WO2014024514A1 - 蛋白質の精製方法 - Google Patents

蛋白質の精製方法 Download PDF

Info

Publication number
WO2014024514A1
WO2014024514A1 PCT/JP2013/057902 JP2013057902W WO2014024514A1 WO 2014024514 A1 WO2014024514 A1 WO 2014024514A1 JP 2013057902 W JP2013057902 W JP 2013057902W WO 2014024514 A1 WO2014024514 A1 WO 2014024514A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
activated carbon
mab
purification
eluate
Prior art date
Application number
PCT/JP2013/057902
Other languages
English (en)
French (fr)
Inventor
石原 尚
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Priority to EP19208112.3A priority Critical patent/EP3643722B1/en
Priority to ES13828251T priority patent/ES2774408T3/es
Priority to JP2014529324A priority patent/JP6189843B2/ja
Priority to EP13828251.2A priority patent/EP2883882B1/en
Publication of WO2014024514A1 publication Critical patent/WO2014024514A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation

Definitions

  • the present invention relates to a protein purification method and a protein production method including the purification method.
  • the present invention relates to an antibody purification method and an antibody production method including the purification method.
  • Such a protein is generally produced by culturing a recombinant cell inserted with a vector containing a gene encoding the target protein.
  • the culture solution contains impurities such as various medium-derived components, host cell-derived components, or protein-derived by-products. It is very difficult and challenging to achieve both the separation of the protein and purification of the target protein and the efficient production of the target protein in large quantities.
  • Protein purification methods are generally performed by a combination of different modes of chromatography. Chromatography separates the target protein and impurities based on, for example, charge, degree of hydrophilicity or molecular size.
  • protein A affinity chromatography or protein G affinity chromatography is used to purify the antibody by utilizing the property that protein A or protein G binds to a specific site such as the Fc chain of the antibody. Is used as one of chromatography (Patent Document 1).
  • protein A affinity carriers are very expensive compared to ion exchange carriers or hydrophobic carriers, and the carriers to be used when purifying antibodies on a large scale in industrial pharmaceutical production or the like. Since the amount is enormous, as a result, an increase in manufacturing cost is an unavoidable problem.
  • Protein A affinity chromatography or protein G affinity chromatography generally separates impurities from impurities by specifically adsorbing the target antibody on a carrier, washing the adsorbed carrier, and finally removing the target antibody from the carrier. Use the eluting adsorption mode.
  • the buffers used for washing and elution are different, the accompanying manufacturing equipment such as a buffer tank is enlarged or complicated as the size of the chromatography apparatus is increased. Furthermore, since the operation is complicated, all of these are factors that increase the manufacturing cost.
  • the manufacturing cost of a pharmaceutical product containing protein as an active ingredient is very high compared to the manufacturing cost of a pharmaceutical product containing a low-molecular compound as an active ingredient. That is, reduction of the cost required for protein purification is desired in this field.
  • the culture solution containing the target protein contains enzymes eluted from the host cells, and the target protein is degraded, modified, oxidized, or reduced by the enzymes during the protein purification process. It has been known. For this reason, a method for purifying a target protein without being decomposed, modified, oxidized, or reduced by adding an inhibitor of the enzyme has been studied (Patent Document 2). However, when an enzyme inhibitor is used for protein purification, a separate step for removing the inhibitor is required, and depending on the inhibitor, the quality of the purified protein may be affected. Therefore, the addition of the inhibitor is not necessarily the best method.
  • One of the fundamental solutions is to remove the host cell-derived enzymes. However, chromatography or the like can only be used, and a simple method for removing the enzymes is not known.
  • Activated carbon is an inexpensive material with a wide range of non-specific adsorption characteristics and natural origin, and is used as an adsorbent or decolorizing agent in industrial fields such as chemical production, food production, sewage and wastewater treatment, water purification treatment, and low-molecular-weight pharmaceutical production. It is used in applications such as agents. However, due to its wide range of non-specific adsorption characteristics, it is generally considered difficult to use activated carbon for the purification of advanced proteins such as separation from the impurities described above. unknown.
  • the present invention can reduce the production cost or labor compared with the conventional protein purification method, and has a separation property from impurities equal to or higher than that of the conventional protein purification method, particularly in antibody purification.
  • Another object of the present invention is to provide a purification method replacing protein A affinity chromatography, and a method for producing a protein comprising the purification method.
  • the present inventor surprisingly, a method for separating proteins and impurities in a non-adsorption mode using inexpensive activated carbon and purifying the proteins, particularly antibodies
  • a purification method using activated carbon instead of protein A affinity chromatography was found, and the present invention was completed.
  • the present invention relates to the following (1) to (14).
  • a protein purification method wherein activated protein is used to separate proteins and impurities to obtain a protein having a reduced impurity content.
  • the purification method according to (1) wherein the molecular weight of the protein is 30000 or more.
  • the purification method according to (1) or (2), wherein the protein is a glycoprotein.
  • the purification method according to (3), wherein the glycoprotein is an antibody.
  • the purification method according to any one of (1) to (4), wherein the protein is a recombinant protein.
  • a method for producing a protein comprising the purification method according to 1.
  • the production cost can be reduced or the labor can be reduced as compared with the conventional protein purification method, and the purification method, particularly the antibody purification, has separation characteristics from impurities equal to or higher than those of the conventional protein purification method.
  • the purification method particularly the antibody purification, has separation characteristics from impurities equal to or higher than those of the conventional protein purification method.
  • FIG. 1 shows the polymer content of the culture supernatant and the final purified product in non-adsorption mode purification containing activated carbons of Mab A, Mab B and Mab C.
  • the vertical axis represents the polymer content (%). Black indicates Mab A, white indicates Mab B, and gray indicates Mab C. From the left, the polymer content of the culture supernatant (culture supernatant) and the final purified product (purified product) are shown.
  • FIG. 2 shows the degradation product content of the culture supernatant and the final purified product in non-adsorption mode purification including activated carbons of Mab A, Mab B and Mab C.
  • the vertical axis represents the decomposition product content (%).
  • FIG. 3 shows the host cell protein content of the culture supernatant and the final purified product in non-adsorption mode purification including activated carbons of Mab A, Mab B and Mab C.
  • the vertical axis represents the host cell protein content (ng / mg) per mg of protein.
  • Black indicates Mab A, white indicates Mab B, and gray indicates Mab C, respectively, and the host cell protein content of the culture supernatant (culture supernatant) and the final purified product (purified product) from the left.
  • FIG. 4 shows the polymer content of the culture supernatant and the final purified product in non-adsorption mode purification including activated carbons of Mab A, Mab B, and Mab C.
  • the vertical axis represents the polymer content (%). Black indicates Mab A, white indicates Mab B, and gray indicates Mab C. From the left, the polymer content of the culture supernatant (culture supernatant) and the final purified product (purified product) are shown.
  • FIG. 5 shows the degradation product content of the culture supernatant and the final purified product in non-adsorption mode purification including activated carbons of Mab A, Mab B and Mab C.
  • the vertical axis represents the decomposition product content (%).
  • FIG. 6 shows the host cell protein content of the culture supernatant and the final purified product in non-adsorption mode purification containing activated carbons of Mab A, Mab B and Mab C.
  • the vertical axis represents the host cell protein content (ng / mg) per mg of protein.
  • Black indicates Mab A, white indicates Mab B, and gray indicates Mab C, respectively, and the host cell protein content of the culture supernatant (culture supernatant) and the final purified product (purified product) from the left.
  • FIG. 7 shows the recovery rate and total recovery rate of each process in Mab A purification.
  • the vertical axis represents each process recovery rate (%) or total recovery rate (%).
  • White indicates purification including protein A affinity chromatography, and black indicates purification including activated carbon treatment.
  • MabSelect SuRe treatment or activated carbon treatment process recovery rate Protein A or activated carbon
  • Q Sepharose treatment process recovery rate anion
  • POROS XS treatment process recovery rate cation
  • total recovery rate total recovery rate
  • FIG. 8 shows each process recovery rate and total recovery rate in Mab B purification.
  • the vertical axis represents each process recovery rate (%) or total recovery rate (%).
  • Black indicates purification including protein A affinity chromatography, and gray indicates purification including activated carbon treatment.
  • FIG. 9 shows the polymer content of the purified intermediate and final purified product in Mab A purification.
  • the vertical axis represents the polymer content (%).
  • the black circles indicate purification including protein A affinity chromatography, and the open triangles indicate purification including activated carbon treatment.
  • FIG. 10 shows the degradation product content of the purified intermediate and final purified product in Mab A purification.
  • the vertical axis represents the decomposition product content (%).
  • the black circles indicate purification including protein A affinity chromatography, and the open triangles indicate purification including activated carbon treatment.
  • FIG. 11 shows the polymer content of the purified intermediate and final purified product in Mab B purification.
  • the vertical axis represents the polymer content (%).
  • Black diamonds indicate purification including protein A affinity chromatography, and open squares indicate purification including activated carbon treatment.
  • FIG. 12 shows the degradation product content of the purified intermediate and final purified product in Mab B purification.
  • the vertical axis represents the decomposition product content (%). Black diamonds indicate purification including protein A affinity chromatography, and open squares indicate purification including activated carbon treatment.
  • FIG. 13 shows the host cell protein content of the purified intermediate and final purified product in Mab A purification.
  • the vertical axis represents the host cell protein content (ng / mg) per mg of protein.
  • the black circles indicate purification including protein A affinity chromatography, and the open triangles indicate purification including activated carbon treatment.
  • FIG. 14 shows the host cell protein content of purified intermediate and final purified product in Mab B purification.
  • the vertical axis represents the host cell protein content (ng / mg) per mg of protein.
  • the black diamonds indicate purification including protein A affinity chromatography, and the open squares indicate purification including activated carbon treatment.
  • FIG. 15 shows SDS-PAGE of Mab B culture supernatant. From left to right, (A) clarified solution, (B) supernatant retained for 24 hours with the addition of activated carbon and the activated carbon removed, and (C) supernatant retained for 24 hours without the addition of activated carbon.
  • FIG. 16 shows SDS-PAGE of Mab D culture supernatant.
  • FIG. 17 shows the DNA content per 1 mg of protein in the final purified product by activated carbon purification and the purified product by Protein A purification for Mab A and Mab B.
  • the vertical axis represents the DNA content (pg / mg) per mg of protein.
  • FIG. 18 shows the host cell protein reduction rate of the activated carbon eluate at each pH by Mab B activated carbon treatment.
  • the vertical axis represents the host cell protein reduction rate (HCP LRV) in the activated carbon eluate.
  • FIG. 19 shows the relative antibody concentration of the activated carbon eluate at each pH by Mab B activated carbon treatment.
  • the vertical axis indicates the relative antibody concentration (%) of the activated carbon eluate when the antibody concentration in the activated carbon eluate of pH 7 is 100.
  • the relative antibody concentrations of the activated carbon eluate at pH 4, pH 5, pH 6, pH 7, and pH 8 are shown from the left.
  • FIG. 20 shows the polymer content of the activated carbon eluate by various activated carbon treatments of Mab B. The vertical axis represents the polymer content (%) in the activated carbon eluate.
  • FIG. 21 shows the decomposition product content of the activated carbon eluate by Mab B activated carbon treatment.
  • shaft shows the decomposition product content rate (%) of activated carbon eluate.
  • FIG. 22 shows the host cell protein content of the activated carbon eluate obtained by various activated carbon treatments of Mab B. The vertical axis represents the host cell protein content (ng / mg) of the activated carbon eluate. From the left, the host cell protein content of the activated carbon eluate in the culture supernatant, white rabbit P, white rabbit DO-2, and white rabbit DO-5 is shown.
  • the present invention relates to a protein purification method, which uses activated carbon to separate proteins and impurities and to obtain a protein having a reduced impurity content.
  • examples of the protein include a natural or non-natural protein having no sugar chain, a natural or non-natural glycoprotein, or a derivative thereof.
  • the glycoprotein or a derivative thereof may be a composition composed of molecules having different sugar chains.
  • a protein having a molecular weight of preferably 30,000 or more, more preferably a protein having a molecular weight of 50,000 or more can be mentioned.
  • erythropoietin for example, erythropoietin, darbepoetin, antithrombin ( ⁇ -form or ⁇ -form, or a mixture thereof), interferons, interleukins, protein S, tissue plasminogen activator, factor VII, factor VIII Factor, factor IX, thrombomodulin, glucocerebrosidase, ⁇ -galactosidase, ⁇ -L-iduronidase, acid ⁇ -glucosidase, granulocyte colony stimulating factor G-CSF (Granulocyte Colony Stimulating Factor), granulocyte macrophage stimulating factor GM-CSF (Granulocyte Macrophage-Colony Stimulating Factor), thrombopoietin or megakaryocyte growth factor MGDF (Mega karyocyte Growth and Development Factor), fibroblast growth factor FGF, epidermal growth factor EGF, insulin-like growth factor IGF, brain-derived neuro
  • antibodies include mouse antibodies, llama antibodies, chimeric antibodies, humanized antibodies, human antibodies, or antibodies obtained by modifying their Fc regions, etc.
  • molecular types include, for example, IgG, IgM, IgA, IgD IgE, Fab, Fc, Fc-fusion protein, VH, VL, VHH, Fab ′ 2 , scFv, scFab, scDb, or scDbFc.
  • a protein-containing aqueous solution containing the target protein and impurities is provided.
  • the protein-containing aqueous solution examples include a composition obtained from a living body such as plasma, serum, milk, or urine, a cell that produces a protein obtained by using a gene recombination technique or a cell fusion technique, or a culture of fungi such as Escherichia coli.
  • Examples of the protein producing cell include a transformed cell in which a gene encoding a desired protein is incorporated into a host cell.
  • host cells examples include cell lines such as animal cells, plant cells, and yeast cells.
  • CHO cells Chinese hamster ovary cells
  • mouse myeloma cells NS0 cells SP2 / 0 cells
  • rat myeloma cells YB2 / 0 cells IR983F cells
  • Syrian hamster kidney-derived cells BHK Cells human myeloma cells such as Namalva cells, embryonic stem cells, or fertilized egg cells.
  • Any medium suitable for culturing each cell can be used as a medium for culturing cells that produce proteins.
  • a medium for culturing animal cells can be used for normal animal cell culture.
  • a medium is used.
  • any medium such as a serum-containing medium, a medium not containing animal-derived components such as serum albumin or serum fraction, a serum-free medium, or a protein-free medium can be used, but preferably a serum-free medium or a protein-free medium Is used.
  • RPMI 1640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science, 122, 501 (1952)], Dulbecco's modified MEM (DMEM) medium [Viro] , 8, 396 (1959)], 199 medium [Proceeding of the Society for the Biological Medical, 73, 1 (1950)], F12 medium [Proc. Natl. Acad. Sci. USA, 53, 288 (1965)], Iskov modified Dulbecco medium (IMDM medium) [J.
  • EX-CELL302 medium EX-CELL-CD-CHO medium, EX-CELL 325 medium (above, manufactured by SAFC Bioscience), CD-CHO medium, CD DG44 medium (above) Invitrogen) or IS CD-CHO medium (manufactured by Irvine Scientific), or a modified medium, mixed medium, concentrated medium or the like thereof, preferably RPMI1640 medium, DMEM medium, F12 medium, IMDM medium EX-CELL302 medium, CD-CHO medium or IS CD-CHO medium is used.
  • physiologically active substances or nutrient factors necessary for the growth of cells that produce proteins can be added as necessary.
  • additives are preliminarily contained in the medium before culturing, or appropriately added to the culture medium as an additional medium or an added solution during culturing.
  • the additional supply method may be in any form such as one solution or a mixed solution of two or more kinds, and the addition method may be either continuous or intermittent.
  • transgenic non-human animal, plant or insect that produces a protein examples include a non-human animal, plant or insect in which a gene encoding the protein is incorporated into a cell.
  • non-human animals include mice, rats, guinea pigs, hamsters, rabbits, dogs, sheep, pigs, goats, cows, monkeys, and the like.
  • plants include tobacco, potato, tomato, carrot, soy bean, rape, alfalfa, rice, wheat, barley or corn.
  • Examples of the method for producing a protein-containing aqueous solution include, for example, International Publication No. 2008/120801, Japanese Unexamined Patent Publication No. Hei 3-198792, International Publication No. 2010/018847, International Publication No. 2007/062245, or International Publication No. 2007 / 114496 etc. are mentioned.
  • the protein-containing aqueous solution includes a protein-containing aqueous solution obtained in a purification step in addition to a protein-containing plasma or urine obtained from a living body.
  • a cell removal solution a precipitate removal solution, an alcohol fraction solution, a salting-out fraction solution, and a chromatography eluate.
  • Cell removal solutions include protein-containing aqueous solutions obtained from living organisms such as plasma, serum, milk or urine, protein-containing aqueous solutions obtained from transgenic non-human animals, plants or insects, and established using genetic recombination techniques.
  • Examples include a solution in which cells are removed from a protein-containing aqueous solution obtained from cells or a protein-containing aqueous solution obtained in a purification step. Specifically, for example, centrifugation from a cell culture, cross flow filtration (tangential flow filtration), filtration using a depth filter, filtration using a membrane filter, dialysis, or a combination of these methods
  • Examples thereof include a solution obtained by removing cells by, for example.
  • the depth filter include, for example, Millistak + HC depth filter, Millistak + DE depth filter, Millistak + CE depth filter (Merck Millipore), Supra P depth filter (Paul), Zalt Clear.
  • PB depth filter Sartoclear PC depth filter (manufactured by Sartorius), zeta plus SP depth filter, zeta plus AP depth filter, zeta plus LA depth filter, zeta plus delipid depth filter, zeta plus ZA depth filter or zeta plus EXT charged depth A filter (manufactured by Sumitomo 3M Co., Ltd.) and the like are exemplified, but not limited thereto.
  • Precipitate removal solutions include protein-containing aqueous solutions obtained from living organisms such as plasma, serum, milk or urine, protein-containing aqueous solutions obtained from transgenic non-human animals, plants or insects, and gene recombination techniques. Protein-containing aqueous solution obtained from isolated cells, protein-containing aqueous solution obtained using cell-free protein synthesis technology, or protein-containing aqueous solution obtained in the purification step, low pH treatment or caprylic acid, organic solvent, polyethylene glycol, interface Examples thereof include a solution obtained by removing the precipitate after performing aggregation precipitation (flocculation) or two-phase separation by adding an activator, salt, amino acid, polymer, or the like.
  • Examples of the method for removing the precipitate include a centrifugal separation method, a cross flow filtration method (tangential flow filtration method), a filtration method using a depth filter, a filtration method using a membrane filter, a dialysis method, or a combination of these methods. Is mentioned.
  • the pH of the low pH treatment is preferably pH 3 to 6, and is adjusted by adding an acid such as hydrochloric acid, acetic acid, citric acid or phosphoric acid.
  • Alcohol fractions include protein-containing aqueous solutions obtained from living organisms such as plasma, serum, milk or urine, protein-containing aqueous solutions obtained from transgenic non-human animals, plants or insects, and gene recombination techniques. Protein-containing aqueous solution obtained from isolated cells, protein-containing aqueous solution obtained using cell-free protein synthesis technology, or fraction solution prepared by adding alcohol or the like from protein-containing aqueous solution obtained in the purification step Etc. Specifically, for example, a fraction obtained by a technique such as a low-temperature ethanol fractionation method can be mentioned.
