WO2014021524A1 - Alloy powder, alloy powder core, and method for producing same - Google Patents

Alloy powder, alloy powder core, and method for producing same Download PDF

Info

Publication number
WO2014021524A1
WO2014021524A1 PCT/KR2012/011764 KR2012011764W WO2014021524A1 WO 2014021524 A1 WO2014021524 A1 WO 2014021524A1 KR 2012011764 W KR2012011764 W KR 2012011764W WO 2014021524 A1 WO2014021524 A1 WO 2014021524A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy powder
powder
core
alloy
solute
Prior art date
Application number
PCT/KR2012/011764
Other languages
French (fr)
Korean (ko)
Inventor
장평우
신승찬
Original Assignee
청주대학교 산학합력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 청주대학교 산학합력단 filed Critical 청주대학교 산학합력단
Publication of WO2014021524A1 publication Critical patent/WO2014021524A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Definitions

  • the present invention relates to an alloy powder and a core, and in particular, a Fe-Al alloy powder is heat-treated on a mixed gas of hydrogen and steam to prepare a metal alloy powder having a high quality insulating layer formed by selectively oxidizing Al, a solute element, and using the same.
  • the present invention relates to a soft magnetic powder, a method for producing the powder, and an alloy powder core produced by the method by producing a soft magnetic core in a completely different method from the existing alloy powder core.
  • the present invention is the result of a research carried out supported by the Ministry of Education, Science and Technology in 2012 (research project name: general researcher support, research project name: forming a high-quality insulating film for soft magnetic metal powder).
  • Representative energy converters include electromechanical devices such as motors and generators that convert electrical energy into mechanical energy, and inductors, which are cores for power conversion.
  • the devices that convert electrical energy into mechanical energy and vice versa are motors and generators, respectively.
  • the inductor is a soft magnetic core wound around a conductor, which is an essential core element in most electronic devices. Cores used in motors, generators, and inductors are made of soft magnetic materials. The cores used here are responsible for accumulating and returning magnetic energy from the electromagnetic point of view and inevitably causing energy losses. Accordingly, the core material of the inductor generally requires high permeability, high resistivity, small coercive force, high Curie temperature and high saturation magnetic flux density in order to have low loss and high conversion efficiency characteristics. In particular, as electronic devices such as smartphones and tablet PCs are required to have high speed, miniaturization, and high capacity, frequency and high current stability of the high frequency band (1 MHz or more) permeability, which is essential for the directization of components, are also required.
  • Soft magnetic materials are classified into two types of ferrite-based and metal alloy-based materials. Since ferrite has a specific resistance of 10 2 ⁇ 10 10 ⁇ ⁇ cm, which is about 10 6 times higher than that of metal magnetic materials, it has very little eddy current loss and can be manufactured by powder sintering method. It is possible to manufacture, and because it is an oxide has the advantage of excellent corrosion resistance. However, because it is an oxide, its initial permeability is 1/10 and its magnetic flux density is about 1/3, which is inadequate for low-frequency, high-power magnetic materials, and its Curie temperature is also lower than that of metal magnetics. Have
  • metal alloys In comparison, metal alloys generally have high direct current permeability and low magnetic history loss, and are excellent in workability and stability. However, due to the relatively low resistivity, the eddy current loss increases with increasing frequency, thereby limiting its use in the high frequency region.
  • the bulk material is powdered to form an insulating layer on each surface of the powder, and compressed and molded into a core to effectively block the eddy current flow as shown in FIG. It can be lowered to improve DC overlapping characteristics and to be applied at high frequency.
  • Such cores are referred to as Soft Magnetic Metal Powder Cores. 1 is a diagram visually showing the eddy current loss in the soft magnetic bulk material, sheet, powder.
  • the insulating layer formed on the powder surface to influence the characteristics of the core should have the first high electrical resistivity, and the second excellent adhesion, so that the insulating layer should not be destroyed even at high molding pressure.
  • the insulating layer used for the powder soft magnetic core is formed by a phosphate coating method in which the powder is mixed with a phosphate solution to form a phosphate on the surface, or the fine oxide is mixed with the soft magnetic powder to adsorb the oxide on the powder surface.
  • Solid insulating powder mixing method, and a method of coating the polymer resin is mainly used.
  • the phosphate coating method is very simple, but when the core is heat-treated at a temperature of 300 ° C. or higher, the phosphate coating layer starts to decompose and completely decomposes at 600 ° C., thereby not serving as an insulating layer.
  • the solid insulating powder mixing method is difficult to uniformly coat the powder surface, and in particular, it is difficult to expect a uniform coating because the shape of the waterless powder is very irregular.
  • the manufacturing method using a polymer resin it is good to form an insulator, but there is a disadvantage that heat treatment is impossible from the beginning.
  • the core is formed by forming an insulating layer on the metal powder, it is used for various purposes, but each problem also exists. Therefore, in order to overcome the limitations of the conventional insulating layer forming methods and to solve the respective problems, it is necessary to develop a new insulating layer forming technology that is different from the past, which can exceed the performance of current materials.
  • an object of the present invention for solving the above problems is to establish an insulating film formation condition by selectively oxidizing any metal component of the alloy powder on the surface of the powder to form a high quality insulating layer and iron loss using the powder. It is to provide a method for producing this low powder core and an alloy powder core produced by the method.
  • Another object of the present invention by using the Fe-Al alloy powder, one of the soft magnetic materials to selectively oxidize only aluminum on the powder surface to establish the insulating film forming conditions of Al 2 O 3 , to form a high-quality insulating layer
  • the present invention provides a powder and a method for producing a powder core having low iron loss using the powder, and an alloy powder core produced by the method.
  • the present invention is a solute by heat-treating an alloy powder widely used as a material of electric, electronic and magnetic elements such as motors, actuators, yokes, cores, reactors, heat treatment under a mixed gas atmosphere of hydrogen and water vapor
  • a soft magnetic powder for selectively oxidizing an element to form a high quality insulating layer, and a soft magnetic alloy powder core is produced from the powder.
  • the alloy powder core according to the present invention by using the Fe-Al alloy powder of one of the soft magnetic material to selectively oxidize only aluminum to establish the insulating film formation conditions of Al 2 O 3 on the surface, low iron loss powder core It is characterized in manufacturing.
  • the alloy powder according to the present invention for achieving the above object is heat-treated by supplying hydrogen including water vapor to the alloy powder selected for particle size from several hundred ⁇ m to several minutes, and has a high affinity for oxygen among the solute elements included in the alloy powder.
  • a part of the first solute element is selectively oxidized, and the oxidized first solute element forms an insulating layer on the outer surface of the alloy powder.
  • the first solute element of the alloy powder according to the present invention is silicon (Si), aluminum (Al), magnesium (Mg), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf) It is characterized by at least one of.
  • the alloy powder according to the present invention the first solute element and gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu), cobalt (Co) At least one of zinc (Zn), tin (Sn), vanadium (V) and manganese (Mn) is characterized in that the solvent element.
  • the alloy powder manufacturing method according to the present invention for achieving the above object, by supplying hydrogen containing water vapor to the alloy powder selected by particle size in the size of several hundred ⁇ m size, heat treatment, solute elements contained in the alloy powder A portion of the first solute element having affinity with heavy oxygen is selectively oxidized, and the oxidized first solute element forms an insulating layer on the outer surface of the alloy powder.
  • the first solute element of the alloy powder core silicon (Si), aluminum (Al), magnesium (Mg), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf) Method for producing an alloy powder core, characterized in that any one of).
  • the alloy powder of the alloy powder core according to the present invention the first solute element and gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu) , At least one of cobalt (Co), zinc (Zn), tin (Sn), vanadium (V) and manganese (Mn) is characterized in that the solvent element.
  • the alloy powder manufacturing method according to the present invention for achieving the above object, the process of placing the particle size of the Fe-Al produced by the gas spray method to -106 mesh in the heat treatment furnace; Hydrogen-vapor mixture gas having a dew point of -17 ° C and -0 ° C was passed through a copper tube maintained at -17 ° C and -0 ° C by passing hydrogen of 500 SCCM through ion exchanged water maintained at 0 ° C to 10 ° C. Making process; And flowing the hydrogen-steam mixture gas into a heat treatment furnace maintained at 800 ° C. to 900 ° C. to heat-treat the Fe-Al powder for 0 to 60 minutes. Characterized in that consists of.
  • the alloy powder core according to the present invention for achieving the above object, by supplying hydrogen containing water vapor to the alloy powder selected for particle size of several hundred ⁇ m size, heat treatment, oxygen of the solute elements contained in the alloy powder And selectively oxidize a part of the first solute element having a high affinity with the oxidized first solute, and forming the alloy powder having an insulating layer formed on the outer surface of the alloy powder.
  • the first solute element of the alloy powder according to the present invention is silicon (Si), aluminum (Al), magnesium (Mg), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf) It is characterized by at least one of.
  • the alloy powder of the alloy powder core according to the present invention the first solute element and gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu) , At least one of cobalt (Co), zinc (Zn), tin (Sn), vanadium (V) and manganese (Mn) is characterized in that the solvent element.
  • an insulating layer having a high resistivity on the alloy powder by selective oxidation there is an effect that a process is easy and an alloy powder having a high resistivity having a high specific resistance is formed.
  • an alloy powder having a uniform insulation layer with a simple manufacturing process can be manufactured, thereby increasing the quality of the product and lowering the manufacturing cost.
  • the present invention can form an insulating layer of a very thin film having a high resistivity and maintain a high magnetic flux density, thereby producing an ultra-small and high-performance electronic device, components and products.
  • 1 is a visual representation of eddy current loss in a soft magnetic bulk material, sheet, and powder
  • Figure 2 is a device configuration for explaining the manufacturing process of the alloy powder core according to the present invention
  • FIG. 3 is a surface shape in which a hydrogen-steam mixed gas having a dew point of 0 ° C. is flowed into a heat treatment furnace maintained at 900 ° C. in a manufacturing process of an alloy powder core according to the present invention and selectively oxidized Fe-6 wt.% Al powder with time.
  • FIG. 5 is Fe-4 wt% subjected to selective oxidation heat treatment for 40 minutes while flowing a hydrogen-vapor mixed gas having a dew point of 0 ° C. in a process of manufacturing an alloy powder core according to the present invention in a heat treatment furnace maintained at 900 ° C.
  • FIG. 6 After making Al powder as a core, a graph measuring density and specific resistance,
  • the alloy will be described as a representative embodiment using Fe-Al.
  • Fe iron
  • Al aluminum
  • the first solute elements such as aluminum (Al) constituting the alloy powder include silicon (Si), aluminum (Al), and magnesium (Mg).
  • Chromium (Cr), titanium (Ti), zirconium (Zr) and hafnium (Hf) may be at least one, and the solvent element such as iron (Fe) forming the alloy powder with the first solute element is gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu), cobalt (Co), zinc (Zn), tin (Sn), vanadium (V) and manganese It may be at least one of (Mn).
  • Fe-Al powder means an alloy powder
  • the alloy powder core according to the present invention is finally produced an alloy powder treated according to the alloy powder core manufacturing method according to the present invention.
  • Figure 2 is a device configuration for explaining the manufacturing process of the alloy powder core according to the present invention
  • the manufacturing method of the alloy powder core according to the present invention is a Fe-Al powder prepared by the gas spray method Is selected and oxidized to a particle size of less than 106 mesh in a heat treatment furnace (Furnace).
  • the heat-treated Fe-Al powder is molded.
  • a solid lubricant prior to molding, it is easy to escape from the mold during molding. Molding is carried out at room temperature with a pressure of 1206 MPa in a pressure press to produce a toroidal core having an outer diameter of 12.7 mm, an inner diameter of 7.6 mm and a height of 3.7 mm.
  • the core is heat-treated for 60 minutes in an 800 ° C. heat treatment furnace under a high purity nitrogen atmosphere. Homica coating was used to prevent damage to the heat-treated core.
  • the wire was wound 36 times in the same manner as the primary and secondary wires to the completed core.
  • FIG. 3 is a photograph showing the surface shape of the hydrogen-steam mixed gas having a dew point of 0 ° C. being oxidized to Fe-6 wt.% Al powder over time while flowing in a heat treatment furnace maintained at 800 ° C.
  • FIG. 3 As shown in FIG. 3, the casting structure appeared in all powders, and the Fe-Al powder which was not heat treated showed a smooth shape, but when selective oxidation heat treatment was performed, Al 2 O 3 was formed around the surface of the powder and the heat treatment time increased. (0, 2, 10, 30 minutes) The particles grow larger. Unexpectedly, however, these particles do not appear at the grain boundaries of the cast structure and are evenly distributed on the powder surface, which may be advantageous in producing powder cores.
  • Figure 4 is Fe-4 wt% flowing hydrogen-vapor mixture gas having a dew point of -17 °C flowing in a heat treatment furnace maintained at 900 °C. It is a cross-sectional photograph which selectively oxidized Al powder for 20 minutes. 4, a thin Al 2 O 3 insulating film around the Fe-Al powder is formed, and insulating middle in Fig. Al 2 O 3 shown in the surface of Figure 3, but generally forming a continuous insulating layer has a thickness It is not constant.
  • FIG. 5 is Fe-4 wt% subjected to selective oxidation heat treatment for 40 minutes while flowing a hydrogen-vapor mixture gas having a dew point of 0 ° C. into a heat treatment furnace maintained at 900 ° C.
  • FIG. As a component mapping of the cross-section of the Al powder, the iron appears evenly, but a lot of aluminum and oxygen is detected on the surface, it can be seen that Al 2 O 3 is well formed on the surface.
  • FIG. 6 is Fe-6 wt% subjected to selective oxidation heat treatment of a hydrogen-vapor mixture gas having a dew point of 0 ° C. at 800 ° C.
  • FIG. 6 After the Al powder is made of a core, it is a graph measuring density and specific resistance. Referring to FIG. 6, as the selective oxidation heat treatment time increases, the thickness of the film around the powder becomes thick, and thus the density tends to decrease, whereas the resistivity tends to increase. As shown in Fig. 6, when the heat treatment is carried out for 10 minutes, the increase in density is due to the relaxation of the residual stress generated when the powder solidifies, and the decrease in thickness thereafter is caused by the thickening of the insulating layer.
  • the increase in the electrical resistivity is due to the thickening of the insulating layer, and if the insulating layer completely surrounds the powder, the resistivity will have an infinite value.
  • Figure 7 shows the core loss according to the oxidation time, since the effect of eddy current is high at high frequency, the core loss continuously decreases as the heat treatment time increases at 50 kHz. However, at 0.4 and 1 kHz, this tendency is reduced and the loss is very small even after heat treatment for about 2 minutes.
  • the core losses at 0.4, 1, and 50 kHz of the cores prepared with 30 min selective oxidation were 105, 284 and 774 mW / cm 3 , respectively.
  • Figure 8 shows the change in electrical resistivity and density according to the heat treatment temperature of the core made of phosphate treated powder.
  • the density increases, and the electrical resistivity shows the lowest value at 700 ° C. Compared with FIG. 7 showing the change in specific resistance and density of the oxidized powder, the density is similar but the electrical resistivity is very high.
  • the core must be heat-treated after molding to relieve the stress that occurs when forming the core. The higher the heat treatment temperature, the softer magnetic properties, especially hysteretic loss, reduce core loss.
  • Table 9 is a graph showing core loss at 0.4 and 1 kHz according to the heat treatment temperature of a core made of phosphate-treated powder, the lowest core loss when heat-treated at 700 °C. However, compared to the result of selective oxidation, the core loss is very high. This is shown in detail in Table 1 below. Table 1 compares the core loss of the oxidized Fe-6 wt.% Al powder with that of the phosphate-treated powder.
  • the alloy powder core manufacturing method according to the present invention has a problem in that the phosphate coating layer is decomposed when the heat treatment temperature of the existing insulating layer forming methods is 300 ° C. or higher, as compared with the existing insulating layer coating methods, and It is difficult to expect the coating, and can solve the disadvantage that the heat treatment is not possible, it is possible to produce an alloy powder core having a simpler and higher performance.
  • alloy powder and powder core manufacturing method as well as iron alloy powder core, gold (Au), platinum (Pt), silver (Ag), nickel (Ni), copper (Cu), cobalt (Co), Alloy powder and powder core including zinc (Zn), tin (Sn), vanadium (V), manganese (Mn) and the like can be prepared.
  • the alloy powder core according to the present invention has a high permeability compared to the conventional soft magnetic powder core can be applied to an ultra-small and high performance electronic device.

