WO2014024562A1 - 作業機械及び作業機械のブレードの自動制御方法 - Google Patents

作業機械及び作業機械のブレードの自動制御方法 Download PDF

Info

Publication number
WO2014024562A1
WO2014024562A1 PCT/JP2013/066214 JP2013066214W WO2014024562A1 WO 2014024562 A1 WO2014024562 A1 WO 2014024562A1 JP 2013066214 W JP2013066214 W JP 2013066214W WO 2014024562 A1 WO2014024562 A1 WO 2014024562A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
blade
hydraulic cylinders
cylinder
pitch
Prior art date
Application number
PCT/JP2013/066214
Other languages
English (en)
French (fr)
Inventor
和志 中田
山本 茂
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US14/131,700 priority Critical patent/US8931572B2/en
Priority to CN201380002591.XA priority patent/CN103732832B/zh
Publication of WO2014024562A1 publication Critical patent/WO2014024562A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7609Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
    • E02F3/7613Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers with the scraper blade adjustable relative to the pivoting arms about a vertical axis, e.g. angle dozers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7609Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
    • E02F3/7618Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers with the scraper blade adjustable relative to the pivoting arms about a horizontal axis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • E02F3/847Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams

Definitions

  • the present invention relates to a work machine including a blade and an automatic control method for the blade.
  • Work machines such as bulldozers and motor graders are equipped with blades as work machines for excavating soil.
  • Patent Document 1 discloses a work machine including a pair of lift cylinders that move a blade up and down and a pair of pitch / tilt cylinders that tilt the blade forward or backward.
  • the blade posture can be recognized based on the detection values of the four stroke sensors that detect the stroke amounts of the lift cylinders and the pitch / tilt cylinders.
  • a blade in the working machine of patent document 1, can be tilted back and forth and right and left by driving both or one of a pair of pitch / tilt cylinders.
  • the present invention has been made in view of the above-described situation, and provides a work machine capable of automatically controlling a blade posture to a reference posture based on a stroke amount of a pair of lift cylinders, and an automatic blade control method for the work machine. For the purpose.
  • a work machine includes a vehicle body, a blade supported by the vehicle body, a pair of first hydraulic cylinders, a pair of second hydraulic cylinders, a pair of lift stroke sensors, a control unit, Is provided.
  • the pair of first hydraulic cylinders moves the blade up and down.
  • the pair of second hydraulic cylinders tilt the blade back and forth and right and left.
  • the pair of lift stroke sensors detect the stroke amount of each of the pair of first hydraulic cylinders.
  • the control unit drives the pair of second hydraulic cylinders from a state in which the stroke amounts of the pair of first hydraulic cylinders coincide with each other, and the magnitude relationship between the difference between the stroke amounts of the pair of first hydraulic cylinders and a predetermined threshold value Based on the above, the driving of the pair of second hydraulic cylinders is stopped.
  • the blade can be returned to the reference posture by driving the pair of second hydraulic cylinders using only the pair of lift stroke sensors. For this reason, it is possible to prevent the blade edge of the blade from biting into the ground and the blade edge of the blade from being too far from the ground. As a result, efficient excavation work can be performed.
  • the work machine relates to the first aspect.
  • the pair of second hydraulic cylinders includes a pitch cylinder for tilting the blade back and forth and a pitch / tilt cylinder for tilting the blade back and forth and left and right.
  • the maximum stroke length of the pitch cylinder is shorter than the maximum stroke length of the pitch / tilt cylinder.
  • the control unit drives the pair of second hydraulic cylinders at the same speed, and determines that the difference in stroke amount between the pair of first hydraulic cylinders is greater than a predetermined threshold value, the pair of second hydraulic cylinders. Stop the cylinder drive.
  • the work machine relates to the first aspect.
  • the pair of second hydraulic cylinders includes a pitch cylinder for tilting the blade back and forth and a pitch / tilt cylinder for tilting the blade back and forth and left and right.
  • the maximum stroke length of the pitch cylinder is the same as the maximum stroke length of the pitch / tilt cylinder.
  • the control unit drives the pair of second hydraulic cylinders at different speeds, and determines that the difference in stroke amount between the pair of first hydraulic cylinders is smaller than a predetermined threshold, the pair of second hydraulic cylinders Stop driving.
  • the blade is moved up and down by a pair of first hydraulic cylinders.
  • the blade automatic control method includes a step of detecting the positions of the pair of first hydraulic cylinders, a step of comparing the positions of the detected pair of first hydraulic cylinders, and the pair of first hydraulic cylinders. The step of tilting the blade until the cylinders become parallel and the tilting operation of the blade until the pair of hydraulic cylinders become non-parallel after the blade is tilted until the pair of first hydraulic cylinders become parallel. Steps.
  • the blades are tilted until the positions of the pair of first hydraulic cylinders are parallel, that is, the blades are horizontal in the left-right direction (left-right direction). Tilting movement). Thereafter, the blades are pitch-operated (tilt operation in the front-rear direction) until the positions of the pair of first hydraulic cylinders are displaced.
  • the limit for the pitch operation is determined based on the positions of the pair of first cylinders, and the pitch operation is performed up to the limit position. By such an operation, the blade can be moved to the limit position where the pitch operation can be performed horizontally in the left-right direction by comparing the positions of the pair of first hydraulic cylinders.
  • the blade is moved up and down by the pair of first hydraulic cylinders and tilted forward and backward and by the pair of second hydraulic cylinders.
  • the blade automatic control method includes a step of detecting the positions of the pair of first hydraulic cylinders, a step of comparing the positions of the detected pair of first hydraulic cylinders, and the pair of first hydraulic cylinders. The step of tilting the blades until the cylinders are parallel and the pair of first hydraulic cylinders from the parallel state after the blades are tilted until the pair of first hydraulic cylinders are parallel. And operating the two hydraulic cylinders at different speeds, and stopping the operation of the pair of second hydraulic cylinders when the pair of first hydraulic cylinders become parallel again.
  • the blades are tilted until the positions of the pair of first hydraulic cylinders are parallel, that is, the blades are horizontal in the left-right direction (left-right direction). Tilting movement). Thereafter, after the pair of second hydraulic cylinders are operated at different speeds, the operation of the second hydraulic cylinder is stopped again when the position of the first hydraulic cylinder becomes the same again.
  • the operation of the second hydraulic cylinder is stopped again when the position of the first hydraulic cylinder becomes the same again.
  • the present invention it is possible to provide a working machine capable of automatically controlling the blade posture to the reference posture based on the stroke amount of the pair of first hydraulic cylinders, and an automatic control method for the blade of the working machine.
  • FIG. 1 is a front perspective view showing the configuration of the bulldozer 100.
  • FIG. 2 is a rear perspective view showing the configuration of the drive system of the blade 50.
  • the bulldozer 100 includes a vehicle body 10, a cab 20, a travel device 30, a pair of lift frames 40, a blade 50, a pair of lift cylinders (first hydraulic cylinders) 60, and a pair of pitch / tilt cylinders (first 2 hydraulic cylinders) 70.
  • the bulldozer 100 is equipped with a blade control system 200 (see FIG. 4) that automatically controls the attitude of the blade 50.
  • the blade control system 200 will be described later.
  • the vehicle body 10 supports the cab 30.
  • the vehicle body 10 is supported by the traveling device 30.
  • the cab 20 is mounted with a driver's seat for an operator to sit on, a lever, a pedal, and the like for operating the traveling device 30 and the blade 50.
  • the cab 20 is provided with a blade posture return button 220 (see FIG. 4) for returning the posture of the blade 50 to the reference posture. While the bulldozer 100 is moved forward, the operator depresses the blade posture return button 220 in order to return the blade 50 to the reference posture while excavating or leveling the blade 50 for one pass and moving backward to the starting position.
  • the reference posture of the blade 50 means a posture of the blade 50 that has a predetermined inclination back and forth and is not inclined left and right at a predetermined height from the ground.
  • the inclination of the blade 50 in the reference posture in the front-rear direction is an inclination when the blade 50 is inclined backward.
  • the traveling device 30 supports the vehicle body 10.
  • the traveling device 30 includes a pair of crawler belts 31 and a pair of sprockets 32.
  • the pair of crawler belts 31 is rotated by a pair of sprockets 32.
  • the pair of lift frames 40 are arranged on both outer sides with the vehicle body 10 side of the pair of crawler belts 31 as the inner side. As shown in FIG. 2, the pair of lift frames 40 includes a right lift frame 41 and a left lift frame 42. The rear end portions of the pair of lift frames 40 are rotatably attached to both outer sides of the traveling device 30. A blade 50 is connected to the front ends of the pair of lift frames 40.
  • the blade 50 is disposed in front of the vehicle body 10.
  • the blade 50 is supported by a pair of lift frames 40, a pair of lift cylinders 60 and a pair of pitch / tilt cylinders 70.
  • the blade 50 is moved up and down by a pair of lift cylinders 60.
  • the blade 50 is tilted forward and backward and left and right by a pair of pitch / tilt cylinders 70.
  • a blade edge 51 that bites into the ground during excavation and leveling is attached to the lower end of the blade 50.
  • the pair of lift cylinders 60 are connected to the vehicle body 10 and the blade 50. As shown in FIG. 2, the pair of lift cylinders 60 includes a right lift cylinder 61 and a left lift cylinder 62. The blade 50 is moved up and down by the right lift cylinder 61 and the left lift cylinder 62 extending and contracting with hydraulic oil in conjunction with each other.
  • a pair of lift stroke sensors 63 are attached to the pair of lift cylinders 60.
  • the pair of lift stroke sensors 63 includes a rotating roller for detecting the position of the cylinder rod, and a magnetic force sensor for returning the position of the cylinder rod to the origin.