  • protein-containing aqueous solutions obtained from living organisms such as plasma, serum, milk or urine, protein-containing aqueous solutions obtained from transgenic non-human animals, plants or insects, established using genetic recombination technology From the protein-containing aqueous solution obtained from the obtained cells, the protein-containing aqueous solution obtained using the cell-free protein synthesis technique or the protein-containing aqueous solution obtained in the purification step, ammonium sulfate, sodium sulfate, sodium citrate, sodium chloride or Examples thereof include a fraction solution prepared by adding a salt such as potassium chloride to precipitate a protein.
  • a salt such as potassium chloride
  • Chromatographic eluents include protein-containing aqueous solutions obtained from living organisms such as plasma, serum, milk or urine, protein-containing aqueous solutions obtained from transgenic non-human animals, plants or insects, and established using genetic recombination techniques.
  • the protein-containing aqueous solution obtained from the cells, the protein-containing aqueous solution obtained using the cell-free protein synthesis technique, or the protein-containing aqueous solution obtained in the purification step is adsorbed on a carrier or membrane used for chromatography, Examples include a protein eluate obtained by elution with an eluate or non-adsorption.
  • Carriers or membranes used in chromatography include affinity carriers, ion exchange carriers, ion exchange membranes, gel filtration carriers, hydrophobic interaction carriers, reverse phase carriers, hydroxyapatite carriers, fluoroapatite carriers, sulfated cellulose carriers, sulfuric acid Agarose carrier, mixed mode (multimodal) carrier and the like.
  • ion exchange carrier or ion exchange membrane examples include molecules having an ion exchange group, for example, a sulfate group, a methyl sulfate group, a sulfophenyl group, a sulfopropyl group, a carboxymethyl group, a quaternary ammonium group, and a quaternary aminoethyl group.
  • a base carrier or a membrane for example, a polymer such as cellulose, sepharose, agarose, chitosan, an acrylic acid polymer or a styrene-divinylbenzene copolymer and derivatives thereof (including a crosslinked polymer), silica particles, Examples thereof include a carrier or a film directly or indirectly bonded to a polymer composed of glass particles, ceramic particles or surface-treated particles thereof, and specifically, for example, Q Sepharose XL, Q Sepharose FF, DEAE Sepharose.
  • the affinity carrier examples include a carrier obtained by directly or indirectly binding a molecule having affinity for a target protein, for example, heparin, protein A, protein G, or protein L to the same base carrier as described above.
  • a carrier obtained by directly or indirectly binding a molecule having affinity for a target protein for example, heparin, protein A, protein G, or protein L to the same base carrier as described above.
  • Heparin Sepharose 6 Fast Flow manufactured by GE Healthcare
  • Prosep-Heparin manufactured by Merck Millipore
  • TOYOPEARL AF-Heparin-650 manufactured by Tosoh Corporation
  • Heparin HyperD manufactured by Paul
  • MabSelect Protein A Sepharose FF, MabSelect Xtra, MabSelect SuRe, MabSelect SuRe LX
  • Protein G Sepharose FF Ca to L (manufactured by GE Healthcare)
  • Prosep vA Hicapacity Prosep vA
  • gel filtration carrier examples include a carrier made of a polymer composed of dextran, allyl dextran, N, N′-methylenebisacrylamide, cellulose, agarose, styrene, divinylbenzene, polyvinyl alcohol, silica, chitosan, and the like.
  • Sephacryl S series Sepharose series, Sephadex series, Superdex series, Sephacryl series (hereinafter, manufactured by GE Healthcare), TOYOPARRL HW series, TSKgel PW series (hereinafter, manufactured by Tosoh Corporation), Bio gel Agarose , Bio gel P Polyacrylamide (above, manufactured by Bio-Rad), Cellufine GH, Cellufine GCL (above, NC Co.), Trisacryl GF05, Trisacryl GF2000, Ultrogel AcA (Although Pall Ltd.) or Fractogel BioSEC (Merck Millipore), and the like, without limitation.
  • hydrophobic interaction carrier examples include hydrophobic molecules such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, tert-butyl group, octyl group, ether group or phenyl group as described above.
  • hydrophobic molecules such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, tert-butyl group, octyl group, ether group or phenyl group as described above.
  • examples include a carrier directly or indirectly bound to a base carrier.
  • Phenyl Sepharose 6 Fast Flow high-sub
  • Phenyl Sepharose 6 Fast Flow low-sub
  • Octyl Sepharose 4 Butyl Sepharose 4 Fast Flow above, manufactured by GE Healthcare
  • TOYOPEARL Hexyl-650, TOYOPEARL Butyl-650, TOYOPEARL Phen l-650, TOYOPEARL Ether-650, TOYOPEARL PPG-600, TOYOPEARL Butyl-600, TOYOPEARL Super Butyl-550 aboveve, manufactured by Tosoh Corporation
  • QMA Spherosil Methyl Ceramic HyperD (Pole), Fractogel Phenyl (S), Fracto Gel Proyl (S) (Merck Millipore), Phenyl-Cellulofine (JNC), Diaion HP, Diaion SP (Mitsubishi
  • Examples of the reverse phase carrier include a carrier in which a hydrocarbon group is bonded directly or indirectly to a solid phase matrix.
  • Examples of the hydrocarbon group include a trimethyl group, a butyl group, a phenyl group, an octyl group, an octadecyl group, and a functional group obtained by modifying these ends.
  • the RESOURCE RPC series or the SOURCE RPC series manufactured by GE Healthcare may be used, but the invention is not limited thereto.
  • hydroxyapatite carrier examples include, but are not limited to, CHT Ceramic Hydroxyapatite Type I or Type II (hereinafter referred to as “BioRad”).
  • fluoroapatite carrier examples include, but are not limited to, CFT Ceramic Fluoroapatite (manufactured by Bio-Rad).
  • sulfated cellulose carrier or sulfated agarose carrier examples include cellulite sulfate, cellulite sulfate m, cellulite sulfate c, sulfated cellulose fine m, sulfated cellulose fine c, sulfated cellulose fine m or sulfuric acid.
  • examples include, but are not limited to, Chemical Fine C (made by JNC) or Capto DeVirS (made by GE Healthcare).
  • the mixed mode carrier two or more kinds of functional groups having different selectivity, preferably the same ion exchange group as described above and the same hydrophobic interaction group as described above, are directly or indirectly applied to the same base carrier as described above.
  • Capto adhere preferably the same ion exchange group as described above and the same hydrophobic interaction group as described above
  • HEA HyperCel preferably the same ion exchange group as described above
  • PPA HyperCel HEA HyperCel
  • MEP HyperCel manufactured by Pall
  • TOYOPEARL MX-Trp -650M manufactured by Tosoh Corporation
  • the protein-containing aqueous solution is preferably a protein-containing aqueous solution obtained without using affinity chromatography, more preferably a protein-containing aqueous solution obtained without using protein A affinity chromatography. Is mentioned.
  • the protein-containing aqueous solution may be subjected to the purification method of the present invention after removing insoluble matters such as particles in advance and removing the insoluble matters.
  • methods for removing insoluble matters such as particles include centrifugal separation, cross-flow filtration (tangential flow filtration), filtration using a depth filter, filtration using a membrane filter, dialysis, or a combination of these methods. Method.
  • electrical conductivity, a buffer solution, protein concentration, or the protein addition amount per unit volume of activated carbon as needed, it uses for the purification method of this invention.
  • Examples of methods for adjusting pH, conductivity, buffer solution, protein concentration, protein addition amount per unit volume of activated carbon, and the like include an ultrafiltration method using an ultrafiltration membrane.
  • the ultrafiltration membrane examples include a normal ultrafiltration membrane and an ultrafiltration membrane to which a positive or negative charge is added.
  • examples thereof include, but are not limited to, a membrane, a pericon 2 ultracell membrane, a pericon 2 biomax membrane (manufactured by Merck Millipore), an omega membrane (manufactured by Paul), and a Kwick membrane (manufactured by GE Healthcare).
  • the impurities include host cell protein (HCP), protein-derived polymer, protein-derived degradation product, denaturation, removal of sugar chain components, oxidation or deamidation, and the like.
  • HCP host cell protein
  • enzymes eluted from host cells include sugar-removing enzymes, protein hydrolases or oxidoreductases.
  • sugar-removing enzymes include neuraminidase (sialidase), galactosidase, glycanase, and the like.
  • proteolytic enzyme include serine protease, esterase, cysteine protease, trypsin-like protease, aminopeptidase, aspartic protease, cathepsin and the like.
  • oxidoreductase include thioredoxin-related enzymes such as thioredoxin reductase.
  • amino acid isomerase include transglutaminase.
  • any activated carbon suitable for the production of pharmaceuticals can be used. Even if one type of activated carbon is used alone, two or more types of activated carbon can be used alone or in combination. It may be used.
  • the activated carbon examples include mineral activated carbon and plant activated carbon.
  • Specific examples of the mineral-based activated carbon include coal-based activated carbon and petroleum-based activated carbon
  • specific examples of the plant-based activated carbon include wood-based activated carbon or coconut shell activated carbon.
  • wood based activated carbon is used.
  • any carbonaceous material can be used as the raw material for the activated carbon.
  • wood such as sawdust, charcoal, raw ash, grass charcoal, peat or wood chips, coal such as coconut shell, lignite, lignite or anthracite, Examples include coal pitch, petroleum pitch, oil carbon, rayon, acrylonitrile, and phenol resin.
  • the method for producing activated carbon is not particularly limited.
  • a chemical activation method in which chemicals such as zinc chloride or phosphoric acid are added and permeated at a high temperature and carbonized at a high temperature, or a carbonized raw material and steam, carbon dioxide, air, or combustion
  • a gas activation method in which a gas such as a gas is reacted at a high temperature.
  • Any activated carbon may be used as long as it is suitable for the production of pharmaceuticals.
  • granular activated carbon such as pulverized charcoal, granular charcoal, spherical charcoal or pellet charcoal, fibrous activated charcoal or sheet such as fiber or cloth, etc.
  • specially-shaped activated carbon such as a green body, a molded body or a honeycomb, and powdered activated carbon.
  • activated carbon to which a positive or negative charge is added or activated carbon modified with a surface modifier such as polyhydroxyethyl methacrylate (PHEMA), heparin, cellulose or polyurethane is also included in the activated carbon of the present invention.
  • PHEMA polyhydroxyethyl methacrylate
  • heparin heparin
  • cellulose cellulose or polyurethane
  • the average pore diameter of the activated carbon is not particularly limited, but is usually 0.1 to 20 nm, preferably 0.5 to 5 nm, more preferably 1 to 3 nm.
  • the means of the purification method of the present invention is not particularly limited, and examples thereof include a batch method, a membrane treatment method, a column chromatography method, and the like, and an appropriate activated carbon shape is selected according to each means. If necessary, in the form of particles in which activated carbon is encapsulated in a porous polymer or gel, or in the form of membranes or cartridges that adsorb, fix, or mold activated carbon using a support agent or fiber such as polypropylene or cellulose Can also be used.
  • CUNO activated carbon filter card ridge Zeta plus activated carbon filter card ridge (manufactured by Sumitomo 3M), Millistak plus activated carbon filter (manufactured by Merck Millipore), Supra AKS filter (manufactured by Paul), Ador (above, Unitika) ), K filter, activated carbon sheet (above, manufactured by Toyobo Co., Ltd.), Hemax (manufactured by Kuraray Co., Ltd.), hemosoba (manufactured by Asahi Kasei Medical Co., Ltd.), hemocolumn (manufactured by Terumo Co., Ltd.), hecels (manufactured by Teijin Ltd.), etc. Can be mentioned.
  • the packing density, particle size, hardness, loss on drying, residual residue on ignition, specific surface area, pore volume, pH, etc. of the activated carbon to be used can be appropriately selected according to the target protein and the means of the purification method.
  • the purification method of the present invention is preferably performed in a non-adsorption mode.
  • the non-adsorption mode means that the protein-containing aqueous solution is brought into contact with activated carbon and the non-adsorbed fraction is collected without adsorbing the target protein on the activated carbon.
  • Impurities are adsorbed on activated carbon without adsorbing the target protein on activated carbon, and the protein having a reduced impurity content in the non-adsorbed fraction can be recovered.
  • the pH of the protein-containing aqueous solution brought into contact with the activated carbon is preferably 2 to 9, and more preferably 3 to 8.
  • the pH of the protein-containing aqueous solution brought into contact with the activated carbon is preferably 2 to 8, more preferably 3 to 7, particularly preferably 4 to 6, and most preferably 4 ⁇ 5.
  • the salt constituting the protein-containing aqueous solution include phosphate, citrate, acetate, succinate, maleate, borate, Tris (base), HEPES, MES, PIPES, MOPS, and TES. , Tricine and the like. These concentrations are preferably 0.01 mol / L to 0.5 mol / L.
  • the above-mentioned salt is, for example, 0.01 mol / L to 0.5 mol / L, preferably 0.01 mol / L to 0.5 mol / L sodium chloride, potassium chloride, calcium chloride, sodium citrate, sodium sulfate, It can also be used in combination with other salts such as ammonium sulfate.
  • the buffer component is used in combination with, for example, an amino acid such as glycine, alanine, arginine, serine, threonine, glutamic acid, aspartic acid or histidine, a sugar such as glucose, sucrose, lactose or sialic acid or a derivative thereof. You can also.
  • the temperature of the protein-containing aqueous solution brought into contact with the activated carbon is preferably 4 ° C to 60 ° C, more preferably 10 ° C to 50 ° C, and particularly preferably 20 ° C to 40 ° C.
  • the content of the host cell protein is preferably 100,000 ng or less per mg of protein, more preferably 10,000 ng or less per mg of protein, particularly preferably 1000 ng or less per mg of protein, and the content of the protein-derived polymer is preferable. Is 5% or less, more preferably 4% or less, particularly preferably 3% or less, and a protein-derived degradation product is preferably 10% or less, more preferably 5% or less, particularly preferably 4% or less, and most preferably 3%. It can be obtained as follows.
  • the recovery rate is preferably 50% or more, more preferably 60% or more, and the host cell protein reduction rate (HCP LRV) is preferably 1 or more, more preferably 1.5 or more, particularly preferably 2 or more. Can be obtained.
  • HCP LRV host cell protein reduction rate
  • analysis methods generally used in protein purification can be applied to the recovery rate and impurity content of proteins with a reduced impurity content.
  • recovery rate is absorbance or affinity HPLC method such as protein A, etc.
  • Host cell protein content is derived from protein-derived polymer or protein such as ELISA (Enzyme-Linked Immunosorbent Assay) method, Western blotting method or electrochemiluminescence method
  • the degradation product is measured by gel filtration HPLC method, ion exchange HPLC method, polyacrylamide gel electrophoresis method, light scattering method, ultracentrifugation method, etc.
  • DNA should be measured by analytical methods such as pico green method, threshold method, QPCR method, etc. I can do it.
  • the present invention also relates to a method for producing a protein, including a purification method for separating a protein and impurities using activated carbon to obtain a protein having a reduced impurity content.
  • any purification method combined with activated carbon can be used as long as it is a method suitable for pharmaceutical production.
  • chromatography chromatography, alcohol fractionation, sediment removal, salting out, buffer exchange , Concentration, dilution, filtration, virus inactivation, virus removal and the like.
  • the purification method combined with activated carbon may combine a plurality of types and numbers.
  • the purification method combined with these activated carbon can be implemented before and after the purification method using activated carbon.
  • the carrier or membrane used for chromatography combined with activated carbon the same affinity carrier, ion exchange carrier, ion exchange membrane, gel filtration carrier, hydrophobic interaction carrier, reverse phase carrier, hydroxyapatite carrier, fluoroapatite carrier as described above , Sulfated cellulose carrier, sulfated agarose carrier, mixed mode carrier and the like.
  • the chromatography combined with the purification method using activated carbon preferably includes a manufacturing method not including affinity chromatography, more preferably a manufacturing method not including protein A affinity chromatography.
  • examples of the chromatography combined with activated carbon include ion exchange chromatography, mixed mode chromatography, or a combination thereof.
  • Chromatography combined with activated carbon is performed in adsorption mode or non-adsorption mode depending on the purpose.
  • the adsorption mode in the chromatography means that the aqueous solution to be subjected to the chromatography is brought into contact with the carrier or the membrane, the target protein is adsorbed on the carrier or the membrane, and then washed as necessary. It means that the adsorbed fraction is recovered by eluting with a buffer solution in which pH, electric conductivity, buffer component, salt concentration, additive, etc. are changed.
  • the non-adsorption mode in the chromatography means that an aqueous solution to be subjected to the chromatography is brought into contact with the carrier or the membrane, and the non-adsorbed fraction is recovered without adsorbing the target protein on the carrier or the membrane. To do.
  • the protein production method of the present invention for example, there is a protein production method (All negative chromatography) in which all chromatography combined with activated carbon is performed in a non-adsorption mode.
  • the protein when the protein is an antibody, for example, after the purification method using activated carbon, anion exchange chromatography that is subsequently performed in the non-adsorption mode, and further cation exchange chromatography that is subsequently performed in the adsorption mode is performed.
  • anion exchange chromatography that is subsequently performed in the non-adsorption mode
  • further cation exchange chromatography that is subsequently performed in the adsorption mode is performed.
  • Examples include a production method or a purification method using activated carbon, followed by a cation exchange chromatography performed in an adsorption mode, and a subsequent anion exchange chromatography performed in a non-adsorption mode.
  • aqueous solution used for chromatography combined with activated carbon or the buffer used for washing select suitable conditions for pH, electrical conductivity, buffer components, salt concentration, additives, etc., respectively.
  • the elution method in the adsorption mode includes a one-step elution method in which a buffer solution of a specific salt concentration or pH is used so as to reduce the affinity between the target protein and the carrier, and stepwise salt concentration or pH.
  • the stepwise method in which the target protein is eluted by changing the pH or the gradient method in which the target protein is eluted by continuously changing the salt concentration or pH.
  • the salt constituting the buffer examples include phosphate, citrate, acetate, succinate, maleate, borate, Tris (base), HEPES, MES, PIPES, MOPS, TES, or Tricine Etc.
  • the above salts can also be used in combination with other salts such as sodium chloride, potassium chloride, calcium chloride, sodium citrate, sodium sulfate or ammonium sulfate.
  • the buffer component is used in combination with, for example, an amino acid such as glycine, alanine, arginine, serine, threonine, glutamic acid, aspartic acid or histidine, a sugar such as glucose, sucrose, lactose or sialic acid or a derivative thereof. You can also.
  • the host cell protein content is preferably 100 ng or less per 1 mg of protein, more preferably 10 ng or less per 1 mg of protein, and the protein-derived polymer content is preferably 3.5% or less, more preferably. Can be obtained at 1% or less, and protein-derived degradation products are preferably 3.5% or less, more preferably 1% or less.
  • the recovery rate is preferably 30% or more, more preferably 40% or more.
  • Example 1 Mab A purification 1 (non-adsorption mode purification including activated carbon) About 600 mL of the CHO cell culture supernatant containing the monoclonal antibody (Mab A) previously clarified by microfiltration was adjusted to pH 4.5 with acetic acid. The produced precipitate was removed by centrifugation and a filter. The resulting clarified liquid was neutralized with a Tris solution and concentrated about 6 times with a Pellicon 3 Ultracell membrane (Millipore, 30 kD, 0.11 m 2 ). After concentration, the buffer was exchanged with 10 mmol / L Tris buffer (pH 8.0) to obtain a concentrated / buffer exchange solution.
  • Tris buffer pH 8.0
  • Mab A purification including activated carbon was all performed in the non-adsorption mode by the following procedure.
  • the obtained concentrated / buffer exchange solution was passed through an activated carbon filter (manufactured by Cuno, Zeta Carbon Filter, 25 cm 2 ) and pooled as activated carbon eluent A.
  • the obtained activated carbon eluate A was added to an anion exchange chromatography column (GE Healthcare, Q Sepharose, 11 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L Tris buffer (pH 8.0). did.
  • 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluate.
  • Capto adhere eluate was adjusted to pH 4.5 with acetic acid and then passed through an activated carbon filter (manufactured by Cuno Co., Ltd., zeta carbon filter, 25 cm 2 ) and pooled as activated carbon eluent B.
  • the obtained activated carbon eluate B was used as the final purified Mab A product.