Abstract

The present invention provides a soft magnetic powder, a method for producing same, and a soft magnetic powder core produced by the method. According to the present invention, an alloy powder is heat-treated in the presence of a gas in which hydrogen and moisture are mixed together, and in which solute elements are selectively oxidized, so as to form a high-quality insulation layer in a completely different manner from the alloy powder cores of the prior art.

Description

합금 분말, 합금 분말 코어 및 그 제조방법Alloy Powder, Alloy Powder Core and Manufacturing Method Thereof
본 발명은 합금 분말 및 코어에 관한 것으로, 특히 Fe-Al 합금 분말을 수소와 수증기의 혼합기체 상에서 열처리하여 용질원소인 Al를 선택적으로 산화시킴으로써 고품위 절연층을 형성시킨 금속 합금 분말을 제조하고 이를 이용해 연자성 코어를 제조함으로써 기존 합금 분말코어와는 전혀 다른 새로운 방법으로 연자성 분말, 그 분말을 제조하는 방법 및 그 방법에 의하여 제조된 합금 분말 코어에 관한 것이다.The present invention relates to an alloy powder and a core, and in particular, a Fe-Al alloy powder is heat-treated on a mixed gas of hydrogen and steam to prepare a metal alloy powder having a high quality insulating layer formed by selectively oxidizing Al, a solute element, and using the same. The present invention relates to a soft magnetic powder, a method for producing the powder, and an alloy powder core produced by the method by producing a soft magnetic core in a completely different method from the existing alloy powder core.
본 발명은 2012년 교육과학기술부로부터 지원받아 수행된 연구(연구사업명: 일반연구자지원, 연구과제명: 연자성 금속자성분말용 고품위 절연피막 형성)의 성과물이다.The present invention is the result of a research carried out supported by the Ministry of Education, Science and Technology in 2012 (research project name: general researcher support, research project name: forming a high-quality insulating film for soft magnetic metal powder).
전 세계적으로 인구가 증가함과 아울러 기술이 급속도로 발전하면서 기계의 부품화와 자동화에 따라 생산과 경제가 크게 성장하여 인류의 생활을 풍요롭고 편리하게 만들고 있다. As the world's population grows and technology develops rapidly, production and economy grow greatly according to the parts and automation of machines, making human life rich and convenient.
반면에, 이로 인하여 화석연료 소비의 증대에 따른 자원고갈, 대기오염, 소음, 분진, 산업 쓰레기, 폐기물 등의 환경오염 및 지구온난화, 오존층파괴, 산성비 등의 환경문제가 전 지구적으로 크게 대두되어 있는 실정이다. 이에 따라 세계 각국은 관련 규제를 강화하고 있는 추세이다.On the other hand, environmental problems such as resource depletion, air pollution, noise, dust, industrial waste, and waste, global warming, ozone layer destruction, and acid rain caused by increased fossil fuel consumption have resulted in a great global problem. There is a situation. As a result, countries around the world are tightening regulations.
선진국은 글로벌 환경문제를 신·재생에너지분야에서 새로운 에너지원을 찾아 해결하고자 함과 동시에 기존 에너지변환장치의 효율을 높여서 해결하고자 하고 있다. 대표적인 에너지변환장치로는 전기에너지를 기계적 에너지로 변환 시키는 모터, 발전기 등의 전기기계장치와 전력변환용 코어인 인덕터(Inductor)를 들 수 있다. Developed countries are trying to solve global environmental problems by finding new sources of energy in the field of new and renewable energy and at the same time increasing the efficiency of existing energy converters. Representative energy converters include electromechanical devices such as motors and generators that convert electrical energy into mechanical energy, and inductors, which are cores for power conversion.
전기적 에너지를 기계적 에너지로 또는 그 역으로 변환하는 장치가 각각 모터와 발전기이다. 인덕터는 도선이 감겨진 연자성 코어로서, 대부분의 전자기기에서 없어서는 안 될 필수적인 핵심소자이다. 모터, 발전기, 그리고 인덕터에 사용되는 코어는 연자성재료로 되어 있다. 여기에 사용되는 코어들은 전자기학 관점에서 보면 자기에너지를 축적하고 다시 회로로 내보내는 역할을 담당하며 이 과정 중에 어쩔 수 없이 에너지손실이 일어나게 된다. 이에 따라, 인덕터의 코어 재료는 통상 낮은 손실과 높은 변환효율 특성을 가지기 위해서는 투자율이 높고 비저항이 크며, 보자력이 작고, 큐리온도(Curie Temperature) 및 포화자속밀도가 높아야 한다. 특히 최근에는 스마트폰이나 태블릿PC 등 전자기기가 고속, 소형화 및 고용량화가 요구되면서 부품의 직접화에 필수적인 고주파 대역(1 MHz 이상) 투자율의 주파수 안전성과 대전류 안정성도 요구된다.The devices that convert electrical energy into mechanical energy and vice versa are motors and generators, respectively. The inductor is a soft magnetic core wound around a conductor, which is an essential core element in most electronic devices. Cores used in motors, generators, and inductors are made of soft magnetic materials. The cores used here are responsible for accumulating and returning magnetic energy from the electromagnetic point of view and inevitably causing energy losses. Accordingly, the core material of the inductor generally requires high permeability, high resistivity, small coercive force, high Curie temperature and high saturation magnetic flux density in order to have low loss and high conversion efficiency characteristics. In particular, as electronic devices such as smartphones and tablet PCs are required to have high speed, miniaturization, and high capacity, frequency and high current stability of the high frequency band (1 MHz or more) permeability, which is essential for the directization of components, are also required.
연자성 재료는 다시 크게 두 가지로 페라이트계와 금속합금계 재료로 구분된다. 페라이트는 비저항이 102 ~ 1010 Ω·cm로 금속자성재료에 비해 약 106 배 높기 때문에 와전류 손실(Eddy current loss)이 아주 적고, 또 분말소결법으로 제조가 가능하기 때문에 소형 또는 복잡하고 다양한 형상으로 제조가 가능하며, 산화물이므로 내식성이 뛰어나다는 장점을 가지고 있다. 하지만 산화물이기 때문에 금속 자성체에 비해 초투자율(Initial Permeability)은 1/10, 자속밀도는 1/3정도로 낮아 저주파 대전력용 자성 재료로서는 부적당하며, 큐리온도도 금속 자성체에 비하여 낮아 열적 안전성이 떨어지는 단점을 가지고 있다.Soft magnetic materials are classified into two types of ferrite-based and metal alloy-based materials. Since ferrite has a specific resistance of 10 2 ~ 10 10 Ω · cm, which is about 10 6 times higher than that of metal magnetic materials, it has very little eddy current loss and can be manufactured by powder sintering method. It is possible to manufacture, and because it is an oxide has the advantage of excellent corrosion resistance. However, because it is an oxide, its initial permeability is 1/10 and its magnetic flux density is about 1/3, which is inadequate for low-frequency, high-power magnetic materials, and its Curie temperature is also lower than that of metal magnetics. Have
그에 비하여 금속합금계는 통상 높은 직류 투자율과 낮은 자기이력손실을 가지고 있으며, 가공성과 안정성도 우수하다. 하지만 상대적으로 비저항이 낮아 주파수의 증가와 함께 와전류 손실이 커지기 때문에 고주파 영역에서의 사용에 제한이 있다.In comparison, metal alloys generally have high direct current permeability and low magnetic history loss, and are excellent in workability and stability. However, due to the relatively low resistivity, the eddy current loss increases with increasing frequency, thereby limiting its use in the high frequency region.
이러한 금속합금계의 한계를 극복하고자 벌크재료를 분말화하여 각 분말 표면에 절연층을 형성시키고 압축·성형하여 코어로 만들면 도 1과 같이 와전류흐름을 효율적으로 차단할 수 있고 또 반자장으로 유효투자율을 낮출 수 있어 직류중첩특성이 향상되고 고주파에서도 응용이 가능하다. 이러한 코어를 연자성 금속 분말코어(Soft Magnetic Metal Powder Cores)라 한다. 도 1은 연자성 벌크재료, 시트, 분말에서 와전류 손실을 시각적으로 나타낸 도면이다.In order to overcome the limitations of the metal alloy system, the bulk material is powdered to form an insulating layer on each surface of the powder, and compressed and molded into a core to effectively block the eddy current flow as shown in FIG. It can be lowered to improve DC overlapping characteristics and to be applied at high frequency. Such cores are referred to as Soft Magnetic Metal Powder Cores. 1 is a diagram visually showing the eddy current loss in the soft magnetic bulk material, sheet, powder.
따라서 연자성 분말코어에서 분말표면에 형성되어 코어의 특성을 좌우하게 되는 절연층이 가져야 할 특성은, 첫째 전기비저항이 매우 높아야 하고, 둘째 부착력이 매우 뛰어나 높은 성형압력에도 절연층이 파괴되지 않아야 하며, 셋째 700℃ 이상의 높은 응력완화 열처리 온도에서도 안정적이어야 하고, 넷째 분말 형태에 상관없이 균일하게 형성될 수 있어야 하며, 다섯째 절연층의 두께 제어가 가능하여야 한다. Therefore, in the soft magnetic powder core, the insulating layer formed on the powder surface to influence the characteristics of the core should have the first high electrical resistivity, and the second excellent adhesion, so that the insulating layer should not be destroyed even at high molding pressure. Third, it must be stable even at high stress relaxation heat treatment temperature of 700 ° C. or higher, fourth, it should be able to be formed uniformly regardless of powder form, and fifth thickness control should be possible.
