WO2014024465A1 - Exposure method, method for manufacturing flat-panel display, and method for manufacturing device - Google Patents

Exposure method, method for manufacturing flat-panel display, and method for manufacturing device Download PDF

Info

Publication number
WO2014024465A1
WO2014024465A1 PCT/JP2013/004728 JP2013004728W WO2014024465A1 WO 2014024465 A1 WO2014024465 A1 WO 2014024465A1 JP 2013004728 W JP2013004728 W JP 2013004728W WO 2014024465 A1 WO2014024465 A1 WO 2014024465A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
pattern
holding
exposure method
holding body
Prior art date
Application number
PCT/JP2013/004728
Other languages
French (fr)
Japanese (ja)
Inventor
青木 保夫
篤史 原
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201380049848.7A priority Critical patent/CN104662481B/en
Priority to KR1020157005675A priority patent/KR102206141B1/en
Publication of WO2014024465A1 publication Critical patent/WO2014024465A1/en
Priority to HK15105422.0A priority patent/HK1205276A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to an exposure method, a flat panel display manufacturing method, and a device manufacturing method. More specifically, the present invention relates to an exposure method for moving a pattern holder relative to an energy beam in a scanning direction, and a flat using the exposure method. The present invention relates to a panel display manufacturing method and a device manufacturing method using the exposure method.
  • a lithography process for manufacturing electronic devices such as liquid crystal display elements, semiconductor elements (integrated circuits, etc.), a mask (photomask) or reticle (hereinafter collectively referred to as “mask”), a glass plate or A step-and-step of transferring a pattern formed on a mask onto a substrate using an energy beam while synchronously moving a wafer (hereinafter collectively referred to as a “substrate”) along a predetermined scanning direction (scanning direction).
  • a scanning exposure apparatus a so-called scanning stepper (also called a scanner)) or the like is used.
  • a mask stage apparatus that controls the position of the mask by controlling the position of a frame-like member (called a mask holder or the like) that holds the edge of the mask by suction has been used.
  • a mask stage apparatus that controls the position of the mask by controlling the position of a frame-like member (called a mask holder or the like) that holds the edge of the mask by suction.
  • the mask tends to increase in size. Thereby, there is a possibility that the exposure accuracy of the deflection (or vibration) caused by the weight of the mask will be affected.
  • the present invention has been made under the circumstances described above.
  • the upper surface of the pattern holding body having a predetermined pattern can be suspended from the upper side in the gravity direction without contact.
  • Opposing to the lower surface of the support member, suspending and supporting the pattern holder on the support member in a non-contact manner, and holding the pattern holder on the pattern holder that is suspended and supported on the support member A holding member that can be held, and the holding member is used to move the pattern holder in a scanning direction within at least a predetermined two-dimensional plane with respect to the energy beam, and an object to be exposed is moved relative to the energy beam.
  • Driving the scanning direction to transfer the pattern to the object to be exposed, and maintaining the suspension of the pattern holder by the support member.
  • the pattern holder moves relative to the energy beam, the upper surface of the pattern holder is suspended and supported by the support member in a non-contact manner, so that bending (or vibration) is suppressed.
  • the pattern holder is held and released by the holding member. Compared to the case where the pattern holder is directly recovered from the member, the pattern holder replacement operation is simplified.
  • the present invention includes exposing the object to be exposed using the exposure method according to the first aspect of the present invention, and developing the exposed object to be exposed. It is a manufacturing method of a flat panel display.
  • the present invention includes exposing the exposure target object using the exposure method according to the first aspect of the present invention, and developing the exposed exposure target object. It is a device manufacturing method.
  • FIG. 4 is a view taken along the line AA in FIG. 3 (a view of the mask stage device as viewed from above).
  • FIG. 4 is a view taken along the line BB in FIG. 3 (a view of the mask stage device as viewed from below).
  • FIGS. 6A and 6B are views (No. 1 and No. 2) for explaining the operation of the mask loader device when the mask is carried in.
  • FIGS. 7A to 7C are views (No.
  • FIGS. 8A and 8B are views (No. 1 and No. 2) for explaining the mask loading operation using the mask loader device according to the second embodiment.
  • FIGS. 9A and 9B are views (No. 3 and No. 4) for explaining the mask loading operation using the mask loader device according to the second embodiment.
  • FIGS. 10A and 10B are views (No. 5 and No. 6) for explaining the mask loading operation using the mask loader device according to the second embodiment.
  • FIG. 1 schematically shows a configuration of a liquid crystal exposure apparatus 10 according to the first embodiment.
  • the liquid crystal exposure apparatus 10 employs a step-and-scan method in which a rectangular (square) glass substrate P (hereinafter simply referred to as a substrate P) used in, for example, a liquid crystal display device (flat panel display) is an exposure object.
  • a projection exposure apparatus a so-called scanner.
  • the liquid crystal exposure apparatus 10 includes an illumination system 12, a mask stage device 14 that holds a light-transmitting mask M, a projection optical system 16, an apparatus body 18, and a resist (sensitive agent) on the surface (the surface facing the + Z side in FIG. ) Is applied to the substrate stage device 20, the mask loader device 90 (not shown in FIG. 1, refer to FIG. 2), and their control system.
  • the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system 16 at the time of exposure is defined as the X-axis direction
  • the direction orthogonal to the X-axis in the horizontal plane is defined as the Y-axis direction, the X-axis, and the Y-axis.
  • the orthogonal direction is the Z-axis direction
  • the rotation directions around the X-axis, Y-axis, and Z-axis are the ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • the positions in the X-axis, Y-axis, and Z-axis directions are the X position, the Y position, and the Z position, respectively.
  • the illumination system 12 is configured similarly to the illumination system disclosed in, for example, US Pat. No. 5,729,331.
  • the illumination system 12 irradiates light emitted from a light source (not shown) (for example, a mercury lamp) through exposure mirrors (not shown), dichroic mirrors, shutters, wavelength selection filters, various lenses, and the like. ) Irradiate the mask M as IL.
  • a light source for example, a mercury lamp
  • the illumination light IL for example, light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or the combined light of the i-line, g-line, and h-line is used.
  • the illumination system 12 (an illumination system unit including the various lenses described above) is supported by an illumination system frame 30 installed on the floor 11 of the clean room.
  • the illumination system frame 30 has a plurality of leg portions 32 (overlapping in the depth direction in FIG. 1) and an illumination system support portion 34 supported by the plurality of leg portions 32.
  • the mask stage device 14 drives the mask M with a predetermined long stroke in the X-axis direction (scan direction) with respect to the illumination system 12 (illumination light IL), and slightly drives it in the Y-axis direction and the ⁇ z direction. Is an element.
  • the mask M is made of, for example, a rectangular plate-like member made of quartz glass, and a predetermined circuit pattern (mask pattern) is formed on the surface (lower surface portion) facing the ⁇ Z side in FIG. As shown in FIG. 3, a dustproof film called a pellicle Pe is attached to the lower surface of the mask M to protect the mask pattern.
  • regions where the mask pattern is not formed are provided at both ends in the width direction (Y-axis direction) of the lower surface of the mask M.
  • the width direction dimension of the pellicle Pe is set shorter than the width direction dimension of the mask M.
  • the projection optical system 16 is disposed below the mask stage device 14.
  • the projection optical system 16 is a so-called multi-lens projection optical system having the same configuration as the projection optical system disclosed in, for example, US Pat. No. 6,552,775, and is a double-sided telecentric equal magnification system.
  • a plurality of projection optical systems for forming a vertical image are provided.
  • the illumination light that has passed through the mask M causes the mask M in the illumination area to pass through the projection optical system 16.
  • a projection image (partial upright image) of the circuit pattern is formed in an irradiation region (exposure region) of illumination light conjugate to the illumination region on the substrate P. Then, the mask M moves relative to the illumination area (illumination light IL) in the scanning direction, and the substrate P moves relative to the exposure area (illumination light IL) in the scanning direction. Scanning exposure of one shot area is performed, and the pattern formed on the mask M is transferred to the shot area.
  • the apparatus main body 18 supports the projection optical system 16 and is installed on the floor 11 via a plurality of vibration isolation devices 19.
  • the apparatus main body 18 is configured in the same manner as the apparatus main body disclosed in, for example, US Patent Application Publication No. 2008/0030702, and includes an upper gantry 18a, a lower gantry 18b, and a pair of middle gantry 18c. is doing.
  • the apparatus main body 18 is arranged so as to be vibrationally separated from the illumination system frame 30. Therefore, the projection optical system 16 and the illumination system 12 are vibrationally separated.
  • the substrate stage device 20 includes a base 22, an XY coarse movement stage 24, and a fine movement stage 26.
  • the base 22 is made of a plate member that is rectangular in plan view (viewed from the + Z side), and is integrally mounted on the lower base 18b.
  • the XY coarse movement stage 24 is, for example, a so-called gantry type that combines an X coarse movement stage that can move with a predetermined long stroke in the X-axis direction and a Y coarse movement stage that can move with a predetermined long stroke in the Y-axis direction. 2 axis stage device (X and Y coarse movement stages are not shown).
  • the fine movement stage 26 is made of a plate-shaped (or box-shaped) member having a rectangular shape in plan view, and includes a substrate holder that holds the lower surface of the substrate P by suction.
  • the fine movement stage 26 is placed on the base 22 via a weight cancellation device (not shown in FIG. 1) as disclosed in, for example, US Patent Application Publication No. 2010/0018950.
  • the fine movement stage 26 is guided (guided) by the XY coarse movement stage 24 to move with a predetermined long stroke in the X axis direction and / or the Y axis direction with respect to the projection optical system 16 (illumination light IL). To do.
  • Position information in the Y-axis direction of the fine movement stage 26 is obtained by a Y laser interferometer 28y fixed to the apparatus main body 18 using a Y bar mirror 27y fixed to the fine movement stage 26, and is output to the Y laser interferometer 28y. Based on this, the Y position of the substrate P is controlled. Further, as shown in FIG. 2, the position information of the fine movement stage 26 in the X-axis direction is fixed to an interferometer column 18d which is a part of the apparatus main body 18 using an X bar mirror 27x fixed to the fine movement stage 26. The X position of the substrate P is controlled based on the output of the X laser interferometer 28x.
  • a plurality of Y laser interferometers 28y and X laser interferometers 28x are provided, respectively, so that rotation amount information of the substrate P in the ⁇ z direction can also be obtained.
  • the configuration of the substrate stage device 20 is particularly limited as long as the substrate P can be driven with a predetermined long stroke in at least the X-axis (scanning) direction so as to be synchronized with the mask M held by the mask stage device 14. Not.
  • the mask loader device 90 is installed on the floor 11 and on the ⁇ X side of the device body 18 as shown in FIG.
  • the mask loader device 90 includes a mask stocker 92 that stores a plurality of masks M, and a mask transport device 94 that transports the mask M from the mask stocker 92 to the mask stage device 14.
  • the mask stocker 92 holds a plurality of masks M at predetermined intervals in the vertical direction.
  • a pellicle Pe (see FIG. 3) is attached in advance to each of the plurality of masks M stored in the mask stocker 92.
  • the mask transfer device 94 includes a transfer table 94a, an elevating device 94b for moving the transfer table 94a up and down, and a pair of slide members 94c for transferring the mask M between the transfer table 94a and the mask stocker 92 (in FIG. 2). Only one is shown).
  • the transfer table 94a is made of a plate-like member having a rectangular shape in plan view and whose outer shape is set somewhat larger than the mask M.
  • the lifting device 94b has a uniaxial actuator such as an air cylinder, for example, and moves the mask M supported by the transfer table 94a up and down.
  • the pair of slide members 94c are arranged apart from each other in the Y-axis direction, one on the vicinity of the + Y side end of the transfer table 94a and the other of the ⁇ of the transfer table 94a. Mounted on the vicinity of the Y-side end portion through a mechanical X linear guide device 94d as disclosed in US Pat. No. 6,761,482, for example.
  • Each of the pair of slide members 94c is made of a member extending in the X-axis direction having an L-shaped YZ cross section, and is arranged symmetrically with respect to the paper surface.
  • the pair of slide members 94c is set with a spacing in the Y-axis direction so that the + M side and the ⁇ Y side end portions (margin regions) of the mask M can be supported from below without contacting the pellicle Pe. ing.
  • Each of the pair of slide members 94c is synchronously driven with a predetermined stroke in the X-axis direction with respect to the transport table 94a by an X actuator (not shown).
  • the mask transport device 94 When the mask M is carried in, as shown in FIG. 2, the mask transport device 94 has the Z position of the transport table 94 a so that the pair of slide members 94 c can be inserted below the desired (transport target) mask M. In this state, the pair of slide members 94c is inserted below the desired mask M, and the mask M is transferred from the mask stocker 92 to the slide member 94c. When the mask M is returned from the mask transfer device 94 to the mask stocker 92, the operation reverse to the above is performed. The delivery operation of the mask M between the mask loader device 90 and the mask stage device 14 will be described later.
  • the configuration of the apparatus for storing the plurality of masks M and the configuration of the apparatus for transporting the mask M are not limited to this, and can be changed as appropriate.
  • the mask transport apparatus is an articulated robot arm or the like. May be.
  • the mask loader device 90 may be provided outside the liquid crystal exposure apparatus 10.
  • the mask stage device 14 includes a mask air guide 40, a pair of base plates 50, and a pair of mask holding devices 60.
  • the mask air guide 40 is suspended and supported by the mask air guide support frame 18e.
  • the masquare guide support frame 18e is supported by the upper base 18a via a plurality of legs 18f. Accordingly, the mask air guide 40 is vibrationally separated from the illumination system 12 (not shown in FIG. 3, see FIG. 1).
  • the mask air guide 40 has a main body portion 42 made of a thin box-shaped member extending in the X-axis direction, and a porous member 44 formed in a plate shape extending in the X-axis direction.
  • the porous member 44 is fitted in a recess formed on the lower surface of the main body 42.
  • the mask M is arranged so that the upper surface (the surface opposite to the pattern surface) faces the lower surface of the porous member 44.
  • the dimension in the longitudinal direction of the porous member 44 is set longer than the dimension in the longitudinal direction (X-axis direction) of the mask M, and the upper surface of the mask M is always on the lower surface of the porous member 44 during the exposure operation. opposite.
  • the square pump 40 is connected to a not-shown pressurized gas supply device and a vacuum device installed outside the mask stage device 14.
  • the square driver 40 sucks the gas between the lower surface of the porous member 44 and the upper surface of the mask M through a part of the plurality of holes of the porous member 44 to raise the floating force (+ Z Direction force), and a pressurized gas is jetted onto the upper surface of the mask M through the other portions of the plurality of holes, so that a slight amount is generated between the lower surface of the porous member 44 and the upper surface of the mask M.
  • a clear clearance (for example, 5 to 10 ⁇ m) is formed.
  • the mask air guide 40 functions as a so-called vacuum preload air bearing. Note that the mask air guide 40 may always eject and suck the gas over the entire surface, or may partially eject and suck the gas only in the region facing the upper surface of the mask M.
  • an opening 46 is formed in the mask air guide 40 at a position immediately below the illumination system 12.
  • the opening 46 opens in each of the upper surface portion and the lower surface portion of the mask air guide 40.
  • the opening 46 is formed in a rectangular shape in plan view with the Y-axis direction as the longitudinal direction, and illumination light IL (not shown in FIG. 5, respectively, see FIG. 1) emitted from the illumination system 12.
  • the mask M is irradiated through the opening 46.
  • the shape of the opening 46 is not particularly limited, and can be appropriately changed according to the shape of the illumination area on the mask M (for example, may be circular).
  • the opening 46 is formed somewhat on the + X side with respect to the central portion in the X-axis direction.
  • a region on the + X side from the opening 46 and a partial region on the ⁇ X side from the opening 46 guide the mask M during the exposure operation (hereinafter, these regions are referred to as exposure regions).
  • the region on the ⁇ X side from the exposure region (the region protruding in the ⁇ X side from the interferometer column 18d in FIG. 2) is exclusively used during the replacement operation of the mask M (hereinafter referred to as the mask replacement region). Called).
  • the lifting / lowering device 94b of the mask loader device 90 described above is disposed immediately below the mask exchange region.
  • the pair of base plates 50 is composed of a plate-like member that extends in the X-axis direction and is arranged in parallel to the XY plane. As shown in FIG. 4, one is arranged on the + Y side of the mask air guide 40 in plan view. The other is arranged on the ⁇ Y side of the mask air guide 40 in plan view. As shown in FIG. 1, each of the pair of base plates 50 is supported by a mask stage support frame 36 fixed to a plurality of legs 32 of the illumination system frame 30 (see FIG. 2), and the apparatus main body 18. , And the substrate stage device 20 are separated from each other by vibration. In the present embodiment, the pair of base plates 50 are supported by the illumination system frame 30, but on the floor 11 in a state of being vibrationally separated from the apparatus main body 18 and the substrate stage apparatus 20. It may be mounted on another installed base.
  • a plurality (for example, two in this embodiment) of X linear guides 52a are fixed at a predetermined interval in the Y-axis direction.
  • An X magnet unit 54a including a plurality of permanent magnets arranged in the X-axis direction is fixed on the upper surface of the base plate 50, for example, in a region between the two X linear guides 52a.
  • One of the pair of mask holding devices 60 is placed on the base plate 50 on the + Y side, and the other is placed on the base plate 50 on the -Y side.
  • the pair of mask holding devices 60 have the same configuration except that one is arranged so as to be rotated by 180 ° around the Z axis with respect to the other. Therefore, unless otherwise described below, the + Y side
  • the mask holding device 60 will be described. As shown in FIG. 3, the mask holding device 60 is hidden behind the X table 62, the X voice coil motor 64X, and the Y voice coil motor 64Y (in FIG. 3, the back side of the X voice coil motor 64X. ), A suction holding unit 66, and an air cylinder 68a.
  • the X table 62 is made of a plate-like member having a rectangular shape in plan view arranged in parallel with the XY plane.
  • On the lower surface of the X table 62 for example, two X slide members 52b (overlapping in the depth direction in FIG. 3) are fixed to one X linear guide 52a.
  • the X slide member 52b is formed in an inverted U-shaped YZ cross-section, and together with the corresponding X linear guide 52a, for example, a mechanical X linear guide device as disclosed in US Pat. No. 6,761,482. 52 is constituted.
  • An X coil unit 54b is fixed to the lower surface of the X table 62 so as to face the X magnet unit 54a with a predetermined clearance.
  • the X coil unit 54b and the X magnet unit 54a constitute an X linear motor 54 as disclosed in, for example, US Pat. No. 8,030,804.