  • the polymer content and the degradation product content of the Mab A final purified product were analyzed by gel filtration HPLC method, and the host cell protein content was analyzed by ELISA method.
  • the analysis results of the final Mab A purified product are shown in FIGS.
  • a purified Mab A product having a polymer content and a degradation product content of less than 1% and a host cell protein content of less than 10 ng / mg protein could be obtained.
  • Example 2 Mab B purification 1 (non-adsorption mode purification including activated carbon) About 600 mL of the CHO cell culture supernatant containing the monoclonal antibody (Mab B) previously clarified by microfiltration was adjusted to pH 4.5 with acetic acid. The produced precipitate was removed by centrifugation and a filter. The resulting clarified liquid was neutralized with a Tris solution and concentrated about 6 times with a Pellicon 3 Ultracell membrane (Millipore, 30 kD, 0.11 m 2 ). After concentration, the buffer was exchanged with 10 mmol / L Tris buffer (pH 8.0) to obtain a concentrated / buffer exchange solution.
  • Tris buffer pH 8.0
  • Mab B purification including activated carbon was all performed in the non-adsorption mode by the following procedure.
  • the obtained concentrated / buffer exchange solution was passed through an activated carbon filter (manufactured by Cuno, Zeta Carbon Filter, 25 cm 2 ) and pooled as activated carbon eluent A.
  • the obtained activated carbon eluate A was added to an anion exchange chromatography column (GE Healthcare, Q Sepharose, 11 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L Tris buffer (pH 8.0). did.
  • 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluent A.
  • Capto adhere eluate was adjusted to pH 4.5 with acetic acid and then passed through an activated carbon filter (manufactured by Cuno Co., Ltd., zeta carbon filter, 25 cm 2 ) and pooled as activated carbon eluent B.
  • an activated carbon filter manufactured by Cuno Co., Ltd., zeta carbon filter, 25 cm 2
  • the obtained activated carbon eluate B was adjusted to pH 8.0 using a tris solution, and then filtered to obtain a filter filtrate.
  • the obtained filter filtrate was added to an anion exchange chromatography column (GE Healthcare, Q Sepharose, 11 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L Tris buffer (pH 8.0). . After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluent B. The obtained Q Sepharose eluate B was used as the final purified product of Mab B.
  • the Mab B final purified product was analyzed for polymer content, degradation product content, and host cell protein content using the same method as in Example 1.
  • the analysis results of the Mab B final purified product are shown in FIGS.
  • a purified Mab B product having a polymer content of less than 1% and a degradation product content of less than 1% and a host cell protein content of less than 10 ng / mg protein could be obtained.
  • Example 3 Mab C purification 1 (non-adsorption mode purification including activated carbon) About 600 mL of the CHO cell culture supernatant containing the monoclonal antibody (Mab C) previously clarified by microfiltration was adjusted to pH 4.5 with acetic acid. The produced precipitate was removed by centrifugation and a filter. The resulting clarified liquid was neutralized with a Tris solution and concentrated about 6 times with a Pellicon 3 Ultracell membrane (Millipore, 30 kD, 0.11 m 2 ). After concentration, the buffer was exchanged with 10 mmol / L Tris buffer (pH 7.1) to obtain a concentrated / buffer exchange solution.
  • Mab C purification including activated carbon was all performed in the non-adsorption mode by the following procedure.
  • the concentrated / buffer exchange solution thus obtained was passed through an activated carbon filter (manufactured by Cuno, Zeta Plus EXT charged depth filter, 25 cm 2 ) and pooled as activated carbon eluent A.
  • the obtained activated carbon eluate A was added to an anion exchange chromatography column (GE Healthcare, Q Sepharose, 11 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L Tris buffer (pH 7.1). did.
  • 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluate.
  • Capto adhere eluate was adjusted to pH 4.5 with acetic acid and then passed through an activated carbon filter (manufactured by Cuno Co., Ltd., zeta carbon filter, 25 cm 2 ) and pooled as activated carbon eluent B.
  • the obtained activated carbon eluate B was used as a final purified product of Mab C.
  • the Mab C final purified product was analyzed for polymer content, degradation product content and host cell protein content using the same method as in Example 1.
  • the analysis results of the Mab C final purified product are shown in FIGS.
  • a purified Mab C product having a polymer content of less than 1% and a degradation product content of less than 1% and a host cell protein content of less than 10 ng / mg protein could be obtained.
  • Example 4 Mab A purification 2 (non-adsorption mode purification including activated carbon) About 100 mL of the CHO cell culture supernatant containing the monoclonal antibody (Mab A) previously clarified by microfiltration was adjusted to pH 4.5 with acetic acid. The produced precipitate was removed by centrifugation to obtain a clarified liquid.
  • Mab A purification including activated carbon was all performed in the non-adsorption mode by the following procedure.
  • the clarified liquid thus obtained was passed through an activated carbon filter (manufactured by Cuno Co., Ltd., zeta carbon filter, 25 cm 2 ) and pooled as activated carbon eluent A.
  • the obtained activated carbon eluate A was added to a cation exchange chromatography column (Millipore, ProRes S, 3 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L acetate buffer (pH 4.5). After the addition, 7 column volumes of equilibration buffer were passed through the column. A part of the column non-adsorbed fraction was pooled as ProRes S eluate.
  • the obtained ProRes S eluate was passed through an activated carbon filter (manufactured by Cuno, zeta carbon filter, 25 cm 2 ) and pooled as activated carbon eluent B.
  • the obtained activated carbon eluate B was diluted 4-fold with 5 mmol / L Tris buffer (pH 8.0), neutralized with Tris solution, and filtered. Then, it was added to an anion exchange chromatography column (manufactured by GE Healthcare, Q Sepharose, 11 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L Tris buffer (pH 8.0). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluate. The obtained Q Sepharose eluate was used as the final purified Mab A product.
  • the Mab A final purified product was analyzed for polymer content, degradation product content and host cell protein content using the same method as in Example 1.
  • the analysis results of the Mab A final purified product are shown in FIGS.
  • a purified Mab A product having a polymer content and a degradation product content of less than 1% and a host cell protein content of less than 10 ng / mg protein could be obtained.
  • Example 5 Mab B purification 2 (non-adsorption mode purification containing activated carbon) About 100 mL of the CHO cell culture supernatant containing the monoclonal antibody (Mab B) previously clarified by microfiltration was adjusted to pH 4.5 with acetic acid. The produced precipitate was removed by centrifugation to obtain a clarified liquid.
  • Mab B purification including activated carbon was all performed in the non-adsorption mode by the following procedure.
  • the clarified liquid thus obtained was passed through an activated carbon filter (manufactured by Cuno Co., Ltd., zeta carbon filter, 25 cm 2 ) and pooled as activated carbon eluent A.
  • the obtained activated carbon eluate A was added to a cation exchange chromatography column (Millipore, ProRes S, 3 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L acetate buffer (pH 4.5). After the addition, 7 column volumes of equilibration buffer were passed through the column. A part of the column non-adsorbed fraction was pooled as ProRes S eluate.
  • the obtained ProRes S eluate was passed through an activated carbon filter (manufactured by Cuno, zeta carbon filter, 25 cm 2 ) and pooled as activated carbon eluent B.
  • the obtained activated carbon eluate B was diluted 4-fold with 5 mmol / L Tris buffer (pH 8.0), neutralized with Tris solution, and filtered. Then, it was added to an anion exchange chromatography column (manufactured by GE Healthcare, Q Sepharose, 11 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L Tris buffer (pH 8.0). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharos eluate. The obtained Q Sepharose eluate was used as the final purified product of Mab B.
  • the Mab B final purified product was analyzed for polymer content, degradation product content, and host cell protein content using the same method as in Example 1.
  • the analysis results of the final Mab B purified product are shown in FIGS.
  • a purified Mab B product having a polymer content of less than 1% and a degradation product content of less than 1% and a host cell protein content of less than 10 ng / mg protein could be obtained.
  • Example 6 Mab C purification 2 (non-adsorption mode purification including activated carbon) About 100 mL of CHO cell culture supernatant containing monoclonal antibody (Mab C) clarified by microfiltration in advance was adjusted to pH 4.5 with acetic acid. The produced precipitate was removed by centrifugation to obtain a clarified liquid.
  • Mob C monoclonal antibody
  • Mab C purification including activated carbon was all performed in the non-adsorption mode by the following procedure.
  • the clarified liquid thus obtained was passed through an activated carbon filter (manufactured by Cuno Co., Ltd., zeta carbon filter, 25 cm 2 ) and pooled as activated carbon eluent A.
  • the obtained activated carbon eluate A was added to a cation exchange chromatography column (Millipore, ProRes S, 3 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L acetate buffer (pH 4.5). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. A part of the column non-adsorbed fraction was pooled as ProRes S eluate.
  • the obtained ProRes S eluate was passed through an activated carbon filter (manufactured by Cuno, zeta carbon filter, 25 cm 2 ) and pooled as activated carbon eluent B.
  • the obtained activated carbon eluate B was diluted 4-fold with 5 mmol / L Tris buffer (pH 7.0), neutralized with Tris solution, and filtered. Then, it was added to an anion exchange chromatography column (manufactured by GE Healthcare, Q Sepharose, 11 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L Tris buffer (pH 7.0). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluate. The obtained Q Sepharose eluate was used as the final purified product of Mab C.
  • the polymer content, degradation product content and host cell protein content of Mab C final purified product were analyzed using the same method as in Example 1.
  • FIGS. The analysis results of the final product of Mab C are shown in FIGS.
  • a Mab C purified product having a polymer content of less than 1% and a degradation product content of less than 1% and a host cell protein content of less than 10 ng / mg protein could be obtained.
  • Example 7 Mab A purification 3 (purification containing activated carbon) About 200 mL of the CHO cell culture supernatant containing the monoclonal antibody (Mab A) clarified by microfiltration was adjusted to pH 4.5 with acetic acid. The generated precipitate was removed by centrifugation to obtain a clarified liquid A.
  • activated carbon manufactured by Nippon Enviro Chemical Co., Ltd., Shirasagi P
  • the mixed solution was centrifuged and filtered to obtain an activated carbon eluate.
  • the obtained activated carbon eluate was diluted 4 times with 5 mmol / L Tris buffer, and then adjusted to pH 8.0 with Tris solution. Then, it added to the anion exchange chromatography column (The product made from GE Healthcare, Q Sepharose, 5 mm IDx20cm) equilibrated with the equilibration buffer which consists of 10 mmol / L Tris buffer (pH 8.0). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluate.
  • the obtained Q Sepharose eluate was adjusted to pH 5.0 with an acetic acid solution. Then, it added to the cation exchange chromatography column (Applied Biosystems company make, POROS XS, 5mm IDx20cm) equilibrated with the equilibration buffer which consists of 10 mmol / L acetate buffer (pH5.0). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Next, elution was performed from a 10 mmol / L acetate buffer (pH 5.0) containing 0.3 mol / L sodium chloride with a salt concentration gradient (10 column volumes) that gradually increased the salt concentration. A part of the column elution fraction was pooled as a POROS XS eluate. The POROS XS eluate was used as Mab A final purified product.
  • Example 8 Mab B purification 3 (purification containing activated carbon) About 225 mL of the CHO cell culture supernatant containing the monoclonal antibody (Mab B) clarified by microfiltration was adjusted to pH 4.5 with acetic acid. The produced precipitate was removed by centrifugation, and a clarified liquid B was obtained.
  • activated carbon manufactured by Nippon Enviro Chemical Co., Ltd., Shirasagi P
  • the mixed solution was centrifuged and filtered to obtain an activated carbon eluate.
  • the obtained activated carbon eluate was diluted 4 times with 5 mmol / L Tris buffer, and then adjusted to pH 8.0 with Tris solution. Then, it added to the anion exchange chromatography column (The product made from GE Healthcare, Q Sepharose, 5 mm IDx20cm) equilibrated with the equilibration buffer which consists of 10 mmol / L Tris buffer (pH 8.0). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluate.
  • the obtained Q Sepharose eluate was adjusted to pH 5.1 with an acetic acid solution. Then, it added to the cation exchange chromatography column (Applied Biosystems company make, POROS XS, 5mm IDx20cm) equilibrated with the equilibration buffer which consists of 10 mmol / L acetate buffer (pH5.0). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Next, elution was performed from a 10 mmol / L acetate buffer (pH 5.0) containing 0.3 mol / L sodium chloride with a salt concentration gradient (10 column volumes) that gradually increased the salt concentration. A part of the column elution fraction was pooled as a POROS XS eluate. The POROS XS eluate was used as the final purified Mab B product.
  • Example 9 Analysis of Mab A purified product and Mab B purified product
  • Mab B purified intermediate obtained in Example 8 and Comparative Example 2 The following analyzes were performed on the body and the final purified product.
  • the recovery rate of each purification step and the total recovery rate throughout the purification step were analyzed by protein A affinity HPLC method.
  • the polymer content and degradation product content of the purified intermediate and final purified product were analyzed using gel filtration HPLC.
  • the polymer content of purified intermediates and final purified products of Mab A and Mab B protein A purification and activated carbon purification are shown in FIGS. 9 and 11, and the degradation product content is shown in FIGS. 10 and 12, respectively.
  • the polymer content rate and the degradation product content rate were the same in both purification methods in the final purified product (cation).
  • the activated carbon purification process has a lower polymer content and degradation product content than the protein A purification process. It was less than 2%.
  • FIG. 13 and FIG. 14 show the host cell protein content per 1 mg of protein in purified protein A of Mab A and Mab B, purified intermediate by activated carbon purification, and final purified product.
  • the host cell protein content in the protein A purification step and the activated carbon purification step was comparable. Also in the final purified product, the host cell protein content was similar and less than 10 ng / mg protein.
  • the content of the host cell protein in the purified intermediate obtained by purification using activated carbon compared to the purification using protein A is comparable, while the polymer content and degradation product content are Purification using activated carbon was low, and it was confirmed that a protein with a lower impurity content could be obtained by purification using activated carbon.
  • Example 10 Suppression of antibody degradation by activated carbon
  • the culture supernatant containing the monoclonal antibody (Mab B) was adjusted to pH 4.5 with acetic acid.
  • the generated precipitate was removed using a filter to obtain a clarified liquid.
  • activated carbon manufactured by Nippon Enviro Chemical Co., Ltd., Shirakaba P
  • SDS-PAGE analysis As a control, the same operation as described above was carried out without adding activated carbon, and subjected to SDS-PAGE analysis under non-reducing conditions.
  • Example 11 Inhibition of Antibody Reduction by Activated Carbon Activated carbon (Shirakaba P, manufactured by Nippon Environmental Chemical Co., Ltd.) was added to and mixed with the culture supernatant containing the monoclonal antibody (Mab D). After removing the activated carbon, it was in an anaerobic state for 24 hours. After holding for 24 hours, the supernatant was subjected to SDS-PAGE analysis under non-reducing conditions. As a control, the same operation as described above was carried out for a sample to which no activated carbon was added, and subjected to SDS-PAGE analysis.
  • Example 12 DNA analysis of Mab A purified product, Mab B purified product Mab A final purified product obtained in Example 7, Mab A purified product obtained in Comparative Example 1, Mab B final product obtained in Example 8 The purified product and the purified Mab B product obtained in Comparative Example 2 were subjected to DNA analysis by the Threshold method.
  • FIG. 17 shows the DNA content per 1 mg of protein in the final refined product by activated carbon purification and the purified product by Protein A purification for Mab A and Mab B.
  • the DNA content of all the final purified products and the purified products was similar and was 10 pg / mg or less.
  • Example 13 Effect of pH in Activated Carbon Purification
  • generated precipitation was removed by filter filtration and each pH adjustment clarification liquid was obtained.
  • activated carbon manufactured by Nippon Enviro Chemical Co., Ltd., Shirasagi P
  • pH-adjusted clarified liquid was obtained by each mixed solution.
  • each mixed solution was centrifuged, and each activated carbon eluate was obtained.
  • Each pH control clarified liquid to which activated carbon was not added was used as each pH control.
  • the host cell protein content per 1 mg of each pH activated carbon eluate and each pH control protein was analyzed by ELISA.
  • the host cell protein reduction rate (HCP LRV) was calculated from the host cell protein content per 1 mg of the obtained protein by the following formula.
  • HCP LRV Host cell protein reduction rate
  • the reduction rate (HCP LRV) of host cell protein at each pH by activated carbon treatment is shown in FIG. At pH 4 and 5, the HCP LRV was 2 or more. At pH 6, pH 7 and pH 8, the HCP LRV was in the range of 1-2. Therefore, it was confirmed that pH 4 and pH 5 were more effective in reducing host cell proteins by activated carbon treatment than pH 6, pH 7 and pH 8.
  • FIG. 19 shows the relative antibody concentration (%) at each pH when the antibody concentration in the pH 7 activated carbon eluate is 100.
  • the antibody concentration at pH 4 was lower than the antibody concentrations at other pH, and was about 70% of pH 7. At other pH, it was within the range of ⁇ 10% of pH 7, and compared with pH 4, it was confirmed that pH 5, pH 6, pH 7 and pH 8 had higher relative antibody concentration in activated carbon treatment and higher antibody recovery rate. .
  • the activated carbon treatment can be carried out at any pH of pH 4 to 8, and pH 4 to 6 was considered particularly preferable.
  • Example 14 Effect of activated carbon raw materials on activated carbon purification
  • the CHO cell culture supernatant containing the monoclonal antibody (Mab B) clarified by microfiltration was adjusted to pH 4.6 with acetic acid.
  • the produced precipitate was removed by centrifugation and filter filtration to obtain a clarified liquid B.
  • activated carbon shown in Table 1 was added to and mixed with about 10 mL of the clarified liquid B obtained. Thereafter, the mixed solution was centrifuged and filtered to obtain an activated carbon eluate.
  • each activated carbon eluate was analyzed using gel filtration HPLC, and the host cell protein content was analyzed using ELISA.
  • the analysis result of each activated carbon eluate is shown in FIG. 20, FIG. 21, and FIG.
  • the obtained MabSelect SuRe solution was adjusted to pH 8.0 with a Tris solution.
  • This solution was added to an anion exchange chromatography column (GE Healthcare, Q Sepharose, 5 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L Tris buffer (pH 8.0). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluate.
  • the obtained Q Sepharose eluate was adjusted to pH 5.0 with an acetic acid solution.
  • This solution was added to a cation exchange chromatography column (Applied Biosystems, POROS XS, 5 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L acetate buffer (pH 5.0).
  • an equilibration buffer consisting of 10 mmol / L acetate buffer (pH 5.0).
  • 5 column volumes of equilibration buffer were passed through the column.
  • elution was performed from a 10 mmol / L acetate buffer (pH 5.0) containing 0.3 mol / L sodium chloride with a salt concentration gradient (10 column volumes) that gradually increased the salt concentration.
  • a part of the column elution fraction was pooled as a POROS XS eluate.
  • the POROS XS eluate was designated as Mab A purified product.
  • the obtained MabSelect SuRe solution was adjusted to pH 8.0 with a Tris solution.
  • This solution was added to an anion exchange chromatography column (GE Healthcare, Q Sepharose, 5 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L Tris buffer (pH 8.0). After completion of the addition, 5 column volumes of equilibration buffer were passed through the column. Column non-adsorbed fractions were pooled as Q Sepharose eluate.
  • the obtained Q Sepharose eluate was adjusted to pH 5.0 with an acetic acid solution.
  • This solution was added to a cation exchange chromatography column (Applied Biosystems, POROS XS, 5 mm ID ⁇ 20 cm) equilibrated with an equilibration buffer consisting of 10 mmol / L acetate buffer (pH 5.0).
  • an equilibration buffer consisting of 10 mmol / L acetate buffer (pH 5.0).
  • 5 column volumes of equilibration buffer were passed through the column.
  • elution was performed from a 10 mmol / L acetate buffer (pH 5.0) containing 0.3 mol / L sodium chloride with a salt concentration gradient (10 column volumes) that gradually increased the salt concentration.
  • a part of the column elution fraction was pooled as a POROS XS eluate.
  • the POROS XS eluate was designated as Mab B purified product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 本発明は、活性炭を用いて非吸着モードにて蛋白質と不純物とを分離し、蛋白質を精製する方法、特に抗体の精製において、プロテインAアフィニティクロマトグラフィーに代えて活性炭を用いた精製方法に関する。