통상적으로 분말 연자성 코어에 사용되는 절연층은 분말을 인산용액과 섞어 표면에 인산염을 생성시키는 인산염(Phosphate) 코팅법으로 형성시키거나, 미세한 산화물을 연자성 분말과 혼합하여 분말표면에 산화물이 흡착되게 하는 고체 절연분말 혼합법, 그리고 고분자수지를 코팅시키는 방법이 주로 사용된다. In general, the insulating layer used for the powder soft magnetic core is formed by a phosphate coating method in which the powder is mixed with a phosphate solution to form a phosphate on the surface, or the fine oxide is mixed with the soft magnetic powder to adsorb the oxide on the powder surface. Solid insulating powder mixing method, and a method of coating the polymer resin is mainly used.
그러나 기존의 절연층 형성법들은 하기의 문제점을 가지고 있다. 코어를 성형할 때 분말이 변형되어 큰 응력이 남게 되며 이 응력은 연자기 특성을 크게 저하시키므로 코어를 고온에서 열처리함으로써 잔류응력을 제거해야 한다. 이러한 관점에서 볼 때 인산염 코팅법은 공정이 매우 간단하나, 코어를 300℃ 이상의 온도에서 열처리 할 경우 인산염 코팅층이 분해되기 시작하여 600℃에서 완전히 분해되어 절연층으로서의 역할을 하지 못하는 문제점이 있다. 고체 절연분말 혼합법은 원리상 분말표면에 균일하게 코팅되는 것이 어렵고, 특히 수분무한 분말의 형상은 매우 불규칙하기 때문에 균일한 코팅을 기대하기 어렵다. 고분자수지를 이용한 제조방법의 경우에는 절연체를 형성하기는 좋으나 애초부터 열처리가 불가능한 단점이 있다.However, existing insulating layer forming methods have the following problems. When the core is molded, the powder deforms, leaving a large stress, which greatly reduces the soft magnetic properties. Therefore, the residual stress must be removed by heat treating the core at a high temperature. From this point of view, the phosphate coating method is very simple, but when the core is heat-treated at a temperature of 300 ° C. or higher, the phosphate coating layer starts to decompose and completely decomposes at 600 ° C., thereby not serving as an insulating layer. In principle, the solid insulating powder mixing method is difficult to uniformly coat the powder surface, and in particular, it is difficult to expect a uniform coating because the shape of the waterless powder is very irregular. In the case of the manufacturing method using a polymer resin, it is good to form an insulator, but there is a disadvantage that heat treatment is impossible from the beginning.
상술한 바와 같이, 금속 분말에 절연층을 형성시켜 코어를 제조함으로써 다양한 용도로 사용하고 있지만 각각의 문제점 또한 존재하고 있다. 따라서 이러한 종래의 절연층 형성법들의 한계를 극복하고 각각의 문제점들을 해결하기 위해서는 현 재료들의 성능을 뛰어넘을 수 있는 지금까지와는 다른 새로운 절연층 형성기술의 개발이 필요하다.As described above, although the core is formed by forming an insulating layer on the metal powder, it is used for various purposes, but each problem also exists. Therefore, in order to overcome the limitations of the conventional insulating layer forming methods and to solve the respective problems, it is necessary to develop a new insulating layer forming technology that is different from the past, which can exceed the performance of current materials.
[선행기술문헌][Preceding technical literature]
[비특허문헌][Non-Patent Documents]
R. E. Grace and A. U. Seybolt, “Selective oxidation of Al from an Al-Fe alloy”, J. Elec. Chem. Soc. 1958, 105, pp.582-585. RE Grace and AU Seybolt, “Selective oxidation of Al from an Al-Fe alloy”, J. Elec. Chem. Soc. 1958, 105, pp. 582-585.
T. Nakayama and K. Kaneko, “Selective oxide films lf a 5% aluminum-iron alloy in a low oxygen potential atmosphere” Corrosion,-NACE, 1970, 26. pp.187-188.T. Nakayama and K. Kaneko, “Selective oxide films lf a 5% aluminum-iron alloy in a low oxygen potential atmosphere” Corrosion, -NACE , 1970, 26. pp. 187-188 .
V. K. Tolpygo and D. R. Clarke, “Microstructural evidence for counter diffusion of aluminum and oxygen during the growth of alumina scales”, 5th International conference on the microscopy of oxidation, Aug. 2002;Ireland, pp.26-28.VK Tolpygo and DR Clarke, “Microstructural evidence for counter diffusion of aluminum and oxygen during the growth of alumina scales”, 5 th International conference on the microscopy of oxidation, Aug. 2002; Ireland, pp. 26-28.
따라서 상술한 문제를 해결하기 위한 본 발명의 목적은 합금 분말을 이루는 어느 한 금속 성분을 분말 표면에서 선택적으로 산화시킴으로써 절연피막 형성조건을 확립하여 고품질의 절연층이 형성된 분말과 이 분말을 이용하여 철손이 낮은 분말 코어를 제조하는 방법 및 그 방법에 의하여 제조된 합금 분말 코어를 제공하는데 있다.Accordingly, an object of the present invention for solving the above problems is to establish an insulating film formation condition by selectively oxidizing any metal component of the alloy powder on the surface of the powder to form a high quality insulating layer and iron loss using the powder. It is to provide a method for producing this low powder core and an alloy powder core produced by the method.
또한, 본 발명의 다른 목적은 연자성 재료 중 하나인 Fe-Al 합금 분말을 이용하여 알루미늄만 분말표면에서 선택적으로 산화시킴으로써 Al2O3의 절연피막 형성조건을 확립하여, 고품질의 절연층이 형성된 분말과 이 분말을 이용하여 철손이 낮은 분말 코어를 제조하는 방법 및 그 방법에 의하여 제조된 합금 분말코어를 제공하는데 있다.In addition, another object of the present invention by using the Fe-Al alloy powder, one of the soft magnetic materials to selectively oxidize only aluminum on the powder surface to establish the insulating film forming conditions of Al 2 O 3 , to form a high-quality insulating layer The present invention provides a powder and a method for producing a powder core having low iron loss using the powder, and an alloy powder core produced by the method.
상술한 목적을 달성하기 위하여, 본 발명은 모터, 액추에이터, 요크, 코어, 리엑터 등 전기, 전자 및 자성소자의 재료로 널리 사용되는 합금 분말을, 수소와 수증기의 혼합기체 분위기하에서 열처리하여 반응시킴으로써 용질원소를 선택적으로 산화시켜 고품위 절연층을 형성시키는 연자성 분말 및 이 분말로 연자성 합금 분말코어를 제조하는데 특징이 있다.In order to achieve the above object, the present invention is a solute by heat-treating an alloy powder widely used as a material of electric, electronic and magnetic elements such as motors, actuators, yokes, cores, reactors, heat treatment under a mixed gas atmosphere of hydrogen and water vapor A soft magnetic powder for selectively oxidizing an element to form a high quality insulating layer, and a soft magnetic alloy powder core is produced from the powder.
또한, 본 발명에 따른 합금 분말코어는 연자성 재료 중 하나인 Fe-Al 합금분말을 이용하여 알루미늄만 선택적으로 산화시켜 표면에 Al2O3의 절연피막 형성조건을 확립하여, 철손이 낮은 분말코어를 제조하는데 특징이 있다.In addition, the alloy powder core according to the present invention by using the Fe-Al alloy powder of one of the soft magnetic material to selectively oxidize only aluminum to establish the insulating film formation conditions of Al 2 O 3 on the surface, low iron loss powder core It is characterized in manufacturing.
상술한 목적을 달성하기 위한 본 발명에 따른 합금 분말은 수에서 수백 μm로 입도 선별한 합금 분말에 수증기를 포함한 수소를 공급하며 열처리하여, 상기 합금 분말에 포함된 용질원소들 중 산소와 친화력이 큰 제1용질원소의 일부를 선택적으로 산화시키고, 상기 산화된 제1용질원소가 상기 합금 분말의 외면에 절연층을 형성한 것을 특징으로 한다. The alloy powder according to the present invention for achieving the above object is heat-treated by supplying hydrogen including water vapor to the alloy powder selected for particle size from several hundred μm to several minutes, and has a high affinity for oxygen among the solute elements included in the alloy powder. A part of the first solute element is selectively oxidized, and the oxidized first solute element forms an insulating layer on the outer surface of the alloy powder.
이때, 본 발명에 따른 합금 분말의 상기 제1용질원소는, 실리콘(Si), 알루미늄(Al), 마그네슘(Mg), 크롬(Cr), 타이타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 중 적어도 어느 하나인 것을 특징으로 한다. In this case, the first solute element of the alloy powder according to the present invention is silicon (Si), aluminum (Al), magnesium (Mg), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf) It is characterized by at least one of.