  • the X table 62 is linearly driven on the base plate 50 in the X axis direction via an X table driving system including the X linear motor 54.
  • the type of the X actuator for driving the X table 62 in the X-axis direction is not particularly limited.
  • a feed screw including a screw portion fixed to the base plate 50 and a nut portion fixed to the X table 62.
  • a device, a belt (or rope, etc.) driving device, or the like can be used.
  • the X position information of the X table 62 is obtained by a linear encoder system (or an optical interferometer system) not shown.
  • the X voice coil motor 64X (in FIG. 3, the X voice coil motor 64X of the mask holding device 60 on the -Y side is hidden behind the Y voice coil motor 64Y. See FIG. 4). It includes a stator part 64a fixed to the upper surface via a mounting plate 63, and a mover part 64b fixed to a slide member 66b of the suction holding part 66.
  • the mover portion 64b is formed in a U-shaped YZ cross section, and the stator portion 64a is inserted between a pair of opposing surfaces.
  • the mover part 64b has, for example, a magnet unit on a pair of opposing surfaces, and the stator part 64a has, for example, a coil unit.
  • the direction and magnitude of the current supplied to the coil unit are controlled by a main controller (not shown).
  • the mask holding device 60 moves the sliding member 66b of the suction holding portion 66 in the X-axis direction with respect to the X table 62 by the Lorentz force in the X-axis direction that acts between the magnet unit and the coil unit of the X voice coil motor 64X. It can be driven with a small stroke.
  • the mask holding device 60 can guide the suction holding unit 66 so as to move in the X-axis direction integrally with the X table 62 by using the Lorentz force.
  • the Y voice coil motor 64Y (in FIG. 3, the Y voice coil motor 64Y of the mask holding device 60 on the + Y side is hidden behind the X voice coil motor 64X. See FIG. 4). Since the configuration is the same as that of the X voice coil motor 64X except that the direction of the thrust is different, the description thereof is omitted.
  • the mask holding device 60 moves the slide member 66b of the suction holding unit 66 in the Y-axis direction with respect to the X table 62 by the Lorentz force in the Y-axis direction that acts between the magnet unit and the coil unit of the Y voice coil motor 64Y. It can be driven with a small stroke.
  • the X voice coil motor 64X and the Y voice coil motor 64Y are individually arranged, but can arbitrarily generate a Lorentz force in the X axis direction and / or the Y axis direction.
  • a two-degree-of-freedom voice coil motor may be used.
  • the suction holding unit 66 includes a suction pad 66a, a slide member 66b, and a tube bearing 66c.
  • a suction pad 66a for example, two suction pads 66 a are provided at a predetermined interval in the X-axis direction for one mask holding device 60, but the number of suction pads 66 a is as follows.
  • the present invention is not limited to this, and can be appropriately changed according to the size of the mask M, for example.
  • the suction pad 66 a is formed of a member having a substantially L-shaped YZ cross section, and one end portion thereof is disposed so as to protrude from the base plate 50 toward the mask M side.
  • the above-described blank area (area where the mask pattern is not formed) is supported from below by the suction pad 66a.
  • a vacuum device arranged outside the mask stage device 14 is connected to the suction pad 66a, and the mask M can be sucked and held using a vacuum suction force supplied from the vacuum device.
  • the slide member 66b is composed of a plate-like member having a T-shape (see FIG. 4) in plan view extending in the X-axis direction, and is disposed above the X table 62. The vicinity of the other end of the suction pad 66a is integrally connected to one end of the slide member 66b.
  • the movable part 64b of the X voice coil motor 64X and the Y voice coil motor 64Y is fixed to the other end of the slide member 66b.
  • the tube bearing 66c is made of a cylindrical member having a rectangular XZ section, and the slide member 66b is inserted into a through hole having a rectangular XZ section defined by the inner wall surface with a predetermined clearance from the inner wall surface. ing.
  • a pressurized gas supply device (not shown) arranged outside the mask stage device 14 is connected to the tube bearing 66c, and a slide member is formed from a plurality of minute holes formed on the upper and lower surfaces of the inner wall surface. Pressurized gas is jetted onto the upper and lower surfaces of 66b.
  • the slide member 66b is supported in a non-contact manner on the tube bearing 66c by the static pressure of the pressurized gas.
  • a clearance is formed between the inner wall surface of the tube bearing 66c and the slide member 66b so as to allow the relative movement of the slide member 66b with respect to the tube bearing 66c in a minute stroke.
  • the Z position is constrained).
  • the tube bearing 66c is supported by a bearing plate 66d fixed to the X table 62 so as to be tiltable at a predetermined angle in the ⁇ x direction via a shaft 66e.
  • the Z position of the shaft 66e is such that the slide member 66b (and the pad surface of the suction pad 66a) is substantially parallel to the XY plane in a state where the mask M sucked and held by the suction pad 66a is suspended and supported by the mask air guide 40.
  • the center of gravity in the Y-axis direction of the system combining the suction pad 66a and the slide member 66b is set to be closer to the mask M than the shaft 66e.
  • the suction pad 66a When the suction pad 66a does not hold the mask M by suction, the tube bearing 66c, the slide member 66b, and the suction pad 66a are integrally tilted by their own weight (see FIG. 7B).
  • the suction pad 66a is in a state where one end side (pad surface side) is lowered below the other end side.
  • the movable part 64b of each of the X voice coil motor 64X and the Y voice coil motor 64Y is inserted between a pair of stopper plates 65 fixed to the mounting plate 63, and the X voice coil motor 64X and the Y voice. In the coil motor 64Y, contact between the stator portion 64a and the mover portion 64b is prevented.
  • the air cylinder 68a is used to limit relative movement between the X table 62 and the slide member 66b in the X-axis and Y-axis directions.
  • the air cylinder 68a is spaced apart in the X-axis direction near the ⁇ Y side end on the upper surface of the + Y side X table 62 and near the + Y side end on the upper surface of the ⁇ Y side X table 62. For example, two are provided (in FIG. 3, they overlap in the depth direction of the page (see FIG. 5)).
  • a ball 68b is fixed to the rod tip of the air cylinder 68a.
  • a concave portion 68c defined by a tapered surface that widens on the lower surface side is formed at a position corresponding to the air cylinder 68a on the lower surface of the slide member 66b (see FIG. 4).
  • the X table 62 and the slide member 66b are allowed to move relative to each other in the X-axis and Y-axis directions (the slide member 66b with respect to the X table 62).
  • the X table 62 and the slide member 66b move relative to each other in the X axis and Y axis directions.
  • the slide member 66b that is, the suction pad 66a
  • the slide member 66b can be tilted (rotated) around the axis 66e by moving the ball 68b up and down.
  • the air cylinder 68a is also used during the initialization operation of the mask stage device 14.
  • the initialization operation of the mask stage device 14 includes an operation of positioning the X table 62, the slide member 66b, etc. at the measurement origin position of the mask position measurement system.
  • the ball 68b is configured to fit into the concave portion 68c defined by the tapered surface, the X table 62 and the slide member 66b can be aligned with high reproducibility.
  • the position information (including the rotation amount information in the ⁇ z direction) of the mask M driven by the mask stage device 14 in the XY plane includes a plurality of encoder heads 70 built in the mask air guide 40.
  • the two-dimensional grating 72 formed on the upper surface of the mask M is obtained.
  • the two-dimensional grating 72 is formed in a strip shape extending in the X-axis direction, is near the + Y side and ⁇ Y side ends of the mask M, and does not overlap the mask pattern (in the optical path of the illumination light IL (see FIG. 1)). It is formed at a position where it does not interfere.
  • the two-dimensional grating 72 includes an X diffraction grating (X scale) whose periodic direction is the X axis direction and a Y diffraction grating (Y scale) whose periodic direction is the Y axis direction.
  • X scale X diffraction grating
  • Y scale Y diffraction grating
  • at least one encoder head 70 always faces the two-dimensional grating 72 in the vicinity of the + Y side and ⁇ Y side ends of the mask air guide 40 regardless of the X position of the mask M. Arranged at possible intervals.
  • the configuration of the mask position measurement system is not limited to this, and may be, for example, an optical interferometer system, a combination of an encoder system and an optical interferometer system, or the position of the mask M based on the output of the image sensor. You may ask for information.
  • the mask M is loaded onto the mask stage apparatus 14 by the mask loader apparatus 90 under the control of a main controller (not shown).
  • the substrate P is loaded onto the substrate stage device 20 by a substrate loader (not shown).
  • alignment measurement is performed by the main controller using an alignment detection system (not shown), and after completion of the alignment measurement, a plurality of shot areas set on the substrate P are sequentially exposed in a step-and-scan manner. Operation is performed.
  • the mask M is appropriately replaced in accordance with the mask pattern formed on the substrate P.
  • the operations of the mask loader device 90 and the mask stage device 14 including the replacement operation of the mask M held by the mask stage device 14 will be described with reference to FIGS. 6 (A) to 7 (C).
  • FIG. 6A shows the liquid crystal exposure apparatus 10 in a state where the mask M is not held on the mask stage apparatus 14.
  • the mask holding device 60 stands by somewhat on the + X side from the mask exchange area.
  • the mask M is taken out from the mask stocker 92 by the mask transport device 94.
  • the mask loader device 90 drives the transfer table 94a in the + Z direction using the lifting device 94b after the mask M is completely taken out from the mask stocker 92. Accordingly, the mask M approaches the mask air guide 40 to a position where the mask air guide 40 can hold the mask M in a suspended manner. Also at this time, the mask holding device 60 stands by somewhat on the + X side from the mask exchange area. In the standby state, as shown in FIG. 7A, in the standby state, the ball of the air cylinder 68a is driven downward, and the suction pad 66a is tilted.
  • FIG. 7B shows a state in which the mask M is held in a non-contact suspended manner by the mask air guide 40.
  • a mask air guide for the mask M is provided by a non-illustrated non-illustrated device provided in the mask air guide 40 so that the mask M does not move along the lower surface of the mask air guide 40 in a direction parallel to the XY plane.
  • the relative movement with respect to 40 may be limited. Further, this flow stop device may have a function as a Z stopper for preventing the mask M from dropping.
  • each of the pair of mask holding devices 60 is driven in the ⁇ X direction, and the suction pad 66a is inserted below the mask M. Then, as shown in FIG. 7C, when the ball 68b is driven up using the air cylinder 68a, the suction pad 66a is pushed up by the ball 68b. Thereby, the pad surface of the suction pad 66a and the lower surface of the mask M face each other.
  • the mask holding device 60 sucks and holds the mask M using the suction pad 66a.
  • the flow stopping device is controlled so as to retract from the mask M after the mask M is sucked and held.
  • the mask M and the plurality of suction pads 66a can be regarded as an integrated object, so that the ball 68b is driven to descend from the state shown in FIG. Even in the state shown in FIG. 3, the suction pad 66a does not tilt. At this time, a force that is pulled downward in the gravitational direction due to the weight of the suction pad 66a acts on the mask M. Therefore, at least one of the X voice coil motor 64X and the Y voice coil motor 64Y is also forced in the Z direction.
  • a two-degree-of-freedom motor that can be generated may be used, and the two-degree-of-freedom motor may be controlled so as to push the mask M upward from below (control so that the voice coil motor generates a force in the ⁇ Z direction).
  • movement at the time of carrying out the mask M from the mask stage apparatus 14 is reverse to the operation
  • the mask stage apparatus 14 According to the mask stage apparatus 14 described above, almost the entire upper surface of the mask M (excluding the portion where the opening 46 is formed) is supported by the mask air guide 40 in a non-contact hanging manner from above, so that the mask M is bent. (Deformation) can be suppressed. Thereby, defocusing is suppressed and the mask pattern can be transferred to the substrate P with higher accuracy.
  • the mask is compared with a case where a mask stage apparatus having a structure that supports only the end of the mask M (hereinafter referred to as a mask stage apparatus according to a comparative example) is used.
  • the resonance frequency of M increases. Therefore, precise positioning controllability of the mask M during the exposure operation is improved, and unevenness of the pattern transferred to the substrate P is suppressed.
  • the mask stage device 14 directly drives the mask M using the pair of mask holding devices 60, for example, the mask stage device according to the comparative example that drives a frame-like member (mask holder) holding the mask M.
  • the driven object is light, and the position of the mask M can be controlled with higher accuracy. Also, the cost can be reduced.
  • the mask loader device 90 drives the mask M in the + Z direction to deliver to the mask air guide 40 when the mask M is carried in, and delivers it to the mask air guide 40, and drives the mask M in the ⁇ Z direction to carry out the mask M. Therefore, the configuration can be made simple and compact.
  • a liquid crystal exposure apparatus 110 according to the second embodiment will be described with reference to FIGS. 8 (A) to 10 (B).
  • the configuration of the liquid crystal exposure apparatus 110 according to the second embodiment is the same as that of the liquid crystal exposure apparatus 10 (see FIG. 1) of the first embodiment except for the configuration of the mask loader device 190. Only elements that have the same configurations and functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the mask loader device 190 includes a mask stocker 192 and a mask transport device 194.
  • the mask stocker 192 holds a plurality of masks M in the vertical direction at a predetermined interval.
  • the mask stocker 192 pushes an arbitrary mask M toward the mask transport device 194 in the horizontal direction (non-extrusion device).
  • the mask transfer device 194 includes a transfer table 94a and a lifting device 94b similar to those in the first embodiment.
  • the transfer table 94a has a plurality of movable pieces 94e instead of the pair of slide members 94c (see FIGS. 2, 7A, etc.) of the first embodiment. .
  • the plurality of movable pieces 94e can move independently in the vertical direction (Z-axis direction) with respect to the transfer table 94a, and the Z position is set by a main controller (not shown) via a Z actuator (not shown). Be controlled.
  • the intervals between the + Y side movable pieces 94e and the ⁇ Y side movable pieces 94e are not in contact with the pellicle Pe (see FIG. 3), and are on the + Y side of the mask M.
  • it is set so that the vicinity of each end (margin area) on each of the ⁇ Y side can be supported from below.
  • the mask loader device 190 As shown in FIG. 8A, a desired mask M is pushed out from the mask stocker 192 and placed on the plurality of movable pieces 94e of the mask transport device 194.
  • the mask transfer device 194 drives the mask M up using the lifting device 94 b and delivers the mask M to the mask air guide 40.
  • the mask holding device 60 is driven in the ⁇ X direction to support the mask M from below as shown in FIG. 9A.
  • the mask holding device 60 can support the mask M from below (the suction pad 66a does not contact the slide member 94c).
  • the transport table 94a does not move and only the movable piece 94e is driven. Is done. That is, in the mask loader device 190, the movable piece 94e is driven downward so as not to contact the suction pad 66a according to the X position of the suction pad 66a when the mask holding device 60 slides in the -X direction. (Retreat from the moving path of the suction pad 66a). Further, as shown in FIG.
  • the movable piece 94e is driven up after passing through the suction pad 66a, and supports the mask M from below.
  • the mask M is always supported from below by at least one movable piece 94e regardless of the X position of the suction pad 66a.
  • 9A only the movable piece 94e closest to the + X side is retracted from the movement path of the suction pad 66a, and in FIG. 9B, only the central movable piece 94e is retracted from the movement path of the suction pad 66a. is doing.
  • the transfer table 94a is driven downward as shown in FIG. 10A, and the mask holding device 60 holding the mask M is shown in FIG.
  • the mask M is driven toward the lower side of the illumination system 12. According to the second embodiment, even if the supply of pressurized gas to the mask air guide 40 is stopped while the mask M is suspended and supported, the mask M is prevented from falling on the transfer table 94a. .
  • the configurations of the first and second embodiments described above can be changed as appropriate.
  • the mask M carry-out operation and the mask M carry-in operation are performed at the same position (mask exchange position).
  • the position (loading position) and the mask unloading position (unloading position) may be different.
  • the unloading position is set to a region on one side (for example, ⁇ X side) in the X-axis direction with respect to the opening 46.
  • the loading position may be set to a region on the other side (for example, + X side) in the X-axis direction with respect to the opening 46.
  • the carry-out operation of the mask M and the carry-in operation of another mask M can be partially performed in parallel, which is efficient.
  • the mask air guide 40 jets pressurized gas at high speed between the lower surface of the mask air guide 40 and the upper surface of the mask M (the mask air guide 40 is
  • the mask M may be suspended and held (by functioning as a so-called Bernoulli chuck) (without sucking gas).
  • the mask M is sucked and held near the end portions on the + Y side and the ⁇ Y side by the suction pads 66a of each of the pair of mask holding devices 60.
  • the suction holding position of M is not limited to this, and more places (including the end portion in the X-axis direction) may be sucked and held. In this case, for example, the entire outer periphery of the mask M may be surrounded using a frame-shaped member.
  • the illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm).
  • a single wavelength laser beam oscillated from a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium).
  • harmonics converted into ultraviolet light using a nonlinear optical crystal may be used.
  • a solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
  • the projection optical system 16 is a multi-lens projection optical system including a plurality of optical systems has been described, but the number of projection optical systems is not limited to this, and one or more projection optical systems may be used.
  • the projection optical system is not limited to a multi-lens projection optical system, and may be a projection optical system using an Offner type large mirror. Further, the projection optical system 16 may be an enlargement system or a reduction system.
  • a mask stage apparatus for example, as disclosed in US Pat. No. 8,159,649, a mask on which two types of mask patterns are formed is moved stepwise in the Y-axis direction as appropriate. It may be a mask stage apparatus that can selectively transfer the two types of mask patterns to the substrate without replacement. In this case, the width of the mask air guide 40 according to the first to fourth embodiments may be formed wider than that of the above embodiment.
  • the use of the exposure apparatus is not limited to the exposure apparatus for liquid crystal that transfers the liquid crystal display element pattern onto the square glass plate.
  • the exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel the semiconductor manufacture
  • the present invention can also be widely applied to an exposure apparatus for manufacturing an exposure apparatus, a thin film magnetic head, a micromachine, a DNA chip, and the like.
  • microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • the object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank.
  • the thickness of the substrate is not particularly limited, and includes, for example, a film-like (flexible sheet-like member).
  • the exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
  • the step of designing the function and performance of the device the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer)
  • the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
  • the exposure method of the present invention is suitable for moving the pattern holder relative to the energy beam.
  • the manufacturing method of the flat panel display of this invention is suitable for production of a flat panel display.
  • the device manufacturing method of the present invention is suitable for the production of micro devices.