  • the pair of lift stroke sensors 63 includes a stroke amount of the right lift cylinder 61 (hereinafter referred to as “right lift stroke amount 61S”) and a stroke amount of the left lift cylinder 62 (hereinafter referred to as “left lift stroke amount 62S”).
  • the stroke amount is the amount of movement of the cylinder rod from the state where the cylinder rod is most contracted.
  • the end of the lift cylinder 60 is connected to the vehicle body 10 and the blade 50, and the position of the lift cylinder 60 can be detected by detecting the stroke amount.
  • the pair of pitch / tilt cylinders 70 are connected to the pair of lift frames 40 and the blades 50.
  • the pair of pitch / tilt cylinders 70 includes a right pitch cylinder 71 and a left pitch / tilt cylinder 72 as shown in FIG.
  • the blade 50 is tilted back and forth.
  • This tilting motion of the blade in the front-rear direction is called pitch motion. That is, if both the right pitch cylinder 71 and the left pitch / tilt cylinder 72 extend, the blade 50 tilts forward, and if both the right pitch cylinder 71 and the left pitch / tilt cylinder 72 contract, the blade 50 tilts backward.
  • the left pitch / tilt cylinder 72 extends and contracts while the right pitch cylinder 71 does not expand and contract, whereby the left side of the blade 50 is moved substantially up and down. That is, if only the left pitch / tilt cylinder 72 extends, the blade 50 tilts to the right, and if only the left pitch / tilt cylinder 72 contracts, the blade 50 tilts to the left.
  • This tilting operation of the blade 50 in the left-right direction is called a tilting operation.
  • a stroke amount difference is generated between the right lift cylinder 61 and the left lift cylinder 62, and the cylinder position becomes non-parallel.
  • the stroke amounts of the right lift cylinder 61 and the left lift cylinder 62 are the same, and the cylinder positions are parallel.
  • FIGS. 3A to 3D are schematic views showing the configurations of the right lift cylinder 61, the left lift cylinder 62, the right pitch cylinder 71, and the left pitch / tilt cylinder 72.
  • FIG. 3A to 3D show the state of each cylinder when the blade 50 is moved to take the reference posture.
  • the position of each cylinder when the blade 50 is in the reference posture is referred to as a “reference position”.
  • the right lift cylinder 61 and the left lift cylinder 62 have the same configuration. Specifically, the cylinder body 61 a and the rod 61 b of the right lift cylinder 61 are common to the cylinder body 62 a and the rod 62 b of the left lift cylinder 62. Further, the reference position of the right lift cylinder 61 is set near the center of the cylinder body 61a as shown in FIG. 3A. The reference position of the left lift cylinder 62 is set near the center of the cylinder body 62a as shown in FIG. 3B.
  • the right pitch cylinder 71 and the left pitch / tilt cylinder 72 have different configurations. Specifically, the cylinder body 71 a of the right pitch cylinder 71 is shorter than the cylinder body 72 a of the left pitch / tilt cylinder 72. Therefore, the maximum stroke length in the cylinder body 71a is about half of the maximum stroke length in the cylinder body 72a.
  • the rod 71 b of the right pitch cylinder 71 is common to the rod 72 b of the left pitch / tilt cylinder 72.
  • the reference position of the rod 71b of the right pitch cylinder 71 is set to the base end of the cylinder body 71a as shown in FIG. 3C.
  • the reference position of the rod 72b of the left pitch / tilt cylinder 72 is set near the center of the cylinder body 72a in accordance with the right pitch cylinder 71, as shown in FIG. 3D.
  • the cylinder body 71a is shorter than the cylinder body 72a so that the stroke of the left pitch / tilt cylinder 72 is sufficiently secured in order to tilt the blade 50 to the left and right so that the lower end of the blade 50 does not hit the ground. This is to regulate the forward / backward tilt angle.
  • FIG. 4 is a block diagram showing a configuration of the blade control system 200.
  • FIGS. 5A to 5C are schematic views showing how the pair of lift cylinders 60 and the pair of pitch / tilt cylinders 70 are driven. Broken lines in FIGS. 5A to 5C indicate reference positions of the hydraulic cylinders.
  • the blade control system 200 includes a pair of lift cylinders 60, a pair of lift stroke sensors 63, a pair of pitch / tilt cylinders 70, a blade attitude return button 210, a control device 220, a hydraulic pressure A pump 230 and a main valve 240 are provided.
  • the pair of lift cylinders 60 includes a right lift cylinder 61 and a left lift cylinder 62
  • the pair of pitch / tilt cylinders 70 includes a right pitch cylinder 71 and a left pitch / tilt cylinder 72.
  • the blade posture return button 210 transmits a blade posture return signal to the control device 220 when pressed by the operator.
  • the control device 220 separately supplies hydraulic oil from the hydraulic pump 230 to the right lift cylinder 61, the left lift cylinder 62, the right pitch cylinder 71, and the left pitch / tilt cylinder 72 by transmitting a control signal to the main valve 240. be able to. That is, the control device 220 can drive each cylinder independently.
  • the control device 220 executes “blade posture return control” for returning the blade 50 to the reference posture in response to a blade posture return signal from the blade posture return button 210.
  • the control device 210 calculates the right lift stroke amount 61S and the left lift stroke amount 62S based on the detection values of the pair of lift stroke sensors 63.
  • the control device 210 drives only the left pitch / tilt cylinder 72 so that both stroke amounts coincide.
  • the control device 210 temporarily stops driving the left pitch / tilt cylinder 72 when the right lift stroke amount 61S and the left lift stroke amount 62S coincide.
  • the pair of lift cylinders 60 are in a parallel positional relationship. In the present embodiment, the driving of the left pitch / tilt cylinder 72 is temporarily stopped at this point, but the process may proceed to the next step without being stopped.
  • the control device 210 starts driving the right pitch cylinder 71 and the left pitch / tilt cylinder 72 at the same speed from the state where the right lift stroke amount 61S and the left lift stroke amount 62S coincide.
  • the control device 210 determines the magnitude relationship between the difference between the right lift stroke amount 61S and the left lift stroke amount 62S (hereinafter referred to as “stroke difference ⁇ S”) and a predetermined threshold TH1 (for example, 3 mm).
  • stroke difference ⁇ S the magnitude relationship between the difference between the right lift stroke amount 61S and the left lift stroke amount 62S
  • TH1 for example, 3 mm
  • FIG. 6 is a flowchart for explaining the blade attitude return control by the control device 220.
  • Blade posture return control is activated in response to the operator pressing the blade posture return button 210.
  • step S101 the control device 220 acquires detection values of the pair of lift stroke sensors 63.
  • step S102 the control device 220 determines the magnitude relationship between the right lift stroke amount 61S and the left lift stroke amount 62S based on the detection values of the pair of lift stroke sensors 63.
  • step S102 When it is determined in step S102 that the right lift stroke amount 61S is larger than the left lift stroke amount 62S, the control device 220 contracts the left pitch / tilt cylinder 72 in step S103. At this time, the left lift stroke amount 62S gradually increases in accordance with the contraction of the left pitch / tilt cylinder 72 (see FIGS. 5A and 5B).
  • step S104 the control device 220 determines whether or not the right lift stroke amount 61S and the left lift stroke amount 62S coincide with each other while the left pitch / tilt cylinder 72 is contracted. If the two stroke amounts do not match, control device 220 repeats steps S103 and S104, and if both stroke amounts match, the process proceeds to step S107. It should be noted that when both stroke amounts match, the stroke amount of the right pitch cylinder 71 and the stroke amount of the left pitch / tilt cylinder 72 match (see FIG. 5B).
  • step S102 If it is determined in step S102 that the left lift stroke amount 62S is larger than the right lift stroke amount 61S, the control device 220 extends the left pitch / tilt cylinder 72 in step S105. At this time, the left lift stroke amount 62S gradually decreases in accordance with the extension of the left pitch / tilt cylinder 72.
  • step S106 the control device 220 determines whether or not the right lift stroke amount 61S and the left lift stroke amount 62S coincide with each other while extending the left pitch / tilt cylinder 72. If the two stroke amounts do not match, control device 220 repeats steps S105 and S106, and if both stroke amounts match, the process proceeds to step S107. As in step S104, when the two stroke amounts coincide, the stroke amount of the right pitch cylinder 71 and the stroke amount of the left pitch / tilt cylinder 72 coincide (see FIG. 5B).
  • step S107 the control device 220 contracts the right pitch cylinder 71 and the left pitch / tilt cylinder 72 at the same speed from the state in which the right lift stroke amount 61S and the left lift stroke amount 62S coincide in steps S102, S104, and S106.
  • the right pitch cylinder 71 and the left pitch / tilt cylinder 72 are contracted at the same speed, the right lift stroke amount 61S and the left lift stroke amount 62S gradually increase while maintaining the same state (see FIGS. 5B and 5C). .
  • step S108 the control device 220 determines whether or not the stroke difference ⁇ S between the right lift stroke amount 61S and the left lift stroke amount 62S is larger than a threshold value TH1 (for example, 3 mm). Control device 220 repeats step S107 if stroke difference ⁇ S is not greater than threshold value TH1, and proceeds to step S109 if stroke difference ⁇ S is greater than threshold value TH1.
  • a threshold value TH1 for example, 3 mm
  • the stroke difference ⁇ S becomes larger than the threshold TH1 because the left pitch / tilt cylinder 72 continues to contract even after the contraction of the right pitch cylinder 71 stops, so that the left lift stroke amount 62S becomes the right lift stroke amount 61S. This is because it becomes longer (see FIG. 5C).
  • the reason why the left pitch / tilt cylinder 72 continues to contract after the contraction of the right pitch cylinder 71 stops is that the maximum stroke length of the right pitch cylinder 71 is shorter than the maximum stroke length of the left pitch / tilt cylinder 72 as described above. (See FIGS. 3C and 3D).
  • step S109 when it is determined in step S108 that the stroke difference ⁇ S is larger than the threshold value TH1, the control device 220 stops the contraction of the right pitch cylinder 71 and the left pitch / tilt cylinder 72. As a result, the blade 50 has a predetermined inclination in the front-rear direction and is not substantially inclined in the left-right direction. Since the length of the lift cylinder 60 is several meters and is much larger than the threshold value TH1 (for example, 3 mm), even if there is a stroke difference ⁇ S of about the threshold value TH1, it is considered that the pair of lift cylinders 60 are in a parallel positional relationship. It is for thinning. Thus, in the present embodiment, “the pair of lift cylinders 60 are parallel” includes not only the case where the stroke difference ⁇ S is “0” but also the case where the stroke difference ⁇ S is about the threshold value TH1. It is a concept.