Description

蛋白質の精製方法
 本発明は蛋白質の精製方法及び該精製方法を含む蛋白質の製造方法に関する。特に、本発明は、抗体の精製方法及び該精製方法を含む抗体の製造方法に関する。
 遺伝子組換え技術の発達によって、種々の蛋白質を有効成分とする医薬品が供給されるようになった。特に近年は数多くの抗体を有効成分とする医薬品が開発、上市されている。また、これら蛋白質を大量かつ効率的に製造することは、バイオ医薬品産業にとってますます重要な問題となっている。
 このような蛋白質は、一般にその目的とする蛋白質をコードする遺伝子を含むベクターを挿入された組換え細胞を培養することによって産生される。その培養液には、目的とする蛋白質の他に、多種多様の培地由来成分、宿主細胞由来成分または蛋白質由来の副生成物等の不純物が含まれているため、医薬品として要求される純度まで不純物を分離し目的の蛋白質を精製すること及び目的の蛋白質を大量かつ効率的に製造することを両立させることは、非常に困難かつ挑戦的である。
 蛋白質の精製方法は、一般に異なるモードのクロマトグラフィーの組み合わせで行われる。クロマトグラフィーは、例えば、電荷、親水性の程度または分子の大きさ等に基づいて、目的の蛋白質と不純物を分離する。
 特に、目的の蛋白質が抗体である時は、プロテインAまたはプロテインGが抗体のFc鎖などの特定部位に結合する性質を利用して、抗体の精製にプロテインAアフィニティクロマトグラフィーまたはプロテインGアフィニティクロマトグラフィーがクロマトグラフィーの1つとして使用される(特許文献1)。
 しかし、一般に使用されているプロテインAアフィニティ担体は、イオン交換担体または疎水担体等に比べて非常に高価であり、工業的な医薬品製造等で大規模に抗体を精製する場合には、使用する担体量も膨大となることから、その結果、製造コストの増大が避けられない課題となっている。
 また、プロテインAアフィニティクロマトグラフィーまたはプロテインGアフィニティクロマトグラフィーは、一般には目的の抗体を特異的に担体に吸着させ、吸着した担体を洗浄することで不純物と分離し、最後に目的の抗体を担体から溶出する吸着モードを使用する。この際、洗浄及び溶出に用いるバッファーは異なる為、クロマトグラフィー装置の大型化に伴って、バッファータンク等の付属する製造設備も大型化または複雑化する。更に操作も煩雑となる為、これら全てが製造コスト増大の要因となっている。
 以上のような理由で、蛋白質を有効成分とする医薬品の製造コストは、低分子化合物を有効成分とする医薬品の製造コストに比べて非常に高く、この克服が課題となっている。即ち、蛋白質の精製に要するコストの低減がこの分野で望まれている。
 一方、目的の蛋白質を含む培養液には宿主細胞から溶出した酵素類が含まれており、蛋白質の精製の過程において、この酵素類により目的の蛋白質が分解、修飾、酸化または還元等を受けることが知られている。この為、酵素類の阻害剤を添加し、目的の蛋白質を分解、修飾、酸化または還元等を受けずに精製する方法が検討されている(特許文献2)。しかし、酵素類の阻害剤を蛋白質の精製に用いた場合には、別途該阻害剤を除去する工程が必要となり、更に阻害剤によっては精製された蛋白質の品質に影響を及ぼす可能性もあることから、必ずしも該阻害剤の添加は最良の方法とは言えない。抜本的な解決方法の1つに、宿主細胞由来の酵素類を除去することが考えられるが、クロマトグラフィー等を利用するしかなく、該酵素類の簡便な除去方法は知られていない。
 活性炭は、幅広い非特異的な吸着特性と天然由来等による安価な素材として、化学品製造、食品製造、下水や排水の処理、浄水処理及び低分子医薬品製造等の工業分野にて吸着剤または脱色剤等の用途で使用されている。しかし、その幅広い非特異的な吸着特性から、一般に前記の不純物との分離といった高度な蛋白質の精製に活性炭を使用することは困難であると考えられており、活性炭を用いた蛋白質の精製方法は知られていない。
日本国特表平5-504579号公報 国際公開第2009/009523号公報
 本発明は、従来の蛋白質の精製方法より製造コストの低減または労力の軽減が可能であり、且つ従来の蛋白質の精製方法と同等以上の不純物との分離特性を有する精製方法、特に抗体の精製において、プロテインAアフィニティクロマトグラフィーに代わる精製方法、及び該精製方法を含む蛋白質の製造方法を提供することを目的とする。
 本発明者は、上記課題を解決する為に鋭意研究をした結果、驚くべきことに、安価な活性炭を用いて非吸着モードにて蛋白質と不純物とを分離し、蛋白質を精製する方法、特に抗体の精製において、プロテインAアフィニティクロマトグラフィーに代えて活性炭を用いた精製方法を見出し、本発明を完成した。
 本発明は以下(1)~(14)に関する。
(1)蛋白質の精製方法であって、活性炭を用いて、蛋白質と不純物とを分離し、不純物含量が低下した蛋白質を取得する精製方法。
(2)蛋白質の分子量が30000以上である、(1)に記載の精製方法。
(3)蛋白質が糖蛋白質である、(1)または(2)に記載の精製方法。
(4)糖蛋白質が抗体である、(3)に記載の精製方法。
(5)蛋白質が遺伝子組換え蛋白質である、(1)~(4)のいずれか1項に記載の精製方法。
(6)不純物が宿主細胞蛋白質、蛋白質由来の重合体、蛋白質由来の分解物またはDNAのいずれかである、(1)~(5)のいずれか1項に記載の精製方法。
(7)非吸着モードで分離を行う、(1)~(6)のいずれか1項に記載の精製方法。
(8)pHが3~8で分離を行う、(1)~(7)のいずれか1項に記載の精製方法。
(9)活性炭が木質系活性炭である、(1)~(8)のいずれか1項に記載の精製方法。
(10)活性炭の平均細孔直径が0.5~5nmである、(1)~(9)のいずれか1項に記載の精製方法
(11)(1)~(10)のいずれか1項に記載の精製方法を含む、蛋白質の製造方法。
(12)プロテインAクロマトグラフィーを使用しない、(11)に記載の製造方法。
(13)陰イオン交換クロマトグラフィー、陽イオン交換クロマトグラフィー、疎水相互作用クロマトグラフィーまたは混合モードクロマトグラフィーの何れか1のクロマトグラフィーを含む、(11)または(12)に記載の製造方法。
(14)少なくとも1つの吸着モードのクロマトグラフィーを含む、(11)~(13)のいずれか1項に記載の製造方法。
(15)(11)~(14)のいずれか1項に記載の方法により製造された蛋白質。
 本発明により、従来の蛋白質の精製方法より製造コストの低減または労力の軽減が可能であり、且つ従来の蛋白質の精製方法と同等以上の不純物との分離特性を有する精製方法、特に抗体の精製において、プロテインAアフィニティクロマトグラフィーに代わる精製方法、及び該精製方法を含む蛋白質の製造方法が提供される。本発明により製造された蛋白質は、医薬品として有用である。
図1は、Mab A、Mab B及びMab Cの活性炭を含む非吸着モード精製における、培養上清及び最終精製品の重合体含有率を示す。縦軸は重合体含有率(%)を示す。黒色はMab A、白色はMab B、灰色はMab Cをそれぞれ示し、左より培養上清(培養上清)、最終精製品(精製品)の重合体含有率を示す。 図2は、Mab A、Mab B及びMab Cの活性炭を含む非吸着モード精製における、培養上清及び最終精製品の分解物含有率を示す。縦軸は分解物含有率(%)を示す。黒色はMab A、白色はMab B、灰色はMab Cをそれぞれ示し、左より培養上清(培養上清)、最終精製品(精製品)の分解物含有率を示す。 図3は、Mab A、Mab B及びMab Cの活性炭を含む非吸着モード精製における、培養上清及び最終精製品の宿主細胞蛋白質含有量を示す。縦軸は蛋白質1mgあたりの宿主細胞蛋白質含有量(ng/mg)を示す。黒色はMab A、白色はMab B、灰色はMab Cをそれぞれ示し、左より培養上清(培養上清)、最終精製品(精製品)の宿主細胞蛋白質含有量を示す。 図4は、Mab A、Mab B及びMab Cの活性炭を含む非吸着モード精製における、培養上清及び最終精製品の重合体含有率を示す。縦軸は重合体含有率(%)を示す。黒色はMab A、白色はMab B、灰色はMab Cをそれぞれ示し、左より培養上清(培養上清)、最終精製品(精製品)の重合体含有率を示す。 図5は、Mab A、Mab B及びMab Cの活性炭を含む非吸着モード精製における、培養上清及び最終精製品の分解物含有率を示す。縦軸は分解物含有率(%)を示す。黒色はMab A、白色はMab B、灰色はMab Cをそれぞれ示し、左より培養上清(培養上清)、最終精製品(精製品)の分解物含有率を示す。 図6は、Mab A、Mab B及びMab Cの活性炭を含む非吸着モード精製における、培養上清及び最終精製品の宿主細胞蛋白質含有量を示す。縦軸は蛋白質1mgあたりの宿主細胞蛋白質含有量(ng/mg)を示す。黒色はMab A、白色はMab B、灰色はMab Cをそれぞれ示し、左より培養上清(培養上清)、最終精製品(精製品)の宿主細胞蛋白質含有量を示す。 図7は、Mab A精製での各工程回収率及び総回収率を示す。縦軸は各工程回収率(%)または総回収率(%)を示す。白色はプロテインAアフィニティクロマトグラフィーを含む精製、黒色は活性炭処理を含む精製をそれぞれ示し、左よりMabSelect SuRe処理または活性炭処理の工程回収率(ProteinA or 活性炭)、Q Sepharose処理の工程回収率(陰イオン)、POROS XS処理の工程回収率(陽イオン)、総回収率(総回収率)を示す。 図8は、Mab B精製での各工程回収率及び総回収率を示す。縦軸は各工程回収率(%)または総回収率(%)を示す。黒色はプロテインAアフィニティクロマトグラフィーを含む精製、灰色は活性炭処理を含む精製をそれぞれ示し、左よりMabSelect SuRe処理または活性炭処理の工程回収率(ProteinA or 活性炭)、Q Sepharose処理の工程回収率(陰イオン)、POROS XS処理の工程回収率(陽イオン)、総回収率(総回収率)を示す。 図9は、Mab A精製での精製中間体及び最終精製品の重合体含有率を示す。縦軸は重合体含有率(%)を示す。黒丸はプロテインAアフィニティクロマトグラフィーを含む精製、白抜き三角は活性炭処理を含む精製をそれぞれ示し、左より清澄化液A(培養上清)、MabSelect SuRe溶出液または活性炭溶出液(ProteinA or 活性炭)、Q Sepharose溶出液(陰イオン)、Mab A最終精製品(陽イオン)の重合体含有率を示す。 図10は、Mab A精製での精製中間体及び最終精製品の分解物含有率を示す。縦軸は分解物含有率(%)を示す。黒丸はプロテインAアフィニティクロマトグラフィーを含む精製、白抜き三角は活性炭処理を含む精製をそれぞれ示し、左より清澄化液A(培養上清)、MabSelect SuRe溶出液または活性炭溶出液(ProteinA or 活性炭)、Q Sepharose溶出液(陰イオン)、Mab A最終精製品(陽イオン)の分解物含有率を示す。 図11は、Mab B精製での精製中間体及び最終精製品の重合体含有率を示す。縦軸は重合体含有率(%)を示す。黒菱形はプロテインAアフィニティクロマトグラフィーを含む精製、白抜き四角は活性炭処理を含む精製をそれぞれ示し、左より清澄化液B(培養上清)、MabSelect SuRe溶出液または活性炭溶出液(ProteinA or 活性炭)、Q Sepharose溶出液(陰イオン)、Mab B最終精製品(陽イオン)の重合体含有率を示す。 図12は、Mab B精製での精製中間体及び最終精製品の分解物含有率を示す。縦軸は分解物含有率(%)を示す。黒菱形はプロテインAアフィニティクロマトグラフィーを含む精製、白抜き四角は活性炭処理を含む精製をそれぞれ示し、左より清澄化液B(培養上清)、MabSelect SuRe溶出液または活性炭溶出液(ProteinA or 活性炭)、Q Sepharose溶出液(陰イオン)、Mab B最終精製品(陽イオン)の分解物含有率を示す。 図13は、Mab A精製での精製中間体及び最終精製品の宿主細胞蛋白質含有量を示す。縦軸は蛋白質1mgあたりの宿主細胞蛋白質含有量(ng/mg)を示す。黒丸はプロテインAアフィニティクロマトグラフィーを含む精製、白抜き三角は活性炭処理を含む精製をそれぞれ示し、左より清澄化液A(培養上清)、MabSelect SuRe溶出液または活性炭溶出液(ProteinA or 活性炭)、Q Sepharose溶出液(陰イオン)、Mab A最終精製品(陽イオン)の宿主細胞蛋白質含有量を示す。 図14は、Mab B精製での精製中間体及び最終精製品の宿主細胞蛋白質含有量を示す。縦軸は蛋白質1mgあたりの宿主細胞蛋白質含有量(ng/mg)を示す。黒菱形はプロテインAアフィニティクロマトグラフィーを含む精製、白抜き四角は活性炭処理を含む精製をそれぞれ示し、左より清澄化液A(培養上清)、MabSelect SuRe溶出液または活性炭溶出液(ProteinA or 活性炭)、Q Sepharose溶出液(陰イオン)、Mab B最終精製品(陽イオン)の宿主細胞蛋白質含有量を示す。 図15は、Mab B培養上清のSDS-PAGEを示す。左から(A)清澄化液、(B)活性炭添加下24時間保持し活性炭を除去した上清、(C)活性炭添加せずに24時間保持した上清を示す。 図16は、Mab D培養上清のSDS-PAGEを示す。左から(A)培養上清、(B)活性炭添加/除去処理を行い24時間保持した上清、(C)除去処理のみを行い24時間保持した上清を示す。 図17は、Mab A及びMab Bに関する活性炭精製での最終精製品およびProtein A精製での精製品の蛋白質1mgあたりのDNA含有量を示す。縦軸は蛋白質1mgあたりのDNA含有量(pg/mg)を示す。左から比較例1により得られたProtein A精製でのMab A精製品(Mab A Protein A)、実施例7により得られた活性炭精製でのMab A最終精製品(Mab A 活性炭)、比較例2により得られたProtein A精製でのMab B精製品(Mab B Protein A)及び実施例8により得られた活性炭精製でのMab B最終精製品(Mab B 活性炭)の蛋白質1mgあたりのDNA含有量を示す。 図18は、Mab Bの活性炭処理による各pHにおける活性炭溶出液の宿主細胞蛋白質の低減率を示す。縦軸は活性炭溶出液の宿主細胞蛋白質の低減率(HCP LRV)を示す。左からpH4、pH5、pH6、pH7、pH8における活性炭溶出液の宿主細胞蛋白質の低減率を示す。 図19は、Mab Bの活性炭処理による各pHにおける活性炭溶出液の相対抗体濃度を示す。縦軸はpH7の活性炭溶出液での抗体濃度を100とした場合の活性炭溶出液の相対抗体濃度(%)を示す。左からpH4、pH5、pH6、pH7、pH8における活性炭溶出液の相対抗体濃度を示す。 図20は、Mab Bの各種活性炭処理による活性炭溶出液の重合体含有率を示す。縦軸は活性炭溶出液の重合体含有率(%)を示す。左から培養上清、白鷺P、白鷺DO-2、白鷺DO-5における活性炭溶出液の重合体含有率を示す。 図21は、Mab Bの各種活性炭処理による活性炭溶出液の分解物含有率を示す。縦軸は活性炭溶出液の分解物含有率(%)を示す。左から培養上清、白鷺P、白鷺DO-2、白鷺DO-5における活性炭溶出液の分解物含有率を示す。 図22は、Mab Bの各種活性炭処理による活性炭溶出液の宿主細胞蛋白質含量を示す。縦軸は活性炭溶出液の宿主細胞蛋白質含量(ng/mg)を示す。左から培養上清、白鷺P、白鷺DO-2、白鷺DO-5における活性炭溶出液の宿主細胞蛋白質含量を示す。
 本発明は、蛋白質の精製方法であって、活性炭を用いて、蛋白質と不純物とを分離し、不純物含量が低下した蛋白質を取得する精製方法に関する。
 本発明において、蛋白質としては、例えば、糖鎖を有しない天然若しくは非天然の蛋白質、天然若しくは非天然の糖蛋白質、またはそれらの誘導体等が挙げられる。糖蛋白質またはそれらの誘導体としては、糖鎖が異なる分子からなる組成物であってもよい。
 蛋白質としては、好ましくは分子量が30000以上、より好ましくは分子量が50000以上の蛋白質が挙げられる。
 具体的には、例えば、エリスロポエチン、ダルベポエチン、アンチトロンビン(α体若しくはβ体、またはそれらの混合物)、インターフェロン類、インターロイキン類、プロテインS、組織プラスミノーゲン活性化因子、第VII因子、第VIII因子、第IX因子、トロンボモジュリン、グルコセレブロシダーゼ、α-ガラクトシダーゼ、α-L-イズロニダーゼ、酸性α-グルコシダーゼ、顆粒球コロニー刺激因子G-CSF(Granulocyte Colony Stimulating Factor)、顆粒球マクロファージ刺激因子GM-CSF(Granulocyte Macrophage-Colony Stimulating Factor)、トロンボポエチンまたは巨核球増殖促進因子MGDF(Megakaryocyte Growth and Development Factor)、繊維芽細胞成長因子FGF、上皮細胞成長因子EGF、インスリン様成長因子IGF、脳由来神経栄養因子BDNF、毛様態神経栄養因子CTNF若しくはグリア細胞由来神経栄養因子GDNF、または抗体およびそれらの誘導体などが挙げられるが、好ましくは抗体、より好ましくはモノクローナル抗体が挙げられる。
 抗体としては、例えば、マウス抗体、ラマ抗体、キメラ抗体、ヒト化抗体、ヒト抗体またはそれらのFc領域等を改変した抗体等が挙げられ、分子型としては、例えば、IgG、IgM、IgA、IgD、IgE、Fab、Fc、Fc-融合蛋白、VH、VL、VHH、Fab’、scFv、scFab、scDbまたはscDbFc等が挙げられる。
 本発明の精製方法には、目的とする蛋白質及び不純物を含む蛋白質含有水溶液が供される。
 蛋白質含有水溶液としては、例えば、血漿、血清、乳若しくは尿など生体から得られた組成物、遺伝子組換え技術若しくは細胞融合技術を用いて得られた蛋白質を生産する細胞または大腸菌等の菌類の培養液、トランスジェニック非ヒト動物、植物若しくは昆虫等から得られた組成物、あるいは無細胞蛋白質合成技術を用いて得られた組成物等が挙げられる。
 蛋白質を生産する細胞としては、例えば、宿主細胞に所望のたん白質をコードする遺伝子が組み込まれた形質転換細胞等が挙げられる。
 宿主細胞としては、例えば、動物細胞、植物細胞または酵母細胞等の細胞株が挙げられる。
 具体的には、例えば、チャイニーズハムスター卵巣細胞(CHO細胞)、マウスミエローマ細胞であるNS0細胞、SP2/0細胞、ラットミエローマ細胞であるYB2/0細胞、IR983F細胞、シリアンハムスター腎臓由来細胞であるBHK細胞、ヒトミエローマ細胞であるナマルバ細胞、胚性幹細胞、または受精卵細胞等が挙げられる。
 蛋白質を生産する細胞を培養する培地としては、各々の細胞の培養に適した培地であればいずれも用いられるが、例えば、動物細胞を培養する培地としては、通常の動物細胞の培養に用いられる培地が用いられる。例えば、血清含有培地、血清アルブミン若しくは血清分画物などの動物由来成分を含まない培地、無血清培地、または無蛋白培地等、いずれの培地も用いられるが、好ましくは無血清培地または無蛋白培地が用いられる。