Abstract

This exposure method includes the following: making the top surface of a mask (M), said mask (M) having a mask pattern, face the bottom surface of a mask air guide (40); having the mask air guide (40) support the mask (M) in a suspended manner without contact; having a mask-holding device (60) hold the mask (M) that is supported in a suspended manner by the mask air guide (40); using the mask-holding device (60) to move the mask (M) in a scanning direction relative to exposure light; and transferring the mask pattern to an exposure target, namely a substrate, by driving said substrate in the scanning direction relative to the exposure light.

Description

露光方法、フラットパネルディスプレイの製造方法、及びデバイス製造方法Exposure method, flat panel display manufacturing method, and device manufacturing method
 本発明は、露光方法、フラットパネルディスプレイの製造方法、及びデバイス製造方法に係り、更に詳しくは、パターン保持体をエネルギビームに対して走査方向に相対移動させる露光方法、前記露光方法を用いたフラットパネルディスプレイの製造方法、並びに前記露光方法を用いたデバイス製造方法に関する。 The present invention relates to an exposure method, a flat panel display manufacturing method, and a device manufacturing method. More specifically, the present invention relates to an exposure method for moving a pattern holder relative to an energy beam in a scanning direction, and a flat using the exposure method. The present invention relates to a panel display manufacturing method and a device manufacturing method using the exposure method.
 従来、液晶表示素子、半導体素子(集積回路等)等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、マスク(フォトマスク)又はレチクル(以下、「マスク」と総称する)と、ガラスプレート又はウエハ(以下、「基板」と総称する)とを所定の走査方向(スキャン方向)に沿って同期移動させつつ、マスクに形成されたパターンをエネルギビームを用いて基板上に転写するステップ・アンド・スキャン方式の露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが用いられている。 Conventionally, in a lithography process for manufacturing electronic devices (microdevices) such as liquid crystal display elements, semiconductor elements (integrated circuits, etc.), a mask (photomask) or reticle (hereinafter collectively referred to as “mask”), a glass plate or A step-and-step of transferring a pattern formed on a mask onto a substrate using an energy beam while synchronously moving a wafer (hereinafter collectively referred to as a “substrate”) along a predetermined scanning direction (scanning direction). A scanning exposure apparatus (a so-called scanning stepper (also called a scanner)) or the like is used.
 この種の露光装置では、マスクの端部を吸着保持する枠状の部材(マスクホルダなどと称される)の位置制御を行うことにより、マスクの位置制御を行うマスクステージ装置が用いられていた(例えば、特許文献1参照)。 In this type of exposure apparatus, a mask stage apparatus that controls the position of the mask by controlling the position of a frame-like member (called a mask holder or the like) that holds the edge of the mask by suction has been used. (For example, refer to Patent Document 1).
 ここで、近年の基板の大型化に伴い、マスクも大型化する傾向にある。これにより、マスクの自重に起因する撓み(あるいは振動)の露光精度に影響を与える可能性があった。 Here, with the recent increase in substrate size, the mask tends to increase in size. Thereby, there is a possibility that the exposure accuracy of the deflection (or vibration) caused by the weight of the mask will be affected.
米国特許出願公開第2008/0030702号明細書US Patent Application Publication No. 2008/0030702
 本発明は、上述の事情の下でなされたもので、第1の観点からすると、所定のパターンを有するパターン保持体の上面を、該パターン保持体を重力方向上側から非接触で懸垂支持可能な支持部材の下面に対して対向させることと、前記支持部材に前記パターン保持体を非接触で懸垂支持させることと、前記支持部材に懸垂支持された前記パターン保持体を、前記パターン保持体を保持可能な保持部材に保持させることと、前記保持部材を用いてエネルギビームに対して少なくとも所定の2次元平面内の走査方向に前記パターン保持体を移動させるとともに、露光対象物体を前記エネルギビームに対して前記走査方向に駆動して前記パターンを前記露光対象物体に転写することと、前記支持部材による前記パターン保持体の懸垂支持が維持された状態で、前記保持部材による前記パターン保持体の保持を解除させることと、前記保持部材による保持が解除された前記パターン保持体の上面と前記支持部材の下面とを離間させることと、を含む露光方法である。 The present invention has been made under the circumstances described above. From the first viewpoint, the upper surface of the pattern holding body having a predetermined pattern can be suspended from the upper side in the gravity direction without contact. Opposing to the lower surface of the support member, suspending and supporting the pattern holder on the support member in a non-contact manner, and holding the pattern holder on the pattern holder that is suspended and supported on the support member A holding member that can be held, and the holding member is used to move the pattern holder in a scanning direction within at least a predetermined two-dimensional plane with respect to the energy beam, and an object to be exposed is moved relative to the energy beam. Driving the scanning direction to transfer the pattern to the object to be exposed, and maintaining the suspension of the pattern holder by the support member. And releasing the holding of the pattern holding body by the holding member, and separating the upper surface of the pattern holding body released from the holding by the holding member and the lower surface of the support member. It is an exposure method.
 これによれば、パターン保持体は、エネルギビームに対して相対移動する際、その上面が支持部材に非接触で懸垂支持されるので、撓み(あるいは振動)が抑制される。また、パターン保持体が支持部材に懸垂支持された状態で、保持部材によるパターン保持体の保持、及びその保持の解除がされるので、仮にパターン保持体を直接保持部材に受け渡す場合、及び保持部材からパターン保持体を直接回収する場合に比べ、パターン保持体の交換動作が簡単になる。 According to this, when the pattern holder moves relative to the energy beam, the upper surface of the pattern holder is suspended and supported by the support member in a non-contact manner, so that bending (or vibration) is suppressed. In addition, when the pattern holder is suspended and supported by the support member, the pattern holder is held and released by the holding member. Compared to the case where the pattern holder is directly recovered from the member, the pattern holder replacement operation is simplified.
 本発明は、第2の観点からすると、本発明の第1の観点に係る露光方法を用いて前記露光対象物体を露光することと、露光された前記露光対象物体を現像することと、を含むフラットパネルディスプレイの製造方法である。 From a second aspect, the present invention includes exposing the object to be exposed using the exposure method according to the first aspect of the present invention, and developing the exposed object to be exposed. It is a manufacturing method of a flat panel display.
 本発明は、第3の観点からすると、本発明の第1の観点に係る露光方法を用いて前記露光対象物体を露光することと、露光された前記露光対象物体を現像することと、を含むデバイス製造方法である。 From a third aspect, the present invention includes exposing the exposure target object using the exposure method according to the first aspect of the present invention, and developing the exposed exposure target object. It is a device manufacturing method.
第1の実施形態に係る液晶露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the liquid-crystal exposure apparatus which concerns on 1st Embodiment. 液晶露光装置の側面(一部断面)図である。It is a side surface (partial cross section) figure of a liquid-crystal exposure apparatus. 図1の液晶露光装置が有するマスクステージ装置の正面図である。It is a front view of the mask stage apparatus which the liquid-crystal exposure apparatus of FIG. 1 has. 図3のA-A線矢視図(マスクステージ装置を上方から見た図)である。FIG. 4 is a view taken along the line AA in FIG. 3 (a view of the mask stage device as viewed from above). 図3のB-B線矢視図(マスクステージ装置を下方から見た図)である。FIG. 4 is a view taken along the line BB in FIG. 3 (a view of the mask stage device as viewed from below). 図6(A)及び図6(B)は、マスク搬入時におけるマスクローダ装置の動作を説明するための図(その1及びその2)である。FIGS. 6A and 6B are views (No. 1 and No. 2) for explaining the operation of the mask loader device when the mask is carried in. 図7(A)~図7(C)は、マスク搬入時におけるマスクステージ装置の動作を説明するための図(その1~その3)である。FIGS. 7A to 7C are views (No. 1 to No. 3) for explaining the operation of the mask stage apparatus at the time of carrying in the mask. 図8(A)及び図8(B)は、第2の実施形態に係るマスクローダ装置を用いたマスクの搬入動作を説明するための図(その1及びその2)である。FIGS. 8A and 8B are views (No. 1 and No. 2) for explaining the mask loading operation using the mask loader device according to the second embodiment. 図9(A)及び図9(B)は、第2の実施形態に係るマスクローダ装置を用いたマスクの搬入動作を説明するための図(その3及びその4)である。FIGS. 9A and 9B are views (No. 3 and No. 4) for explaining the mask loading operation using the mask loader device according to the second embodiment. 図10(A)及び図10(B)は、第2の実施形態に係るマスクローダ装置を用いたマスクの搬入動作を説明するための図(その5及びその6)である。FIGS. 10A and 10B are views (No. 5 and No. 6) for explaining the mask loading operation using the mask loader device according to the second embodiment.
《第1の実施形態》
 以下、第1の実施形態について、図1~図7(C)に基づいて説明する。
<< First Embodiment >>
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 7C.
 図1には、第1の実施形態に係る液晶露光装置10の構成が概略的に示されている。液晶露光装置10は、例えば液晶表示装置(フラットパネルディスプレイ)などに用いられる矩形(角型)のガラス基板P(以下、単に基板Pと称する)を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。 FIG. 1 schematically shows a configuration of a liquid crystal exposure apparatus 10 according to the first embodiment. The liquid crystal exposure apparatus 10 employs a step-and-scan method in which a rectangular (square) glass substrate P (hereinafter simply referred to as a substrate P) used in, for example, a liquid crystal display device (flat panel display) is an exposure object. A projection exposure apparatus, a so-called scanner.
 液晶露光装置10は、照明系12、光透過型のマスクMを保持するマスクステージ装置14、投影光学系16、装置本体18、表面(図1で+Z側を向いた面)にレジスト(感応剤)が塗布された基板Pを保持する基板ステージ装置20、マスクローダ装置90(図1では不図示。図2参照)、及びこれらの制御系等を有している。以下、露光時にマスクMと基板Pとが投影光学系16に対してそれぞれ相対走査される方向をX軸方向とし、水平面内でX軸に直交する方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向とし、X軸、Y軸、及びZ軸回りの回転方向をそれぞれθx、θy、及びθz方向として説明を行う。また、X軸、Y軸、及びZ軸方向に関する位置をそれぞれX位置、Y位置、及びZ位置として説明を行う。 The liquid crystal exposure apparatus 10 includes an illumination system 12, a mask stage device 14 that holds a light-transmitting mask M, a projection optical system 16, an apparatus body 18, and a resist (sensitive agent) on the surface (the surface facing the + Z side in FIG. ) Is applied to the substrate stage device 20, the mask loader device 90 (not shown in FIG. 1, refer to FIG. 2), and their control system. Hereinafter, the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system 16 at the time of exposure is defined as the X-axis direction, and the direction orthogonal to the X-axis in the horizontal plane is defined as the Y-axis direction, the X-axis, and the Y-axis. The description will be made assuming that the orthogonal direction is the Z-axis direction, and the rotation directions around the X-axis, Y-axis, and Z-axis are the θx, θy, and θz directions, respectively. Further, description will be made assuming that the positions in the X-axis, Y-axis, and Z-axis directions are the X position, the Y position, and the Z position, respectively.
 照明系12は、例えば米国特許第5,729,331号明細書などに開示される照明系と同様に構成されている。照明系12は、図示しない光源(例えば、水銀ランプ)から射出された光を、それぞれ図示しない反射鏡、ダイクロイックミラー、シャッター、波長選択フィルタ、各種レンズなどを介して、露光用照明光(照明光)ILとしてマスクMに照射する。照明光ILとしては、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)などの光(あるいは、上記i線、g線、h線の合成光)が用いられる。 The illumination system 12 is configured similarly to the illumination system disclosed in, for example, US Pat. No. 5,729,331. The illumination system 12 irradiates light emitted from a light source (not shown) (for example, a mercury lamp) through exposure mirrors (not shown), dichroic mirrors, shutters, wavelength selection filters, various lenses, and the like. ) Irradiate the mask M as IL. As the illumination light IL, for example, light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or the combined light of the i-line, g-line, and h-line is used.
 照明系12(上記各種レンズなどを含む照明系ユニット)は、クリーンルームの床11上に設置された照明系フレーム30に支持されている。照明系フレーム30は、複数の脚部32(図1では紙面奥行き方向に重なっている)、及び該複数の脚部32に支持された照明系支持部34を有している。 The illumination system 12 (an illumination system unit including the various lenses described above) is supported by an illumination system frame 30 installed on the floor 11 of the clean room. The illumination system frame 30 has a plurality of leg portions 32 (overlapping in the depth direction in FIG. 1) and an illumination system support portion 34 supported by the plurality of leg portions 32.
 マスクステージ装置14は、マスクMを照明系12(照明光IL)に対してX軸方向(スキャン方向)に所定の長ストロークで駆動するとともに、Y軸方向、及びθz方向に微少駆動するための要素である。マスクMは、例えば石英ガラスにより形成された平面視矩形の板状部材から成り、図1における-Z側を向いた面(下面部)に所定の回路パターン(マスクパターン)が形成されている。マスクMの下面部には、図3に示されるように、マスクパターンを保護するためにペリクルPeと称される防塵フィルムが取り付けられている。ここで、マスクMの下面の幅方向(Y軸方向)両端部には、マスクパターンが形成されていない領域(以下、余白領域と称する)が設けられている。このため、ペリクルPeの幅方向寸法は、マスクMの幅方向寸法よりも短く設定されている。マスクステージ装置14の詳細な構成については、後述する。 The mask stage device 14 drives the mask M with a predetermined long stroke in the X-axis direction (scan direction) with respect to the illumination system 12 (illumination light IL), and slightly drives it in the Y-axis direction and the θz direction. Is an element. The mask M is made of, for example, a rectangular plate-like member made of quartz glass, and a predetermined circuit pattern (mask pattern) is formed on the surface (lower surface portion) facing the −Z side in FIG. As shown in FIG. 3, a dustproof film called a pellicle Pe is attached to the lower surface of the mask M to protect the mask pattern. Here, regions where the mask pattern is not formed (hereinafter referred to as blank regions) are provided at both ends in the width direction (Y-axis direction) of the lower surface of the mask M. For this reason, the width direction dimension of the pellicle Pe is set shorter than the width direction dimension of the mask M. The detailed configuration of the mask stage device 14 will be described later.
 図1に戻り、投影光学系16は、マスクステージ装置14の下方に配置されている。投影光学系16は、例えば米国特許第6,552,775号明細書などに開示される投影光学系と同様な構成の、いわゆるマルチレンズ投影光学系であり、例えば両側テレセントリックな等倍系で正立正像を形成する複数の投影光学系を備えている。 1, the projection optical system 16 is disposed below the mask stage device 14. The projection optical system 16 is a so-called multi-lens projection optical system having the same configuration as the projection optical system disclosed in, for example, US Pat. No. 6,552,775, and is a double-sided telecentric equal magnification system. A plurality of projection optical systems for forming a vertical image are provided.
 液晶露光装置10では、照明系12からの照明光ILによってマスクM上の照明領域が照明されると、マスクMを通過した照明光により、投影光学系16を介してその照明領域内のマスクMの回路パターンの投影像(部分正立像)が、基板P上の照明領域に共役な照明光の照射領域(露光領域)に形成される。そして、照明領域(照明光IL)に対してマスクMが走査方向に相対移動するとともに、露光領域(照明光IL)に対して基板Pが走査方向に相対移動することで、基板P上の1つのショット領域の走査露光が行われ、そのショット領域にマスクMに形成されたパターンが転写される。 In the liquid crystal exposure apparatus 10, when the illumination area on the mask M is illuminated by the illumination light IL from the illumination system 12, the illumination light that has passed through the mask M causes the mask M in the illumination area to pass through the projection optical system 16. A projection image (partial upright image) of the circuit pattern is formed in an irradiation region (exposure region) of illumination light conjugate to the illumination region on the substrate P. Then, the mask M moves relative to the illumination area (illumination light IL) in the scanning direction, and the substrate P moves relative to the exposure area (illumination light IL) in the scanning direction. Scanning exposure of one shot area is performed, and the pattern formed on the mask M is transferred to the shot area.
 装置本体18は、上記投影光学系16を支持しており、複数の防振装置19を介して床11上に設置されている。装置本体18は、例えば米国特許出願公開第2008/0030702号明細書に開示される装置本体と同様に構成されており、上架台部18a、下架台部18b、及び一対の中架台部18cを有している。装置本体18は、上記照明系フレーム30とは、振動的に分離して配置されている。したがって、投影光学系16と照明系12とが振動的に分離される。 The apparatus main body 18 supports the projection optical system 16 and is installed on the floor 11 via a plurality of vibration isolation devices 19. The apparatus main body 18 is configured in the same manner as the apparatus main body disclosed in, for example, US Patent Application Publication No. 2008/0030702, and includes an upper gantry 18a, a lower gantry 18b, and a pair of middle gantry 18c. is doing. The apparatus main body 18 is arranged so as to be vibrationally separated from the illumination system frame 30. Therefore, the projection optical system 16 and the illumination system 12 are vibrationally separated.
 基板ステージ装置20は、ベース22、XY粗動ステージ24、及び微動ステージ26を含む。ベース22は、平面視(+Z側から見て)矩形の板状の部材から成り、下架台部18b上に一体的に載置されている。XY粗動ステージ24は、例えばX軸方向に所定の長ストロークで移動可能なX粗動ステージと、Y軸方向に所定の長ストロークで移動可能なY粗動ステージとを組み合わせた、いわゆるガントリタイプの2軸ステージ装置(X、Y粗動ステージは図示省略)である。 The substrate stage device 20 includes a base 22, an XY coarse movement stage 24, and a fine movement stage 26. The base 22 is made of a plate member that is rectangular in plan view (viewed from the + Z side), and is integrally mounted on the lower base 18b. The XY coarse movement stage 24 is, for example, a so-called gantry type that combines an X coarse movement stage that can move with a predetermined long stroke in the X-axis direction and a Y coarse movement stage that can move with a predetermined long stroke in the Y-axis direction. 2 axis stage device (X and Y coarse movement stages are not shown).
 微動ステージ26は、平面視矩形の板状(あるいは箱形)の部材から成り、基板Pの下面を吸着保持する基板ホルダを含む。微動ステージ26は、例えば米国特許出願公開第2010/0018950号明細書に開示されるような重量キャンセル装置(図1では不図示)を介してベース22上に載置されている。微動ステージ26は、上記XY粗動ステージ24に案内(誘導)されることにより、投影光学系16(照明光IL)に対してX軸方向、及び/又はY軸方向に所定の長ストロークで移動する。 The fine movement stage 26 is made of a plate-shaped (or box-shaped) member having a rectangular shape in plan view, and includes a substrate holder that holds the lower surface of the substrate P by suction. The fine movement stage 26 is placed on the base 22 via a weight cancellation device (not shown in FIG. 1) as disclosed in, for example, US Patent Application Publication No. 2010/0018950. The fine movement stage 26 is guided (guided) by the XY coarse movement stage 24 to move with a predetermined long stroke in the X axis direction and / or the Y axis direction with respect to the projection optical system 16 (illumination light IL). To do.