  • step S110 the control device 220 drives the right lift cylinder 61 and the left lift cylinder 62 at the same speed, thereby adjusting the rod 61b and the rod 62b to the reference position. Thereby, the blade 50 is moved to a predetermined height from the ground.
  • the control unit 220 drives the right pitch cylinder 71 and the left pitch / tilt cylinder 72 at the same speed from the state in which the right lift stroke amount 61S and the left lift stroke amount 62S coincide. Since the maximum stroke length of the right pitch cylinder 71 is larger than the maximum stroke length of the left pitch / tilt cylinder 72, the left pitch / tilt cylinder 72 can be driven even after the right pitch cylinder 71 is stopped. If only the motor is driven, the stroke difference ⁇ S increases. The control unit 220 stops the right pitch cylinder 71 and the left pitch / tilt cylinder 72 when the stroke difference ⁇ S becomes larger than the threshold value TH1.
  • the blade 50 can be automatically returned to the reference posture. Therefore, it is possible to suppress the cutting edge 51 of the blade 50 from excessively biting into the ground and the cutting edge 51 of the blade 50 from being separated from the ground too much. As a result, efficient excavation work can be performed.
  • the bulldozer according to the second embodiment will be described below.
  • the second embodiment differs from the first embodiment in the configuration of a pair of pitch / tilt cylinders and the blade attitude return control method. Therefore, in the following, differences from the first embodiment will be mainly described.
  • the pair of pitch / tilt cylinders 70 ⁇ / b> A includes a right pitch cylinder 73 and a left pitch / tilt cylinder 74.
  • FIG. 7A is a schematic diagram showing the configuration of the right pitch cylinder 73.
  • FIG. 7B is a schematic diagram showing the configuration of the left pitch / tilt cylinder 74.
  • 7A and 7B show the state of each cylinder when the blade 50 takes the reference posture.
  • the right pitch cylinder 73 and the left pitch / tilt cylinder 74 have the same configuration.
  • the cylinder body 73 a of the right pitch cylinder 73 has the same length as the cylinder body 74 a of the left pitch / tilt cylinder 74. Therefore, the maximum stroke length in the cylinder body 73a is the same as the maximum stroke length in the cylinder body 74a.
  • the rod 73b of the right pitch cylinder 73 has the same configuration as the rod 74b of the left pitch / tilt cylinder 74.
  • the reference position of the rod 73b of the right pitch cylinder 73 is set at the base end of the cylinder body 73a.
  • the reference position of the rod 74 b of the left pitch / tilt cylinder 74 is also set at the base end of the cylinder body 74 a in accordance with the right pitch cylinder 73.
  • the configuration of the left pitch / tilt cylinder 74 is the same as that of the left pitch / tilt cylinder 72 according to the first embodiment. They differ only in that the reference positions are different.
  • FIG. 8 is a flowchart for explaining blade attitude return control by the control device 220A.
  • FIGS. 9A to 9D are schematic views showing how the pair of lift cylinders 60 and the pair of pitch / tilt cylinders 70A are driven.
  • step S201 the control device 220A acquires the detection values of the pair of lift stroke sensors 63.
  • step S202 the control device 220A determines the magnitude relationship between the right lift stroke amount 61S and the left lift stroke amount 62S based on the detection values of the pair of lift stroke sensors 63.
  • step S202 When it is determined in step S202 that the right lift stroke amount 61S is larger than the left lift stroke amount 62S, the control device 220A contracts the left pitch / tilt cylinder 74 in step S203. At this time, the left lift stroke amount 62S gradually increases in accordance with the contraction of the left pitch / tilt cylinder 74 (see FIGS. 9A and 9B).
  • step S204 the control device 220A determines whether or not the right lift stroke amount 61S and the left lift stroke amount 62S coincide with each other while the left pitch / tilt cylinder 74 is contracted. Control device 220A repeats steps S203 and S204 if both stroke amounts do not match, and proceeds to step S207 if both stroke amounts match. At the time when both stroke amounts coincide, the stroke amount of the right pitch cylinder 73 and the stroke amount of the left pitch / tilt cylinder 74 coincide (see FIG. 9B).
  • step S202 If it is determined in step S202 that the left lift stroke amount 62S is greater than the right lift stroke amount 61S, the control device 220A extends the left pitch / tilt cylinder 74 in step S205. At this time, the left lift stroke amount 62S gradually decreases in accordance with the extension of the left pitch / tilt cylinder 74.
  • step S206 the control device 220A determines whether or not the right lift stroke amount 61S and the left lift stroke amount 62S coincide with each other while extending the left pitch / tilt cylinder 74. Control device 220A repeats steps S205 and S206 if both stroke amounts do not match, and proceeds to step S207 if both stroke amounts match. As in step S204, when the stroke amounts coincide, the stroke amount of the right pitch cylinder 73 and the stroke amount of the left pitch / tilt cylinder 74 coincide (see FIG. 9B).
  • step S207 the control device 220A contracts the right pitch cylinder 73 and the left pitch / tilt cylinder 74 at different speeds from the state in which the right lift stroke amount 61S and the left lift stroke amount 62S coincide in steps S202, S204, and S206.
  • the difference between the matched right lift stroke amount 61S and left lift stroke amount 62S gradually increases (see FIG. 9C).
  • step S208 the control device 220A determines whether or not the stroke difference ⁇ S between the right lift stroke amount 61S and the left lift stroke amount 62S is smaller than a threshold value TH2 (eg, 3 mm). Control device 220A repeats step S207 if stroke difference ⁇ S is not smaller than threshold value TH2, and proceeds to step S209 if stroke difference ⁇ S is smaller than threshold value TH2.
  • a threshold value TH2 eg, 3 mm
  • the stroke difference ⁇ S becomes smaller than the threshold value TH2, as shown in FIG. 9C, the left pitch / tilt cylinder 74 continues to contract even after the contraction of the right pitch cylinder 73 stops. This is because 62S approaches the right lift stroke amount 61S (see FIG. 9D). The reason why the left pitch / tilt cylinder 74 continues to contract after the contraction of the right pitch cylinder 73 stops is because the left pitch / tilt cylinder 74 contracts later than the right pitch cylinder 73 as described above.
  • step S209 when it is determined in step S208 that the stroke difference ⁇ S is smaller than the threshold value TH2, the control device 220A stops the contraction of the right pitch cylinder 73 and the left pitch / tilt cylinder 74. As a result, the blade 50 has a predetermined inclination in the front-rear direction and is not substantially inclined in the left-right direction. Also in this embodiment, since the length of the lift cylinder 60 is sufficiently larger than the threshold value TH2 (for example, 3 mm), even if there is a stroke difference ⁇ S of about the threshold value TH1, the pair of lift cylinders 60 is considered to be parallel. Can do. Thus, in the present embodiment, “the pair of lift cylinders 60 are parallel” includes not only the case where the stroke difference ⁇ S is “0” but also the case where the stroke difference ⁇ S is about the threshold value TH2. It is a concept.
  • step S210 the control device 220A drives the right lift cylinder 61 and the left lift cylinder 62 at the same speed to adjust the rod 61b and the rod 62b to the reference position. Thereby, the blade 50 is moved to a predetermined height from the ground.
  • the control unit 220 drives the right pitch cylinder 73 and the left pitch / tilt cylinder 74 at different speeds from a state where the right lift stroke amount 61S and the left lift stroke amount 62S coincide. Since the maximum stroke length of the right pitch cylinder 73 and the maximum stroke length of the left pitch / tilt cylinder 74 are the same, only the left pitch / tilt cylinder 74 is driven after the right pitch cylinder 73 is stopped, thereby reducing the stroke difference ⁇ S. Become. The control unit 220 stops the right pitch cylinder 73 and the left pitch / tilt cylinder 74 when the stroke difference ⁇ S becomes smaller than the threshold value TH2.
  • the blade 50 can be returned to the reference posture by driving the pair of pitch / tilt cylinders 70 using only the pair of lift stroke sensors 63. Therefore, it is possible to suppress the cutting edge 51 of the blade 50 from excessively biting into the ground and the cutting edge 51 of the blade 50 from being separated from the ground too much. As a result, efficient excavation work can be performed.
  • the reference position in the right pitch cylinders 71 and 73 is set to the base ends of the cylinder bodies 71a and 73a, but is not limited thereto.
  • the reference position in the right pitch cylinders 71 and 73 may be set at the tips of the cylinder bodies 71a and 73a. That is, the reference position in the right pitch cylinders 71 and 73 only needs to be set at one end of the cylinder main bodies 71a and 73a.
  • contraction and expansion are interchanged in steps S103, S105, and S107 in FIG. 6, and contraction and expansion are interchanged in steps S203, S205, and S207 in FIG.
  • the reference position in the right pitch cylinders 71 and 73 is set to the base ends of the cylinder bodies 71a and 73a, but is not limited thereto.
  • the reference position in the right pitch cylinders 71 and 73 may be set to a predetermined position between the distal ends and the proximal ends of the cylinder main bodies 71a and 73a. In this case, after the end of the flow of the above embodiment, a predetermined amount of pitch operation may be performed in the direction opposite to the pitch operation in the flow.
  • the bulldozer 100 has been described as an example of a work machine, but a motor grader may be used as the work machine.
  • the right pitch cylinder 73 and the left pitch / tilt cylinder 74 are contracted at different speeds, but the present invention is not limited to this. Even when the maximum stroke lengths of the right pitch cylinder 73 and the left pitch / tilt cylinder 74 are the same, the right pitch cylinder 73 and the left pitch / tilt cylinder 74 may be contracted at the same speed.
  • a pressure sensor for detecting the relief pressure of each of the right pitch cylinder 73 and the left pitch / tilt cylinder 74 is provided, and when the relief pressure is generated in both cylinders, the right pitch cylinder 73 and the left pitch / tilt cylinder 74 are provided. It is possible to detect that has returned to the reference position. Therefore, in this case, the control device 220A does not need to detect that the stroke difference ⁇ S has become smaller than the threshold value TH2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 ブルドーザ(100)は、車体(10)と、ブレード(50)と、一対のリフトシリンダ(60)と、一対のピッチ/チルトシリンダ(70)と、一対のリフトストロークセンサ(63)と、制御部(220)と、を備える。制御部(220)は、一対のリフトシリンダ(60)のストローク量が一致した状態から、一対のピッチ/チルトシリンダ(70)を同じ速度で駆動させる。制御部(220)は、ストローク差(ΔS)が閾値(TH1)より大きくなった場合に、右ピッチシリンダ(71)と左ピッチ/チルトシリンダ(72)を停止させる。