 具体的には、例えば、RPMI1640培地[The Journal of the American Medical Association,199,519(1967)]、EagleのMEM培地[Science,122,501(1952)]、ダルベッコ改変MEM(DMEM)培地[Virology,8,396(1959)]、199培地[Proceeding of the Society for the Biological Medicine,73,1(1950)]、F12培地[Proc.Natl.Acad.Sci.USA,53,288(1965)]、イスコフ改変ダルベッコ培地(IMDM培地)[J.Experimental Medicine,147,923(1978)]、EX-CELL302培地、EX-CELL-CD-CHO培地、EX-CELL 325培地(以上、SAFCバイオサイエンス社製)、CD-CHO培地、CD DG44培地(以上、インビトロジェン社製)若しくはIS CD-CHO培地(アーバインサイエンティフィック社製)、またはこれらの改変培地、混合培地もしくは濃縮培地等が用いられ、好ましくは、RPMI1640培地、DMEM培地、F12培地、IMDM培地、EX-CELL302培地、CD-CHO培地またはIS CD-CHO培地等が用いられる。
 また、必要に応じて蛋白質を生産する細胞の生育に必要な生理活性物質または栄養因子等を添加することができる。これらの添加物は、培養前に予め培地に含有させるか、培養中に添加培地または添加溶液として培養液へ適宜追加供給する。追加供給の方法は、1溶液または2種以上の混合溶液などいかなる形態でもよく、また、添加方法は連続または断続のいずれでもよい。
 蛋白質を生産するトランスジェニック非ヒト動物、植物または昆虫としては、蛋白質をコードする遺伝子が細胞内に組み込まれた非ヒト動物、植物または昆虫が挙げられる。非ヒト動物としては、例えば、マウス、ラット、モルモット、ハムスター、ウサギ、イヌ、ヒツジ、ブタ、ヤギ、ウシまたはサル等が挙げられる。植物としては、例えば、タバコ、ポテト、トマト、ニンジン、ソイビーン、アブラナ、アルファルファ、コメ、小麦、大麦またはコーン等が挙げられる。
 蛋白質含有水溶液の生産方法としては、例えば、国際公開第2008/120801号、日本国特開平3-198792号公報、国際公開第2010/018847号、国際公開第2007/062245号または国際公開第2007/114496号等に記載の方法が挙げられる。
 また、本発明において、蛋白質含有水溶液としては、蛋白質を含有する血漿または尿等生体から得られるものの他、精製する工程で得られる蛋白質含有水溶液も含まれる。具体的には、例えば、細胞除去液、沈殿物除去液、アルコール分画液、塩析分画液、クロマトグラフィー溶出液等が挙げられる。
 細胞除去液としては、血漿、血清、乳若しくは尿等生体から得られた蛋白質含有水溶液、トランスジェニック非ヒト動物、植物または昆虫より得られた蛋白質含有水溶液、遺伝子組換え技術を用いて樹立された細胞より得られた蛋白質含有水溶液または精製する工程で得られる蛋白質含有水溶液より、細胞を除去した溶液等が挙げられる。具体的には、例えば、細胞培養液より遠心分離法、クロスフローろ過法(タンジェンシャルフローろ過法)、デプスフィルターによるろ過法、メンブレンフィルターによるろ過法、透析法、またはこれらの方法を組み合わせた方法等によって細胞を除去して得られる溶液が挙げられる。
 デプスフィルターとしては、具体的には、例えば、ミリスタックプラスHCデプスフィルター、ミリスタックプラスDEデプスフィルター、ミリスタックプラスCEデプスフィルター(メルクミリポア社製)、スープラPデプスフィルター(ポール社製)、ザルトクリアーPBデプスフィルター、ザルトクリアーPCデプスフィルター(ザルトリウス社製)、ゼータプラスSPデプスフィルター、ゼータプラスAPデプスフィルター、ゼータプラスLAデプスフィルター、ゼータプラスデリピッドデプスフィルター、ゼータプラスZAデプスフィルターまたはゼータプラスEXT荷電デプスフィルター(住友スリーエム社製)等が挙げられるがこれらに限定されない。
 沈殿物除去液としては、血漿、血清、乳若しくは尿等生体から得られた蛋白質含有水溶液、トランスジェニック非ヒト動物、植物または昆虫より得られた蛋白質含有水溶液、遺伝子組換え技術を用いて樹立された細胞より得られた蛋白質含有水溶液、無細胞蛋白質合成技術を用いて得られた蛋白質含有水溶液または精製する工程で得られる蛋白質含有水溶液より、低pH処理またはカプリル酸、有機溶剤、ポリエチレングリコール、界面活性剤、塩、アミノ酸若しくはポリマー等の添加により凝集沈殿(フロキュレーション)または二相分離を行った後に、沈殿物を除去した溶液等が挙げられる。沈殿物の除去方法としては、例えば、遠心分離法、クロスフローろ過法(タンジェンシャルフローろ過法)、デプスフィルターによるろ過法、メンブレンフィルターによるろ過法、透析法、またはこれらの方法を組み合わせた方法等が挙げられる。
 低pH処理のpHとしては、好ましくpH3~6であり、塩酸、酢酸、クエン酸またはリン酸等の酸の添加により調整される。
 アルコール分画液としては、血漿、血清、乳若しくは尿等生体から得られた蛋白質含有水溶液、トランスジェニック非ヒト動物、植物または昆虫より得られた蛋白質含有水溶液、遺伝子組換え技術を用いて樹立された細胞より得られた蛋白質含有水溶液、無細胞蛋白質合成技術を用いて得られた蛋白質含有水溶液または精製する工程で得られた蛋白質含有水溶液より、アルコール等を添加することで調製された分画液等が挙げられる。具体的には、例えば、低温エタノール分画法等の手法で得られる分画液が挙げられる。
 塩析分画液としては、血漿、血清、乳若しくは尿等生体から得られた蛋白質含有水溶液、トランスジェニック非ヒト動物、植物または昆虫より得られた蛋白質含有水溶液、遺伝子組換え技術を用いて樹立された細胞より得られた蛋白質含有水溶液、無細胞蛋白質合成技術を用いて得られた蛋白質含有水溶液または精製する工程で得られた蛋白質含有水溶液より、硫酸アンモニウム、硫酸ナトリウム、クエン酸ナトリウム、塩化ナトリウムまたは塩化カリウム等の塩を添加し、蛋白質を析出させることで調製された分画液等が挙げられる。
 クロマトグラフィー溶出液としては、血漿、血清、乳若しくは尿等生体から得られた蛋白質含有水溶液、トランスジェニック非ヒト動物、植物または昆虫より得られた蛋白質含有水溶液、遺伝子組換え技術を用いて樹立された細胞より得られた蛋白質含有水溶液、無細胞蛋白質合成技術を用いて得られた蛋白質含有水溶液または精製する工程で得られた蛋白質含有水溶液をクロマトグラフィーに用いられる担体または膜に吸着させ、適当な溶出液で溶出すること、または非吸着させることにより得られた、蛋白質溶出液等があげられる。
 クロマトグラフィーに用いられる担体または膜としては、アフィニティ担体、イオン交換担体、イオン交換膜、ゲルろ過担体、疎水性相互作用担体、逆相担体、ヒドロキシアパタイト担体、フルオロアパタイト担体、硫酸化セルロース担体、硫酸化アガロース担体、混合モード(マルチモーダル)担体等が挙げられる。
 イオン交換担体またはイオン交換膜としては、イオン交換基を有する分子、例えば、硫酸基、メチル硫酸基、スルフォフェニル基、スルフォプロピル基、カルボキシメチル基、4級アンモニウム基、4級アミノエチル基またはジエチルアミノエチル基等を、ベース担体または膜、例えば、セルロース、セファロース、アガロース、キトサン、アクリル酸重合体若しくはスチレン-ジビニルベンゼン共重合体などのポリマーおよびその誘導体(架橋ポリマーを含む)、シリカ粒子、ガラス粒子、セラミック粒子またはその表面処理粒子等で構成されたポリマー等に直接または間接的に結合した担体または膜が挙げられ、具体的には、例えば、Q Sepharose XL、Q Sepharose FF、DEAE Sepharose FF、ANX Sepharose FF、Capto Q、Capto DEAE、Capto Q ImpRes(以上、GEヘルスケア社製)、TOYOPEARL GigaCap Q-650、TOYOPEARL SuperQ-650(以上、東ソー社製)、Fractogel DEAE、Fractogel TMAE、Fractogel TMAE Hicap、Eshmuno Q(以上、メルクミリポア社製)、セルファインMAX-Q(JNC社製)、Mustang Q(ポール社製)、Sartobind Q、Sartobind STIC(以上、ザルトリウス社製)、SP Sepharose FF、CM Sepharose FF、SP Sepharose XL、Capto S(以上、GEヘルスケア社製)、Poros 50 HS、Poros 50 XS(以上、Applied Biosystems社製)、Eshmuno S、Fractogel COO-、Fractogel SO3-、Fractogel SE Hicap(以上、メルクミリポア社製)、TOYOPEARL GigaCap S-650、TOYOPEARL GigaCap CM-650(以上、東ソー社製)、セルファインMAX-S(JNC社製)、Mustang S(ポール社製)またはSartobind S(ザルトリウス社製)、ダイヤイオンPK、ダイヤイオンPA、ダイヤイオンCR、ダイヤイオンCR、ダイヤイオンAMP(以上、三菱化学社製)等が挙げられるがこれらに限定されない。
 アフィニティ担体としては、目的とする蛋白質に親和性を有する分子、例えば、ヘパリン、プロテインA、プロテインGまたはプロテインL等を、前記と同様のベース担体に直接または間接的に結合した担体が挙げられ、具体的には、例えば、Heparin Sepharose 6 Fast Flow(GEヘルスケア社製)、プロセップ-ヘパリン(メルクミリポア社製)、TOYOPEARL AF-Heparin-650(東ソー社製)、Heparin HyperD(ポール社製)、MabSelect、Protein A Sepharose FF、MabSelect Xtra、MabSelect SuRe、MabSelect SuRe LX、Protein G Sepharose FF、Capto L(以上、GEヘルスケア社製)、Prosep vA Hicapacity、Prosep vA Ultra、Prosep Ultraplus(以上、メルクミリポア社製)等が挙げられる。
 ゲルろ過担体としては、例えば、デキストラン、アリルデキストラン、N,N’-メチレンビスアクリルアミド、セルロース、アガロース、スチレン、ジビニルベンゼン、ポリビニルアルコール、シリカまたはキトサン等で構成されたポリマーからなる担体が挙げられ、具体的には、例えば、Sephacryl Sシリーズ、Sepharoseシリーズ、Sephadexシリーズ、Superdexシリーズ、Sephacrylシリーズ(以上、GEヘルスケア社製)、TOYOPEARL HWシリーズ、TSKgel PWシリーズ(以上、東ソー社製)、Bio gel Agarose、Bio gel P Polyacrylamide(以上、バイオラッド社製)、セルファインGH、セルファインGCL(以上、JNC社製)、Trisacryl GF05、Trisacryl GF2000、Ultrogel AcA(以上、ポール社製)またはフラクトゲル BioSEC(メルクミリポア社製)等が挙げられるが、これらに限定されない。
 疎水相互作用担体としては、疎水性を有する分子、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、オクチル基、エーテル基またはフェニル基等を、前記と同様のベース担体に直接または間接的に結合した担体が挙げられ、具体的には、例えば、Phenyl Sepharose 6 Fast Flow(high-sub)、Phenyl Sepharose 6 Fast Flow(low-sub)、Octyl Sepharose 4 Fast Flow、Butyl Sepharose 4 Fast Flow(以上、GEヘルスケア社製)、TOYOPEARL Hexyl-650、TOYOPEARL Butyl-650、TOYOPEARL Phenyl-650、TOYOPEARL Ether-650、TOYOPEARL PPG-600、TOYOPEARL Butyl-600、TOYOPEARL Super Butyl-550(以上、東ソー社製)、Mactro-Prep t-Butyl、Macro-Prep Methyl(以上、バイオラッド社製)、QMA Spherosil、Methyl Ceramic HyperD(以上、ポール社製)、フラクトゲル Phenyl(S)、フラクトゲル Propyl(S)(以上、メルクミリポア社製)、フェニル-セルロファイン(JNC社製)、ダイヤイオンHP、ダイヤイオンSP(以上、三菱化学社製)ブチル化キトパール、フェニル化キトパール(以上、富士紡ホールディングズ社製)等が挙げられる。
 逆相担体としては、例えば、炭化水素基を固相マトリックスに、直接または間接的に結合した担体が挙げられる。炭化水素基としては、例えば、トリメチル基、ブチル基、フェニル基、オクチル基またはオクタデシル基及びこれらの末端を改変した官能基等が挙げられる。具体的には、例えば、RESOURCE RPCシリーズまたはSOURCE RPCシリーズ(以上、GEヘルスケア社製)等が挙げられるが、これらに限定されない。
 ヒドロキシアパタイト担体としては、例えば、CHT Ceramic Hydroxyapatite Type IまたはType II(以上、バイオラッド社製)が挙げられるが、これに限定されない。また、フルオロアパタイト担体としては、例えば、CFT Ceramic Fluoroapatite(バイオラッド社製)等が挙げられるが、これに限定されない。
 硫酸化セルロース担体または硫酸化アガロース担体としては、例えば、セルファインサルフェイト、セルファインサルフェイトm、セルファインサルフェイトc、硫酸化セルロファインm、硫酸化セルロファインc、硫酸化セルファインmまたは硫酸化セルファインc(以上、JNC社製)またはCapto DeVirS(GEヘルスケア社製)等が挙げられるが、これらに限定されない。
 混合モード担体としては、異なる選択性を有する2種類以上の官能基、好ましくは前記と同様のイオン交換基および前記と同様の疎水性相互作用基を、前記と同様のベース担体に直接または間接的に結合した担体が挙げられ、具体的には、例えば、Capto adhere、Capto MMC(以上、GEヘルスケア社製)、HEA HyperCel、PPA HyperCel、MEP HyperCel(以上、ポール社製)、TOYOPEARL MX-Trp-650M(東ソー社製)などが挙げられるが、これらに限定されない。
 本発明において蛋白質が抗体である場合、蛋白質含有水溶液としては、好ましくはアフィニティクロマトグラフィーを用いずに得られた蛋白質含有水溶液、より好ましくはプロテインAアフィニティクロマトグラフィーを用いずに得られた蛋白質含有水溶液が挙げられる。
 更に、蛋白質含有水溶液は、粒子等の不溶物が存在する場合には予めそれらを除去し、不溶物を除去した後に本発明の精製方法に供してもよい。粒子等の不溶物の除去方法としては、例えば、遠心分離法、クロスフローろ過法(タンジェンシャルフローろ過法)、デプスフィルターによるろ過法、メンブレンフィルターによるろ過法、透析法、またはこれらの方法を組み合わせた方法が挙げられる。また、必要に応じて後述の蛋白質含有水溶液のpH、導電率、緩衝液、蛋白質濃度または活性炭の単位体積あたりの蛋白質付加量等を調整した後に本発明の精製方法に供される。
 pH、導電率、緩衝液、蛋白質濃度または活性炭の単位体積あたりの蛋白質付加量等を調整する方法としては、例えば、限外ろ過膜を用いた限外ろ過法等が挙げられる。
 限外ろ過膜としては、通常の限外ろ過膜の他、プラスまたはマイナスの電荷が付加された限外ろ過膜も含まれ、具体的には、例えば、ペリコン3ウルトラセル膜、ペリコン3バイオマックス膜、ペリコン2ウルトラセル膜、ペリコン2バイオマックス膜(以上、メルクミリポア社製)、オメガメンブラン(ポール社製)、Kvick膜(GEヘルスケア社製)等が挙げられるがこれらに限定されない。
 本発明において、不純物としては、宿主細胞蛋白質(HCP)、蛋白質由来の重合体、蛋白質由来の分解物、変性、糖鎖成分の除去、酸化若しくは脱アミド等を受けた蛋白質由来の修飾体、DNA、培地由来成分、培養添加物または宿主細胞から溶出した酵素類等が挙げられ、好ましくは宿主細胞蛋白質、蛋白質由来の重合体、蛋白質由来の分解物またはDNAが挙げられる。
 宿主細胞から溶出した酵素類としては、例えば、糖除去酵素類、蛋白質加水分解酵素類または酸化還元酵素類等が挙げられる。
 糖除去酵素としては、具体的には、例えば、ノイラミニダーゼ(シアリダーゼ)、ガラクトシダーゼまたはグリカナーゼ等が挙げられる。蛋白質分解酵素としては、具体的には、例えば、セリンプロテアーゼ、エステラーゼ、システインプロテアーゼ、トリプシン様プロテアーゼ、アミノペプチダーゼ、アスパラギン酸プロテアーゼまたはカテプシン等が挙げられる。酸化還元酵素としては、具体的には、例えば、チオレドキシンレダクターゼ等のチオレドキシン関連酵素等が挙げられる。アミノ酸異性化酵素としては、具体的には、例えば、トランスグルタミナーゼ等が挙げられる。
 本発明の精製方法に用いられる活性炭としては、医薬品の製造に適した活性炭であればいずれも用いられ、1種類の活性炭を単独で使用しても、2種類以上の活性炭を単独または混合して用いてもよい。
 活性炭としては、例えば、鉱物系活性炭または植物系活性炭等が挙げられる。鉱物系活性炭としては、具体的には、例えば、石炭系活性炭、石油系活性炭等が挙げられ、植物系活性炭としては、具体的には、例えば、木質系活性炭またはやし殻活性炭等が挙げられ、好ましくは木質系活性炭が挙げられる。
 活性炭の原料としては炭素質の物質であればいずれも用いられるが、例えば、おが屑、木炭、素灰、草炭、ピート若しくは木材チップ等の木質、やし殻、亜炭、褐炭若しくは無煙炭等の石炭、石炭ピッチ、石油ピッチ、オイルカーボン、レーヨン、アクリロニトリルまたはフェノール樹脂等が挙げられる。
 活性炭の製造方法としては、特に限定されないが、例えば、高温で塩化亜鉛若しくは燐酸等の薬品を添加、浸透させ、高温で炭化反応させる薬液賦活法または炭化した原料及び水蒸気、二酸化炭素、空気若しくは燃焼ガス等のガスを高温で反応させるガス賦活法が挙げられる。
 活性炭の形状としては、医薬品の製造に適した形状であればいずれも用いられるが、例えば、粉砕炭、顆粒炭、球状炭若しくはペレット炭等の粒状活性炭、ファイバー若しくはクロス等の繊維状活性炭またはシート状、成形体若しくはハニカム状等の特殊成形活性炭、粉末活性炭等が挙げられる。
 また、プラス若しくはマイナスの電荷が付加された活性炭またはポリヒドロキシエチルメタクリレート(PHEMA)、ヘパリン、セルロース若しくはポリウレタン等の表面修飾剤で修飾された活性炭も本発明の活性炭に含まれる。
 活性炭の平均細孔直径としては、特に限定されないが、通常は0.1~20nm、好ましくは0.5~5nm、より好ましくは1~3nmである。
 具体的には、例えば、カルボラフィン、強力白鷺、精製白鷺、特製白鷺、白鷺A、白鷺C、白鷺C-1、白鷺DO-2、白鷺DO-5、白鷺DO-11、白鷺DC、白鷺DO、白鷺Gx、白鷺G、白鷺GH、白鷺FAC-10、白鷺M、白鷺P、白鷺PHC、白鷺Gc、白鷺GH、白鷺GM、白鷺GS、白鷺GT、白鷺GAA、白鷺GOC、白鷺GOX、白鷺APRC、白鷺TAC、白鷺MAC、白鷺XRC、白鷺NCC、白鷺SRCX、白鷺Wc、白鷺LGK、白鷺KL、白鷺WH、白鷺W、白鷺WHA、白鷺LH、白鷺KL、白鷺LGK、白鷺MAC-W、白鷺S、白鷺Sx、白鷺X2M、白鷺X7000、白鷺X7100、白鷺DX7-3、モルシーボン(以上、日本エンバイオケミカルズ社製)、ACF、太閤(以上、富士ケミカル社製)、GLC(以上、クラレケミカル社製)、太閤S、太閤K、太閤Q(以上、フタムラ化学社製)、GAC、CN、CG、CAP/CGP、SX、CA(以上、日本ノリット社製)等が挙げられる。