 微動ステージ26のY軸方向の位置情報は、微動ステージ26に固定されたYバーミラー27yを用いて装置本体18に固定されたYレーザ干渉計28yにより求められ、該Yレーザ干渉計28yの出力に基づいて基板PのY位置制御が行われる。また、微動ステージ26のX軸方向の位置情報は、図2に示されるように、微動ステージ26に固定されたXバーミラー27xを用いて、装置本体18の一部である干渉計コラム18dに固定されたXレーザ干渉計28xにより求められ、該Xレーザ干渉計28xの出力に基づいて基板PのX位置制御が行われる。Yレーザ干渉計28y、及びXレーザ干渉計28xは、それぞれ複数設けられ、基板Pのθz方向の回転量情報も求めることができるようになっている。なお、上記マスクステージ装置14に保持されたマスクMに同期するように基板Pを少なくともX軸(走査)方向に所定の長ストロークで駆動することができれば、基板ステージ装置20の構成は、特に限定されない。 Position information in the Y-axis direction of the fine movement stage 26 is obtained by a Y laser interferometer 28y fixed to the apparatus main body 18 using a Y bar mirror 27y fixed to the fine movement stage 26, and is output to the Y laser interferometer 28y. Based on this, the Y position of the substrate P is controlled. Further, as shown in FIG. 2, the position information of the fine movement stage 26 in the X-axis direction is fixed to an interferometer column 18d which is a part of the apparatus main body 18 using an X bar mirror 27x fixed to the fine movement stage 26. The X position of the substrate P is controlled based on the output of the X laser interferometer 28x. A plurality of Y laser interferometers 28y and X laser interferometers 28x are provided, respectively, so that rotation amount information of the substrate P in the θz direction can also be obtained. The configuration of the substrate stage device 20 is particularly limited as long as the substrate P can be driven with a predetermined long stroke in at least the X-axis (scanning) direction so as to be synchronized with the mask M held by the mask stage device 14. Not.
 マスクローダ装置90は、図2に示されるように、床11上であって、装置本体18の-X側に設置されている。マスクローダ装置90は、複数のマスクMを保管するマスクストッカ92と、マスクストッカ92からマスクMをマスクステージ装置14に搬送するマスク搬送装置94とを備えている。マスクストッカ92は、複数のマスクMを上下方向に所定間隔で保持している。なお、図2では不図示であるが、マスクストッカ92に保管されている複数のマスクMそれぞれには、予めペリクルPe(図3参照)が取り付けられている。マスク搬送装置94は、搬送テーブル94a、該搬送テーブル94aを上下動させるための昇降装置94b、搬送テーブル94aとマスクストッカ92との間でマスクMの受け渡しを行う一対のスライド部材94c(図2では一方のみ図示)を備えている。 The mask loader device 90 is installed on the floor 11 and on the −X side of the device body 18 as shown in FIG. The mask loader device 90 includes a mask stocker 92 that stores a plurality of masks M, and a mask transport device 94 that transports the mask M from the mask stocker 92 to the mask stage device 14. The mask stocker 92 holds a plurality of masks M at predetermined intervals in the vertical direction. Although not shown in FIG. 2, a pellicle Pe (see FIG. 3) is attached in advance to each of the plurality of masks M stored in the mask stocker 92. The mask transfer device 94 includes a transfer table 94a, an elevating device 94b for moving the transfer table 94a up and down, and a pair of slide members 94c for transferring the mask M between the transfer table 94a and the mask stocker 92 (in FIG. 2). Only one is shown).
 搬送テーブル94aは、マスクMよりも外形が幾分大きく設定された平面視矩形の板状部材から成る。昇降装置94bは、例えばエアシリンダなどの一軸アクチュエータを有しており、搬送テーブル94aに支持されたマスクMを上下動させる。一対のスライド部材94cは、図7(A)に示されるように、Y軸方向に離間して配置され、一方が搬送テーブル94aの+Y側の端部近傍上に、他方が搬送テーブル94aの-Y側の端部近傍上に、例えば米国特許第6,761,482号明細書に開示されるような機械的なXリニアガイド装置94dを介してそれぞれ搭載されている。一対のスライド部材94cそれぞれは、YZ断面L字状のX軸方向に延びる部材から成り、互いに紙面左右対称に配置されている。一対のスライド部材94cは、ペリクルPeと接触しないでマスクMの+Y側及び-Y側それぞれの端部近傍(余白領域)を下方から支持することができるように、Y軸方向の間隔が設定されている。一対のスライド部材94cそれぞれは、不図示のXアクチュエータにより搬送テーブル94aに対してX軸方向に所定のストロークで同期駆動される。 The transfer table 94a is made of a plate-like member having a rectangular shape in plan view and whose outer shape is set somewhat larger than the mask M. The lifting device 94b has a uniaxial actuator such as an air cylinder, for example, and moves the mask M supported by the transfer table 94a up and down. As shown in FIG. 7A, the pair of slide members 94c are arranged apart from each other in the Y-axis direction, one on the vicinity of the + Y side end of the transfer table 94a and the other of the − of the transfer table 94a. Mounted on the vicinity of the Y-side end portion through a mechanical X linear guide device 94d as disclosed in US Pat. No. 6,761,482, for example. Each of the pair of slide members 94c is made of a member extending in the X-axis direction having an L-shaped YZ cross section, and is arranged symmetrically with respect to the paper surface. The pair of slide members 94c is set with a spacing in the Y-axis direction so that the + M side and the −Y side end portions (margin regions) of the mask M can be supported from below without contacting the pellicle Pe. ing. Each of the pair of slide members 94c is synchronously driven with a predetermined stroke in the X-axis direction with respect to the transport table 94a by an X actuator (not shown).
 マスクMの搬入時において、マスク搬送装置94では、図2に示されるように、所望(搬送対象)のマスクMの下方に一対のスライド部材94cが挿入可能となるように搬送テーブル94aのZ位置の位置決めがされ、その状態で一対のスライド部材94cが所望のマスクMの下方に挿入され、該マスクMがマスクストッカ92からスライド部材94cに受け渡される。マスク搬送装置94からマスクストッカ92へマスクMを戻す際には、上記とは逆の動作をする。マスクローダ装置90とマスクステージ装置14との間におけるマスクMの受け渡し動作については、後述する。なお、複数のマスクMを保管する装置の構成、及びマスクMを搬送する装置の構成は、これに限られず、適宜変更が可能であり、例えば、マスク搬送装置は、多関節ロボットアームなどであっても良い。また、マスクローダ装置90は、液晶露光装置10の外部に設けられていても良い。 When the mask M is carried in, as shown in FIG. 2, the mask transport device 94 has the Z position of the transport table 94 a so that the pair of slide members 94 c can be inserted below the desired (transport target) mask M. In this state, the pair of slide members 94c is inserted below the desired mask M, and the mask M is transferred from the mask stocker 92 to the slide member 94c. When the mask M is returned from the mask transfer device 94 to the mask stocker 92, the operation reverse to the above is performed. The delivery operation of the mask M between the mask loader device 90 and the mask stage device 14 will be described later. The configuration of the apparatus for storing the plurality of masks M and the configuration of the apparatus for transporting the mask M are not limited to this, and can be changed as appropriate. For example, the mask transport apparatus is an articulated robot arm or the like. May be. Further, the mask loader device 90 may be provided outside the liquid crystal exposure apparatus 10.
 次にマスクステージ装置14の構成について説明する。マスクステージ装置14は、図3に示されるように、マスクエアガイド40、一対のベース板50、及び一対のマスク保持装置60を有している。 Next, the configuration of the mask stage device 14 will be described. As shown in FIG. 3, the mask stage device 14 includes a mask air guide 40, a pair of base plates 50, and a pair of mask holding devices 60.
 マスクエアガイド40は、マスクエアガイド支持フレーム18eに吊り下げ支持されている。マスクエアガイド支持フレーム18eは、複数の脚部18fを介して上架台部18aに支持されている。従って、マスクエアガイド40は、照明系12(図3では不図示。図1参照)に対して振動的に分離されている。 The mask air guide 40 is suspended and supported by the mask air guide support frame 18e. The masquare guide support frame 18e is supported by the upper base 18a via a plurality of legs 18f. Accordingly, the mask air guide 40 is vibrationally separated from the illumination system 12 (not shown in FIG. 3, see FIG. 1).
 マスクエアガイド40は、X軸方向に延びる厚さの薄い箱形の部材から成る本体部42と、X軸方向に延びる板状に形成された多孔質部材44とを有している。多孔質部材44は、本体部42の下面に形成された凹部に嵌め込まれている。マスクMは、その上面(パターン面とは反対側の面)が多孔質部材44の下面に対向するように配置される。多孔質部材44の長手方向の寸法は、マスクMの長手方向(X軸方向)の寸法よりも長く設定されており、露光動作時において、マスクMの上面は、常に多孔質部材44の下面に対向する。 The mask air guide 40 has a main body portion 42 made of a thin box-shaped member extending in the X-axis direction, and a porous member 44 formed in a plate shape extending in the X-axis direction. The porous member 44 is fitted in a recess formed on the lower surface of the main body 42. The mask M is arranged so that the upper surface (the surface opposite to the pattern surface) faces the lower surface of the porous member 44. The dimension in the longitudinal direction of the porous member 44 is set longer than the dimension in the longitudinal direction (X-axis direction) of the mask M, and the upper surface of the mask M is always on the lower surface of the porous member 44 during the exposure operation. opposite.
 多孔質部材44の下面には、ほぼ全面にわたって複数の微少な孔部が形成されている。マスクエアガイド40には、マスクステージ装置14の外部に設置された不図示の加圧気体供給装置、及びバキューム装置が接続されている。マスクエアガイド40は、上記多孔質部材44が有する複数の孔部の一部を介して多孔質部材44の下面とマスクMの上面との間の気体を吸引してマスクMに浮上力(+Z方向の力)を作用させるとともに、上記複数の孔部の他部を介してマスクMの上面に加圧気体を噴出することにより、多孔質部材44の下面とマスクMの上面との間に微少なクリアランス(例えば、5~10μm)を形成する。すなわちマスクエアガイド40は、いわゆるバキューム・プリロード・エアベアリングとして機能する。なお、マスクエアガイド40は、常に全面で気体を噴出及び吸引しても良いし、マスクMの上面に対向する領域のみで部分的に気体を噴出及び吸引するようにしても良い。 On the lower surface of the porous member 44, a plurality of minute holes are formed over almost the entire surface. The square pump 40 is connected to a not-shown pressurized gas supply device and a vacuum device installed outside the mask stage device 14. The square driver 40 sucks the gas between the lower surface of the porous member 44 and the upper surface of the mask M through a part of the plurality of holes of the porous member 44 to raise the floating force (+ Z Direction force), and a pressurized gas is jetted onto the upper surface of the mask M through the other portions of the plurality of holes, so that a slight amount is generated between the lower surface of the porous member 44 and the upper surface of the mask M. A clear clearance (for example, 5 to 10 μm) is formed. That is, the mask air guide 40 functions as a so-called vacuum preload air bearing. Note that the mask air guide 40 may always eject and suck the gas over the entire surface, or may partially eject and suck the gas only in the region facing the upper surface of the mask M.
 また、図2に示されるように、マスクエアガイド40における照明系12の直下の位置には、マスクエアガイド40の上面部及び下面部それぞれに開口する開口部46が形成されている。開口部46は、図5に示されるように、Y軸方向を長手方向とする平面視矩形に形成され、照明系12から出射した照明光IL(それぞれ図5では不図示。図1参照)は、開口部46を通過してマスクMに照射される。なお、開口部46の形状は、特に限定されず、例えばマスクM上の照明領域の形状に応じて適宜変更が可能である(例えば円形であっても良い)。 Further, as shown in FIG. 2, an opening 46 is formed in the mask air guide 40 at a position immediately below the illumination system 12. The opening 46 opens in each of the upper surface portion and the lower surface portion of the mask air guide 40. As shown in FIG. 5, the opening 46 is formed in a rectangular shape in plan view with the Y-axis direction as the longitudinal direction, and illumination light IL (not shown in FIG. 5, respectively, see FIG. 1) emitted from the illumination system 12. The mask M is irradiated through the opening 46. The shape of the opening 46 is not particularly limited, and can be appropriately changed according to the shape of the illumination area on the mask M (for example, may be circular).
 ここで、図2に示されるように、マスクエアガイド40において、開口部46は、X軸方向に関する中央部よりも、幾分+X側に形成されている。そして、マスクエアガイド40では、開口部46よりも+X側の領域、及び開口部46よりも-X側の一部の領域が露光動作時にマスクMをガイドし(以下、これらの領域を露光領域と称する)、上記露光領域よりも-X側の領域(図2において、干渉計コラム18dよりも-X側に突き出した領域)は、専らマスクMの交換動作時に用いられる(以下、マスク交換領域と称する)。上述したマスクローダ装置90の昇降装置94bは、マスク交換領域の直下に配置されている。 Here, as shown in FIG. 2, in the mask air guide 40, the opening 46 is formed somewhat on the + X side with respect to the central portion in the X-axis direction. In the mask air guide 40, a region on the + X side from the opening 46 and a partial region on the −X side from the opening 46 guide the mask M during the exposure operation (hereinafter, these regions are referred to as exposure regions). The region on the −X side from the exposure region (the region protruding in the −X side from the interferometer column 18d in FIG. 2) is exclusively used during the replacement operation of the mask M (hereinafter referred to as the mask replacement region). Called). The lifting / lowering device 94b of the mask loader device 90 described above is disposed immediately below the mask exchange region.
 一対のベース板50は、XY平面に平行に配置されたX軸方向に延びる板状の部材から成り、図4に示されるように、一方が平面視でマスクエアガイド40の+Y側に配置され、他方が平面視でマスクエアガイド40の-Y側に配置されている。一対のベース板50それぞれは、図1に示されるように、照明系フレーム30が有する複数の脚部32に固定されたマスクステージ支持フレーム36に支持されており(図2参照)、装置本体18、及び基板ステージ装置20に対して相互に振動的に分離されている。なお、本実施形態において、一対のベース板50は、照明系フレーム30に支持されているが、装置本体18、及び基板ステージ装置20に対して相互に振動的に分離した状態で床11上に設置された別の架台上に搭載されていても良い。 The pair of base plates 50 is composed of a plate-like member that extends in the X-axis direction and is arranged in parallel to the XY plane. As shown in FIG. 4, one is arranged on the + Y side of the mask air guide 40 in plan view. The other is arranged on the −Y side of the mask air guide 40 in plan view. As shown in FIG. 1, each of the pair of base plates 50 is supported by a mask stage support frame 36 fixed to a plurality of legs 32 of the illumination system frame 30 (see FIG. 2), and the apparatus main body 18. , And the substrate stage device 20 are separated from each other by vibration. In the present embodiment, the pair of base plates 50 are supported by the illumination system frame 30, but on the floor 11 in a state of being vibrationally separated from the apparatus main body 18 and the substrate stage apparatus 20. It may be mounted on another installed base.
 ベース板50の上面には、図4に示されるように、複数(本実施形態では、例えば2本)のXリニアガイド52aがY軸方向に所定間隔で固定されている。また、ベース板50の上面であって、例えば2本のXリニアガイド52aの間の領域には、X軸方向に配列された複数の永久磁石を含むX磁石ユニット54aが固定されている。 On the upper surface of the base plate 50, as shown in FIG. 4, a plurality (for example, two in this embodiment) of X linear guides 52a are fixed at a predetermined interval in the Y-axis direction. An X magnet unit 54a including a plurality of permanent magnets arranged in the X-axis direction is fixed on the upper surface of the base plate 50, for example, in a region between the two X linear guides 52a.
 一対のマスク保持装置60は、一方が+Y側のベース板50上に、他方が-Y側のベース板50上にそれぞれ載置されている。一対のマスク保持装置60は、一方が他方に対してZ軸回りに180°回転したように配置されている点を除き、同じ構成であるので、以下、特に説明する場合を除き、+Y側のマスク保持装置60について説明する。マスク保持装置60は、図3に示されるように、Xテーブル62、Xボイスコイルモータ64X、Yボイスコイルモータ64Y(図3ではXボイスコイルモータ64Xの紙面奥側に隠れている。-Y側のマスク保持装置60を参照)、吸着保持部66、及びエアシリンダ68aを備えている。 One of the pair of mask holding devices 60 is placed on the base plate 50 on the + Y side, and the other is placed on the base plate 50 on the -Y side. The pair of mask holding devices 60 have the same configuration except that one is arranged so as to be rotated by 180 ° around the Z axis with respect to the other. Therefore, unless otherwise described below, the + Y side The mask holding device 60 will be described. As shown in FIG. 3, the mask holding device 60 is hidden behind the X table 62, the X voice coil motor 64X, and the Y voice coil motor 64Y (in FIG. 3, the back side of the X voice coil motor 64X. ), A suction holding unit 66, and an air cylinder 68a.
 Xテーブル62は、XY平面に平行に配置された平面視矩形の板状の部材から成る。Xテーブル62の下面には、1本のXリニアガイド52aに対して、例えば2つ(図3では紙面奥行き方向に重なっている)のXスライド部材52bが固定されている。Xスライド部材52bは、YZ断面逆U字状に形成され、対応するXリニアガイド52aと共に、例えば米国特許第6,761,482号明細書に開示されるような、機械的なXリニアガイド装置52を構成している。また、Xテーブル62の下面には、Xコイルユニット54bが上記X磁石ユニット54aに所定のクリアランスを介して対向して固定されている。Xコイルユニット54bは、X磁石ユニット54aと共に、例えば米国特許第8,030,804号明細書に開示されるような、Xリニアモータ54を構成している。 The X table 62 is made of a plate-like member having a rectangular shape in plan view arranged in parallel with the XY plane. On the lower surface of the X table 62, for example, two X slide members 52b (overlapping in the depth direction in FIG. 3) are fixed to one X linear guide 52a. The X slide member 52b is formed in an inverted U-shaped YZ cross-section, and together with the corresponding X linear guide 52a, for example, a mechanical X linear guide device as disclosed in US Pat. No. 6,761,482. 52 is constituted. An X coil unit 54b is fixed to the lower surface of the X table 62 so as to face the X magnet unit 54a with a predetermined clearance. The X coil unit 54b and the X magnet unit 54a constitute an X linear motor 54 as disclosed in, for example, US Pat. No. 8,030,804.
 Xテーブル62は、Xリニアモータ54を含むXテーブル駆動系を介して、ベース板50上をX軸方向に直進駆動される。なお、Xテーブル62をX軸方向に駆動するためのXアクチュエータの種類は、特に限定されず、例えばベース板50に固定されたネジ部とXテーブル62に固定されたナット部とを含む送りネジ装置、ベルト(あるいはロープなど)駆動装置などを用いることができる。Xテーブル62のX位置情報は、不図示のリニアエンコーダシステム(あるいは光干渉計システム)により求められる。 The X table 62 is linearly driven on the base plate 50 in the X axis direction via an X table driving system including the X linear motor 54. The type of the X actuator for driving the X table 62 in the X-axis direction is not particularly limited. For example, a feed screw including a screw portion fixed to the base plate 50 and a nut portion fixed to the X table 62. A device, a belt (or rope, etc.) driving device, or the like can be used. The X position information of the X table 62 is obtained by a linear encoder system (or an optical interferometer system) not shown.
 Xボイスコイルモータ64X(図3において、-Y側のマスク保持装置60のXボイスコイルモータ64Xは、Yボイスコイルモータ64Yの紙面奥側に隠れている。図4参照)は、Xテーブル62の上面に取付板63を介して固定された固定子部64aと、吸着保持部66のスライド部材66bに固定された可動子部64bとを含む。可動子部64bは、YZ断面U字状に形成され、一対の対向面間に固定子部64aが挿入されている。可動子部64bは、例えば一対の対向面に磁石ユニットを有し、固定子部64aは、例えばコイルユニットを有している。コイルユニットに供給される電流の向き及び大きさは、不図示の主制御装置により制御される。マスク保持装置60は、Xボイスコイルモータ64Xの磁石ユニットとコイルユニットとの間に作用するX軸方向のローレンツ力により、吸着保持部66のスライド部材66bをXテーブル62に対してX軸方向に微少ストロークで駆動することができる。また、マスク保持装置60は、上記ローレンツ力を用いて、Xテーブル62と一体的にX軸方向に移動するように、吸着保持部66を誘導することができるようになっている。 The X voice coil motor 64X (in FIG. 3, the X voice coil motor 64X of the mask holding device 60 on the -Y side is hidden behind the Y voice coil motor 64Y. See FIG. 4). It includes a stator part 64a fixed to the upper surface via a mounting plate 63, and a mover part 64b fixed to a slide member 66b of the suction holding part 66. The mover portion 64b is formed in a U-shaped YZ cross section, and the stator portion 64a is inserted between a pair of opposing surfaces. The mover part 64b has, for example, a magnet unit on a pair of opposing surfaces, and the stator part 64a has, for example, a coil unit. The direction and magnitude of the current supplied to the coil unit are controlled by a main controller (not shown). The mask holding device 60 moves the sliding member 66b of the suction holding portion 66 in the X-axis direction with respect to the X table 62 by the Lorentz force in the X-axis direction that acts between the magnet unit and the coil unit of the X voice coil motor 64X. It can be driven with a small stroke. The mask holding device 60 can guide the suction holding unit 66 so as to move in the X-axis direction integrally with the X table 62 by using the Lorentz force.