Description

作業機械及び作業機械のブレードの自動制御方法
 本発明は、ブレードを備える作業機械、及びそのブレードの自動制御方法に関する。
 ブルドーザやモータグレーダなどの作業機械は、土を掘削するための作業機としてブレードを備えている。
 特許文献1では、ブレードを上下させる一対のリフトシリンダと、ブレードを前傾又は後傾させる一対のピッチ/チルトシリンダと、を備える作業機械が開示されている。特許文献1の作業機械では、各リフトシリンダと各ピッチ/チルトシリンダのストローク量を検出する4つのストロークセンサの検出値に基づいてブレード姿勢を認識することができる。
 なお、特許文献1の作業機械では、一対のピッチ/チルトシリンダの両方又は一方を駆動させることでブレードを前後左右に傾けることができる。
US2005/0065689号公報
 (発明が解決しようとする課題)
 ここで、ストロークセンサは一般的に高価であるため、例えば一対のリフトシリンダのストローク量を検出する2つのストロークセンサのみでブレード姿勢を認識したいという要請がある。
 しかしながら、一対のリフトシリンダのストローク量のみに基づいて、ブレードが前後左右にどの程度傾いているかを認識することはできない。そのため、ブレードの姿勢を制御しないままに掘削作業を行えば、効率的に掘削作業を行うことができない。
 具体的には、ブレードが基準高さにリフトされていても、ブレードが大きく前傾していればブレードの刃先が地面に食い込み過ぎてしまい過剰に掘削してしまう。一方で、ブレードが基準高さにリフトされていても、ブレードが大きく後傾していればブレードの刃先が地面から大きく離れてしまい十分に掘削することができない。
 本発明は、上述の状況に鑑みてなされたものであり、一対のリフトシリンダのストローク量に基づいてブレード姿勢を基準姿勢に自動制御可能な作業機械及び作業機械のブレードの自動制御方法を提供することを目的とする。
 (課題を解決するための手段)
 第1の態様に係る作業機械は、車体と、車体に支持されるブレードと、一対の第1の油圧シリンダと、一対の第2の油圧シリンダと、一対のリフトストロークセンサと、制御部と、を備える。一対の第1の油圧シリンダは、ブレードを上下させる。一対の第2の油圧シリンダは、ブレードを前後及び左右に傾ける。一対のリフトストロークセンサは、一対の第1の油圧シリンダそれぞれのストローク量を検出する。制御部は、一対の第1の油圧シリンダのストローク量が一致した状態から一対の第2の油圧シリンダを駆動させ、一対の第1の油圧シリンダのストローク量の差と所定の閾値との大小関係に基づいて一対の第2の油圧シリンダの駆動を停止させる。
 第1の態様に係る作業機械によれば、一対のリフトストロークセンサのみを利用して、一対の第2の油圧シリンダを駆動させることによって、ブレードを基準姿勢に復帰させることができる。そのため、ブレードの刃先が地面に食い込みすぎたり、ブレードの刃先が地面から離れすぎたりすることを抑制できる。その結果、効率的な掘削作業を実行することができる。
 第2の態様に係る作業機械は、第1の態様に係る。一対の第2の油圧シリンダは、ブレードを前後に傾けるためのピッチシリンダと、ブレードを前後及び左右に傾けるためのピッチ/チルトシリンダと、を含む。ピッチシリンダの最大ストローク長は、ピッチ/チルトシリンダの最大ストローク長より短い。制御部は、一対の第2の油圧シリンダそれぞれを同じ速度で駆動させながら、一対の第1の油圧シリンダのストローク量の差が所定の閾値より大きいと判定した場合に、一対の第2の油圧シリンダの駆動を停止させる。
 第3の態様に係る作業機械は、第1の態様に係る。一対の第2の油圧シリンダは、ブレードを前後に傾けるためのピッチシリンダと、ブレードを前後及び左右に傾けるためのピッチ/チルトシリンダと、を含む。ピッチシリンダの最大ストローク長は、ピッチ/チルトシリンダの最大ストローク長と同じである。制御部は、一対の第2の油圧シリンダそれぞれを異なる速度で駆動させ、一対の第1の油圧シリンダのストローク量の差が所定の閾値より小さいと判定した場合に、一対の第2の油圧シリンダの駆動を停止させる。
 第4の態様に係る作業機械のブレードの自動制御方法では、ブレードは一対の第1の油圧シリンダにより上下される。そして、ブレードの自動制御方法は、一対の第1の油圧シリンダそれぞれの位置を検出するステップと、検出された一対の第1の油圧シリンダそれぞれの位置を比較するステップと、一対の第1の油圧シリンダが平行になるまでブレードをチルト動作させるステップと、一対の第1の油圧シリンダが平行になるまでブレードをチルト動作させた後において、一対の油圧シリンダが非平行になるまでブレードをピッチ動作させるステップと、を備える。
 第4の態様に係る作業機械のブレードの自動制御方法に依れば、一対の第1の油圧シリンダの位置が平行、すなわちブレードが左右方向で水平な位置になるまでブレードをチルト動作(左右方向の傾動動作)させる。その後、一対の第1の油圧シリンダの位置がずれるまで、ブレードをピッチ動作(前後方向の傾動動作)させる。換言すると、ピッチ動作可能な限界を一対の第1のシリンダの位置により判定し、その限界位置までピッチ動作させる。このような動作により、一対の第1の油圧シリンダの位置の比較により、ブレードを左右方向に水平でピッチ動作可能な限界位置に動かすことができる。
 第5の態様に係る作業機械のブレードの自動制御方法では、ブレードは、一対の第1の油圧シリンダにより上下され、かつ、一対の第2の油圧シリンダにより前後及び左右に傾けられる。そして、ブレードの自動制御方法は、一対の第1の油圧シリンダそれぞれの位置を検出するステップと、検出された一対の第1の油圧シリンダそれぞれの位置を比較するステップと、一対の第1の油圧シリンダが平行になるまでブレードをチルト動作させるステップと、一対の第1の油圧シリンダが平行になるまでブレードをチルト動作させた後において、一対の第1の油圧シリンダが平行な状態から一対の第2の油圧シリンダを異なる速度で動作させてから、一対の第1の油圧シリンダが再び平行な状態になると一対の第2の油圧シリンダの動作を停止させるステップと、を備える。
 第5の態様に係る作業機械のブレードの自動制御方法に依れば、一対の第1の油圧シリンダの位置が平行、すなわちブレードが左右方向で水平な位置になるまでブレードをチルト動作(左右方向の傾動動作)させる。その後、一対の第2の油圧シリンダを異なる速度で動作させて後、再び、第1の油圧シリンダの位置が同じになると第2の油圧シリンダの動作を停止させる。このような動作により、一対の第1の油圧シリンダの位置の比較により、ブレードを左右方向に水平で第2の油圧シリンダの動作可能な限界位置に動かすことができる。
 (発明の効果)
 本発明によれば、一対の第1の油圧シリンダのストローク量に基づいてブレード姿勢を基準姿勢に自動制御可能な作業機械及び作業機械のブレードの自動制御方法を提供することができる。
第1実施形態に係るブルドーザの構成を示す前方斜視図である。 第1実施形態に係るブレードの駆動系の構成を示す後方斜視図である。 第1実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダの構成を示す模式図である。 第1実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダの構成を示す模式図である。 第1実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダの構成を示す模式図である。 第1実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダの構成を示す模式図である。 第1実施形態に係るブレード制御システムの構成を示すブロック図である。 第1実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダが駆動される様子を示す模式図である。 第1実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダが駆動される様子を示す模式図である。 第1実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダが駆動される様子を示す模式図である。 第1実施形態に係る制御装置によるブレード姿勢復帰制御を説明するためのフロー図である。 第2実施形態に係る一対のピッチ/チルトシリンダの構成を示す模式図である。 第2実施形態に係る一対のピッチ/チルトシリンダの構成を示す模式図である。 第2実施形態に係る制御装置によるブレード姿勢復帰制御を説明するためのフロー図である。 第2実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダが駆動される様子を示す模式図である。 第2実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダが駆動される様子を示す模式図である。 第2実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダが駆動される様子を示す模式図である。 第2実施形態に係る一対のリフトシリンダ及び一対のピッチ/チルトシリンダが駆動される様子を示す模式図である。
 以下、「作業機械」の一例であるブルドーザについて、図面を参照しながら説明する。以下の説明において、「上」「下」「前」「後」「左」「右」とは、運転席に着座したオペレータを基準とする用語である。
 [第1実施形態]
 (ブルドーザ100の構成)
 図1は、ブルドーザ100の構成を示す前方斜視図である。図2は、ブレード50の駆動系の構成を示す後方斜視図である。
 ブルドーザ100は、車体10と、キャブ20と、走行装置30と、一対のリフトフレーム40と、ブレード50と、一対のリフトシリンダ(第1の油圧シリンダ)60と、一対のピッチ/チルトシリンダ(第2の油圧シリンダ)70と、を備える。また、ブルドーザ100は、ブレード50の姿勢を自動制御するブレード制御システム200(図4参照)を搭載する。ブレード制御システム200については後述する。
 車体10は、キャブ30を支持する。車体10は、走行装置30によって支持される。キャブ20には、オペレータが着座するための運転席や、走行装置30及びブレード50を操作するためのレバーやペダル等が搭載される。特に、キャブ20には、ブレード50の姿勢を基準姿勢に復帰させるためのブレード姿勢復帰ボタン220(図4参照)が設けられている。オペレータは、ブルドーザ100を前進させながらブレード50による掘削又は整地を1パス分終了して起点位置まで後進させる間に、ブレード50を基準姿勢に復帰させるためにブレード姿勢復帰ボタン220を押下する。ブレード50の基準姿勢とは、地面から所定高さにおいて、前後に所定の傾きを有し、かつ、左右に傾いていないブレード50の姿勢を意味する。本実施形態では、基準姿勢にあるブレード50の前後方向の傾きは、ブレード50が最後方に傾斜したときの傾きである。
 走行装置30は、車体10を支持する。走行装置30は、一対の履帯31と一対のスプロケット32とを有する。一対の履帯31は、一対のスプロケット32によって回転される。
 一対のリフトフレーム40は、一対の履帯31の車体10側を内側として両外側に配置される。一対のリフトフレーム40は、図2に示すように、右リフトフレーム41と左リフトフレーム42を有する。一対のリフトフレーム40の後端部は、走行装置30の両外側に回転可能に取付けられている。一対のリフトフレーム40の前端部には、ブレード50が連結されている。
 ブレード50は、車体10の前方に配置される。ブレード50は、一対のリフトフレーム40、一対のリフトシリンダ60及び一対のピッチ/チルトシリンダ70によって支持される。ブレード50は、一対のリフトシリンダ60によって上下に動かされる。ブレード50は、一対のピッチ/チルトシリンダ70によって前後及び左右に傾けられる。ブレード50の下端部には、掘削及び整地時に地面に食い込む刃先51が取り付けられている。
 一対のリフトシリンダ60は、車体10とブレード50に連結される。一対のリフトシリンダ60は、図2に示すように、右リフトシリンダ61と左リフトシリンダ62を有する。右リフトシリンダ61と左リフトシリンダ62が連動して作動油により伸縮することによって、ブレード50が上下に動かされる。