또한, 본 발명에 따른 합금 분말은, 상기 제1용질원소와 금(Au), 백금(Pt), 은(Ag), 니켈(Ni), 철(Fe), 구리(Cu), 코발트(Co), 아연(Zn), 주석(Sn), 바나듐(V) 및 망간(Mn) 중 적어도 어느 하나가 용매원소인 것을 특징으로 한다. In addition, the alloy powder according to the present invention, the first solute element and gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu), cobalt (Co) At least one of zinc (Zn), tin (Sn), vanadium (V) and manganese (Mn) is characterized in that the solvent element.
한편, 상술한 목적을 달성하기 위한 본 발명에 따른 합금 분말 제조방법은, 수에서 수백 μm 크기로 입도 선별한 합금 분말에 수증기를 포함한 수소를 공급하며 열처리하여, 상기 합금 분말에 포함된 용질원소들 중 산소와 친화력이 큰 제1용질원소의 일부를 선택적으로 산화시키고, 상기 산화된 제1용질원소가 상기 합금 분말의 외면에 절연층을 형성한 것을 특징으로 한다. On the other hand, the alloy powder manufacturing method according to the present invention for achieving the above object, by supplying hydrogen containing water vapor to the alloy powder selected by particle size in the size of several hundred μm size, heat treatment, solute elements contained in the alloy powder A portion of the first solute element having affinity with heavy oxygen is selectively oxidized, and the oxidized first solute element forms an insulating layer on the outer surface of the alloy powder.
이때, 본 발명에 따른 합금 분말 코어의 상기 제1용질원소는, 실리콘(Si), 알루미늄(Al), 마그네슘(Mg), 크롬(Cr), 타이타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 중 어느 하나인 것을 특징으로 하는 합금 분말 코어 제조방법. At this time, the first solute element of the alloy powder core according to the present invention, silicon (Si), aluminum (Al), magnesium (Mg), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf) Method for producing an alloy powder core, characterized in that any one of).
또한, 본 발명에 따른 합금 분말 코어의 상기 합금 분말은, 상기 제1용질원소와 금(Au), 백금(Pt), 은(Ag), 니켈(Ni), 철(Fe), 구리(Cu), 코발트(Co), 아연(Zn), 주석(Sn), 바나듐(V) 및 망간(Mn) 중 적어도 어느 하나가 용매원소인 것을 특징으로 한다. In addition, the alloy powder of the alloy powder core according to the present invention, the first solute element and gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu) , At least one of cobalt (Co), zinc (Zn), tin (Sn), vanadium (V) and manganese (Mn) is characterized in that the solvent element.
또한, 상술한 목적을 달성하기 위한 본 발명에 따른 합금 분말 제조방법은, 가스분무법으로 제조된 Fe-Al의 분말을 -106 메쉬로 입도 선별하여 열처리로에 위치시키는 과정; 0℃ 내지 10℃로 유지되는 이온교환수를 통과한 500 SCCM의 수소를 -17℃ 및 - 0℃로 유지되는 구리관을 통과시켜 이슬점이 각각 -17℃, - 0℃인 수소-수증기 혼합기체를 만드는 과정; 및 상기 수소-수증기 혼합기체를 800℃ 내지 900℃로 유지되는 열처리로에 흘려, Fe-Al 분말을 0-60분간 열처리하는 과정; 으로 이루어지는 것을 특징으로 한다. In addition, the alloy powder manufacturing method according to the present invention for achieving the above object, the process of placing the particle size of the Fe-Al produced by the gas spray method to -106 mesh in the heat treatment furnace; Hydrogen-vapor mixture gas having a dew point of -17 ° C and -0 ° C was passed through a copper tube maintained at -17 ° C and -0 ° C by passing hydrogen of 500 SCCM through ion exchanged water maintained at 0 ° C to 10 ° C. Making process; And flowing the hydrogen-steam mixture gas into a heat treatment furnace maintained at 800 ° C. to 900 ° C. to heat-treat the Fe-Al powder for 0 to 60 minutes. Characterized in that consists of.
또한, 상술한 목적을 달성하기 위한 본 발명에 따른 합금 분말 코어는, 수 수백 μm 크기로 입도 선별한 합금 분말에 수증기를 포함한 수소를 공급하며 열처리하여, 상기 합금 분말에 포함된 용질원소들 중 산소와 친화력이 큰 제1용질원소의 일부를 선택적으로 산화시키고, 상기 산화된 제1용질원소가 상기 합금 분말의 외면에 절연층을 형성한 합금 분말을 성형하여 제조하는 것을 특징으로 한다.In addition, the alloy powder core according to the present invention for achieving the above object, by supplying hydrogen containing water vapor to the alloy powder selected for particle size of several hundred μm size, heat treatment, oxygen of the solute elements contained in the alloy powder And selectively oxidize a part of the first solute element having a high affinity with the oxidized first solute, and forming the alloy powder having an insulating layer formed on the outer surface of the alloy powder.
이때, 본 발명에 따른 합금 분말의 상기 제1용질원소는, 실리콘(Si), 알루미늄(Al), 마그네슘(Mg), 크롬(Cr), 타이타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 중 적어도 어느 하나인 것을 특징으로 한다.In this case, the first solute element of the alloy powder according to the present invention is silicon (Si), aluminum (Al), magnesium (Mg), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf) It is characterized by at least one of.
또한, 본 발명에 따른 합금 분말 코어의 상기 합금 분말은, 상기 제1용질원소와 금(Au), 백금(Pt), 은(Ag), 니켈(Ni), 철(Fe), 구리(Cu), 코발트(Co), 아연(Zn), 주석(Sn), 바나듐(V) 및 망간(Mn) 중 적어도 어느 하나가 용매원소인 것을 특징으로 한다. In addition, the alloy powder of the alloy powder core according to the present invention, the first solute element and gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu) , At least one of cobalt (Co), zinc (Zn), tin (Sn), vanadium (V) and manganese (Mn) is characterized in that the solvent element.
본 발명은 선택산화에 의하여 합금 분말에 비저항이 높은 절연층을 형성시킴으로써, 공정이 간편하면서도 고효율의 비저항이 높은 절연층이 형성된 합금 분말을 제조할 수 있는 효과가 있다. According to the present invention, by forming an insulating layer having a high resistivity on the alloy powder by selective oxidation, there is an effect that a process is easy and an alloy powder having a high resistivity having a high specific resistance is formed.
이에 따라 제조공정이 간편하면서도 일정한 절연층을 형성한 합금 분말을 제조할 수 있으므로 제품의 품질을 높이고 제조단가를 낮출 수 있는 효과가 있다.As a result, an alloy powder having a uniform insulation layer with a simple manufacturing process can be manufactured, thereby increasing the quality of the product and lowering the manufacturing cost.
또한, 본 발명은 비저항이 높은 초박막의 절연층을 형성함과 아울러 높은 자속밀도를 유지할 수 있으므로 초소형 및 고성능의 전자소자 및 부품과 제품을 생산할 수 있는 효과가 있다. In addition, the present invention can form an insulating layer of a very thin film having a high resistivity and maintain a high magnetic flux density, thereby producing an ultra-small and high-performance electronic device, components and products.
도 1은 연자성 벌크재료, 시트, 분말에서 와전류 손실을 시각적으로 나타낸 도면1 is a visual representation of eddy current loss in a soft magnetic bulk material, sheet, and powder
도 2는 본 발명에 따른 합금 분말코어의 제조과정을 설명하기 위한 장치구성도,Figure 2 is a device configuration for explaining the manufacturing process of the alloy powder core according to the present invention,
도 3은 본 발명에 따른 합금 분말코어의 제조과정에서 이슬점이 0℃인 수소-수증기 혼합기체를 900℃로 유지되는 열처리로에 흘리면서 Fe-6 wt.% Al 분말을 시간별로 선택산화시킨 표면형상사진,3 is a surface shape in which a hydrogen-steam mixed gas having a dew point of 0 ° C. is flowed into a heat treatment furnace maintained at 900 ° C. in a manufacturing process of an alloy powder core according to the present invention and selectively oxidized Fe-6 wt.% Al powder with time. Picture,
도 4는 본 발명에 따른 합금 분말코어의 제조과정에서 이슬점이 -17℃인 수소-수증기 혼합기체를 900℃로 유지되는 열처리로에 흘리면서 Fe-4 wt%. Al 분말을 20분간 선택산화시킨 단면사진,4 is Fe-4 wt% while flowing a hydrogen-vapor mixture gas having a dew point of −17 ° C. in a process of manufacturing an alloy powder core according to the present invention at a temperature of 900 ° C. Cross-sectional photograph of 20 minutes selective oxidation of Al powder,
도 5는 본 발명에 따른 합금 분말코어 제조과정에서 이슬점이 0℃인 수소-수증기 혼합기체를 900℃로 유지되는 열처리로에 흘리면서 40분간 선택산화 열처리한 Fe-4 wt%. Al 분말의 단면을 성분 매핑한 사진,5 is Fe-4 wt% subjected to selective oxidation heat treatment for 40 minutes while flowing a hydrogen-vapor mixed gas having a dew point of 0 ° C. in a process of manufacturing an alloy powder core according to the present invention in a heat treatment furnace maintained at 900 ° C. FIG. Component mapping photo of Al powder cross section,