 Yボイスコイルモータ64Y(図3において、+Y側のマスク保持装置60のYボイスコイルモータ64Yは、Xボイスコイルモータ64Xの紙面奥側に隠れている。図4参照)は、発生する駆動力(推力)の方向が異なる点を除き、上記Xボイスコイルモータ64Xと同じ構成であるので、説明を省略する。マスク保持装置60は、Yボイスコイルモータ64Yの磁石ユニットとコイルユニットとの間に作用するY軸方向のローレンツ力により、吸着保持部66のスライド部材66bをXテーブル62に対してY軸方向に微少ストロークで駆動することができる。なお、本実施形態において、Xボイスコイルモータ64XとYボイスコイルモータ64Yとは、個別に配置されているが、X軸方向、及び/又はY軸方向のローレンツ力を任意に発生することができる2自由度ボイスコイルモータを用いても良い。 The Y voice coil motor 64Y (in FIG. 3, the Y voice coil motor 64Y of the mask holding device 60 on the + Y side is hidden behind the X voice coil motor 64X. See FIG. 4). Since the configuration is the same as that of the X voice coil motor 64X except that the direction of the thrust is different, the description thereof is omitted. The mask holding device 60 moves the slide member 66b of the suction holding unit 66 in the Y-axis direction with respect to the X table 62 by the Lorentz force in the Y-axis direction that acts between the magnet unit and the coil unit of the Y voice coil motor 64Y. It can be driven with a small stroke. In the present embodiment, the X voice coil motor 64X and the Y voice coil motor 64Y are individually arranged, but can arbitrarily generate a Lorentz force in the X axis direction and / or the Y axis direction. A two-degree-of-freedom voice coil motor may be used.
 吸着保持部66は、吸着パッド66a、スライド部材66b、チューブベアリング66cを有している。本実施形態において、吸着パッド66aは、図4に示されるように、ひとつのマスク保持装置60につき、X軸方向に所定間隔で、例えば2つ設けられているが、吸着パッド66aの数は、これに限られず、例えばマスクMの大きさに応じて適宜変更が可能である。図3に戻り、吸着パッド66aは、YZ断面ほぼL字状の部材から成り、一端部がベース板50よりもマスクM側に突き出して配置されている。マスクMは、前述した余白領域(マスクパターンが形成されていない領域)が吸着パッド66aによって下方から支持される。吸着パッド66aには、マスクステージ装置14の外部に配置されたバキューム装置が接続されており、該バキューム装置から供給される真空吸引力を用いてマスクMを吸着保持可能となっている。 The suction holding unit 66 includes a suction pad 66a, a slide member 66b, and a tube bearing 66c. In the present embodiment, as shown in FIG. 4, for example, two suction pads 66 a are provided at a predetermined interval in the X-axis direction for one mask holding device 60, but the number of suction pads 66 a is as follows. However, the present invention is not limited to this, and can be appropriately changed according to the size of the mask M, for example. Returning to FIG. 3, the suction pad 66 a is formed of a member having a substantially L-shaped YZ cross section, and one end portion thereof is disposed so as to protrude from the base plate 50 toward the mask M side. In the mask M, the above-described blank area (area where the mask pattern is not formed) is supported from below by the suction pad 66a. A vacuum device arranged outside the mask stage device 14 is connected to the suction pad 66a, and the mask M can be sucked and held using a vacuum suction force supplied from the vacuum device.
 スライド部材66bは、X軸方向に延びる平面視T字状(図4参照)の板状部材から成り、Xテーブル62の上方に配置されている。スライド部材66bの一端には、吸着パッド66aの他端部近傍が一体的に接続されている。また、スライド部材66bの他端には、上記Xボイスコイルモータ64X、及びYボイスコイルモータ64Yの可動子部64bが固定されている。 The slide member 66b is composed of a plate-like member having a T-shape (see FIG. 4) in plan view extending in the X-axis direction, and is disposed above the X table 62. The vicinity of the other end of the suction pad 66a is integrally connected to one end of the slide member 66b. The movable part 64b of the X voice coil motor 64X and the Y voice coil motor 64Y is fixed to the other end of the slide member 66b.
 チューブベアリング66cは、XZ断面矩形の筒状の部材から成り、内壁面により規定されるXZ断面矩形の貫通孔内に上記スライド部材66bが、該内壁面に対して所定のクリアランスを介して挿入されている。チューブベアリング66cには、マスクステージ装置14の外部に配置された不図示の加圧気体供給装置が接続されており、上記内壁面の上下面に形成された複数の微少な孔部から、スライド部材66bの上下面に加圧気体を噴出する。スライド部材66bは、上記加圧気体の静圧により、チューブベアリング66cに非接触支持されている。ここで、X軸方向に関して、チューブベアリング66cの内壁面とスライド部材66bとの間には、スライド部材66bのチューブベアリング66cに対する微少ストロークの相対移動が許容される程度のクリアランスが形成されている(これに対しZ位置は拘束される)。 The tube bearing 66c is made of a cylindrical member having a rectangular XZ section, and the slide member 66b is inserted into a through hole having a rectangular XZ section defined by the inner wall surface with a predetermined clearance from the inner wall surface. ing. A pressurized gas supply device (not shown) arranged outside the mask stage device 14 is connected to the tube bearing 66c, and a slide member is formed from a plurality of minute holes formed on the upper and lower surfaces of the inner wall surface. Pressurized gas is jetted onto the upper and lower surfaces of 66b. The slide member 66b is supported in a non-contact manner on the tube bearing 66c by the static pressure of the pressurized gas. Here, with respect to the X-axis direction, a clearance is formed between the inner wall surface of the tube bearing 66c and the slide member 66b so as to allow the relative movement of the slide member 66b with respect to the tube bearing 66c in a minute stroke. On the other hand, the Z position is constrained).
 チューブベアリング66cは、Xテーブル62に固定された軸受板66dに軸66eを介してθx方向に所定の角度で傾動自在に支持されている。軸66eのZ位置は、吸着パッド66aに吸着保持されたマスクMがマスクエアガイド40に懸垂支持された状態で、スライド部材66b(及び吸着パッド66aのパッド面)がXY平面とほぼ平行になるように設定されている。これに対し、吸着パッド66aとスライド部材66bとを合わせた系のY軸方向の重心位置は、上記軸66eよりもマスクM側となるように設定されており、例えばマスクMの搬入時、搬出時などにおいて、吸着パッド66aがマスクMを吸着保持していない状態では、図7(B)に示されるように、チューブベアリング66c、スライド部材66b、及び吸着パッド66aが自重により一体的に傾動(回転)し、吸着パッド66aは、一端部側(パッド面側)が他端部側に比べて下方に下がった状態となる。ただし、Xボイスコイルモータ64X、及びYボイスコイルモータ64Yそれぞれの可動子部64bは、取付板63に固定された一対のストッパ板65間に挿入されており、Xボイスコイルモータ64X、及びYボイスコイルモータ64Yにおいて、固定子部64aと可動子部64bとの接触が防止される。 The tube bearing 66c is supported by a bearing plate 66d fixed to the X table 62 so as to be tiltable at a predetermined angle in the θx direction via a shaft 66e. The Z position of the shaft 66e is such that the slide member 66b (and the pad surface of the suction pad 66a) is substantially parallel to the XY plane in a state where the mask M sucked and held by the suction pad 66a is suspended and supported by the mask air guide 40. Is set to On the other hand, the center of gravity in the Y-axis direction of the system combining the suction pad 66a and the slide member 66b is set to be closer to the mask M than the shaft 66e. When the suction pad 66a does not hold the mask M by suction, the tube bearing 66c, the slide member 66b, and the suction pad 66a are integrally tilted by their own weight (see FIG. 7B). The suction pad 66a is in a state where one end side (pad surface side) is lowered below the other end side. However, the movable part 64b of each of the X voice coil motor 64X and the Y voice coil motor 64Y is inserted between a pair of stopper plates 65 fixed to the mounting plate 63, and the X voice coil motor 64X and the Y voice. In the coil motor 64Y, contact between the stator portion 64a and the mover portion 64b is prevented.
 エアシリンダ68aは、Xテーブル62とスライド部材66bとのX軸及びY軸方向に関する相対移動を制限するために用いられる。エアシリンダ68aは、+Y側のXテーブル62の上面上における-Y側の端部近傍、及び-Y側のXテーブル62の上面上における+Y側の端部近傍それぞれに、X軸方向に離間して、例えば2つ設けられている(図3では、紙面奥行き方向に重なっている。(図5参照))。エアシリンダ68aのロッド先端には、ボール68bが固定されている。また、スライド部材66bの下面であって、エアシリンダ68aに対応する位置には、下面側に広くなるテーパ面により規定される凹部68cが形成されている(図4参照)。 The air cylinder 68a is used to limit relative movement between the X table 62 and the slide member 66b in the X-axis and Y-axis directions. The air cylinder 68a is spaced apart in the X-axis direction near the −Y side end on the upper surface of the + Y side X table 62 and near the + Y side end on the upper surface of the −Y side X table 62. For example, two are provided (in FIG. 3, they overlap in the depth direction of the page (see FIG. 5)). A ball 68b is fixed to the rod tip of the air cylinder 68a. In addition, a concave portion 68c defined by a tapered surface that widens on the lower surface side is formed at a position corresponding to the air cylinder 68a on the lower surface of the slide member 66b (see FIG. 4).
 図3に示されるボール68bが対応する凹部68cから離脱した状態では、Xテーブル62とスライド部材66bとのX軸及びY軸方向に関する相対移動が許容される(Xテーブル62に対してスライド部材66bを微少駆動可能である)のに対し、ボール68bが対応する凹部68c内に挿入された(嵌合した)状態では、Xテーブル62とスライド部材66bとのX軸及びY軸方向に関する相対移動が制限される。また、ボール68bが対応する凹部68c内に挿入された状態で、該ボール68bを上下動させることにより、スライド部材66b(すなわち吸着パッド66a)を軸66e回りに傾動(回転)させることができる。 3, the X table 62 and the slide member 66b are allowed to move relative to each other in the X-axis and Y-axis directions (the slide member 66b with respect to the X table 62). In contrast, when the ball 68b is inserted (fitted) into the corresponding recess 68c, the X table 62 and the slide member 66b move relative to each other in the X axis and Y axis directions. Limited. In addition, when the ball 68b is inserted into the corresponding recess 68c, the slide member 66b (that is, the suction pad 66a) can be tilted (rotated) around the axis 66e by moving the ball 68b up and down.
 また、エアシリンダ68aは、マスクステージ装置14の初期化動作時にも用いられる。マスクステージ装置14の初期化動作時は、マスク位置計測系の計測原点位置にXテーブル62、スライド部材66bなどを位置させる動作を含む。この際、ボール68bがテーパ面により規定される凹部68cに嵌合する構成であるので、Xテーブル62とスライド部材66bとを再現性良く位置合わせすることができる。 The air cylinder 68a is also used during the initialization operation of the mask stage device 14. The initialization operation of the mask stage device 14 includes an operation of positioning the X table 62, the slide member 66b, etc. at the measurement origin position of the mask position measurement system. At this time, since the ball 68b is configured to fit into the concave portion 68c defined by the tapered surface, the X table 62 and the slide member 66b can be aligned with high reproducibility.
 マスクステージ装置14により駆動されるマスクMのXY平面内の位置情報(θz方向の回転量情報も含む)は、図3に示されるように、マスクエアガイド40に内蔵された複数のエンコーダヘッド70により、マスクMの上面に形成された2次元グレーティング72を用いて求められる。2次元グレーティング72は、X軸方向に延びる帯状に形成され、マスクMの+Y側及び-Y側の端部近傍であって、マスクパターンと重ならない(照明光IL(図1参照)の光路に干渉しない)位置に形成されている。2次元グレーティング72は、X軸方向を周期方向とするX回折格子(Xスケール)とY軸方向を周期方向とするY回折格子(Yスケール)とを含む。エンコーダヘッド70は、図5に示されるように、マスクエアガイド40の+Y側及び-Y側の端部近傍それぞれに、マスクMのX位置に関わらず、常に少なくともひとつが2次元グレーティング72に対向可能な間隔で配置されている。なお、マスク位置計測系の構成は、これに限られず、例えば光干渉計システム、エンコーダシステムと光干渉計システムとの組み合わせであっても良いし、あるいは画像センサの出力に基づいてマスクMの位置情報を求めても良い。 As shown in FIG. 3, the position information (including the rotation amount information in the θz direction) of the mask M driven by the mask stage device 14 in the XY plane includes a plurality of encoder heads 70 built in the mask air guide 40. Thus, the two-dimensional grating 72 formed on the upper surface of the mask M is obtained. The two-dimensional grating 72 is formed in a strip shape extending in the X-axis direction, is near the + Y side and −Y side ends of the mask M, and does not overlap the mask pattern (in the optical path of the illumination light IL (see FIG. 1)). It is formed at a position where it does not interfere. The two-dimensional grating 72 includes an X diffraction grating (X scale) whose periodic direction is the X axis direction and a Y diffraction grating (Y scale) whose periodic direction is the Y axis direction. As shown in FIG. 5, at least one encoder head 70 always faces the two-dimensional grating 72 in the vicinity of the + Y side and −Y side ends of the mask air guide 40 regardless of the X position of the mask M. Arranged at possible intervals. The configuration of the mask position measurement system is not limited to this, and may be, for example, an optical interferometer system, a combination of an encoder system and an optical interferometer system, or the position of the mask M based on the output of the image sensor. You may ask for information.
 以上のようにして構成された液晶露光装置10(図2参照)では、不図示の主制御装置の管理の下、マスクローダ装置90によって、マスクステージ装置14へのマスクMのロードが行われるとともに、不図示の基板ローダによって基板ステージ装置20への基板Pのロードが行なわれる。その後、主制御装置により、不図示のアライメント検出系を用いてアライメント計測が実行され、そのアライメント計測の終了後、基板P上に設定された複数のショット領域に逐次ステップ・アンド・スキャン方式の露光動作が行なわれる。 In the liquid crystal exposure apparatus 10 (see FIG. 2) configured as described above, the mask M is loaded onto the mask stage apparatus 14 by the mask loader apparatus 90 under the control of a main controller (not shown). The substrate P is loaded onto the substrate stage device 20 by a substrate loader (not shown). Thereafter, alignment measurement is performed by the main controller using an alignment detection system (not shown), and after completion of the alignment measurement, a plurality of shot areas set on the substrate P are sequentially exposed in a step-and-scan manner. Operation is performed.
 ここで、液晶露光装置10では、基板Pに形成するマスクパターンに応じて、マスクMの交換が適宜が行われる。以下、マスクステージ装置14に保持されるマスクMの交換動作を含み、マスクローダ装置90、及びマスクステージ装置14の動作について図6(A)~図7(C)を用いて説明する。 Here, in the liquid crystal exposure apparatus 10, the mask M is appropriately replaced in accordance with the mask pattern formed on the substrate P. Hereinafter, the operations of the mask loader device 90 and the mask stage device 14 including the replacement operation of the mask M held by the mask stage device 14 will be described with reference to FIGS. 6 (A) to 7 (C).
 図6(A)には、マスクステージ装置14にマスクMが保持されていない状態の液晶露光装置10が示されている。マスク保持装置60は、マスク交換領域よりも幾分+X側に待機している。また、マスクローダ装置90では、マスク搬送装置94によりマスクストッカ92からマスクMが取り出されている。 FIG. 6A shows the liquid crystal exposure apparatus 10 in a state where the mask M is not held on the mask stage apparatus 14. The mask holding device 60 stands by somewhat on the + X side from the mask exchange area. In the mask loader device 90, the mask M is taken out from the mask stocker 92 by the mask transport device 94.
 マスクローダ装置90は、図6(B)に示されるように、マスクMが完全にマスクストッカ92から取り出された後、昇降装置94bを用いて搬送テーブル94aを+Z方向に駆動する。これにより、マスクエアガイド40がマスクMを懸垂保持可能となる位置まで、マスクMがマスクエアガイド40に接近する。この際も、マスク保持装置60は、マスク交換領域よりも幾分+X側に待機している。上記待機状態において、マスク保持装置60は、図7(A)に示されるように、エアシリンダ68aのボールが下降駆動され、吸着パッド66aが傾いた状態とされている。 As shown in FIG. 6B, the mask loader device 90 drives the transfer table 94a in the + Z direction using the lifting device 94b after the mask M is completely taken out from the mask stocker 92. Accordingly, the mask M approaches the mask air guide 40 to a position where the mask air guide 40 can hold the mask M in a suspended manner. Also at this time, the mask holding device 60 stands by somewhat on the + X side from the mask exchange area. In the standby state, as shown in FIG. 7A, in the standby state, the ball of the air cylinder 68a is driven downward, and the suction pad 66a is tilted.
 図7(B)には、マスクMがマスクエアガイド40により非接触懸垂保持された状態が示されている。この際、マスクMがマスクエアガイド40の下面に沿ってXY平面に平行な方向に移動しないように、例えばマスクエアガイド40に設けられた不図示の流れ止め装置により、マスクMのマスクエアガイド40に対する相対移動を制限しても良い。また、この流れ止め装置は、マスクMの落下を防止するZストッパとしての機能を有していても良い。マスクMをマスクエアガイド40に受け渡した後、マスクローダ装置90では、搬送テーブル94aが-Z方向に駆動される。 FIG. 7B shows a state in which the mask M is held in a non-contact suspended manner by the mask air guide 40. At this time, a mask air guide for the mask M is provided by a non-illustrated non-illustrated device provided in the mask air guide 40 so that the mask M does not move along the lower surface of the mask air guide 40 in a direction parallel to the XY plane. The relative movement with respect to 40 may be limited. Further, this flow stop device may have a function as a Z stopper for preventing the mask M from dropping. After delivering the mask M to the mask air guide 40, in the mask loader device 90, the transfer table 94a is driven in the −Z direction.
 この後、一対のマスク保持装置60それぞれが-X方向に駆動され、吸着パッド66aがマスクMの下方に挿入される。そして、図7(C)に示されるように、エアシリンダ68aを用いてボール68bが上昇駆動されることにより、該ボール68bにより吸着パッド66aが押し上げられる。これにより、吸着パッド66aのパッド面とマスクMの下面とが対向する。マスク保持装置60は、吸着パッド66aを用いてマスクMを吸着保持する。この際、上述の流れ止め装置を用いる場合、該流れ留め装置は、マスクMが吸着保持された後、マスクMから退避するように制御される。 Thereafter, each of the pair of mask holding devices 60 is driven in the −X direction, and the suction pad 66a is inserted below the mask M. Then, as shown in FIG. 7C, when the ball 68b is driven up using the air cylinder 68a, the suction pad 66a is pushed up by the ball 68b. Thereby, the pad surface of the suction pad 66a and the lower surface of the mask M face each other. The mask holding device 60 sucks and holds the mask M using the suction pad 66a. At this time, when the above-described flow stopping device is used, the flow stopping device is controlled so as to retract from the mask M after the mask M is sucked and held.
 マスクMが吸着パッド66aに吸着保持された状態では、マスクM、及び複数の吸着パッド66aは、一体物として見なすことができるので、図7(C)に示される状態からボール68bを下降駆動させて図3に示される状態としても、吸着パッド66aが傾くことがない。なお、この際、マスクMには、吸着パッド66aの自重により重力方向下方へ引っ張られる力が作用するので、Xボイスコイルモータ64X、及びYボイスコイルモータ64Yの少なくとも一方をZ方向にも力を発生することができる2自由度モータとし、マスクMを下方から上方へ押すように該2自由度モータを制御(ボイスコイルモータが-Z方向の力を発生するように制御)しても良い。なお、マスクMをマスクステージ装置14から搬出する際の動作は、上記搬入時の動作と逆であるので、説明を省略する。 In a state where the mask M is sucked and held by the suction pad 66a, the mask M and the plurality of suction pads 66a can be regarded as an integrated object, so that the ball 68b is driven to descend from the state shown in FIG. Even in the state shown in FIG. 3, the suction pad 66a does not tilt. At this time, a force that is pulled downward in the gravitational direction due to the weight of the suction pad 66a acts on the mask M. Therefore, at least one of the X voice coil motor 64X and the Y voice coil motor 64Y is also forced in the Z direction. A two-degree-of-freedom motor that can be generated may be used, and the two-degree-of-freedom motor may be controlled so as to push the mask M upward from below (control so that the voice coil motor generates a force in the −Z direction). In addition, since the operation | movement at the time of carrying out the mask M from the mask stage apparatus 14 is reverse to the operation | movement at the time of the said carrying in, description is abbreviate | omitted.