 ここで、一対のリフトシリンダ60には、図1に示すように、一対のリフトストロークセンサ63が取付けられている。一対のリフトストロークセンサ63は、シリンダロッドの位置を検出するための回転ローラと、シリンダロッドの位置を原点復帰するための磁力センサと、を有する。一対のリフトストロークセンサ63は、右リフトシリンダ61のストローク量(以下、「右リフトストローク量61S」という。)と左リフトシリンダ62のストローク量(以下、「左リフトストローク量62S」という。)を検出する。ここで、ストローク量とは、最もシリンダロッドを縮めた状態からのシリンダロッドの移動量である。リフトシリンダ60の端部は車体10とブレード50に連結されており、ストローク量検出により、リフトシリンダ60の位置を検出できる。
 一対のピッチ/チルトシリンダ70は、一対のリフトフレーム40とブレード50に連結される。一対のピッチ/チルトシリンダ70は、図2に示すように、右ピッチシリンダ71と左ピッチ/チルトシリンダ72を有する。右ピッチシリンダ71と左ピッチ/チルトシリンダ72が連動して同じ速度で伸縮することによって、ブレード50が前後に傾けられる。このブレードの前後方向の傾動動作はピッチ動作と呼ばれる。すなわち、右ピッチシリンダ71と左ピッチ/チルトシリンダ72が共に伸張すればブレード50は前傾し、右ピッチシリンダ71と左ピッチ/チルトシリンダ72が共に収縮すればブレード50は後傾する。
 また、右ピッチシリンダ71が伸縮しない状態で左ピッチ/チルトシリンダ72だけが伸縮することによって、ブレード50の左側が略上下に動かされる。すなわち、左ピッチ/チルトシリンダ72だけが伸張すればブレード50は右傾し、左ピッチ/チルトシリンダ72だけが収縮すればブレード50は左傾する。このブレード50の左右方向の傾動動作はチルト動作と呼ばれる。チルト動作によりブレード50が左右方向に傾くと、右リフトシリンダ61と左リフトシリンダ62との間でストローク量の差が生じ、シリンダ位置が非平行となる。ブレード50が左右に傾かない位置にあるときは、右リフトシリンダ61と左リフトシリンダ62のストローク量は同じとなり、シリンダ位置は平行となる。
 なお、シリンダ位置が平行である場合、右リフトシリンダ61と左リフトシリンダ62は、互いに同一平面上に位置しており、かつ、右リフトシリンダ61及び左リフトシリンダ62それぞれの軸心は交わらない。一方、シリンダ位置が非平行である場合、右リフトシリンダ61と左リフトシリンダ62は、同一平面上に位置せず、かつ、右リフトシリンダ61及び左リフトシリンダ62それぞれの軸心は交わらない。
 ここで、図3A~図3Dは、右リフトシリンダ61、左リフトシリンダ62、右ピッチシリンダ71及び左ピッチ/チルトシリンダ72の構成を示す模式図である。図3A~図3Dでは、ブレード50が基準姿勢をとるように動かされる際の各シリンダの状態が図示されている。以下の説明では、ブレード50が基準姿勢にあるときの各シリンダの位置を“基準位置”と称する。
 図3A及び図3Bに示すように、右リフトシリンダ61と左リフトシリンダ62は、互いに同じ構成を有している。具体的に、右リフトシリンダ61のシリンダ本体61a及びロッド61bは、左リフトシリンダ62のシリンダ本体62a及びロッド62bと共通している。また、右リフトシリンダ61の基準位置は、図3Aに示すように、シリンダ本体61aの中央付近に設定されている。左リフトシリンダ62の基準位置は、図3Bに示すように、シリンダ本体62aの中央付近に設定されている。
 一方で、図3C及び図3Dに示すように、右ピッチシリンダ71と左ピッチ/チルトシリンダ72とは、互いに異なる構成を有している。具体的に、右ピッチシリンダ71のシリンダ本体71aは、左ピッチ/チルトシリンダ72のシリンダ本体72aよりも短い。そのため、シリンダ本体71aにおける最大ストローク長は、シリンダ本体72aにおける最大ストローク長の半分程度である。右ピッチシリンダ71のロッド71bは、左ピッチ/チルトシリンダ72のロッド72bと共通している。また、右ピッチシリンダ71のロッド71bの基準位置は、図3Cに示すように、シリンダ本体71aの基端に設定されている。左ピッチ/チルトシリンダ72のロッド72bの基準位置は、図3Dに示すように、右ピッチシリンダ71に合わせて、シリンダ本体72aの中央付近に設定されている。
 なお、シリンダ本体71aがシリンダ本体72aよりも短いのは、ブレード50を左右にチルトするために左ピッチ/チルトシリンダ72のストローク量を十分確保しつつ、ブレード50の下端で地面を抉らないように前後傾角を規制するためである。
 (ブレード制御システム200の構成)
 次に、ブルドーザ100に搭載されるブレード制御システム200の構成について、図面を参照しながら説明する。図4は、ブレード制御システム200の構成を示すブロック図である。図5A~図5Cは、一対のリフトシリンダ60及び一対のピッチ/チルトシリンダ70が駆動される様子を示す模式図である。図5A~図5C中の破線は、各油圧シリンダの基準位置を示す。
 ブレード制御システム200は、図4に示すように、一対のリフトシリンダ60と、一対のリフトストロークセンサ63と、一対のピッチ/チルトシリンダ70と、ブレード姿勢復帰ボタン210と、制御装置220と、油圧ポンプ230と、メインバルブ240と、を備える。一対のリフトシリンダ60は、右リフトシリンダ61及び左リフトシリンダ62を含み、一対のピッチ/チルトシリンダ70は、右ピッチシリンダ71及び左ピッチ/チルトシリンダ72を含む。
 ブレード姿勢復帰ボタン210は、オペレータによって押下されると、ブレード姿勢復帰信号を制御装置220に送信する。
 制御装置220は、メインバルブ240に制御信号を送信することによって、油圧ポンプ230から右リフトシリンダ61、左リフトシリンダ62、右ピッチシリンダ71及び左ピッチ/チルトシリンダ72に別個に作動油を供給することができる。すなわち、制御装置220は、各シリンダを独立して駆動させることができる。制御装置220は、ブレード姿勢復帰ボタン210からのブレード姿勢復帰信号に応じて、ブレード50を基準姿勢に復帰させる“ブレード姿勢復帰制御”を実行する。
 まず、制御装置210は、一対のリフトストロークセンサ63の検出値に基づいて、右リフトストローク量61S及び左リフトストローク量62Sを算出する。次に、制御装置210は、図5Aに示すように右リフトストローク量61Sと左リフトストローク量62Sが異なる場合、両ストローク量が一致するように左ピッチ/チルトシリンダ72だけを駆動させる。そして、制御装置210は、図5Bに示すように右リフトストローク量61Sと左リフトストローク量62Sが一致した時点で、左ピッチ/チルトシリンダ72の駆動を一旦停止させる。左右のリフトストローク量が一致する時、一対のリフトシリンダ60は平行の位置関係にある。本実施形態では、この時点で左ピッチ/チルトシリンダ72の駆動を一旦停止させるが、停止させずに次の工程に進んでもよい。
 次に、制御装置210は、右リフトストローク量61Sと左リフトストローク量62Sが一致した状態から、右ピッチシリンダ71及び左ピッチ/チルトシリンダ72を同じ速度で駆動開始する。この際、制御装置210は、右リフトストローク量61Sと左リフトストローク量62Sの差(以下、「ストローク差ΔS」という。)と所定の閾値TH1(例えば、3mm)との大小関係を判定する。そして、制御装置210は、ストローク差ΔSが閾値TH1より大きいと判定した場合、右ピッチシリンダ71及び左ピッチ/チルトシリンダ72を停止させる。
 (制御装置220の動作)
 次に、制御装置220によるブレード姿勢復帰制御について、図面を参照しながら説明する。図6は、制御装置220によるブレード姿勢復帰制御を説明するためのフロー図である。ブレード姿勢復帰制御は、オペレータがブレード姿勢復帰ボタン210を押下したことに応じて起動される。
 ステップS101において、制御装置220は、一対のリフトストロークセンサ63の検出値を取得する。
 ステップS102において、制御装置220は、一対のリフトストロークセンサ63の検出値に基づいて、右リフトストローク量61Sと左リフトストローク量62Sの大小関係を判定する。
 ステップS102で右リフトストローク量61Sが左リフトストローク量62Sより大きいと判定された場合、ステップS103において、制御装置220は、左ピッチ/チルトシリンダ72を収縮させる。このとき、左リフトストローク量62Sは、左ピッチ/チルトシリンダ72の収縮に応じて徐々に大きくなる(図5A,図5B参照)。
 ステップS104において、制御装置220は、左ピッチ/チルトシリンダ72を収縮させながら、右リフトストローク量61Sと左リフトストローク量62Sが一致したか否かを判定する。制御装置220は、両ストローク量が一致していなければステップS103,S104を繰り返して、両ストローク量が一致したらステップS107に処理を進める。なお、両ストローク量が一致した時点で、右ピッチシリンダ71のストローク量と左ピッチ/チルトシリンダ72のストローク量とが一致する(図5B参照)。
 ステップS102で左リフトストローク量62Sが右リフトストローク量61Sより大きいと判定された場合、ステップS105において、制御装置220は、左ピッチ/チルトシリンダ72を伸張させる。このとき、左リフトストローク量62Sは、左ピッチ/チルトシリンダ72の伸張に応じて徐々に小さくなる。
 ステップS106において、制御装置220は、左ピッチ/チルトシリンダ72を伸張させながら、右リフトストローク量61Sと左リフトストローク量62Sが一致したか否かを判定する。制御装置220は、両ストローク量が一致していなければステップS105,S106を繰り返し、両ストローク量が一致したらステップS107に処理を進める。なお、ステップS104と同様に、両ストローク量が一致した時点で、右ピッチシリンダ71のストローク量と左ピッチ/チルトシリンダ72のストローク量とは一致する(図5B参照)。
 ステップS107において、制御装置220は、ステップS102,S104,S106で右リフトストローク量61Sと左リフトストローク量62Sが一致した状態から、右ピッチシリンダ71と左ピッチ/チルトシリンダ72を同じ速度で収縮させる。右ピッチシリンダ71と左ピッチ/チルトシリンダ72を同じ速度で収縮させると、右リフトストローク量61Sと左リフトストローク量62Sは一致した状態を維持しながら徐々に大きくなる(図5B,図5C参照)。
 ステップS108において、制御装置220は、右リフトストローク量61Sと左リフトストローク量62Sのストローク差ΔSが閾値TH1(例えば、3mm)より大きいか否かを判定する。制御装置220は、ストローク差ΔSが閾値TH1より大きくなければステップS107を繰り返し、ストローク差ΔSが閾値TH1より大きければステップS109に処理を進める。
 ここで、ストローク差ΔSが閾値TH1より大きくなるのは、右ピッチシリンダ71の収縮が止まった後も左ピッチ/チルトシリンダ72が収縮し続けることによって、左リフトストローク量62Sが右リフトストローク量61Sよりも長くなるからである(図5C参照)。右ピッチシリンダ71の収縮が止まった後も左ピッチ/チルトシリンダ72が収縮し続けるのは、上述の通り、右ピッチシリンダ71の最大ストローク長が左ピッチ/チルトシリンダ72の最大ストローク長よりも短いからである(図3C,図3D参照)。
 ステップS109において、制御装置220は、ステップS108でストローク差ΔSが閾値TH1より大きいと判定された場合、右ピッチシリンダ71と左ピッチ/チルトシリンダ72の収縮を停止させる。これにより、ブレード50は、前後に所定の傾きを有し、かつ、実質的に左右に傾いていない状態となる。リフトシリンダ60の長さは数mあって閾値TH1(例えば、3mm)より遥かに大きいため、閾値TH1程度のストローク差ΔSがあっても、一対のリフトシリンダ60は平行な位置関係にあると見做せるためである。このように、本実施形態において、「一対のリフトシリンダ60が平行である」とは、ストローク差ΔSが“0”である場合だけでなく、ストローク差ΔSが閾値TH1程度である場合をも含む概念である。