 本発明の精製方法の手段としては、特に限定されないが、例えば、バッチ法、膜処理法またはカラムクロマトグラフィー法等が挙げられ、それぞれの手段に応じて適切な活性炭の形状が選択される。必要に応じて、多孔性ポリマー若しくはゲルに活性炭を封入した粒子等の形態またはポリプロピレン若しくはセルロース等のサポート剤若しくは繊維等を用いて活性炭を吸着、固定若しくは成形した膜若しくはカードリッジ等の形態等にて使用することも出来る。具体的には、CUNO活性炭フィルターカードリッジ、ゼータプラス活性炭フィルターカードリッジ(住友スリーエム社製)、ミリスタックプラス活性炭フィルター(メルクミリポア社製)、スープラAKSフィルター(ポール社製)、アドール(以上、ユニチカ社製)、Kフィルター、活性炭シート(以上、東洋紡社製)、へマックス(クラレ社製)、ヘモソーバ(旭化成メディカル社製)、へモカラム(テルモ社製)、へセルス(帝人社製)等が挙げられる。
 また、目的の蛋白質及び前記精製方法の手段により、用いる活性炭の充填密度、粒度、堅度、乾燥減量、強熱残分、比表面積、細孔容積またはpH等を適宜選択することも出来る。
 本発明の精製方法は、好ましくは非吸着モードで行われる。非吸着モードとは、蛋白質含有水溶液を活性炭と接触させ、目的の蛋白質を該活性炭に吸着させずに非吸着画分を回収することを意味する。具体的には、予め蛋白質含有液のpH、導電率、緩衝液、蛋白質濃度、活性炭の単位体積あたりの蛋白質負荷量、温度または活性炭への接触時間等を調整し、活性炭に接触させることにより、目的の蛋白質を活性炭に吸着させずに不純物を活性炭に吸着させ、非吸着画分に不純物含量が低下した蛋白質を回収することが出来る。
 活性炭に接触させる蛋白質含有水溶液のpHは、好ましくは2~9であり、より好ましくは3~8である。特に、蛋白質が抗体である場合、活性炭に接触させる蛋白質含有水溶液のpHは、好ましくは2~8であり、より好ましくは3~7であり、特に好ましくは4~6であり、最も好ましくは4~5である。また、蛋白質含有水溶液を構成する塩として、例えば、リン酸塩、クエン酸塩、酢酸塩、コハク酸塩、マレイン酸塩、ホウ酸塩、Tris(base)、HEPES、MES、PIPES、MOPS、TES、Tricine等が挙げられる。これらの濃度は好ましくは0.01mol/L~0.5mol/Lである。また上記の塩は、例えば、0.01mol/L~0.5mol/L、好ましくは0.01mol/L~0.5mol/Lの塩化ナトリウム、塩化カリウム、塩化カルシウム、クエン酸ナトリウム、硫酸ナトリウム、硫酸アンモニウム等の他の塩と組み合わせて用いることも出来る。更に、緩衝液成分には、例えば、グリシン、アラニン、アルギニン、セリン、スレオニン、グルタミン酸、アスパラギン酸若しくはヒスチジン等のアミノ酸、グルコース、スクロース、ラクトース、シアル酸等の糖若しくはその誘導体等と組み合わせて用いることも出来る。
 活性炭に接触させる蛋白質含有水溶液の温度は、好ましくは4℃から60℃、より好ましくは10℃から50℃、特に好ましくは20℃から40℃である。
 本発明において、活性炭の非吸着画分を回収することで、不純物含量が低下した蛋白質を高い回収率で得ることが出来る。具体的には、不純物含量として、宿主細胞蛋白質の含量が好ましくは蛋白質1mgあたり100000ng以下、より好ましくは蛋白質1mgあたり10000ng以下、特に好ましくは蛋白質1mgあたり1000ng以下、蛋白質由来の重合体の含量が好ましくは5%以下、より好ましくは4%以下、特に好ましくは3%以下、蛋白質由来の分解物が好ましくは10%以下、より好ましくは5%以下、特に好ましくは4%以下、最も好ましくは3%以下で得ることが出来る。回収率としては、好ましくは50%以上、より好ましくは60%以上、宿主細胞蛋白質の低減率(HCP LRV)としては、好ましくは1以上、より好ましくは1.5以上、特に好ましくは2以上で得ることが出来る。
 本発明において、不純物含量が低下した蛋白質の回収率、不純物含量は、通常蛋白質精製において用いられる分析法を適用することが出来る。例えば、回収率は吸光度またはプロテインAなどのアフィニティHPLC法等、宿主細胞蛋白質の含量はELISA(Enzyme-Linked Immunosorbent Assay)法、ウエスタンブロッティング法または電気化学発光法等、蛋白質由来の重合体若しくは蛋白質由来の分解物はゲルろ過HPLC法、イオン交換HPLC法、ポリアクリルアミドゲル電気泳動法、光散乱法または超遠心法等、DNAはピコグリーン法、Threshold法またはQPCR法等の分析法によりそれぞれ測定することが出来る。
 また、本発明は、活性炭を用いて、蛋白質と不純物とを分離し、不純物含量が低下した蛋白質を取得する精製方法を含む、蛋白質の製造方法に関する。
 本発明の製造方法において、活性炭と組み合わせる精製方法としては、医薬品の製造に適した方法であればいずれも用いられるが、例えば、クロマトグラフィー、アルコール分画、沈殿物除去、塩析、緩衝液交換、濃縮、希釈、ろ過、ウイルス不活性化、ウイルス除去等が挙げられる。活性炭と組み合わせる精製方法は、複数の種類、数を組み合わせてもよい。また、これらの活性炭と組み合わせる精製方法は、活性炭を用いた精製方法の前後を問わず実施することが出来る。
 活性炭と組み合わせるクロマトグラフィーに用いられる担体または膜としては、前記と同様のアフィニティ担体、イオン交換担体、イオン交換膜、ゲルろ過担体、疎水性相互作用担体、逆相担体、ヒドロキシアパタイト担体、フルオロアパタイト担体、硫酸化セルロース担体、硫酸化アガロース担体、混合モード担体等が挙げられる。
 本発明において蛋白質が抗体である場合、活性炭を用いた精製方法と組み合わせるクロマトグラフィーには、好ましくはアフィニティクロマトグラフィーを含めない製造方法、より好ましくはプロテインAアフィニティクロマトグラフィーを含めない製造方法が挙げられる。蛋白質が抗体である場合、活性炭と組み合わせるクロマトグラフィーとしては、例えば、イオン交換クロマトグラフィー、混合モードクロマトグラフィーまたはその組み合わせが挙げられる。
 活性炭と組み合わせるクロマトグラフィーは、その目的に応じて吸着モードまたは非吸着モードで行われる。好ましくは、活性炭と組み合わせるクロマトグラフィーのうち、少なくとも1つのクロマトグラフィーは吸着モードで行われる。
 該クロマトグラフィーにおける吸着モードとは、該クロマトグラフィーに供する水溶液を該担体または該膜に接触させ、目的の蛋白質を該担体または該膜に吸着させた後、必要に応じて洗浄を行い、その後、pH、電気伝導度、緩衝液成分、塩濃度または添加物等を変更した緩衝液で溶出させて吸着画分を回収することを意味する。該クロマトグラフィーにおける非吸着モードとは、該クロマトグラフィーに供する水溶液を該担体または該膜と接触させ、目的の蛋白質を該担体または該膜に吸着させずに非吸着画分を回収することを意味する。
 本発明の蛋白質の製造方法において、例えば、活性炭と組み合わせる全てのクロマトグラフィーが非吸着モードで行われる蛋白質の製造方法(All negative chromatography)が挙げられる。
 また、本発明において蛋白質が抗体である場合、例えば、活性炭と用いた精製方法の後に、引き続き非吸着モードで行われる陰イオン交換クロマトグラフィー、更に引き続き吸着モードで行われる陽イオン交換クロマトグラフィーを行う製造方法、または活性炭と用いた精製方法の後に、引き続き吸着モードで行われる陽イオン交換クロマトグラフィー、更に引き続き非吸着モードで行われる陰イオン交換クロマトグラフィーを行う製造方法等が挙げられる。
 活性炭と組み合わせるクロマトグラフィーに供する水溶液または洗浄に使用する緩衝液は、pH、電気伝導度、緩衝液成分、塩濃度または添加物等について、それぞれ好適な条件を選定する。
 クロマトグラフィーの条件を選定する上で、目的の蛋白質と分離したい化合物との物理化学的性質の違い、例えば、等電点、電荷、疎水性度、分子サイズまたは立体構造等の違いを利用することが出来る。吸着モードの溶出方法としては、目的の蛋白質と担体との親和性が低下するような特定の塩濃度またはpHの緩衝液を通液して溶出させる一段階溶出法、段階的に塩濃度またはpHを変化させて目的の蛋白質を溶出させるステップワイズ法または連続的に塩濃度またはpHを変化させて目的の蛋白質を溶出させるグラジエント法が挙げられる。
 緩衝液を構成する塩としては、例えば、リン酸塩、クエン酸塩、酢酸塩、コハク酸塩、マレイン酸塩、ホウ酸塩、Tris(base)、HEPES、MES、PIPES、MOPS、TESまたはTricine等が挙げられる。また上記の塩は、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、クエン酸ナトリウム、硫酸ナトリウムまたは硫酸アンモニウムのような他の塩と組み合わせて用いることも出来る。更に、緩衝液成分には、例えば、グリシン、アラニン、アルギニン、セリン、スレオニン、グルタミン酸、アスパラギン酸若しくはヒスチジン等のアミノ酸、グルコース、スクロース、ラクトース、シアル酸等の糖若しくはその誘導体等と組み合わせて用いることも出来る。
 本発明の製造方法により、不純物含量が低下した蛋白質を高い回収率で得ることが出来る。具体的には、不純物含量として、宿主細胞蛋白質の含量が好ましくは蛋白質1mgあたり100ng以下、より好ましくは蛋白質1mgあたり10ng以下、蛋白質由来の重合体の含量が好ましくは3.5%以下、より好ましくは1%以下、蛋白質由来の分解物が好ましくは3.5%以下、より好ましくは1%以下で得ることが出来る。回収率としては、好ましくは30%以上、より好ましくは40%以上で得ることが出来る。
 以下、実施例により本発明について更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
実施例1 Mab A精製その1(活性炭を含む非吸着モード精製)
 予め精密ろ過により清澄化したモノクローナル抗体(Mab A)を含むCHO細胞培養上清約600mLを酢酸でpH4.5に調整した。生成した沈殿を遠心分離及びフィルターで除去した。得られた清澄化液をトリス溶液で中和し、ペリコン3ウルトラセル膜(ミリポア社製、30kD、0.11m)で約6倍に濃縮した。濃縮後、10mmol/Lトリス緩衝液(pH8.0)でバッファー交換し、濃縮/バッファー交換溶液を得た。
 次いで、以下の手順で活性炭を含むMab A精製を全て非吸着モードにて実施した。まず、得られた濃縮/バッファー交換溶液を活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Aとしてプールした。
 得られた活性炭溶出液Aを10mmol/Lトリス緩衝液(pH8.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、11mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液としてプールした。
 得られたQ Sepharose溶出液にクエン酸ナトリウムを10mmol/L相当添加後、塩酸にてpH7.0に調整した。その後、10mmol/Lトリス緩衝液(pH8.0)をクエン酸溶液にて、pH7.0に調整した平衡化緩衝液で平衡化した混合モードクロマトグラフィーカラム(GEヘルスケア社製、Capto adhere、10mm IDx20cm)に添加した。添加終了後、平衡化緩衝液をカラムに通液した。カラム非吸着画分の一部をCapto adhere溶出液としてプールした。
 得られたCapto adhere溶出液を、酢酸を用いてpH4.5に調整後、活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Bとしてプールした。得られた活性炭溶出液BをMab A最終精製品とした。
 Mab A最終精製品の重合体含有率及び分解物含有率についてゲルろ過HPLC法を用いて、宿主細胞蛋白質含有量についてELISA法を用いて分析した。
 Mab A最終精製品の分析結果を図1、2及び3に示す。本精製方法により、重合体含有率及び分解物含有率がそれぞれ1%未満、宿主細胞蛋白質含有量が10ng/mg蛋白質未満のMab A精製品が取得できた。
実施例2 Mab B精製その1(活性炭を含む非吸着モード精製)
 予め精密ろ過により清澄化したモノクローナル抗体(Mab B)を含むCHO細胞培養上清約600mLを酢酸でpH4.5に調整した。生成した沈殿を遠心分離及びフィルターで除去した。得られた清澄化液をトリス溶液で中和し、ペリコン3ウルトラセル膜(ミリポア社製、30kD、0.11m)で約6倍に濃縮した。濃縮後、10mmol/Lトリス緩衝液(pH8.0)でバッファー交換し、濃縮/バッファー交換溶液を得た。
 次いで、以下の手順で活性炭を含むMab B精製を全て非吸着モードにて実施した。まず、得られた濃縮/バッファー交換溶液を活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Aとしてプールした。
 得られた活性炭溶出液Aを10mmol/Lトリス緩衝液(pH8.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、11mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液Aとしてプールした。
 得られたQ Sepharose溶出液Aにクエン酸ナトリウムを10mmol/L相当添加後、塩酸にてpH7.0に調整した。その後、10mmol/Lトリス緩衝液(pH8.0)をクエン酸溶液にて、pH7.0に調整した平衡化緩衝液で平衡化した混合モードクロマトグラフィーカラム(GEヘルスケア社製、Capto adhere、10mm IDx20cm)に添加した。添加終了後、平衡化緩衝液をカラムに通液した。カラム非吸着画分の一部をCapto adhere溶出液としてプールした。
 得られたCapto adhere溶出液を、酢酸を用いてpH4.5に調整後、活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Bとしてプールした。
 得られた活性炭溶出液Bを、トリス溶液を用いてpH8.0に調整後、フィルターろ過を行い、フィルターろ過液を得た。得られたフィルターろ過液を10mmol/Lトリス緩衝液(pH8.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、11mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液Bとしてプールした。得られたQ Sepharose溶出液BをMab B最終精製品とした。
 Mab B最終精製品の重合体含有率、分解物含有率及び宿主細胞蛋白質含有量について実施例1と同様の方法を用いて分析した。
 Mab B最終精製品の分析結果を図1、2及び3に示す。本精製方法により、重合体含有率及び分解物含有率がそれぞれ1%未満、宿主細胞蛋白質含有量が10ng/mg蛋白質未満のMab B精製品が取得できた。
実施例3 Mab C精製その1(活性炭を含む非吸着モード精製)
 予め精密ろ過により清澄化したモノクローナル抗体(Mab C)を含むCHO細胞培養上清約600mLを酢酸でpH4.5に調整した。生成した沈殿を遠心分離及びフィルターで除去した。得られた清澄化液をトリス溶液で中和し、ペリコン3ウルトラセル膜(ミリポア社製、30kD、0.11m)で約6倍に濃縮した。濃縮後、10mmol/Lトリス緩衝液(pH7.1)でバッファー交換し、濃縮/バッファー交換溶液を得た。
 次いで、以下の手順で活性炭を含むMab C精製を全て非吸着モードにて実施した。まず、得られた濃縮/バッファー交換溶液を活性炭フィルター(キュノ社製、ゼータプラスEXT荷電デプスフィルター、25cm)に通液し、活性炭溶出液Aとしてプールした。
 得られた活性炭溶出液Aを10mmol/Lトリス緩衝液(pH7.1)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、11mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液としてプールした。
 得られたQ Sepharoseプール液にクエン酸/クエン酸ナトリウムを10mmol/L相当添加後、塩酸にてpH6.0に調整した。その後、10mmol/Lトリス緩衝液(pH7.1)をクエン酸溶液にて、pH6.0に調整した平衡化緩衝液で平衡化した混合モードクロマトグラフィーカラム(GEヘルスケア社製、Capto adhere、10mm IDx20cm)に添加した。添加終了後、平衡化緩衝液をカラムに通液した。カラム非吸着画分の一部をCapto adhere溶出液としてプールした。
 得られたCapto adhere溶出液を、酢酸を用いてpH4.5に調整後、活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Bとしてプールした。得られた活性炭溶出液BをMab C最終精製品とした。
 Mab C最終精製品の重合体含有率、分解物含有率及び宿主細胞蛋白質含有量について実施例1と同様の方法を用いて分析した。
 Mab C最終精製品の分析結果は図1、2及び3に示す。本精製方法により、重合体含有率及び分解物含有率がそれぞれ1%未満、宿主細胞蛋白質含有量が10ng/mg蛋白質未満のMab C精製品が取得できた。
実施例4 Mab A精製その2(活性炭を含む非吸着モード精製)
 予め精密ろ過により清澄化したモノクローナル抗体(Mab A)を含むCHO細胞培養上清約100mLを酢酸でpH4.5に調整した。生成した沈殿を遠心分離で除去し、清澄化液を得た。
 次いで、以下の手順で活性炭を含むMab A精製を全て非吸着モードにてを実施した。まず、得られた清澄化液を活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Aとしてプールした。
 得られた活性炭溶出液Aを10mmol/L酢酸緩衝液(pH4.5)からなる平衡化緩衝液で平衡化した陽イオン交換クロマトグラフィーカラム(ミリポア社製、ProRes S、3mm IDx20cm)に添加した。添加終了後、7カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分の一部をProRes S溶出液としてプールした。
 得られたProRes S溶出液を活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Bとしてプールした。
 得られた活性炭溶出液Bを5mmol/Lトリス緩衝液(pH8.0)で4倍に希釈後、トリス溶液で中和し、フィルターろ過した。その後、10mmol/Lトリス緩衝液(pH8.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、11mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液としてプールした。得られたQ Sepharose溶出液をMab A最終精製品とした。