 以上説明したマスクステージ装置14によれば、マスクMの上面のほぼ全面(開口部46が形成されている部分を除く)をマスクエアガイド40により上方から非接触懸垂支持するので、マスクMの撓み(変形)を抑制できる。これにより、デフォーカスが抑制され、より高精度でマスクパターンを基板Pに転写することができる。 According to the mask stage apparatus 14 described above, almost the entire upper surface of the mask M (excluding the portion where the opening 46 is formed) is supported by the mask air guide 40 in a non-contact hanging manner from above, so that the mask M is bent. (Deformation) can be suppressed. Thereby, defocusing is suppressed and the mask pattern can be transferred to the substrate P with higher accuracy.
 また、マスクMの上面のほぼ全面が支持されるため、仮にマスクMの端部のみを支持する構造のマスクステージ装置(以下、比較例に係るマスクステージ装置と称する)を用いる場合に比べ、マスクMの共振周波数が高くなる。従って、露光動作時におけるマスクMの精密な位置決め制御性が向上し、基板Pに転写されるパターンにむらが発生することが抑制される。 In addition, since almost the entire upper surface of the mask M is supported, the mask is compared with a case where a mask stage apparatus having a structure that supports only the end of the mask M (hereinafter referred to as a mask stage apparatus according to a comparative example) is used. The resonance frequency of M increases. Therefore, precise positioning controllability of the mask M during the exposure operation is improved, and unevenness of the pattern transferred to the substrate P is suppressed.
 また、マスクステージ装置14は、一対のマスク保持装置60を用いてマスクMを直接駆動するので、例えばマスクMを保持した枠状の部材(マスクホルダ)を駆動する上記比較例に係るマスクステージ装置に比べ、駆動対象物が軽量であり、より高精度でマスクMの位置制御を行うことができる。また、コストダウンも可能となる。 Further, since the mask stage device 14 directly drives the mask M using the pair of mask holding devices 60, for example, the mask stage device according to the comparative example that drives a frame-like member (mask holder) holding the mask M. Compared to the above, the driven object is light, and the position of the mask M can be controlled with higher accuracy. Also, the cost can be reduced.
 また、仮にマスクエアガイド40(あるいはマスク保持装置60)への加圧気体の供給(あるいは真空吸引力の供給)が停止したとしても、吸着パッド66aの傾動がストッパ板65により制限されるので、マスクMが吸着パッド66aに下方から支持された状態が維持される。したがって、マスクMが下方に落下するおそれがない。 Even if the supply of pressurized gas (or supply of vacuum suction force) to the mask air guide 40 (or mask holding device 60) is stopped, the tilting of the suction pad 66a is limited by the stopper plate 65. The state where the mask M is supported by the suction pad 66a from below is maintained. Therefore, there is no possibility that the mask M falls downward.
 また、マスクローダ装置90は、マスクMの搬入時には、マスクMを+Z方向に駆動してマスクエアガイド40に受け渡し、マスクMの搬出時には、マスクMを-Z方向に駆動してマスクエアガイド40から受け取るので、構成をシンプル、且つコンパクトとすることができる。 Further, the mask loader device 90 drives the mask M in the + Z direction to deliver to the mask air guide 40 when the mask M is carried in, and delivers it to the mask air guide 40, and drives the mask M in the −Z direction to carry out the mask M. Therefore, the configuration can be made simple and compact.
《第2の実施形態》
 次に第2の実施形態に係る液晶露光装置110について、図8(A)~図10(B)を用いて説明する。本第2の実施形態に係る液晶露光装置110の構成は、マスクローダ装置190の構成を除き、上記第1の実施形態の液晶露光装置10(図1参照)と同じなので、以下、相違点についてのみ説明し、上記第1の実施形態と同じ構成及び機能を有する要素については、上記第1の実施形態と同じ符号を付してその説明を省略する。
<< Second Embodiment >>
Next, a liquid crystal exposure apparatus 110 according to the second embodiment will be described with reference to FIGS. 8 (A) to 10 (B). The configuration of the liquid crystal exposure apparatus 110 according to the second embodiment is the same as that of the liquid crystal exposure apparatus 10 (see FIG. 1) of the first embodiment except for the configuration of the mask loader device 190. Only elements that have the same configurations and functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 マスクローダ装置190は、マスクストッカ192と、マスク搬送装置194とを備えている。マスクストッカ192は、上記第1の実施形態と同様に、複数のマスクMを上下方向に所定間隔で保持するが、任意のマスクMをマスク搬送装置194に向けて水平方向に押し出す押し出し装置(不図示。図8(A)の白矢印参照)を有する。マスク搬送装置194は、上記第1の実施形態と同様の搬送テーブル94a、及び昇降装置94bを有する。 The mask loader device 190 includes a mask stocker 192 and a mask transport device 194. As in the first embodiment, the mask stocker 192 holds a plurality of masks M in the vertical direction at a predetermined interval. However, the mask stocker 192 pushes an arbitrary mask M toward the mask transport device 194 in the horizontal direction (non-extrusion device). As shown, see white arrow in FIG. The mask transfer device 194 includes a transfer table 94a and a lifting device 94b similar to those in the first embodiment.
 本第2の実施形態では、上記第1の実施形態の一対のスライド部材94c(図2、図7(A)など参照)に換えて、搬送テーブル94aが複数の可動駒94eを有している。可動駒94eは、搬送テーブル94aの+Y側、及び-Y側の端部近傍それぞれに、X軸方向に所定間隔で複数(図8(A)~図10(B)では、例えば3つ。ただし数は、これに限定されない)設けられている。複数の可動駒94eは、それぞれ搬送テーブル94aに対して上下方向(Z軸方向)に独立して移動可能となっており、不図示のZアクチュエータを介して不図示の主制御装置によりZ位置が制御される。+Y側の複数の可動駒94eと、-Y側の複数の可動駒94eとの間隔は、上記第1の実施形態と同様に、ペリクルPe(図3参照)と接触しないでマスクMの+Y側及び-Y側それぞれの端部近傍(余白領域)を下方から支持することができるように設定されている。 In the second embodiment, the transfer table 94a has a plurality of movable pieces 94e instead of the pair of slide members 94c (see FIGS. 2, 7A, etc.) of the first embodiment. . There are a plurality of movable pieces 94e at predetermined intervals in the X-axis direction near the + Y side and −Y side ends of the transport table 94a (for example, three in FIGS. 8A to 10B). The number is not limited to this). The plurality of movable pieces 94e can move independently in the vertical direction (Z-axis direction) with respect to the transfer table 94a, and the Z position is set by a main controller (not shown) via a Z actuator (not shown). Be controlled. As in the first embodiment, the intervals between the + Y side movable pieces 94e and the −Y side movable pieces 94e are not in contact with the pellicle Pe (see FIG. 3), and are on the + Y side of the mask M. In addition, it is set so that the vicinity of each end (margin area) on each of the −Y side can be supported from below.
 マスクローダ装置190では、図8(A)に示されるように、所望のマスクMがマスクストッカ192から押し出されてマスク搬送装置194の複数の可動駒94e上に載置される。次いで、マスク搬送装置194は、図8(B)に示されるように、昇降装置94bを用いてマスクMを上昇駆動し、該マスクMをマスクエアガイド40に受け渡す。マスクMがマスクエアガイド40に非接触懸垂支持されると、図9(A)に示されるように、マスク保持装置60がマスクMを下方から支持するために-X方向に駆動される。 In the mask loader device 190, as shown in FIG. 8A, a desired mask M is pushed out from the mask stocker 192 and placed on the plurality of movable pieces 94e of the mask transport device 194. Next, as shown in FIG. 8B, the mask transfer device 194 drives the mask M up using the lifting device 94 b and delivers the mask M to the mask air guide 40. When the mask M is suspended and supported by the mask air guide 40 in a non-contact manner, the mask holding device 60 is driven in the −X direction to support the mask M from below as shown in FIG. 9A.
 ここで、上記第1の実施形態では、図7(B)に示されるように、マスク保持装置60がマスクMを下方から支持することができるように(吸着パッド66aがスライド部材94cと接触しないように)、搬送テーブル94aが予め下方に駆動されたが、本第2の実施形態では、図9(A)に示されるように、搬送テーブル94aは、移動せず、可動駒94eのみが駆動される。すなわち、マスクローダ装置190では、マスク保持装置60が-X方向にスライドしてくる際の吸着パッド66aのX位置に応じて、可動駒94eが吸着パッド66aと接触しないように下方に駆動される(吸着パッド66aの移動経路から退避する)。また、可動駒94eは、図9(B)に示されるように、吸着パッド66aの通過後に上昇駆動され、マスクMを下方から支持する。これにより、マスクMは、吸着パッド66aのX位置に関わらず、常に少なくともひとつの可動駒94eに下方から支持される。図9(A)では、最も+X側の可動駒94eのみが吸着パッド66aの移動経路から退避しており、図9(B)では、中央の可動駒94eのみが吸着パッド66aの移動経路から退避している。 Here, in the first embodiment, as shown in FIG. 7B, the mask holding device 60 can support the mask M from below (the suction pad 66a does not contact the slide member 94c). In the second embodiment, as shown in FIG. 9A, the transport table 94a does not move and only the movable piece 94e is driven. Is done. That is, in the mask loader device 190, the movable piece 94e is driven downward so as not to contact the suction pad 66a according to the X position of the suction pad 66a when the mask holding device 60 slides in the -X direction. (Retreat from the moving path of the suction pad 66a). Further, as shown in FIG. 9B, the movable piece 94e is driven up after passing through the suction pad 66a, and supports the mask M from below. Thus, the mask M is always supported from below by at least one movable piece 94e regardless of the X position of the suction pad 66a. 9A, only the movable piece 94e closest to the + X side is retracted from the movement path of the suction pad 66a, and in FIG. 9B, only the central movable piece 94e is retracted from the movement path of the suction pad 66a. is doing.
 マスク保持装置60がマスクMを保持した後は、図10(A)に示されるように、搬送テーブル94aが下降駆動され、マスクMを保持したマスク保持装置60は、図10(B)に示されるように、露光動作のためにマスクMを照明系12の下方に向けて駆動する。本第2の実施形態によれば、仮にマスクMを懸垂支持した状態でマスクエアガイド40に対する加圧気体の供給が停止したとしても、マスクMが搬送テーブル94a上に落下することが防止される。 After the mask holding device 60 holds the mask M, the transfer table 94a is driven downward as shown in FIG. 10A, and the mask holding device 60 holding the mask M is shown in FIG. In order to perform the exposure operation, the mask M is driven toward the lower side of the illumination system 12. According to the second embodiment, even if the supply of pressurized gas to the mask air guide 40 is stopped while the mask M is suspended and supported, the mask M is prevented from falling on the transfer table 94a. .
 なお、以上説明した第1、及び第2の実施形態の構成は、適宜変更が可能である。例えば、上記第1及び第2の実施形態において、マスクMの交換動作を行う際、マスクMの搬出動作とマスクMの搬入動作とが同じ位置(マスク交換位置)で行われたが、マスク搬入位置(ローディングポジション)とマスク搬出位置(アンローディングポジション)とは、別であっても良く、例えばアンローディングポジションを開口部46に対してX軸方向の一側(例えば-X側)の領域に設定するととともに、ローディングポジションを開口部46に対してX軸方向の他側(例えば+X側)の領域に設定しても良い。この場合、マスクMの搬出動作と別のマスクMの搬入動作とを一部並行して行うことができるので、効率が良い。 Note that the configurations of the first and second embodiments described above can be changed as appropriate. For example, in the first and second embodiments, when the mask M is exchanged, the mask M carry-out operation and the mask M carry-in operation are performed at the same position (mask exchange position). The position (loading position) and the mask unloading position (unloading position) may be different. For example, the unloading position is set to a region on one side (for example, −X side) in the X-axis direction with respect to the opening 46. In addition to setting, the loading position may be set to a region on the other side (for example, + X side) in the X-axis direction with respect to the opening 46. In this case, the carry-out operation of the mask M and the carry-in operation of another mask M can be partially performed in parallel, which is efficient.
 また、上記第1及び第2の実施形態において、マスクエアガイド40は、マスクエアガイド40の下面とマスクMの上面との間に加圧気体を高速で噴出すること(マスクエアガイド40を、いわゆるベルヌーイチャックとして機能させること)により(気体の吸引を行うことなく)、マスクMを懸垂保持しても良い。 In the first and second embodiments, the mask air guide 40 jets pressurized gas at high speed between the lower surface of the mask air guide 40 and the upper surface of the mask M (the mask air guide 40 is The mask M may be suspended and held (by functioning as a so-called Bernoulli chuck) (without sucking gas).
 また、上記実施形態において、マスクMは、一対のマスク保持装置60それぞれの吸着パッド66aにより、+Y側、及び-Y側の端部近傍が吸着保持されたが、吸着パッド66aの数、及びマスクMの吸着保持位置は、これに限られず、より多くの箇所(X軸方向の端部を含む)を吸着保持しても良い。この場合、例えば枠状の部材を用いてマスクMの外周全体を囲んでも良い。 Further, in the above embodiment, the mask M is sucked and held near the end portions on the + Y side and the −Y side by the suction pads 66a of each of the pair of mask holding devices 60. The suction holding position of M is not limited to this, and more places (including the end portion in the X-axis direction) may be sucked and held. In this case, for example, the entire outer periphery of the mask M may be surrounded using a frame-shaped member.
 また、照明光は、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。また、照明光としては、例えばDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、固体レーザ(波長:355nm、266nm)などを使用しても良い。 The illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). As the illumination light, for example, a single wavelength laser beam oscillated from a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium). In addition, harmonics converted into ultraviolet light using a nonlinear optical crystal may be used. A solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
 また、投影光学系16が複数本の光学系を備えたマルチレンズ方式の投影光学系である場合について説明したが、投影光学系の本数はこれに限らず、1本以上あれば良い。また、マルチレンズ方式の投影光学系に限らず、オフナー型の大型ミラーを用いた投影光学系などであっても良い。また、投影光学系16としては、拡大系、又は縮小系であっても良い。 Further, the case where the projection optical system 16 is a multi-lens projection optical system including a plurality of optical systems has been described, but the number of projection optical systems is not limited to this, and one or more projection optical systems may be used. The projection optical system is not limited to a multi-lens projection optical system, and may be a projection optical system using an Offner type large mirror. Further, the projection optical system 16 may be an enlargement system or a reduction system.
 また、マスクステージ装置としては、例えば米国特許第8,159,649号明細書に開示されるような、2種類のマスクパターンが形成されたマスクを適宜Y軸方向にステップ移動させることにより、マスク交換を行うことなく上記2種類のマスクパターンを選択的に基板に転写することが可能なマスクステージ装置であっても良い。この場合、上記第1~第4の実施形態に係るマスクエアガイド40の幅を、上記実施形態に比べて広く形成すると良い。 Further, as a mask stage apparatus, for example, as disclosed in US Pat. No. 8,159,649, a mask on which two types of mask patterns are formed is moved stepwise in the Y-axis direction as appropriate. It may be a mask stage apparatus that can selectively transfer the two types of mask patterns to the substrate without replacement. In this case, the width of the mask air guide 40 according to the first to fourth embodiments may be formed wider than that of the above embodiment.
 また、露光装置の用途としては角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置に限定されることなく、例えば有機EL(Electro-Luminescence)パネル製造用の露光装置、半導体製造用の露光装置、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるマスク又はレチクルを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも適用できる。 Further, the use of the exposure apparatus is not limited to the exposure apparatus for liquid crystal that transfers the liquid crystal display element pattern onto the square glass plate. For example, the exposure apparatus for manufacturing an organic EL (Electro-Luminescence) panel, the semiconductor manufacture The present invention can also be widely applied to an exposure apparatus for manufacturing an exposure apparatus, a thin film magnetic head, a micromachine, a DNA chip, and the like. Moreover, in order to manufacture not only microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
 また、露光対象となる物体はガラスプレートに限られず、例えばウエハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。また、露光対象物がフラットパネルディスプレイ用の基板である場合、その基板の厚さは特に限定されず、例えばフィルム状(可撓性を有するシート状の部材)のものも含まれる。なお、本実施形態の露光装置は、一辺の長さ、又は対角長が500mm以上の基板が露光対象物である場合に特に有効である。 The object to be exposed is not limited to the glass plate, but may be another object such as a wafer, a ceramic substrate, a film member, or a mask blank. Moreover, when the exposure target is a substrate for a flat panel display, the thickness of the substrate is not particularly limited, and includes, for example, a film-like (flexible sheet-like member). The exposure apparatus of the present embodiment is particularly effective when a substrate having a side length or diagonal length of 500 mm or more is an exposure target.
 液晶表示素子(あるいは半導体素子)などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたマスク(あるいはレチクル)を製作するステップ、ガラス基板(あるいはウエハ)を製作するステップ、上述した各実施形態の露光装置、及びその露光方法によりマスク(レチクル)のパターンをガラス基板に転写するリソグラフィステップ、露光されたガラス基板を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ガラス基板上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。 For electronic devices such as liquid crystal display elements (or semiconductor elements), the step of designing the function and performance of the device, the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer) A lithography step for transferring a mask (reticle) pattern to a glass substrate by the exposure apparatus and the exposure method of each embodiment described above, a development step for developing the exposed glass substrate, and a portion where the resist remains. It is manufactured through an etching step for removing the exposed member of the portion by etching, a resist removing step for removing a resist that has become unnecessary after etching, a device assembly step, an inspection step, and the like. In this case, in the lithography step, the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
 なお、これまでの説明で引用した露光装置などに関する全ての米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。 It should be noted that the disclosure of all US patent application publications and US patent specifications related to the exposure apparatus and the like cited in the above description are incorporated herein by reference.
 以上説明したように、本発明の露光方法は、パターン保持体をエネルギビームに対して相対移動させるのに適している。また、本発明のフラットパネルディスプレイの製造方法は、フラットパネルディスプレイの生産に適している。また、本発明のデバイス製造方法は、マイクロデバイスの生産に適している。 As described above, the exposure method of the present invention is suitable for moving the pattern holder relative to the energy beam. Moreover, the manufacturing method of the flat panel display of this invention is suitable for production of a flat panel display. The device manufacturing method of the present invention is suitable for the production of micro devices.
 10…液晶露光装置、14…マスクステージ装置、40…マスクエアガイド、46…開口部、60…マスク保持装置、IL…照明光、M…マスク、P…基板。 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal exposure apparatus, 14 ... Mask stage apparatus, 40 ... Mask air guide, 46 ... Opening part, 60 ... Mask holding apparatus, IL ... Illumination light, M ... Mask, P ... Substrate.