 ステップS110において、制御装置220は、右リフトシリンダ61と左リフトシリンダ62を同じ速度で駆動させることによって、ロッド61bとロッド62bを基準位置に合わせる。これにより、ブレード50は、地面から所定高さに移動される。
 以上により、ブレード50を基準位置に復帰させるためのブレード姿勢復帰制御が完了する。
 (特徴)
 第1実施形態において、制御部220は、右リフトストローク量61Sと左リフトストローク量62Sが一致した状態から、右ピッチシリンダ71と左ピッチ/チルトシリンダ72を同じ速度で駆動させる。右ピッチシリンダ71の最大ストローク長が左ピッチ/チルトシリンダ72の最大ストローク長より大きいため、右ピッチシリンダ71の停止後も左ピッチ/チルトシリンダ72は駆動可能であるが、左ピッチ/チルトシリンダ72だけが駆動されればストローク差ΔSが大きくなる。制御部220は、ストローク差ΔSが閾値TH1より大きくなった場合に、右ピッチシリンダ71と左ピッチ/チルトシリンダ72を停止させる。
 従って、一対のリフトストロークセンサ63のみを利用して、一対のピッチ/チルトシリンダ70を駆動させることによって、自動的にブレード50を基準姿勢に復帰させることができる。そのため、ブレード50の刃先51が地面に食い込みすぎたり、ブレード50の刃先51が地面から離れすぎたりすることを抑制できる。その結果、効率的な掘削作業を実行することができる。
 [第2実施形態]
 以下において、第2実施形態に係るブルドーザついて説明する。第2実施形態の第1実施形態との相違点は、一対のピッチ/チルトシリンダの構成とブレード姿勢復帰制御方法にある。従って、以下においては、第1実施形態との相違点について主に説明する。
 (一対のピッチ/チルトシリンダ70Aの構成)
 第2実施形態に係る一対のピッチ/チルトシリンダ70Aは、右ピッチシリンダ73と左ピッチ/チルトシリンダ74とを有する。図7Aは、右ピッチシリンダ73の構成を示す模式図である。図7Bは、左ピッチ/チルトシリンダ74の構成を示す模式図である。図7A及び図7Bでは、ブレード50が基準姿勢をとった際の各シリンダの状態が図示されている。
 図7A及び図7Bに示すように、右ピッチシリンダ73と左ピッチ/チルトシリンダ74とは、互いに同じ構成を有している。具体的に、右ピッチシリンダ73のシリンダ本体73aは、左ピッチ/チルトシリンダ74のシリンダ本体74aと同じ長さである。そのため、シリンダ本体73aにおける最大ストローク長は、シリンダ本体74aにおける最大ストローク長と同じである。
 右ピッチシリンダ73のロッド73bは、左ピッチ/チルトシリンダ74のロッド74bと同じ構成を有している。また、右ピッチシリンダ73のロッド73bの基準位置は、シリンダ本体73aの基端に設定されている。左ピッチ/チルトシリンダ74のロッド74bの基準位置も、右ピッチシリンダ73に合わせて、シリンダ本体74aの基端に設定されている。
 なお、左ピッチ/チルトシリンダ74の構成自体は、第1実施形態に係る左ピッチ/チルトシリンダ72の構成と同じである。両者は、基準位置が異なる点だけにおいて相違している。
 (制御装置220Aの動作)
 第2実施形態に係る制御装置220Aによるブレード姿勢復帰制御について、図面を参照しながら説明する。図8は、制御装置220Aによるブレード姿勢復帰制御を説明するためのフロー図である。図9A~図9Dは、一対のリフトシリンダ60及び一対のピッチ/チルトシリンダ70Aが駆動される様子を示す模式図である。
 ステップS201において、制御装置220Aは、一対のリフトストロークセンサ63の検出値を取得する。
 ステップS202において、制御装置220Aは、一対のリフトストロークセンサ63の検出値に基づいて、右リフトストローク量61Sと左リフトストローク量62Sの大小関係を判定する。
 ステップS202で右リフトストローク量61Sが左リフトストローク量62Sより大きいと判定された場合、ステップS203において、制御装置220Aは、左ピッチ/チルトシリンダ74を収縮させる。このとき、左リフトストローク量62Sは、左ピッチ/チルトシリンダ74の収縮に応じて徐々に大きくなる(図9A,図9B参照)。
 ステップS204において、制御装置220Aは、左ピッチ/チルトシリンダ74を収縮させながら、右リフトストローク量61Sと左リフトストローク量62Sが一致したか否かを判定する。制御装置220Aは、両ストローク量が一致していなければステップS203,S204を繰り返して、両ストローク量が一致したらステップS207に処理を進める。なお、両ストローク量が一致した時点で、右ピッチシリンダ73のストローク量と左ピッチ/チルトシリンダ74のストローク量とが一致する(図9B参照)。
 ステップS202で左リフトストローク量62Sが右リフトストローク量61Sより大きいと判定された場合、ステップS205において、制御装置220Aは、左ピッチ/チルトシリンダ74を伸張させる。このとき、左リフトストローク量62Sは、左ピッチ/チルトシリンダ74の伸張に応じて徐々に小さくなる。
 ステップS206において、制御装置220Aは、左ピッチ/チルトシリンダ74を伸張させながら、右リフトストローク量61Sと左リフトストローク量62Sが一致したか否かを判定する。制御装置220Aは、両ストローク量が一致していなければステップS205,S206を繰り返し、両ストローク量が一致したらステップS207に処理を進める。なお、ステップS204と同様に、両ストローク量が一致した時点で、右ピッチシリンダ73のストローク量と左ピッチ/チルトシリンダ74のストローク量とは一致する
(図9B参照)。
 ステップS207において、制御装置220Aは、ステップS202,S204,S206で右リフトストローク量61Sと左リフトストローク量62Sが一致した状態から、右ピッチシリンダ73と左ピッチ/チルトシリンダ74を異なる速度で収縮させる。右ピッチシリンダ73と左ピッチ/チルトシリンダ74を異なる速度で収縮させると、一致していた右リフトストローク量61Sと左リフトストローク量62Sとの差が徐々に大きくなっていく(図9C参照)。
 ステップS208において、制御装置220Aは、右リフトストローク量61Sと左リフトストローク量62Sのストローク差ΔSが閾値TH2(例えば、3mm)より小さいか否かを判定する。制御装置220Aは、ストローク差ΔSが閾値TH2より小さくなければステップS207を繰り返し、ストローク差ΔSが閾値TH2より小さければステップS209に処理を進める。
 ここで、ストローク差ΔSが閾値TH2より小さくなるのは、図9Cに示すように、右ピッチシリンダ73の収縮が止まった後も左ピッチ/チルトシリンダ74が収縮し続けることによって、左リフトストローク量62Sが右リフトストローク量61Sに近づいていくからである(図9D参照)。右ピッチシリンダ73の収縮が止まった後も左ピッチ/チルトシリンダ74が収縮し続けるのは、上述の通り、右ピッチシリンダ73よりも遅く左ピッチ/チルトシリンダ74を収縮させているからである。
 ステップS209において、制御装置220Aは、ステップS208でストローク差ΔSが閾値TH2より小さいと判定された場合、右ピッチシリンダ73と左ピッチ/チルトシリンダ74の収縮を停止させる。これにより、ブレード50は、前後に所定の傾きを有し、かつ、実質的に左右に傾いていない状態となる。本実施形態においても、リフトシリンダ60の長さが閾値TH2(例えば、3mm)より十分に大きいため、閾値TH1程度のストローク差ΔSがあっても、一対のリフトシリンダ60は平行であると見なすことができる。このように、本実施形態において、「一対のリフトシリンダ60が平行である」とは、ストローク差ΔSが“0”である場合だけでなく、ストローク差ΔSが閾値TH2程度である場合をも含む概念である。
 ステップS210において、制御装置220Aは、右リフトシリンダ61と左リフトシリンダ62を同じ速度で駆動させることによって、ロッド61bとロッド62bを基準位置に合わせる。これにより、ブレード50は、地面から所定高さに移動される。
 以上により、ブレード50を基準位置に復帰させるためのブレード姿勢復帰制御が完了する。
 (特徴)
 第2実施形態において、制御部220は、右リフトストローク量61Sと左リフトストローク量62Sが一致した状態から、右ピッチシリンダ73と左ピッチ/チルトシリンダ74を異なる速度で駆動させる。右ピッチシリンダ73の最大ストローク長と左ピッチ/チルトシリンダ74の最大ストローク長が同じであるため、右ピッチシリンダ73の停止後に左ピッチ/チルトシリンダ74だけが駆動されることでストローク差ΔSが小さくなる。制御部220は、ストローク差ΔSが閾値TH2より小さくなった場合に、右ピッチシリンダ73と左ピッチ/チルトシリンダ74を停止させる。
 従って、一対のリフトストロークセンサ63のみを利用して、一対のピッチ/チルトシリンダ70を駆動させることによって、ブレード50を基準姿勢に復帰させることができる。そのため、ブレード50の刃先51が地面に食い込みすぎたり、ブレード50の刃先51が地面から離れすぎたりすることを抑制できる。その結果、効率的な掘削作業を実行することができる。
 (その他の実施形態)
 本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 (A)上記実施形態では、右ピッチシリンダ71,73における基準位置は、シリンダ本体71a,73aの基端に設定されることとしたが、これに限られるものではない。右ピッチシリンダ71,73における基準位置は、シリンダ本体71a,73aの先端に設定されてもよい。すなわち、右ピッチシリンダ71,73における基準位置は、シリンダ本体71a,73aの一端に設定されていればよい。この場合、図6におけるステップS103,S105,S107において収縮と伸張が入れ替わり、図8におけるステップS203,S205,S207において収縮と伸張が入れ替わる。
 (B)上記実施形態では、右ピッチシリンダ71,73における基準位置は、シリンダ本体71a,73aの基端に設定されることとしたが、これに限られるものではない。右ピッチシリンダ71,73における基準位置は、シリンダ本体71a,73aの先端と基端の間の所定の位置に設定されてもよい。この場合、上記実施形態のフロー終了後、フロー内でのピッチ動作と逆方向に所定量のピッチ動作を行えばよい。
 (C)上記実施形態では、作業機械の一例としてブルドーザ100を挙げて説明したが、作業機械としてはモータグレーダなどが挙げられる。
 (D)上記第2実施形態では、右ピッチシリンダ73と左ピッチ/チルトシリンダ74を異なる速度で収縮させることとしたが、これに限られるものではない。右ピッチシリンダ73と左ピッチ/チルトシリンダ74の最大ストローク長が同じである場合においても、右ピッチシリンダ73と左ピッチ/チルトシリンダ74を同じ速度で収縮させてもよい。この場合には、右ピッチシリンダ73と左ピッチ/チルトシリンダ74それぞれのリリーフ圧を検出する圧力センサを設けて、両シリンダにリリーフ圧が発生したことをもって右ピッチシリンダ73と左ピッチ/チルトシリンダ74が基準位置に復帰したことを検出することができる。従って、この場合には、制御装置220Aは、ストローク差ΔSが閾値TH2より小さくなったことを検出する必要はない。
 100  ブルドーザ
 10   車体
 20   キャブ
 40   リフトフレーム
 50   ブレード
 60   一対のリフトシリンダ(一対の第1の油圧シリンダ)
 61   右リフトシリンダ
 61S  右リフトストローク量
 62   左リフトシリンダ
 62S  左リフトストローク量
 63   一対のリフトストロークセンサ
 70,70A   一対のピッチ/チルトシリンダ(一対の第2の油圧シリンダ)
 71,73   右ピッチシリンダ
 71a,73a  シリンダ本体
 71b,73b  ロッド
 72,74   左ピッチ/チルトシリンダ
 72a,74a  シリンダ本体
 72b,74b  ロッド
 200  ブレード制御システム
 210  ブレード姿勢復帰ボタン
 220  制御装置
 240  メインバルブ
 ΔS  ストローク差
 TH1,2   閾値