도 6은 이슬점이 0℃인 수소-수증기 혼합기체를 800℃에서 시간에 따라 선택산화 열처리 된 Fe-6 wt%. Al 분말를 코어로 제작한 뒤, 밀도 및 비저항을 측정한 그래프,6 is Fe-6 wt% subjected to selective oxidation heat treatment of a hydrogen-vapor mixture gas having a dew point of 0 ° C. at 800 ° C. FIG. After making Al powder as a core, a graph measuring density and specific resistance,
도 7은 본 발명에 따른 합금 분말코어의 산화시간에 따른 코어손실을 나타낸 그래프,7 is a graph showing the core loss according to the oxidation time of the alloy powder core according to the present invention,
도 8은 본 발명에 따른 합금 분말코어의 인산염처리된 분말로 만든 코어의 열처리온도에 따른 전기비저항과 밀도의 변화를 나타낸 그래프,8 is a graph showing the change in electrical resistivity and density according to the heat treatment temperature of the core made of phosphate-treated powder of the alloy powder core according to the present invention;
도 9는 본 발명에 따른 합금 분말코어의 열처리온도에 따른 코어손실을 나타낸 그래프.9 is a graph showing the core loss according to the heat treatment temperature of the alloy powder core according to the present invention.
이하 본 발명의 바람직한 실시 예들의 상세한 설명이 첨부된 도면들을 참조하여 설명될 것이다. 도면들 중 동일한 구성들은 가능한 한 어느 곳에서든지 동일한 부호들을 나타내고 있음을 유의하여야 한다. 하기 설명에서 구체적인 특정 사항들이 나타나고 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해 제공된 것이다. 그리고 본 발명을 설명함에 있어, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. DETAILED DESCRIPTION Hereinafter, detailed descriptions of preferred embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that the same components in the figures represent the same numerals wherever possible. Specific details are set forth in the following description, which is provided to aid a more general understanding of the present invention. In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
특히, 하기에서 도면들을 참조하여 본 발명에 따른 합금 분말코어 및 그 제조방법을 설명하는데 있어서, 합금을 Fe-Al을 이용하여 대표적인 실시예로 설명할 것이다. 이는 설명의 편의를 위하여 철(Fe)과 알루미늄(Al)을 일례로 사용한 것일 뿐, 합금 분말을 이루는 알루미늄(Al)과 같은 제1용질원소는 실리콘(Si), 알루미늄(Al), 마그네슘(Mg), 크롬(Cr), 타이타늄(Ti), 지르코늄(Zr) 및 하프늄(Hf) 중 적어도 어느 하나가 될 수 있고, 상기 제1용질원소와 합금 분말을 이루는 철(Fe)과 같은 용매원소는 금(Au), 백금(Pt), 은(Ag), 니켈(Ni), 철(Fe), 구리(Cu), 코발트(Co), 아연(Zn), 주석(Sn), 바나듐(V) 및 망간(Mn) 중 적어도 어느 하나가 될 수 있다. In particular, in the following description of the alloy powder core and its manufacturing method according to the present invention with reference to the drawings, the alloy will be described as a representative embodiment using Fe-Al. For convenience of explanation, only iron (Fe) and aluminum (Al) are used as an example, and the first solute elements such as aluminum (Al) constituting the alloy powder include silicon (Si), aluminum (Al), and magnesium (Mg). ), Chromium (Cr), titanium (Ti), zirconium (Zr) and hafnium (Hf) may be at least one, and the solvent element such as iron (Fe) forming the alloy powder with the first solute element is gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu), cobalt (Co), zinc (Zn), tin (Sn), vanadium (V) and manganese It may be at least one of (Mn).
따라서 이하에서 Fe-Al분말은 합금 분말을 의미하며, 본 발명에 따른 합금 분말코어 제조방법에 따라 처리된 합금 분말이 최종적으로 생성되는 본 발명에 따른 합금 분말코어가 된다. Therefore, in the following Fe-Al powder means an alloy powder, the alloy powder core according to the present invention is finally produced an alloy powder treated according to the alloy powder core manufacturing method according to the present invention.
먼저, 도 2는 본 발명에 따른 합금 분말코어의 제조과정을 설명하기 위한 장치 구성도로써, 도 2를 참조하면, 본 발명에 따른 합금 분말코어의 제조방법은 가스분무법으로 제조된 Fe-Al 분말을 106 메쉬 이하로 입도선별하여 열처리로(Furnace)에 넣어 선택산화시킨이다.First, Figure 2 is a device configuration for explaining the manufacturing process of the alloy powder core according to the present invention, referring to Figure 2, the manufacturing method of the alloy powder core according to the present invention is a Fe-Al powder prepared by the gas spray method Is selected and oxidized to a particle size of less than 106 mesh in a heat treatment furnace (Furnace).
이때, 열처리로(Furnace)와 배관에 남아 있는 산소를 제거하기 위하여, 고순도 질소(N2)로 퍼징한다. 퍼징이 완료된 후, 0℃ ~ 10℃로 유지되는 이온교환수(Water vapor1)를 통과한 500 SCCM의 수소(N2)를 다시 -17℃, - 0℃로 유지되는 구리관(Water vapor2)을 통과시켜 이슬점이 각각 -17℃, - 0℃인 수소-수증기 혼합기체를 만든다. 이 혼합기체를 800℃ 또는 900℃로 유지되는 열처리로(Furnace)에 흘려, Fe-Al 분말을 0-60분간 열처리 한다.At this time, in order to remove oxygen remaining in the heat treatment furnace (Furnace) and the pipe, it is purged with high purity nitrogen (N 2 ). After purging is completed, the hydrogen (N 2 ) of 500 SCCM passed through ion-exchanged water (Water vapor 1) maintained at 0 ° C. to 10 ° C. is again replaced with a copper pipe (Water vapor 2) maintained at −17 ° C. and −0 ° C. Passing produces a hydrogen-steam mixture with dew points of -17 ° C and -0 ° C, respectively. The mixed gas is flowed into a furnace maintained at 800 ° C or 900 ° C to heat-treat the Fe-Al powder for 0-60 minutes.
이렇게 열처리된 Fe-Al분말을 성형을 하게 되는데, 성형하기에 앞서 고체윤활제를 0.2 % 첨가함으로서 성형 시 금형틀에서 빠져 나오기 쉽게 한다. 성형은 압력식 프레스에서 1206 MPa 의 압력으로 상온에서 행하여 외경 12.7 mm, 내경 7.6 mm, 높이 3.7 mm의 트로이드형 코어를 제작한다. Thus, the heat-treated Fe-Al powder is molded. By adding 0.2% of a solid lubricant prior to molding, it is easy to escape from the mold during molding. Molding is carried out at room temperature with a pressure of 1206 MPa in a pressure press to produce a toroidal core having an outer diameter of 12.7 mm, an inner diameter of 7.6 mm and a height of 3.7 mm.
압축성형 후 코어 내에 존재하는 잔류응력과 고체윤활제를 제거하기 위하여, 코어를 고순도 질소 분위기로 800℃ 열처리로에서 60분간 열처리한다. 열처리 된 코어의 훼손을 방지하기 위하여 호마이카 코팅을 이용하였다. 그리고 완성된 코어에 와이어를 1, 2차로 동일하게 36회 권선하였다. In order to remove residual stress and solid lubricant present in the core after compression molding, the core is heat-treated for 60 minutes in an 800 ° C. heat treatment furnace under a high purity nitrogen atmosphere. Homica coating was used to prevent damage to the heat-treated core. The wire was wound 36 times in the same manner as the primary and secondary wires to the completed core.
도 3은 이슬점이 0℃인 수소-수증기 혼합기체를 800℃로 유지되는 열처리로에 흘리면서 Fe-6 wt.% Al 분말을 시간 별로 선택산화시킨 표면 형상 사진이다. 도 3에 나타낸 바와 같이 모든 분말에서 주조조직이 나타나며, 열처리 되지 않은 Fe-Al 분말은 매끈한 형태를 보이나 선택산화 열처리를 하였을 경우 분말 표면 주위로 입자형태의 Al2O3가 형성되고 열처리 시간이 증가(0, 2, 10, 30분)함에 따라 입자는 커진다. 그러나 예상과는 달리 이러한 입자가 주조조직의 입계에서 나타나지 않고 분말표면에서 고르게 분포하고 있어 분말코어를 제작할 때 오히려 유리하게 작용할 수 있다. FIG. 3 is a photograph showing the surface shape of the hydrogen-steam mixed gas having a dew point of 0 ° C. being oxidized to Fe-6 wt.% Al powder over time while flowing in a heat treatment furnace maintained at 800 ° C. FIG. As shown in FIG. 3, the casting structure appeared in all powders, and the Fe-Al powder which was not heat treated showed a smooth shape, but when selective oxidation heat treatment was performed, Al 2 O 3 was formed around the surface of the powder and the heat treatment time increased. (0, 2, 10, 30 minutes) The particles grow larger. Unexpectedly, however, these particles do not appear at the grain boundaries of the cast structure and are evenly distributed on the powder surface, which may be advantageous in producing powder cores.
도 4는 이슬점이 -17℃인 수소-수증기 혼합기체를 900℃로 유지되는 열처리로에 흘리면서 Fe-4 wt%. Al 분말을 20분간 선택산화시킨 단면사진이다. 도 4를 참조하면, Fe-Al 분말 주위에 얇은 Al2O3 절연막이 형성되어 있고 절연막 중간 중간에 도 3의 표면에 보이는 Al2O3 도 있어 전반적으로 연속적인 절연층이 형성되었으나 그 두께는 일정치 않다. Figure 4 is Fe-4 wt% flowing hydrogen-vapor mixture gas having a dew point of -17 ℃ flowing in a heat treatment furnace maintained at 900 ℃. It is a cross-sectional photograph which selectively oxidized Al powder for 20 minutes. 4, a thin Al 2 O 3 insulating film around the Fe-Al powder is formed, and insulating middle in Fig. Al 2 O 3 shown in the surface of Figure 3, but generally forming a continuous insulating layer has a thickness It is not constant.