Claims (14)

  1.  所定のパターンを有するパターン保持体の上面を、該パターン保持体を重力方向上側から非接触で懸垂支持可能な支持部材の下面に対して対向させることと、
     前記支持部材に前記パターン保持体を非接触で懸垂支持させることと、
     前記支持部材に懸垂支持された前記パターン保持体を、前記パターン保持体を保持可能な保持部材に保持させることと、
     前記保持部材を用いてエネルギビームに対して少なくとも所定の2次元平面内の走査方向に前記パターン保持体を移動させるとともに、露光対象物体を前記エネルギビームに対して前記走査方向に駆動して前記パターンを前記露光対象物体に転写することと、
     前記支持部材による前記パターン保持体の懸垂支持が維持された状態で、前記保持部材による前記パターン保持体の保持を解除させることと、
     前記保持部材による保持が解除された前記パターン保持体の上面と前記支持部材の下面とを離間させることと、を含む露光方法。
    The upper surface of the pattern holder having a predetermined pattern is opposed to the lower surface of the support member that can be suspended from the upper side in the direction of gravity in a non-contact manner;
    Suspending and supporting the pattern holding body in a non-contact manner on the support member;
    Holding the pattern holding body suspended and supported by the support member on a holding member capable of holding the pattern holding body;
    The pattern holding body is moved in the scanning direction within at least a predetermined two-dimensional plane with respect to the energy beam using the holding member, and the exposure target object is driven in the scanning direction with respect to the energy beam. Transferring to the object to be exposed;
    Releasing the holding of the pattern holding body by the holding member in a state where the suspension support of the pattern holding body by the supporting member is maintained;
    An exposure method comprising: separating an upper surface of the pattern holding body released from being held by the holding member and a lower surface of the support member.
  2.  前記転写することでは、前記支持部材に形成された開口部に前記エネルギビームを通過させる請求項1に記載の露光方法。 The exposure method according to claim 1, wherein the transferring causes the energy beam to pass through an opening formed in the support member.
  3.  前記対向させること、及び前記離間させることでは、前記パターン保持体を前記支持部材に対して前記2次元平面に交差する方向に移動させる請求項1又は2に記載の露光方法。 3. The exposure method according to claim 1, wherein the pattern holding body is moved in a direction intersecting the two-dimensional plane with respect to the support member by the facing and the separating.
  4.  前記対向させること、及び前記離間させることでは、共通の搬送装置が用いられる請求項1~3のいずれか一項に記載の露光方法。 4. The exposure method according to claim 1, wherein a common transport device is used for the facing and the separating.
  5.  前記保持させることでは、前記パターン保持体の下面側で前記保持部材を前記走査方向の一側から他側にスライドさせることにより、該保持部材を前記パターン保持体の下方に配置し、
     前記保持を解除させることでは、前記パターン保持体の下面側で前記保持部材を前記走査方向の他側から一側にスライドさせることにより、該保持部材を前記パターン保持体の下方から退避させる請求項1~4のいずれか一項に記載の露光方法。
    In the holding, by sliding the holding member from one side to the other side in the scanning direction on the lower surface side of the pattern holding body, the holding member is disposed below the pattern holding body,
    And releasing the holding by sliding the holding member from the other side of the scanning direction to the one side on the lower surface side of the pattern holding body, thereby retracting the holding member from below the pattern holding body. 5. The exposure method according to any one of 1 to 4.
  6.  前記対向させること、及び前記離間させることでは、前記パターン保持体の下面を支持する第1位置と該パターン保持体の下面から離間した第2位置との間を移動可能に設けられた可動部材を、前記走査方向に沿って複数有するパターン保持体搬送装置が用いられ、
     前記保持させること、及び前記保持を解除させることでは、前記保持部材の前記走査方向に沿った位置に応じて、複数の前記可動部材を前記第1位置から前記第2位置に退避させる請求項5に記載の露光方法。
    In the facing and the separating, a movable member provided to be movable between a first position that supports the lower surface of the pattern holding body and a second position that is separated from the lower surface of the pattern holding body. , A pattern carrier transport device having a plurality along the scanning direction is used,
    6. The plurality of movable members are retracted from the first position to the second position according to a position along the scanning direction of the holding member by the holding and releasing the holding. An exposure method according to 1.
  7.  前記対向させること、及び前記保持を解除させることでは、前記パターン保持体を前記支持部材の下面の第1の領域に対向させ、
     前記転写することでは、前記パターン保持体を前記支持部材の下面の前記1の領域とは異なる第2の領域に沿って移動させる請求項1~6のいずれか一項に記載の露光方法。
    In the facing and releasing the holding, the pattern holding body is opposed to the first region on the lower surface of the support member,
    The exposure method according to any one of claims 1 to 6, wherein in the transfer, the pattern holder is moved along a second region different from the first region on the lower surface of the support member.
  8.  前記転写することでは、前記パターン保持体を前記エネルギビームに対して前記2次元平面内で前記走査方向に直交する方向、及び前記2次元平面に直交する軸回りに微少駆動する請求項1~7のいずれか一項に記載の露光方法。 In the transfer, the pattern holder is slightly driven with respect to the energy beam in a direction orthogonal to the scanning direction in the two-dimensional plane and around an axis orthogonal to the two-dimensional plane. The exposure method according to any one of the above.
  9.  前記懸垂支持させることでは、前記支持部材の前記下面と前記パターン保持体の前記上面との間の気体を前記支持部材に吸引させる請求項1~8のいずれか一項に記載の露光方法。 The exposure method according to any one of claims 1 to 8, wherein the supporting member causes the supporting member to suck a gas between the lower surface of the supporting member and the upper surface of the pattern holding body.
  10.  前記懸垂支持させることでは、前記支持部材の前記下面と前記パターン保持体の上面との間に気体を高速で通過させることにより前記パターン保持体に重力方向上向きの力を作用させる請求項1~8のいずれか一項に記載の露光方法。 In the suspension support, an upward force in the gravitational direction is applied to the pattern holder by allowing a gas to pass between the lower surface of the support member and the upper surface of the pattern holder at a high speed. The exposure method according to any one of the above.
  11.  前記露光対象物体は、フラットパネルディスプレイ装置に用いられる基板である請求項1~10のいずれか一項に記載の露光方法。 11. The exposure method according to claim 1, wherein the object to be exposed is a substrate used in a flat panel display device.
  12.  前記基板は、少なくとも一辺の長さ又は対角長が500mm以上である請求項11に記載の露光方法。 The exposure method according to claim 11, wherein the substrate has a length of at least one side or a diagonal length of 500 mm or more.
  13.  請求項11又は12に記載の露光方法を用いて前記露光対象物体を露光することと、
     露光された前記露光対象物体を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing the object to be exposed using the exposure method according to claim 11 or 12,
    Developing the exposed object to be exposed, and manufacturing a flat panel display.
  14.  請求項1~10のいずれか一項に記載の露光方法を用いて前記露光対象物体を露光することと、
     露光された前記露光対象物体を現像することと、を含むデバイス製造方法。
    Exposing the object to be exposed using the exposure method according to any one of claims 1 to 10,
    And developing the exposed object to be exposed.
PCT/JP2013/004728 2012-08-07 2013-08-05 Exposure method, method for manufacturing flat-panel display, and method for manufacturing device WO2014024465A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380049848.7A CN104662481B (en) 2012-08-07 2013-08-05 Exposure method, method for manufacturing flat-panel display, and method for manufacturing device
KR1020157005675A KR102206141B1 (en) 2012-08-07 2013-08-05 Exposure method, method for manufacturing flat-panel display, and method for manufacturing device
HK15105422.0A HK1205276A1 (en) 2012-08-07 2015-06-08 Exposure method, method for manufacturing flat-panel display, and method for manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012174507A JP6035670B2 (en) 2012-08-07 2012-08-07 Exposure method, flat panel display manufacturing method, device manufacturing method, and exposure apparatus
JP2012-174507 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024465A1 true WO2014024465A1 (en) 2014-02-13