Claims (5)

  1.  車体と、
     前記車体に支持されるブレードと、
     前記ブレードを上下させるための一対の第1の油圧シリンダと、
     前記ブレードを前後及び左右に傾けるための一対の第2の油圧シリンダと、
     前記一対の第1の油圧シリンダそれぞれのストローク量を検出する一対のリフトストロークセンサと、
     前記一対の第1の油圧シリンダのストローク量が一致した状態から前記一対の第2の油圧シリンダを駆動させ、前記一対の第1の油圧シリンダのストローク量の差と所定の閾値との大小関係に基づいて前記一対の第2の油圧シリンダの駆動を停止させる制御部と、
    を備える作業機械。
  2.  前記一対の第2の油圧シリンダは、前記ブレードを前後に傾けるためのピッチシリンダと、前記ブレードを前後及び左右に傾けるためのピッチ/チルトシリンダと、を含み、
     前記ピッチシリンダの最大ストローク長は、前記ピッチ/チルトシリンダの最大ストローク長より短く、
     前記制御部は、前記一対の第2の油圧シリンダそれぞれを同じ速度で駆動させながら、前記一対の第1の油圧シリンダのストローク量の差が前記所定の閾値より大きいと判定した場合に、前記一対の第2の油圧シリンダの駆動を停止させる、
    請求項1に記載の作業機械。
  3.  前記一対の第2の油圧シリンダは、前記ブレードを前後に傾けるためのピッチシリンダと、前記ブレードを前後及び左右に傾けるためのピッチ/チルトシリンダと、を含み、
     前記ピッチシリンダの最大ストローク長は、前記ピッチ/チルトシリンダの最大ストローク長と同じであり、
     前記制御部は、前記一対の第2の油圧シリンダそれぞれを異なる速度で駆動させ、前記
    一対の第1の油圧シリンダのストローク量の差が前記所定の閾値より小さいと判定した場合に、前記一対の第2の油圧シリンダの駆動を停止させる、
    請求項1に記載の作業機械。
  4.  一対の第1の油圧シリンダにより上下されるブレードを有する作業機械の前記ブレードの自動制御方法であって、
     前記一対の第1の油圧シリンダそれぞれの位置を検出するステップと、
     検出された前記一対の第1の油圧シリンダそれぞれの位置を比較するステップと、
     前記一対の第1の油圧シリンダが平行になるまで前記ブレードをチルト動作させるステップと、
     前記一対の第1の油圧シリンダが平行になるまで前記ブレードをチルト動作させた後において、前記一対の第1の油圧シリンダが非平行になるまで前記ブレードをピッチ動作させるステップと、
    を備える作業機械のブレードの自動制御方法。
  5.  一対の第1の油圧シリンダにより上下され、かつ、一対の第2の油圧シリンダにより前後及び左右に傾けられるブレードを持つ作業機械の前記ブレードの自動制御方法であって、
     前記一対の第1の油圧シリンダそれぞれの位置を検出するステップと、
     検出された前記一対の第1の油圧シリンダそれぞれの位置を比較するステップと、
     前記一対の第1の油圧シリンダが平行になるまで前記ブレードをチルト動作させるステップと、
     前記一対の第1の油圧シリンダが平行になるまで前記ブレードをチルト動作させた後において、前記一対の第1の油圧シリンダが平行な状態から前記一対の第2の油圧シリンダを異なる速度で動作させてから、前記一対の第1の油圧シリンダが再び平行な状態になると前記一対の第2の油圧シリンダの動作を停止させるステップと、
    を備える作業機械のブレードの自動制御方法。
PCT/JP2013/066214 2012-08-06 2013-06-12 作業機械及び作業機械のブレードの自動制御方法 WO2014024562A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/131,700 US8931572B2 (en) 2012-08-06 2013-06-12 Work machine and automatic control method for blade of work machine
CN201380002591.XA CN103732832B (zh) 2012-08-06 2013-06-12 作业机械及作业机械的推土铲的自动控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012174436A JP5442815B2 (ja) 2012-08-06 2012-08-06 作業機械及び作業機械のブレードの自動制御方法
JP2012-174436 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014024562A1 true WO2014024562A1 (ja) 2014-02-13

Family

ID=50067804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066214 WO2014024562A1 (ja) 2012-08-06 2013-06-12 作業機械及び作業機械のブレードの自動制御方法

Country Status (4)

Country Link
US (1) US8931572B2 (ja)
JP (1) JP5442815B2 (ja)
CN (1) CN103732832B (ja)
WO (1) WO2014024562A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593461B2 (en) 2014-05-19 2017-03-14 Caterpillar Inc. Work tool pitch control system for a machine
US11236484B2 (en) 2014-06-10 2022-02-01 Progressive Ip Limited Blade levelling apparatus and mounting system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617710B2 (en) 2014-06-18 2017-04-11 Komatsu Ltd. Work vehicle and method for controlling work vehicle
JP6419521B2 (ja) * 2014-10-10 2018-11-07 住友建機株式会社 道路機械
CN105745379B (zh) * 2014-10-30 2018-02-27 株式会社小松制作所 推土铲控制装置、作业车辆和推土铲控制方法
US9863120B2 (en) * 2015-04-29 2018-01-09 Caterpillar Inc. System and method for controlling a machine implement
US10047502B2 (en) 2015-12-10 2018-08-14 Caterpillar Inc. System and method for controlling a work implement of a machine
JP6911018B2 (ja) * 2016-05-17 2021-07-28 住友重機械工業株式会社 ショベル
US10407867B2 (en) * 2016-06-22 2019-09-10 Caterpillar Inc. Hydraulic lift cylinder mounting arrangement for track-type tractors
CN106592666A (zh) * 2016-12-22 2017-04-26 广西柳工机械股份有限公司 平地机工作装置调节机构及平地机
JP7418948B2 (ja) 2018-03-28 2024-01-22 株式会社小松製作所 作業車両の制御システム、方法、及び作業車両
US11359354B2 (en) * 2019-01-17 2022-06-14 Deere & Company Birds-eye-view as cailibration for grade control
US10995471B2 (en) * 2019-02-21 2021-05-04 Deere & Company Dozer blade for work vehicle
CN111379286A (zh) * 2020-03-30 2020-07-07 济南大学 一种推土机松土器自主作业装置及包括该装置的推土机
CN111576514B (zh) * 2020-05-28 2022-03-15 江苏徐工工程机械研究院有限公司 找平控制方法及系统、控制器、平地机
JP7503455B2 (ja) * 2020-09-01 2024-06-20 株式会社小松製作所 作業機械
JP7096388B1 (ja) * 2021-03-11 2022-07-05 株式会社日立建機ティエラ 建設機械

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105036A (en) * 1979-02-06 1980-08-12 Komatsu Ltd Automatic blade leveling apparatus for bulldozer
JP2001107385A (ja) * 1999-09-03 2001-04-17 Caterpillar Inc 土工作業機械の進行方向を制御する方法及び装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018706A1 (fr) * 1991-04-12 1992-10-29 Komatsu Ltd. Niveleuse pour bulldozer
JP2650240B2 (ja) * 1993-06-23 1997-09-03 株式会社小松製作所 ブルドーザのドージング装置
US5499684A (en) * 1994-08-16 1996-03-19 Caterpillar Inc. Geographic surface altering implement control system
JP3256405B2 (ja) * 1995-03-23 2002-02-12 株式会社小松製作所 ブルドーザの土工板制御装置およびその制御方法
CN1179194A (zh) * 1995-03-23 1998-04-15 株式会社小松制作所 推土机的铲斗控制装置及其控制方法
DE19529169A1 (de) * 1995-08-08 1997-02-13 Hoffmann Elektrokohle Schleifstück für Stromabnehmer
JP3373121B2 (ja) * 1996-12-02 2003-02-04 株式会社小松製作所 ブルドーザのドージング装置
JP3794763B2 (ja) * 1996-09-13 2006-07-12 株式会社小松製作所 ブルドーザのドージング装置
JPH10147953A (ja) * 1996-11-18 1998-06-02 Komatsu Ltd ブルドーザのドージング装置
JPH10147952A (ja) * 1996-11-18 1998-06-02 Komatsu Ltd ブルドーザのドージング装置
JP3731961B2 (ja) * 1996-12-27 2006-01-05 株式会社小松製作所 ブルドーザの油圧装置
US6282453B1 (en) * 1998-12-02 2001-08-28 Caterpillar Inc. Method for controlling a work implement to prevent interference with a work machine
US7058495B2 (en) 2003-09-04 2006-06-06 Caterpillar Inc. Work implement control system and method
US7059124B2 (en) * 2003-12-01 2006-06-13 Komatsu Ltd. Hydraulic control apparatus for work machines
CN100464036C (zh) * 2005-03-28 2009-02-25 广西柳工机械股份有限公司 用于液压挖掘机工作装置的轨迹控制系统及方法
US8103417B2 (en) * 2007-08-31 2012-01-24 Caterpillar Inc. Machine with automated blade positioning system
WO2009067052A1 (en) * 2007-11-21 2009-05-28 Volvo Construction Equipment Ab System, working machine comprising the system, and method of springing an implement of a working machine during transport
CN102168434B (zh) * 2011-03-09 2012-05-23 湖南瑞龙重工科技有限公司 一种主动式铲运机及其车架升降控制装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105036A (en) * 1979-02-06 1980-08-12 Komatsu Ltd Automatic blade leveling apparatus for bulldozer
JP2001107385A (ja) * 1999-09-03 2001-04-17 Caterpillar Inc 土工作業機械の進行方向を制御する方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593461B2 (en) 2014-05-19 2017-03-14 Caterpillar Inc. Work tool pitch control system for a machine
US11236484B2 (en) 2014-06-10 2022-02-01 Progressive Ip Limited Blade levelling apparatus and mounting system

Also Published As

Publication number Publication date
CN103732832B (zh) 2015-06-03
US20140345889A1 (en) 2014-11-27
CN103732832A (zh) 2014-04-16
JP2014031696A (ja) 2014-02-20
US8931572B2 (en) 2015-01-13
JP5442815B2 (ja) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5442815B2 (ja) 作業機械及び作業機械のブレードの自動制御方法
US9026319B2 (en) Blade control device, working machine and blade control method
JP5247939B1 (ja) ブレード制御システムおよび建設機械
JP6689638B2 (ja) モータグレーダの制御方法およびモータグレーダ
JP5285815B1 (ja) ブレード制御システム、建設機械及びブレード制御方法
JP5391345B1 (ja) ブルドーザ及びブレード制御方法
WO2010101233A1 (ja) 建設機械、建設機械の制御方法、及びこの方法をコンピュータに実行させるプログラム
WO2018155407A1 (ja) 作業車両および作業車両の制御方法
JP6752186B2 (ja) 作業機械
CN105201038B (zh) 车辆
US20190085529A1 (en) System for controlling work vehicle, method for controlling work vehicle, and work vehicle
CA3031622C (en) Control system for work vehicle, control method, and work vehicle
US9617710B2 (en) Work vehicle and method for controlling work vehicle
JP6871946B2 (ja) 作業車両および作業車両の制御方法
CN109689980B (zh) 挖土机
KR102641393B1 (ko) 작업 기계 및 작업 기계의 제어 방법
WO2022255001A1 (ja) 作業機械、及び作業機械を制御するための方法
JP6223258B2 (ja) 作業車
JP2019112783A (ja) ショベル
US20240191471A1 (en) Work machine and method for controlling work machine
WO2022255064A1 (ja) 作業機械、及び作業機械を制御するための方法
WO2023053700A1 (ja) 作業機械を制御するためのシステムおよび方法
JP6113103B2 (ja) フロントローダ
JP6223259B2 (ja) フロントローダ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14131700

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828216

Country of ref document: EP

Kind code of ref document: A1