도 5는 이슬점이 0℃인 수소-수증기 혼합기체를 900℃로 유지되는 열처리로에 흘리면서 40분간 선택산화 열처리한 Fe-4 wt%. Al 분말의 단면을 성분 매핑한 사진으로서, 철은 골고루 나타나지만 알루미늄과 산소는 표면에서 많이 검출되어 표면에 Al2O3 가 잘 형성되어 있음을 확인할 수 있다. 5 is Fe-4 wt% subjected to selective oxidation heat treatment for 40 minutes while flowing a hydrogen-vapor mixture gas having a dew point of 0 ° C. into a heat treatment furnace maintained at 900 ° C. FIG. As a component mapping of the cross-section of the Al powder, the iron appears evenly, but a lot of aluminum and oxygen is detected on the surface, it can be seen that Al 2 O 3 is well formed on the surface.
도 6은 이슬점이 0℃인 수소-수증기 혼합기체를 800℃에서 시간에 따라 선택산화 열처리 된 Fe-6 wt%. Al 분말을 코어로 제작한 뒤, 밀도 및 비저항을 측정한 그래프이다. 도 6을 참조하면, 선택산화 열처리 시간이 증가할수록 분말 주위의 피막 두께가 두꺼워지기 때문에 밀도가 점점 감소하는 경향을 보이며, 그에 반해 비저항은 증가하는 경향을 보인다. 도 6에 도시된 바와 같이, 10분 열처리하였을 때, 밀도가 증가하는 것은 분말이 응고될 때 생긴 잔류응력이 완화되었기 때문이고, 그 후 감소하는 것은 절연층이 두꺼워지기 때문이다. 6 is Fe-6 wt% subjected to selective oxidation heat treatment of a hydrogen-vapor mixture gas having a dew point of 0 ° C. at 800 ° C. FIG. After the Al powder is made of a core, it is a graph measuring density and specific resistance. Referring to FIG. 6, as the selective oxidation heat treatment time increases, the thickness of the film around the powder becomes thick, and thus the density tends to decrease, whereas the resistivity tends to increase. As shown in Fig. 6, when the heat treatment is carried out for 10 minutes, the increase in density is due to the relaxation of the residual stress generated when the powder solidifies, and the decrease in thickness thereafter is caused by the thickening of the insulating layer.
또한, 전기비저항이 증가하는 것은 절연층이 점차 두꺼워지기 때문이며, 만약 절연층이 완벽하게 분말을 둘러싸고 있다면 비저항은 무한대의 값을 가질 것이다. In addition, the increase in the electrical resistivity is due to the thickening of the insulating layer, and if the insulating layer completely surrounds the powder, the resistivity will have an infinite value.
도 7은 산화시간에 따른 코어손실을 나타낸 것으로 고주파에서는 와전류 영향이 크므로 50 kHz의 경우 열처리 시간이 증가할수록 코어손실은 지속적으로 감소한다. 그러나 0.4, 1 kHz에서는 이러한 경향은 줄어들고 약 2분간 열처리하더라도 손실은 매우 작아진다. 30분 선택산화시킨 분말로 제작한 코어의 0.4, 1, 50 kHz에서의 코어손실은 각각 105, 284 그리고 774 mW/cm3 이었다.Figure 7 shows the core loss according to the oxidation time, since the effect of eddy current is high at high frequency, the core loss continuously decreases as the heat treatment time increases at 50 kHz. However, at 0.4 and 1 kHz, this tendency is reduced and the loss is very small even after heat treatment for about 2 minutes. The core losses at 0.4, 1, and 50 kHz of the cores prepared with 30 min selective oxidation were 105, 284 and 774 mW / cm 3 , respectively.
전술한 선택산화 된 Fe-6 wt.% Al분말의 특성을 하기에서 도 8 및 도 9를 참조하여 인산염 처리된 분말과 비교하였다. 도 8은 인산염 처리된 분말로 만든 코어의 열처리 온도에 따른 전기비저항과 밀도의 변화를 나타낸 것이다. The characteristics of the above-described selective oxidized Fe-6 wt.% Al powder were compared with the phosphate-treated powders with reference to FIGS. 8 and 9 below. Figure 8 shows the change in electrical resistivity and density according to the heat treatment temperature of the core made of phosphate treated powder.
열처리 온도가 증가할수록 밀도는 증가하고, 전기비저항은 700℃에서 가장 낮은 값을 나타낸다. 선택산화시킨 분말의 비저항과 밀도의 변화를 나타낸 도 7과 비교하면 밀도는 비슷하나 전기비저항은 매우 높은 편이다. 코어를 성형할 때 생기는 응력을 완화시켜 주기 위해 성형 후 코어는 반드시 열처리를 해야 하고 열처리 온도가 높으면 높을수록 연자기 특성, 특히 이력손실이 감소해서 코어손실이 감소한다.As the heat treatment temperature increases, the density increases, and the electrical resistivity shows the lowest value at 700 ° C. Compared with FIG. 7 showing the change in specific resistance and density of the oxidized powder, the density is similar but the electrical resistivity is very high. The core must be heat-treated after molding to relieve the stress that occurs when forming the core. The higher the heat treatment temperature, the softer magnetic properties, especially hysteretic loss, reduce core loss.
도 9는 인산염 처리된 분말로 제작한 코어의 열처리 온도에 따른 0.4, 1 kHz에서의 코어손실을 나타낸 도면으로서, 700℃에서 열처리했을 때 코어손실이 가장 낮다. 그러나 선택산화시킨 도 7의 결과와 비교하면 코어손실은 매우 높다. 이를 하기의 표 1에 자세히 나타내었다. 표 1은 선택산화 된 Fe-6 wt.% Al분말의 코어손실과 인산염처리된 분말의 코어손실을 대비하여 나타낸 것이다.9 is a graph showing core loss at 0.4 and 1 kHz according to the heat treatment temperature of a core made of phosphate-treated powder, the lowest core loss when heat-treated at 700 ℃. However, compared to the result of selective oxidation, the core loss is very high. This is shown in detail in Table 1 below. Table 1 compares the core loss of the oxidized Fe-6 wt.% Al powder with that of the phosphate-treated powder.
표 1
Core loss(㎽/㎤)
Selective Oxidation Phosphate- coating
0.4 ㎑ 105 185
1 ㎑ 284 428
50 ㎑ 774 2028
Table 1
Core loss (㎽ / cm 3)
Selective Oxidation Phosphate- coating
0.4 ㎑ 105 185
1 ㎑ 284 428
50 ㎑ 774 2028
인산염코팅층은 500℃이상에서 열처리하면 파괴되는 것으로 알려져 있으며, 도 9에서 800℃로 열처리하면 인산염 절연층은 완전히 파괴된 것으로 판단된다. 그러나 800℃에서 열처리한 코어의 전기비저항이 매우 높음에도 불구하고 코어손실이 증가한 것은 인산염층과 분말간에 치명적인 화학반응이 있는 것으로 판단된다.It is known that the phosphate coating layer is destroyed when heat treated at 500 ° C. or higher, and the phosphate insulating layer is completely destroyed when heat treated at 800 ° C. in FIG. 9. However, despite the very high electrical resistivity of the cores heat-treated at 800 ° C, the increased core loss indicates a fatal chemical reaction between the phosphate layer and the powder.
전술한 바와 같이, 본 발명에 따른 합금 분말코어 제조방법은 기존의 절연층 코팅법들과 대비할 때, 기존의 절연층 형성법들이 가지는 열처리 온도가 300℃ 이상일 경우 인산염 코팅층이 분해되는 문제점과, 균일한 코팅을 기대하기 어려우며, 열처리가 불가능한 단점을 해소하면서도, 더욱 간편하고 높은 성능을 갖는 합금 분말코어를 제조할 수 있다. As described above, the alloy powder core manufacturing method according to the present invention has a problem in that the phosphate coating layer is decomposed when the heat treatment temperature of the existing insulating layer forming methods is 300 ° C. or higher, as compared with the existing insulating layer coating methods, and It is difficult to expect the coating, and can solve the disadvantage that the heat treatment is not possible, it is possible to produce an alloy powder core having a simpler and higher performance.
특히, 본 발명에 따른 합금분말 및 분말코어 제조방법으로 철계합금 분말코어 뿐만 아니라 금(Au), 백금(Pt), 은(Ag), 니켈(Ni), 구리(Cu), 코발트(Co), 아연(Zn), 주석(Sn), 바나듐(V) 및 망간(Mn) 등을 포함하는 합금분말 및 분말코어를 제조할 수 있다.In particular, the alloy powder and powder core manufacturing method according to the present invention, as well as iron alloy powder core, gold (Au), platinum (Pt), silver (Ag), nickel (Ni), copper (Cu), cobalt (Co), Alloy powder and powder core including zinc (Zn), tin (Sn), vanadium (V), manganese (Mn) and the like can be prepared.
또한, 본 발명에 따른 합금 분말코어는 기존의 연자성 분말 코어에 비하여 높은 투자율을 가짐으로써 초소형 및 고성능의 전자소자에 적용될 수 있다.In addition, the alloy powder core according to the present invention has a high permeability compared to the conventional soft magnetic powder core can be applied to an ultra-small and high performance electronic device.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐 아니라 이 특허청구의 범위와 균등한 것들에 의해서 정해져야한다.Meanwhile, in the detailed description of the present invention, specific embodiments have been described, but various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the scope of the following claims, but also by the equivalents of the claims.