Family

ID=50067718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004728 WO2014024465A1 (en) 2012-08-07 2013-08-05 Exposure method, method for manufacturing flat-panel display, and method for manufacturing device

Country Status (5)

Country Link
JP (1) JP6035670B2 (en)
KR (1) KR102206141B1 (en)
CN (2) CN104662481B (en)
HK (1) HK1205276A1 (en)
WO (1) WO2014024465A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102630304B1 (en) * 2017-03-31 2024-01-26 가부시키가이샤 니콘 Exposure apparatus, exposure method, flat panel display manufacturing method, and device manufacturing method
CN107589634B (en) * 2017-08-11 2019-12-27 京东方科技集团股份有限公司 Exposure device
JP7194006B2 (en) * 2018-12-18 2022-12-21 キヤノントッキ株式会社 Substrate mounting method, film forming method, film forming apparatus, and organic EL panel manufacturing system
JP7227810B2 (en) * 2019-03-25 2023-02-22 キヤノン株式会社 OPTICAL DEVICE, EXPOSURE DEVICE, AND PRODUCT MANUFACTURING METHOD
CN111736431B (en) * 2020-06-15 2023-03-03 上海集成电路研发中心有限公司 Device for replacing dynamic gas lock

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239855A (en) * 1997-02-28 1998-09-11 Nikon Corp Substrate carrying device
JP2002368065A (en) * 2001-06-08 2002-12-20 Hiroshi Akashi Aligning device
JP2009016388A (en) * 2007-06-29 2009-01-22 Canon Inc Original transfer device, exposure device, and method for manufacturing device
JP2012060118A (en) * 2010-09-07 2012-03-22 Nikon Corp Mobile device, object processing device, exposure device, and manufacturing methods for flat panel display, and device manufacturing method
JP2012060134A (en) * 2010-09-13 2012-03-22 Nikon Corp Mobile apparatus, exposure apparatus, device manufacturing method, flat panel display manufacturing method and object exchange method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135120A (en) * 1996-10-29 1998-05-22 Nikon Corp Projection aligner
JP2005150527A (en) * 2003-11-18 2005-06-09 Canon Inc Holding device, exposure device and manufacturing method using the same
GB2422679A (en) * 2005-01-28 2006-08-02 Exitech Ltd Exposure method and tool
WO2006104127A1 (en) 2005-03-29 2006-10-05 Nikon Corporation Exposure apparatus, method for manufacturing exposure apparatus, and method for manufacturing microdevice
JP2007171621A (en) * 2005-12-22 2007-07-05 Adtec Engineeng Co Ltd Contact exposure device
JP2009016679A (en) * 2007-07-06 2009-01-22 Yaskawa Electric Corp Stage device, its lifting control method, and exposure device using stage device
JP5190034B2 (en) * 2009-07-03 2013-04-24 株式会社日立ハイテクノロジーズ Exposure equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239855A (en) * 1997-02-28 1998-09-11 Nikon Corp Substrate carrying device
JP2002368065A (en) * 2001-06-08 2002-12-20 Hiroshi Akashi Aligning device
JP2009016388A (en) * 2007-06-29 2009-01-22 Canon Inc Original transfer device, exposure device, and method for manufacturing device
JP2012060118A (en) * 2010-09-07 2012-03-22 Nikon Corp Mobile device, object processing device, exposure device, and manufacturing methods for flat panel display, and device manufacturing method
JP2012060134A (en) * 2010-09-13 2012-03-22 Nikon Corp Mobile apparatus, exposure apparatus, device manufacturing method, flat panel display manufacturing method and object exchange method

Also Published As

Publication number Publication date
KR102206141B1 (en) 2021-01-21
KR20150041037A (en) 2015-04-15
HK1205276A1 (en) 2015-12-11
CN107015440A (en) 2017-08-04
CN104662481B (en) 2017-01-18
JP2014036023A (en) 2014-02-24
CN104662481A (en) 2015-05-27
JP6035670B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6981458B2 (en) Conveyance system, exposure equipment, transfer method, exposure method and device manufacturing method
JP6708222B2 (en) Exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP5776699B2 (en) Exposure apparatus, object replacement method, exposure method, and device manufacturing method
TW202311869A (en) Exposure apparatus, manufacturing method of flat panel display, device manufacturing method, and exposure method
JP2019016801A (en) Object-swapping method, object-swapping system, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method
JP6035670B2 (en) Exposure method, flat panel display manufacturing method, device manufacturing method, and exposure apparatus
JP2013051237A (en) Object processing device, manufacturing method of flat panel display, device manufacturing method, object transport device, and object carry-in method
JP2013219068A (en) Object driving system, exposure apparatus, flat panel display manufacturing method, device manufacturing method, and object driving method
JP2011100917A (en) Substrate delivery apparatus, exposure apparatus, device manufacturing method, and substrate delivery method
JP5741926B2 (en) Object exchange system, exposure apparatus, flat panel display production method, device production method, and object exchange method
JP5741927B2 (en) Object carrying-out method, object exchange method, object holding device, object exchange system, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP2014035349A (en) Exposure device, method for manufacturing flat panel display, and device manufacturing method
JP6135099B2 (en) Mobile device, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP5772196B2 (en) Mobile device, exposure apparatus, flat panel display manufacturing method, device manufacturing method, and mobile device assembly method.
JP6015984B2 (en) Object carrying-out method, object exchange method, object holding device, object exchange system, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP6015983B2 (en) Object exchange system, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP6746092B2 (en) Exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP2019133192A (en) Object transportation device, exposure device, method of producing flat panel display, and method of producing device
JP2017135418A (en) Mobile device, exposure device, method of manufacturing flat panel display, and method of manufacturing device
JP2014041178A (en) Moving body device, exposure device, flat panel display manufacturing method, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157005675

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13828580

Country of ref document: EP

Kind code of ref document: A1