12 Jfe Steel Corp 圧縮応力下での鉄損劣化の小さいモータコア
JP2012161138A (ja) * 2011-01-31 2012-08-23 Jfe Steel Corp 圧縮応力下での鉄損劣化の小さいモータコア

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230209A (ja) * 1988-03-10 1989-09-13 Nkk Corp 積層鉄芯用電磁鋼板
JP2010215991A (ja) * 2009-03-18 2010-09-30 Jfe Steel Corp 無方向性電磁鋼板
JP2010252463A (ja) * 2009-04-14 2010-11-04 Jfe Steel Corp ステータコアおよびモータ
JP2011233731A (ja) * 2010-04-28 2011-11-17 Nissan Motor Co Ltd 無方向性電磁鋼板、無方向性電磁鋼板の積層体、及びこの積層体からなる電動モータのステータコア
JP2012135123A (ja) * 2010-12-22 2012-07-12 Jfe Steel Corp 圧縮応力下での鉄損劣化の小さいモータコア
JP2012161138A (ja) * 2011-01-31 2012-08-23 Jfe Steel Corp 圧縮応力下での鉄損劣化の小さいモータコア

Also Published As

Publication number Publication date
JPWO2014024746A1 (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
JP4593678B2 (ja) 低鉄損一方向性電磁鋼板及びその製造方法
CN109478834B (zh) 芯板的制造方法
Shi et al. Effect of cutting techniques on the structure and magnetic properties of a high-grade non-oriented electrical steel
JP2011246810A (ja) 無方向性電磁鋼板およびそれを用いたモータコア
CN111902894B (zh) 变压器用铁心
Takahashi et al. Effect of stress on iron loss of motor core
JP2001059145A (ja) 無方向性電磁鋼板およびその製造方法
Leuning et al. Analysis of a novel laser welding strategy for electrical steel laminations
JP7103554B1 (ja) 巻鉄心、巻鉄心の製造方法及び巻鉄心製造装置
WO2021010409A1 (ja) 回転機コア及びその製造方法
WO2014024746A1 (ja) 電磁鋼板、及び電磁鋼板の積層体からなる電動モータのステータコア
JP2010252463A (ja) ステータコアおよびモータ
CN110326068B (zh) 变压器铁芯
JP7396434B2 (ja) 非晶質金属薄帯
JP5740835B2 (ja) 電動モータのステータコア
EP4235714A1 (en) Winding iron core, method for manufacturing winding iron core, and winding iron core manufacturing apparatus
JP5732718B2 (ja) モータコア
Szada-Borzyszkowska et al. Analysis and Basics of Improving the Process of Cutting Electrical Sheet Bundles with a High-Pressure Abrasive Water Jet
JP5732716B2 (ja) モータコア
JP6988633B2 (ja) ステータコア及びモータ
JP5131747B2 (ja) 二方向性電磁鋼板の製造方法
CA3195832A1 (en) Wound core, method of producing wound core and wound core production device
JP5691571B2 (ja) 圧縮応力下での鉄損劣化の小さいモータコアとその製造方法
JP4276618B2 (ja) 低鉄損一方向性電磁鋼板
Mozetic et al. Development of cores for mini motors from laminated sheets of electric steel ABNT (Brazilian Association of Technical Standards) 35F 420M with thermal treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529446

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828466

Country of ref document: EP

Kind code of ref document: A1