Claims (10)

  1. 수 내지 수백 μm 크기로 입도 선별한 합금 분말에 수증기를 포함한 수소를 공급하며 열처리하여, 상기 합금 분말에 포함된 용질원소들 중 산소와 친화력이 큰 제1용질원소의 일부를 선택적으로 산화시키고, 상기 산화된 제1용질원소가 상기 합금 분말의 외면에 절연층을 형성한 것을 특징으로 하는 합금 분말.Hydrogen containing water vapor is heat-treated by supplying hydrogen to the alloy powders of which the particle size is selected to a size of several hundreds of μm to selectively oxidize a part of the first solute element having a high affinity with oxygen among the solute elements included in the alloy powder, The alloy powder, characterized in that the oxidized first solute element forms an insulating layer on the outer surface of the alloy powder.
  2. 제 1항에 있어서, 상기 제1용질원소는,The method of claim 1, wherein the first solute element,
    실리콘(Si), 알루미늄(Al), 마그네슘(Mg), 크롬(Cr), 타이타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 중 적어도 어느 하나인 것을 특징으로 하는 합금 분말.Alloy powder, characterized in that at least one of silicon (Si), aluminum (Al), magnesium (Mg), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf).
  3. 제 1항에 있어서, 상기 합금 분말은,The method of claim 1, wherein the alloy powder,
    상기 제1용질원소와 금(Au), 백금(Pt), 은(Ag), 니켈(Ni), 철(Fe), 구리(Cu), 코발트(Co), 아연(Zn), 주석(Sn), 바나듐(V) 및 망간(Mn) 중 적어도 어느 하나의 용매원소와의 합금인 것을 특징으로 하는 합금 분말.The first solute element and gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu), cobalt (Co), zinc (Zn), tin (Sn) , Alloy powder with at least one of vanadium (V) and manganese (Mn).
  4. 수 내지 수백 μm 크기로 입도 선별한 합금 분말에 수증기를 포함한 수소를 공급하며 열처리하여, 상기 합금 분말에 포함된 용질원소들 중 산소와 친화력이 큰 제1용질원소의 일부를 선택적으로 산화시키고, 상기 산화된 제1용질원소가 상기 합금 분말의 외면에 절연층을 형성한 것을 특징으로 하는 합금 분말 제조방법.Hydrogen containing water vapor is heat-treated by supplying hydrogen to the alloy powders of which the particle size is selected to a size of several hundreds of μm to selectively oxidize a part of the first solute element having a high affinity with oxygen among the solute elements included in the alloy powder, The method of claim 1, wherein the oxidized first solute element forms an insulating layer on the outer surface of the alloy powder.
  5. 제 4항에 있어서, 상기 제1용질원소는, The method of claim 4, wherein the first solute element,
    실리콘(Si), 알루미늄(Al), 마그네슘(Mg), 크롬(Cr), 타이타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 중 어느 하나인 것을 특징으로 하는 합금 분말 제조방법.Method for producing an alloy powder, characterized in that any one of silicon (Si), aluminum (Al), magnesium (Mg), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf).
  6. 제 4항에 있어서, 상기 합금 분말은,The method of claim 4, wherein the alloy powder,
    상기 제1용질원소와 금(Au), 백금(Pt), 은(Ag), 니켈(Ni), 철(Fe), 구리(Cu), 코발트(Co), 아연(Zn), 주석(Sn), 바나듐(V) 및 망간(Mn) 중 적어도 어느 하나의 용매원소와의 합금인 것을 특징으로 하는 합금 분말 제조방법.The first solute element and gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu), cobalt (Co), zinc (Zn), tin (Sn) , Vanadium (V) and manganese (Mn) is an alloy with at least one of the solvent element, characterized in that the alloy powder production method.
  7. 가스분무법으로 제조된 Fe-Al의 분말을 -106 메쉬로 입도 선별하여 열처리로에 위치시키는 과정; Selecting a particle size of Fe-Al prepared by the gas spray method into a -106 mesh and placing the particle in a heat treatment furnace;
    0℃ 내지 10℃로 유지되는 이온교환수를 통과한 500 SCCM의 수소를 -17℃ 및 - 0℃로 유지되는 구리관을 통과시켜 이슬점이 각각 -17℃, - 0℃인 수소-수증기 혼합기체를 만드는 과정; 및 Hydrogen-vapor mixture gas having a dew point of -17 ° C and -0 ° C was passed through a copper tube maintained at -17 ° C and -0 ° C by passing hydrogen of 500 SCCM through ion exchanged water maintained at 0 ° C to 10 ° C. Making process; And
    상기 수소-수증기 혼합기체를 800℃ 내지 900℃로 유지되는 열처리로에 흘려, Fe-Al 분말을 0-60분간 열처리하는 과정; 으로 이루어지는 것을 특징으로 하는 합금 분말 제조방법.Flowing the hydrogen-steam mixture gas into a heat treatment furnace maintained at 800 ° C. to 900 ° C. to heat-treat the Fe-Al powder for 0 to 60 minutes; Alloy powder manufacturing method, characterized in that consisting of.
  8. 수 내지 수백 μm 크기로 입도 선별한 합금 분말에 수증기를 포함한 수소를 공급하며 열처리하여, 상기 합금 분말에 포함된 용질원소들 중 산소와 친화력이 큰 제1용질원소의 일부를 선택적으로 산화시키고, 상기 산화된 제1용질원소가 상기 합금 분말의 외면에 절연층을 형성한 합금 분말을 성형하여 제조하는 것을 특징으로 하는 합금 분말 코어.Hydrogen containing water vapor is heat-treated by supplying hydrogen to the alloy powders of which the particle size is selected to a size of several hundreds of μm to selectively oxidize a part of the first solute element having a high affinity with oxygen among the solute elements included in the alloy powder, An alloy powder core, wherein the oxidized first solute element is formed by molding an alloy powder having an insulating layer formed on an outer surface of the alloy powder.
  9. 제 8항에 있어서, 상기 제1용질원소는,The method of claim 8, wherein the first solute element,
    실리콘(Si), 알루미늄(Al), 마그네슘(Mg), 크롬(Cr), 타이타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 중 적어도 어느 하나인 것을 특징으로 하는 합금 분말 코어.Alloy powder core, characterized in that at least one of silicon (Si), aluminum (Al), magnesium (Mg), chromium (Cr), titanium (Ti), zirconium (Zr), hafnium (Hf).
  10. 제 8항에 있어서, 상기 합금 분말은,The method of claim 8, wherein the alloy powder,
    상기 제1용질원소와 금(Au), 백금(Pt), 은(Ag), 니켈(Ni), 철(Fe), 구리(Cu), 코발트(Co), 아연(Zn), 주석(Sn), 바나듐(V) 및 망간(Mn) 중 적어도 어느 하나의 용매원소와의 합금인 것을 특징으로 하는 합금 분말 코어.The first solute element and gold (Au), platinum (Pt), silver (Ag), nickel (Ni), iron (Fe), copper (Cu), cobalt (Co), zinc (Zn), tin (Sn) And an alloy powder core with at least one of vanadium (V) and manganese (Mn).
PCT/KR2012/011764 2012-07-31 2012-12-28 Alloy powder, alloy powder core, and method for producing same WO2014021524A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0083590 2012-07-31
KR1020120083590A KR101441745B1 (en) 2012-07-31 2012-07-31 Metal alloy powders, powder cores and their manufacturing method