 Mab A最終精製品の重合体含有率、分解物含有率及び宿主細胞蛋白質含有量について実施例1と同様の方法を用いて分析した。
 Mab A最終精製品の分析結果を図4、5及び6に示す。本精製方法により、重合体含有率及び分解物含有率がそれぞれ1%未満、宿主細胞蛋白質含有量が10ng/mg蛋白質未満のMab A精製品が取得できた。
実施例5 Mab B精製その2(活性炭を含む非吸着モード精製)
 予め精密ろ過により清澄化したモノクローナル抗体(Mab B)を含むCHO細胞培養上清約100mLを酢酸でpH4.5に調整した。生成した沈殿を遠心分離で除去し、清澄化液を得た。
 次いで、以下の手順で活性炭を含むMab B精製を全て非吸着モードにて実施した。まず、得られた清澄化液を活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Aとしてプールした。
 得られた活性炭溶出液Aを10mmol/L酢酸緩衝液(pH4.5)からなる平衡化緩衝液で平衡化した陽イオン交換クロマトグラフィーカラム(ミリポア社製、ProRes S、3mm IDx20cm)に添加した。添加終了後、7カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分の一部をProRes S溶出液としてプールした。
 得られたProRes S溶出液を活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Bとしてプールした。
 得られた活性炭溶出液Bを5mmol/Lトリス緩衝液(pH8.0)で4倍に希釈後、トリス溶液で中和し、フィルターろ過した。その後、10mmol/Lトリス緩衝液(pH8.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、11mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharos溶出液としてプールした。得られたQ Sepharose溶出液をMab B最終精製品とした。
 Mab B最終精製品の重合体含有率、分解物含有率及び宿主細胞蛋白質含有量について実施例1と同様の方法を用いて分析した。
 Mab B最終精製品の分析結果を図4、5及び6に示す。本精製方法により、重合体含有率及び分解物含有率がそれぞれ1%未満、宿主細胞蛋白質含有量が10ng/mg蛋白質未満のMab B精製品が取得できた。
実施例6 Mab C精製その2(活性炭を含む非吸着モード精製)
 予め精密ろ過により清澄化したモノクローナル抗体(Mab C)を含むCHO細胞培養上清約100mLを酢酸でpH4.5に調整した。生成した沈殿を遠心分離で除去し、清澄化液を得た。
 次いで、以下の手順で活性炭を含むMab C精製を全て非吸着モードにて実施した。まず、得られた清澄化液を活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Aとしてプールした。
 得られた活性炭溶出液Aを10mmol/L酢酸緩衝液(pH4.5) からなる平衡化緩衝液で平衡化した陽イオン交換クロマトグラフィーカラム(ミリポア社製、ProRes S、3mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分の一部をProRes S溶出液としてプールした。
 得られたProRes S溶出液を活性炭フィルター(キュノ社製、ゼータカーボンフィルター、25cm)に通液し、活性炭溶出液Bとしてプールした。
 得られた活性炭溶出液Bを5mmol/Lトリス緩衝液(pH7.0)で4倍に希釈後、トリス溶液で中和し、フィルターろ過した。その後、10mmol/Lトリス緩衝液(pH7.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、11mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液としてプールした。得られたQ Sepharose溶出液をMab C最終精製品とした。
 Mab C最終精製品の重合体含有率、分解物含有率及び宿主細胞蛋白質含有量について実施例1と同様の方法を用いて分析した。
 Mab C最終精製品の分析結果を図4、5及び6に示す。本精製方法により、重合体含有率及び分解物含有率がそれぞれ1%未満、宿主細胞蛋白質含有量が10ng/mg蛋白質未満のMab C精製品が取得できた。
実施例7 Mab A精製その3(活性炭を含む精製)
 精密ろ過により清澄化したモノクローナル抗体(Mab A)を含むCHO細胞培養上清約200mLを酢酸でpH4.5に調整した。生成した沈殿を遠心分離で除去し、清澄化液Aを得た。
 次いで、得られた清澄化液A約60mLに活性炭(日本エンバイロケミカル社製、白鷺P)を添加し、混合した。その後、混合した溶液を遠心分離及びフィルターろ過し、活性炭溶出液を得た。
 得られた活性炭溶出液を5mmol/Lトリス緩衝液で4倍に希釈後、トリス溶液でpH8.0に調整した。その後、10mmol/Lトリス緩衝液(pH8.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、5mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液としてプールした。
 得られたQ Sepharose溶出液を、酢酸溶液でpH5.0に調整した。その後、10mmol/L酢酸緩衝液(pH5.0)からなる平衡化緩衝液で平衡化した陽イオン交換クロマトグラフィーカラム(アプライドバイオシステムズ社製、POROS XS、5mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。次に0.3mol/L塩化ナトリウムを含む10mmol/L酢酸緩衝液(pH5.0)から塩濃度を徐々に増加させる塩濃度勾配(10カラム容量)にて溶出した。カラム溶出画分の一部をPOROS XS溶出液としてプールした。POROS XS溶出液をMab A最終精製品とした。
実施例8 Mab B精製その3(活性炭を含む精製)
 精密ろ過により清澄化したモノクローナル抗体(Mab B)を含むCHO細胞培養上清約225mLを酢酸でpH4.5に調整した。生成した沈殿を遠心分離で除去し、清澄化液Bを得た。
 次いで、得られた清澄化液B約60mLに活性炭(日本エンバイロケミカル社製、白鷺P)を添加し、混合した。その後、混合した溶液を遠心分離及びフィルターろ過し、活性炭溶出液を得た。
 得られた活性炭溶出液を5mmol/Lトリス緩衝液で4倍に希釈後、トリス溶液でpH8.0に調整した。その後、10mmol/Lトリス緩衝液(pH8.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、5mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液としてプールした。
 得られたQ Sepharose溶出液を、酢酸溶液でpH5.1に調整した。その後、10mmol/L酢酸緩衝液(pH5.0)からなる平衡化緩衝液で平衡化した陽イオン交換クロマトグラフィーカラム(アプライドバイオシステムズ社製、POROS XS、5mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。次に0.3mol/L塩化ナトリウムを含む10mmol/L酢酸緩衝液(pH5.0)から塩濃度を徐々に増加させる塩濃度勾配(10カラム容量)にて溶出した。カラム溶出画分の一部をPOROS XS溶出液としてプールした。POROS XS溶出液をMab B最終精製品とした。
実施例9 Mab A精製品、Mab B精製品の分析
 実施例7及び比較例1により得られたMab A精製中間体及び最終精製品、実施例8及び比較例2により得られたMab B精製中間体及び最終精製品について、以下の分析を行った。精製各工程の回収率及び精製工程全体を通じた総回収率をプロテインAアフィニティHPLC法により分析した。
 Mab A及びMab BのプロテインA精製、活性炭精製での各工程回収率及び総回収率の結果を図7及び図8に示す。活性炭精製の総回収率は、プロテインA精製の総回収率とほぼ同程度であり、40%以上の高回収率であった。
 精製中間体及び最終精製品の重合体含有率及び分解物含有率を、ゲルろ過HPLC法を用いて分析した。Mab A及びMab BのプロテインA精製、活性炭精製での精製中間体及び最終精製品の重合体含有率を図9及び図11、分解物含有率を図10及び図12にそれぞれ示す。
 いずれのモノクローナル抗体についても、最終精製品(陽イオン)において、重合体含有率および分解物含有率は両精製方法で同程度であった。一方で、プロテインA精製工程と活性炭精製工程での重合体含有率および分解物含有率を比較した場合、活性炭精製工程の方がプロテインA精製工程より重合体含有率および分解物含有率は低く、2%未満であった。
 精製中間体及び最終精製品の蛋白質1mgあたりの宿主細胞蛋白質含有量をELISA法により分析した。Mab A及びMab BのプロテインA精製、活性炭精製での精製中間体及び最終精製品の蛋白質1mgあたりの宿主細胞蛋白質含有量を図13及び図14に示す。
 いずれのモノクローナル抗体についても、プロテインA精製工程と活性炭精製工程での宿主細胞蛋白質含有量は同程度であった。また、最終精製品においても、宿主細胞蛋白質含有量は同程度であり10 ng/mg蛋白質未満であった。
 以上の結果から、プロテインAを用いた精製と比べて活性炭を用いた精製によって得られた精製中間体の宿主細胞蛋白質の含有量は同程度である一方、重合体含有率および分解物含有率は活性炭を用いた精製は低く、活性炭を用いた精製によってより不純物含量が低下した蛋白質を取得できることが確認された。
実施例10 活性炭による抗体の分解抑制
 モノクローナル抗体(Mab B)を含む培養上清を酢酸でpH4.5に調整した。生成した沈殿をフィルターを用いて除去し、清澄化液を得た。
 次いで、得られた清澄化液に活性炭(日本エンバイロケミカル社製、白鷺P)を添加し、混合した。24時間保持後、活性炭を除いた上清をSDS-PAGE分析に供した。コントロールとして、活性炭を添加していないものを上記と同一の操作をし、非還元条件下SDS-PAGE分析に供した。
 SDS-PAGE分析の結果を図15に示す。コントロール(C)は、清澄化液(A)と比較して分解物のバンドが増加したが、活性炭添加(B)は、分解物バンドが増加しなかった。
 以上の結果から、活性炭の添加により分解物の生成が抑制されることが確認された。
実施例11 活性炭による抗体の還元抑制
 モノクローナル抗体(Mab D)を含む培養上清に活性炭(日本エンバイロケミカル社製、白鷺P)を添加し、混合した。活性炭除去後、24時間嫌気状態とした。24時間保持後、上清を非還元条件下SDS-PAGE分析に供した。コントロールとして、活性炭を添加していないものを上記と同一の操作をし、SDS-PAGE分析に供した。
 SDS-PAGE分析の結果を図16に示す。培養上清(A)と比較してコントロール(C)では抗体が還元したバンド(H鎖、L鎖)が観察されたが、活性炭処理(B)では、抗体が還元したバンド(H鎖、L鎖)が認められなかった。
 以上の結果から、活性炭の添加により還元体の生成が抑制されることが確認された。
実施例12 Mab A精製品、Mab B精製品のDNA分析
 実施例7により得られたMab A最終精製品、比較例1により得られたMab A精製品、実施例8により得られたMab B最終精製品及び比較例2により得られたMab B精製品について、Threshold法によるDNA分析を行った。
 Mab A及びMab Bに関する活性炭精製での最終精製品およびProtein A精製での精製品の蛋白質1mgあたりのDNA含有量を図17に示す。いずれの最終精製品及び精製品についてもDNA含有量は同程度であり10pg/mg以下であった。
実施例13 活性炭精製におけるpHの影響
 精密ろ過により清澄化したモノクローナル抗体(Mab B)を含むCHO細胞培養上清を酸またはアルカリでpH4、pH5、pH6、pH7、pH8にそれぞれ調整した。生成した沈殿をフィルターろ過で除去し、各pH調整清澄化液を得た。
 次いで、得られた各pH調整清澄化液約10mLに活性炭(日本エンバイロケミカル社製、白鷺P)を添加し、混合した。その後、混合した各溶液を遠心分離し、各活性炭溶出液を得た。各pH調整清澄化液で活性炭を添加していないものを各pHコントロールとした。
 得られた各pH活性炭溶出液および各pHコントロールの蛋白質1mgあたりの宿主細胞蛋白質含有量をELISA法により分析した。得られた蛋白質1mgあたりの宿主細胞蛋白質含有量より以下の計算式にて宿主細胞蛋白質の低減率(HCP LRV)を算出した。
 (計算式) 宿主細胞蛋白質の低減率(HCP LRV)=-log10(活性炭溶出液の蛋白質1mgあたりの宿主細胞蛋白質含有量/コントロールの蛋白質1mgあたりの宿主細胞蛋白質含有量)
 活性炭処理による各pHにおける宿主細胞蛋白質の低減率(HCP LRV)を図18に示す。pH4および5でHCP LRVは2以上であった。pH6、pH7およびpH8ではHCP LRVは1~2の範囲であった。従って、pH6、pH7及びpH8に比べて、pH4及びpH5の方が活性炭処理による宿主細胞蛋白質低減の効果が高いことが確認された。
 得られた各pH活性炭溶出液の抗体濃度をプロテインAアフィニティHPLC法により分析した。pH7の活性炭溶出液での抗体濃度を100とした場合の各pHでの相対抗体濃度(%)を図19に示す。
 pH4での抗体濃度は、他のpHの抗体濃度より低く、pH7の約70%となった。その他のpHでは、pH7の±10%の範囲内であり、pH4に比べて、pH5、pH6、pH7及びpH8の方が活性炭処理における相対抗体濃度が高く、抗体回収率が高いことが確認された。
 以上の各pHにおける宿主細胞由来蛋白質の低減率及び相対抗体濃度の結果から、活性炭処理はpH4~8のいずれのpHでも実施可能であり、特にpH4~6が好ましいと考えられた。
実施例14 活性炭精製における活性炭原材料の影響
 精密ろ過により清澄化したモノクローナル抗体(Mab B)を含むCHO細胞培養上清を酢酸でpH4.6に調整した。生成した沈殿を遠心分離及び、フィルターろ過で除去し、清澄化液Bを得た。
 次いで、得られた清澄化液B約10mLに表1に示す活性炭をそれぞれ添加し、混合した。その後、混合した溶液を遠心分離及びフィルターろ過し、活性炭溶出液を得た。
Figure JPOXMLDOC01-appb-T000001
 各活性炭溶出液の重合体含有率及び分解物含有率はゲルろ過HPLC法を用いて、宿主細胞蛋白質含有量はELISA法を用いて分析した。各活性炭溶出液の分析結果を図20、図21及び図22に示す。
 白鷺P、白鷺DO-2及び白鷺DO-5を用いた活性炭溶出液はともに、重合体含有率、分解物含有率及び宿主細胞蛋白質含量が培養上清より低下した。特に原材料が木質である白鷺Pを用いた活性炭溶出液は、他の活性炭に比べて分解物含有率及び宿主細胞蛋白質含有量がより低下した。
比較例1 Mab A精製(プロテインAアフィニティクロマトグラフィーを含む精製)
 実施例7で得た清澄化液Aをトリス溶液でpH6.4に調整した。この溶液約60mLを10mmol/Lトリス緩衝液(pH7.0)からなる平衡化緩衝液で平衡化したプロテインAアフィニティクロマトグラフィーカラム(GEヘルスケア社製、MabSelect SuRe、5mm IDx20cm)に添加した。添加終了後、5カラム容量の1mol/L塩化ナトリウムを含む10mmol/Lトリス緩衝液(pH7.0)及び平衡化緩衝液でカラムを洗浄した。次に、5カラム容量の100mmol/Lグリシン緩衝液(pH3.2)により溶出した。カラム溶出画分をMabSelect SuRe溶出液としてプールした。
 得られたMabSelect SuRe液をトリス溶液でpH8.0に調整した。この溶液を10mmol/Lトリス緩衝液(pH8.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、5mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液としてプールした。
 得られたQ Sepharose溶出液を、酢酸溶液でpH5.0に調整した。この溶液を10mmol/L酢酸緩衝液(pH5.0)からなる平衡化緩衝液で平衡化した陽イオン交換クロマトグラフィーカラム(アプライドバイオシステムズ社製、POROS XS、5mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。次に0.3mol/L塩化ナトリウムを含む10mmol/L酢酸緩衝液(pH5.0)から塩濃度を徐々に増加させる塩濃度勾配(10カラム容量)にて溶出した。カラム溶出画分の一部をPOROS XS溶出液としてプールした。POROS XS溶出液をMab A精製品とした。
比較例2 Mab B精製(プロテインAアフィニティクロマトグラフィーを含む精製)
 実施例8で得た清澄化液Bをトリス溶液でpH6.4に調整した。この溶液約60mLを10mmol/Lトリス緩衝液(pH7.0)からなる平衡化緩衝液で平衡化したプロテインAアフィニティクロマトグラフィーカラム(GEヘルスケア社製、MabSelect SuRe、5mm IDx20cm)に添加した。添加終了後、5カラム容量の1mol/L塩化ナトリウムを含む10mmol/Lトリス緩衝液(pH7.0)及び平衡化緩衝液でカラムを洗浄した。次に、5カラム容量の100mmol/Lグリシン緩衝液(pH3.2)により溶出した。カラム溶出画分をMabSelect SuRe溶出液としてプールした。
 得られたMabSelect SuRe液をトリス溶液でpH8.0に調整した。この溶液を10mmol/Lトリス緩衝液(pH8.0)からなる平衡化緩衝液で平衡化した陰イオン交換クロマトグラフィーカラム(GEヘルスケア社製、Q Sepharose、5mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。カラム非吸着画分をQ Sepharose溶出液としてプールした。
 得られたQ Sepharose溶出液を、酢酸溶液でpH5.0に調整した。この溶液を10mmol/L酢酸緩衝液(pH5.0)からなる平衡化緩衝液で平衡化した陽イオン交換クロマトグラフィーカラム(アプライドバイオシステムズ社製、POROS XS、5mm IDx20cm)に添加した。添加終了後、5カラム容量の平衡化緩衝液をカラムに通液した。次に0.3mol/L塩化ナトリウムを含む10mmol/L酢酸緩衝液(pH5.0)から塩濃度を徐々に増加させる塩濃度勾配(10カラム容量)にて溶出した。カラム溶出画分の一部をPOROS XS溶出液としてプールした。POROS XS溶出液をMab B精製品とした。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更および変形が可能であることは、当業者にとって明らかである。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は、2012年8月7日付けで出願された米国仮出願(61/680433号)に基づいており、その全体が引用により援用される。