Publications (1)

Publication Number Publication Date
WO2014021524A1 true WO2014021524A1 (en) 2014-02-06

Family

ID=50028171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011764 WO2014021524A1 (en) 2012-07-31 2012-12-28 Alloy powder, alloy powder core, and method for producing same

Country Status (2)

Country Link
KR (1) KR101441745B1 (en)
WO (1) WO2014021524A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102376684B1 (en) * 2020-11-30 2022-03-23 한국생산기술연구원 Soft magnetic metal powder insulation coating device based on controlling atmosphere and method thereof
KR102398174B1 (en) * 2020-11-30 2022-05-18 한국생산기술연구원 Method for manufacturing of soft magnetic composite powder and soft magnetic metal powder insulation coating device
KR102466392B1 (en) 2021-08-05 2022-11-11 한국생산기술연구원 Manufacturing Apparatus For Uniform Insulating Layer Coated Soft Magenetic Alloy Powder Using Selective Oxidation Heat Treatment And Method Thereof
KR102466390B1 (en) 2021-08-05 2022-11-11 한국생산기술연구원 Manufacturing Apparatus For Fe-Based Soft Magenetic Alloy Powder Using Selective Oxidation Heat Treatment And Method Thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3928309B2 (en) * 1998-10-06 2007-06-13 昭栄化学工業株式会社 Nickel composite particles, conductor paste, and ceramic multilayer electronic components
JP4010296B2 (en) * 2003-11-20 2007-11-21 株式会社デンソー Method for producing soft magnetic powder material
JP2010016290A (en) * 2008-07-07 2010-01-21 Denso Corp Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP2010062485A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, method of manufacturing core shell type magnetic material, device apparatus, and antenna assembly
JP2012067379A (en) * 2010-08-27 2012-04-05 Toshiba Corp Metal-containing particle aggregate, metal-containing particle composite member, and method of manufacturing the aggregate and the composite member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3928309B2 (en) * 1998-10-06 2007-06-13 昭栄化学工業株式会社 Nickel composite particles, conductor paste, and ceramic multilayer electronic components
JP4010296B2 (en) * 2003-11-20 2007-11-21 株式会社デンソー Method for producing soft magnetic powder material
JP2010016290A (en) * 2008-07-07 2010-01-21 Denso Corp Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP2010062485A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, method of manufacturing core shell type magnetic material, device apparatus, and antenna assembly
JP2012067379A (en) * 2010-08-27 2012-04-05 Toshiba Corp Metal-containing particle aggregate, metal-containing particle composite member, and method of manufacturing the aggregate and the composite member

Also Published As

Publication number Publication date
KR101441745B1 (en) 2014-09-19
KR20140016674A (en) 2014-02-10

Similar Documents

Publication Publication Date Title
WO2014021524A1 (en) Alloy powder, alloy powder core, and method for producing same
JP5728987B2 (en) Dust core
DE112009000263B4 (en) Production method for soft magnetic material
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
JP4707054B2 (en) Soft magnetic material, method for producing soft magnetic material, dust core, and method for producing dust core
DE112011103287T5 (en) Composite soft magnetic powder consisting of a composite of existing soft magnetic powder core and manufacturing method therefor
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JP2013138159A (en) Composite soft magnetic material and production method therefor
CN102971100A (en) Composite magnetic material and process for production thereof
CN106504846B (en) A kind of iron silicon-ferrite composite cores and preparation method thereof
JP2019179919A (en) Method for manufacturing powder-compact magnetic core
WO2013108643A1 (en) Compressed soft magnetic powder body
JP2000509438A (en) Thin-walled monolithic metal oxide structures made from metal and methods of making such structures
WO2021010714A1 (en) Method for manufacturing fe-based soft magnetic alloy and fe-based soft magnetic alloy manufactured thereby
JP2009032880A (en) Iron-based soft magnetic powder for dust core for high frequency, and dust core
CN110462764B (en) Powder magnetic core with terminal and method for manufacturing the same
JP2011222897A (en) Dust core, magnetic powder for dust core, and method for producing dust core
JP2005079511A (en) Soft magnetic material and its manufacturing method
JPS61222207A (en) Manufacture of iron core
WO2014171745A1 (en) Method for manufacturing electrically conductive separation membrane for water treatment, separation membrane manufactured thereby, and water treatment method using same separation membrane
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP2006241504A (en) Stacked oxide film-coated iron powder
JP2017108037A (en) Magnetic particles, method for producing the same, and inductor
WO2017209469A1 (en) Electromagnet and manufacturing method therefor
JPH10208923A (en) Composite magnetic material and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882498

Country of ref document: EP

Kind code of ref document: A1