Claims (15)

  1.  蛋白質の精製方法であって、活性炭を用いて、蛋白質と不純物とを分離し、不純物含量が低下した蛋白質を取得する精製方法。
  2.  蛋白質の分子量が30000以上である、請求項1に記載の精製方法。
  3.  蛋白質が糖蛋白質である、請求項1または2に記載の精製方法。
  4.  糖蛋白質が抗体である、請求項3に記載の精製方法。
  5.  蛋白質が遺伝子組換え蛋白質である、請求項1~4のいずれか1項に記載の精製方法。
  6.  不純物が宿主細胞蛋白質、蛋白質由来の重合体、蛋白質由来の分解物またはDNAのいずれかである、請求項1~5のいずれか1項に記載の精製方法。
  7.  非吸着モードで分離を行う、請求項1~6のいずれか1項に記載の精製方法。
  8.  pHが3~8で分離を行う、請求項1~7のいずれか1項に記載の精製方法。
  9.  活性炭が木質系活性炭である、請求項1~8のいずれか1項に記載の精製方法。
  10. 活性炭の平均細孔直径が0.5~5nmである、請求項1~9のいずれか1項に記載の精製方法
  11.  請求項1~10のいずれか1項に記載の精製方法を含む、蛋白質の製造方法。
  12.  プロテインAクロマトグラフィーを使用しない、請求項11に記載の製造方法。
  13.  陰イオン交換クロマトグラフィー、陽イオン交換クロマトグラフィー、疎水相互作用クロマトグラフィーまたは混合モードクロマトグラフィーの何れか1のクロマトグラフィーを含む、請求項11または12に記載の製造方法。
  14.  少なくとも1つの吸着モードのクロマトグラフィーを含む、請求項11~13のいずれか1項に記載の製造方法。
  15.  請求項11~14のいずれか1項に記載の方法により製造された蛋白質。
PCT/JP2013/057902 2012-08-07 2013-03-19 蛋白質の精製方法 WO2014024514A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19208112.3A EP3643722B1 (en) 2012-08-07 2013-03-19 Method of purifying protein
ES13828251T ES2774408T3 (es) 2012-08-07 2013-03-19 Método de purificación de proteína
JP2014529324A JP6189843B2 (ja) 2012-08-07 2013-03-19 蛋白質の精製方法
EP13828251.2A EP2883882B1 (en) 2012-08-07 2013-03-19 Protein purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261680433P 2012-08-07 2012-08-07
US61/680,433 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024514A1 true WO2014024514A1 (ja) 2014-02-13

Family

ID=50066676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057902 WO2014024514A1 (ja) 2012-08-07 2013-03-19 蛋白質の精製方法

Country Status (5)

Country Link
US (1) US9650411B2 (ja)
EP (2) EP3643722B1 (ja)
JP (2) JP6189843B2 (ja)
ES (2) ES2774408T3 (ja)
WO (1) WO2014024514A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016527201A (ja) * 2013-07-12 2016-09-08 メルク パテント ゲーエムベーハー 活性炭を用いた標的タンパク質含有サンプルからのフラグメントの除去
JP2018001057A (ja) * 2016-06-28 2018-01-11 大阪ガスケミカル株式会社 タンパク質精製用吸着剤
JP2018501222A (ja) * 2014-12-08 2018-01-18 イー・エム・デイー・ミリポア・コーポレイシヨン 混床イオン交換吸着剤
WO2018043645A1 (ja) * 2016-08-31 2018-03-08 協和発酵キリン株式会社 活性炭を用いた蛋白質の精製方法
JP2019512255A (ja) * 2016-04-01 2019-05-16 ユーシービー バイオファルマ エスピーアールエル タンパク質精製方法
JP2019513733A (ja) * 2016-04-05 2019-05-30 ヘモネティクス・コーポレーションHaemonetics Corporation 血液からの免疫グロブリンの濃縮のための方法および装置
US10449517B2 (en) 2014-09-02 2019-10-22 Emd Millipore Corporation High surface area fiber media with nano-fibrillated surface features
JP2020527102A (ja) * 2017-07-19 2020-09-03 バイエル、アクチエンゲゼルシャフトBayer Aktiengesellschaft 抗体薬物複合体結合後の非結合薬物の除去
JP2020534332A (ja) * 2017-09-22 2020-11-26 イミュノジェン, インコーポレイテッド カチオン交換クロマトグラフィーを使用した三重軽鎖抗体の分離
US11305271B2 (en) 2010-07-30 2022-04-19 Emd Millipore Corporation Chromatography media and method
KR20240021151A (ko) 2021-06-10 2024-02-16 미쯔비시 케미컬 주식회사 합성 흡착제, 항체의 정제 방법 및 항체의 제조 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR102198A1 (es) 2014-10-09 2017-02-08 Regeneron Pharma Proceso para reducir partículas subvisibles en una formulación farmacéutica
WO2016070957A1 (en) 2014-11-06 2016-05-12 Merck Patent Gmbh Activated carbon for the removal of leachables and/or extractables
WO2018034885A1 (en) 2016-08-16 2018-02-22 Regeneron Pharmaceuticals, Inc. Methods for quantitating individual antibodies from a mixture
DK3532838T3 (da) 2016-10-25 2022-07-04 Regeneron Pharma Fremgangsmåder og systemer til kromatografidataanalyse
EP3546475A1 (en) * 2018-03-27 2019-10-02 Sanofi Full flow-through process for purifying recombinant proteins
TW202005694A (zh) 2018-07-02 2020-02-01 美商里珍納龍藥品有限公司 自混合物製備多肽之系統及方法
US20220324945A1 (en) * 2019-07-31 2022-10-13 Kyowa Kirin Co., Ltd. Method for purifying antibody using adsorbent
CN114134109B (zh) * 2021-12-10 2023-01-24 广州远想生物科技股份有限公司 Egf间充质干细胞外泌体的纯化方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297A (ja) * 1986-06-18 1988-01-05 Handai Biseibutsubiyou Kenkyukai 遺伝子発現産物の精製法
JPH03198792A (ja) 1983-12-13 1991-08-29 Kirin Amgen Inc ヒトエリスロポエチンの生産方法
JPH03271234A (ja) * 1990-03-20 1991-12-03 Nippon Sekijiyuujishiya 免疫グロブリンgの製造方法
JPH0454198A (ja) * 1990-06-25 1992-02-21 Green Cross Corp:The ヒト血清アルブミンの着色抑制方法
JPH05504579A (ja) 1990-10-17 1993-07-15 ザ・ウエルカム・ファウンデーション・リミテッド 精製イムノグロブリン
JP2007062245A (ja) 2005-09-01 2007-03-15 Chiba Kikai Kogyo Kk 合成樹脂製シートの成型装置
JP2007114496A (ja) 2005-10-20 2007-05-10 Hitachi Displays Ltd 表示装置
JP2009009523A (ja) 2007-06-29 2009-01-15 Victor Co Of Japan Ltd コンテンツ配信装置、コンテンツメディア作成装置及びコンテンツ販売方法
JP2010018847A (ja) 2008-07-10 2010-01-28 Kobe Steel Ltd 耐食性に優れたアルミニウム合金材およびプレート式熱交換器
JP2011036128A (ja) * 2007-11-15 2011-02-24 Asahi Kasei Medical Co Ltd 抗体製造方法
WO2011081898A1 (en) * 2009-12-14 2011-07-07 General Electric Company Membranes and associated methods for purification of antibodies
JP2013044748A (ja) * 2011-08-19 2013-03-04 E M D Millipore Corp タンパク質精製中に試料中の1または複数の不純物のレベルを低下させる方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639513A (en) 1984-02-02 1987-01-27 Cuno Inc. Intravenously injectable immunoglobulin G (IGG) and method for producing same
WO1997003092A1 (en) * 1995-07-13 1997-01-30 Hemasure A/S A process for removal of polyethylene glycol from a protein or peptide solution
US20020056686A1 (en) * 1996-06-14 2002-05-16 Agathagelos Kyrlidis Chromatography and other adsorptions using modified carbon adsorbents
US7390403B2 (en) * 2004-03-19 2008-06-24 Millipore Corporation Prefilter system for biological systems
US20060281075A1 (en) * 2004-12-22 2006-12-14 Large Scale Biology Corporation Purification of viruses, proteins and nucleic acids
US20080026041A1 (en) * 2005-09-12 2008-01-31 Argonide Corporation Non-woven media incorporating ultrafine or nanosize powders
TWI461436B (zh) 2005-11-25 2014-11-21 Kyowa Hakko Kirin Co Ltd 人類cd134(ox40)之人類單株抗體及其製造及使用方法
TWI390034B (zh) 2006-04-06 2013-03-21 Kyowa Hakko Kirin Co Ltd Novel anti-CD98 antibody
ES2677353T3 (es) * 2007-03-23 2018-08-01 Wyeth Llc Procedimiento abreviado de purificación para la producción de polisacáridos capsulares de Streptococcus pneumoniae
WO2008120801A1 (ja) 2007-04-02 2008-10-09 Kyowa Hakko Kirin Co., Ltd. アンチトロンビン組成物の製造方法
PL2586788T3 (pl) 2007-07-09 2018-05-30 Genentech, Inc. Zapobieganie redukcji wiązań disiarczkowych podczas rekombinacyjnego wytwarzania polipeptydów
EP2311864A4 (en) 2008-08-13 2013-07-31 Kyowa Hakko Kirin Co Ltd RECOMBINANT PROTEIN-S COMPOSITION
CN103732253A (zh) * 2011-08-19 2014-04-16 Emd密理博公司 小分子在纯化生物分子的方法中的用途

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198792A (ja) 1983-12-13 1991-08-29 Kirin Amgen Inc ヒトエリスロポエチンの生産方法
JPS63297A (ja) * 1986-06-18 1988-01-05 Handai Biseibutsubiyou Kenkyukai 遺伝子発現産物の精製法
JPH03271234A (ja) * 1990-03-20 1991-12-03 Nippon Sekijiyuujishiya 免疫グロブリンgの製造方法
JPH0454198A (ja) * 1990-06-25 1992-02-21 Green Cross Corp:The ヒト血清アルブミンの着色抑制方法
JPH05504579A (ja) 1990-10-17 1993-07-15 ザ・ウエルカム・ファウンデーション・リミテッド 精製イムノグロブリン
JP2007062245A (ja) 2005-09-01 2007-03-15 Chiba Kikai Kogyo Kk 合成樹脂製シートの成型装置
JP2007114496A (ja) 2005-10-20 2007-05-10 Hitachi Displays Ltd 表示装置
JP2009009523A (ja) 2007-06-29 2009-01-15 Victor Co Of Japan Ltd コンテンツ配信装置、コンテンツメディア作成装置及びコンテンツ販売方法
JP2011036128A (ja) * 2007-11-15 2011-02-24 Asahi Kasei Medical Co Ltd 抗体製造方法
JP2010018847A (ja) 2008-07-10 2010-01-28 Kobe Steel Ltd 耐食性に優れたアルミニウム合金材およびプレート式熱交換器
WO2011081898A1 (en) * 2009-12-14 2011-07-07 General Electric Company Membranes and associated methods for purification of antibodies
JP2013044748A (ja) * 2011-08-19 2013-03-04 E M D Millipore Corp タンパク質精製中に試料中の1または複数の不純物のレベルを低下させる方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
J.EXPERIMENTAL MEDICINE, vol. 147, 1978, pages 923
PROC.NATL.ACAD.SCI.USA, vol. 53, 1965, pages 288
PROCEEDING OF THE SOCIETY FOR THE BIOLOGICAL MEDICINE, vol. 73, 1950, pages 1
SCIENCE, vol. 122, 1952, pages 501
THE JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, vol. 199, 1967, pages 519
VIROLOGY, vol. 8, 1959, pages 396

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11305271B2 (en) 2010-07-30 2022-04-19 Emd Millipore Corporation Chromatography media and method
JP2016527201A (ja) * 2013-07-12 2016-09-08 メルク パテント ゲーエムベーハー 活性炭を用いた標的タンパク質含有サンプルからのフラグメントの除去
US10519194B2 (en) 2013-07-12 2019-12-31 Merck Patent Gmbh Removal of fragments from a sample containing a target protein using activated carbon
US10449517B2 (en) 2014-09-02 2019-10-22 Emd Millipore Corporation High surface area fiber media with nano-fibrillated surface features
US11236125B2 (en) 2014-12-08 2022-02-01 Emd Millipore Corporation Mixed bed ion exchange adsorber
JP2018501222A (ja) * 2014-12-08 2018-01-18 イー・エム・デイー・ミリポア・コーポレイシヨン 混床イオン交換吸着剤
JP2019512255A (ja) * 2016-04-01 2019-05-16 ユーシービー バイオファルマ エスピーアールエル タンパク質精製方法
JP7012023B2 (ja) 2016-04-01 2022-01-27 ユーシービー バイオファルマ エスアールエル タンパク質精製方法
JP2019513733A (ja) * 2016-04-05 2019-05-30 ヘモネティクス・コーポレーションHaemonetics Corporation 血液からの免疫グロブリンの濃縮のための方法および装置
JP7163187B2 (ja) 2016-04-05 2022-10-31 ヘモネティクス・コーポレーション 血液からの免疫グロブリンの濃縮のための方法および装置
JP2018001057A (ja) * 2016-06-28 2018-01-11 大阪ガスケミカル株式会社 タンパク質精製用吸着剤
JPWO2018043645A1 (ja) * 2016-08-31 2019-06-27 協和発酵キリン株式会社 活性炭を用いた蛋白質の精製方法
WO2018043645A1 (ja) * 2016-08-31 2018-03-08 協和発酵キリン株式会社 活性炭を用いた蛋白質の精製方法
JP7063811B2 (ja) 2016-08-31 2022-05-09 協和キリン株式会社 活性炭を用いた蛋白質の精製方法
JP2020527102A (ja) * 2017-07-19 2020-09-03 バイエル、アクチエンゲゼルシャフトBayer Aktiengesellschaft 抗体薬物複合体結合後の非結合薬物の除去
JP2020534332A (ja) * 2017-09-22 2020-11-26 イミュノジェン, インコーポレイテッド カチオン交換クロマトグラフィーを使用した三重軽鎖抗体の分離
KR20240021151A (ko) 2021-06-10 2024-02-16 미쯔비시 케미컬 주식회사 합성 흡착제, 항체의 정제 방법 및 항체의 제조 방법

Also Published As

Publication number Publication date
EP2883882A4 (en) 2016-03-09
EP2883882A1 (en) 2015-06-17
US20140046038A1 (en) 2014-02-13
ES2774408T3 (es) 2020-07-21
US9650411B2 (en) 2017-05-16
EP3643722A1 (en) 2020-04-29
JP2017226678A (ja) 2017-12-28
ES2962968T3 (es) 2024-03-22
EP2883882B1 (en) 2019-12-25
JP6640799B2 (ja) 2020-02-05
EP3643722B1 (en) 2023-08-30
JPWO2014024514A1 (ja) 2016-07-25
JP6189843B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6640799B2 (ja) 蛋白質の精製方法
EP2727930B1 (en) Method for purifying antithrombin
JP6807859B2 (ja) クロマトグラフィーにおける不純物を取り除くためのアルカリ洗浄の使用
EP2583973A1 (en) Method for purifying protein using amino acid
US20130178608A1 (en) Protein purification by ion exchange
WO2013158279A1 (en) Protein purification methods to reduce acidic species
US10981975B2 (en) Method for efficient purification of human serum albumin
US20130116413A1 (en) Purification of proteins
AU2020252054A1 (en) Improvement of affinity chromatography of immunoglobulins by using pre-capture flocculation
US20190211056A1 (en) Method for purifying protein using activated carbon
EP4006047A1 (en) Method for purifying antibody using adsorbent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529324

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013828251

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE