JP2011222897A - Dust core, magnetic powder for dust core, and method for producing dust core - Google Patents

Dust core, magnetic powder for dust core, and method for producing dust core Download PDF

Info

Publication number
JP2011222897A
JP2011222897A JP2010093245A JP2010093245A JP2011222897A JP 2011222897 A JP2011222897 A JP 2011222897A JP 2010093245 A JP2010093245 A JP 2010093245A JP 2010093245 A JP2010093245 A JP 2010093245A JP 2011222897 A JP2011222897 A JP 2011222897A
Authority
JP
Japan
Prior art keywords
particles
powder
metal powder
dust core
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010093245A
Other languages
Japanese (ja)
Inventor
Shinobu Takagi
忍 高木
Satoshi Takemoto
聡 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2010093245A priority Critical patent/JP2011222897A/en
Publication of JP2011222897A publication Critical patent/JP2011222897A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dust core obtained by pressure-molding metal powder, the dust core having high flux density and small loss, especially, small eddy current loss, and to provide magnetic powder for such a dust core and a method for producing the dust core.SOLUTION: The dust core is characterized in that Si particles (4) of equal to or less than 1.0 μm in mean particle size each having a surface oxide coating (8) so as to part particles of metal powder (3) consisting principally of Fe from each other are interposed. The magnetic powder for the dust core is coated with the Si particles of equal to or less than 1.0 μm in mean particle size having surface oxide coatings with a binder after adhesion. Further, the method of manufacturing such a dust core includes a preparation step of preparing composite powder comprising particles of the metal powder coated with the Si particles of equal to or less than 1.0 μm in mean particle size with the binder after the adhesion, a step of obtaining a pressure-molded body by pressure molding, and a heat treatment step of carrying out a hardening heat treatment on the pressure-molded body.

Description

本発明は、圧粉磁心、圧粉磁心用の磁性粉体及び圧粉磁心の製造方法に関し、特に、鉄を主成分とする金属粉末を加圧成形して得られる圧粉磁心、このような圧粉磁心用の磁性粉体及び圧粉磁心の製造方法に関する。   The present invention relates to a powder magnetic core, a magnetic powder for a powder magnetic core, and a method for producing a powder magnetic core, and more particularly, a powder magnetic core obtained by pressure-molding a metal powder containing iron as a main component, The present invention relates to a magnetic powder for a dust core and a method for producing a dust core.

鉄(Fe)などの金属磁性粉末にバインダを混合し圧縮成形した圧粉磁心がある。このような圧粉磁心の電気エネルギー損となる鉄損を減じるには、保磁力を小さくしてヒステリシス損を低減させ、且つ、電気抵抗を上げて渦電流損を低減させればよい。ヒステリシス損は、成形加工(圧縮成形)時に金属磁性粉末に与えられる塑性歪みや残留応力などに起因するものであり、これらを取り除くような熱処理を行うことで低減され得る。一方、渦電流損は、磁心内部の渦電流によるものであって、これを抑えるように磁心の電気抵抗を上げることで低減され得る。   There is a dust core in which a binder is mixed with metal magnetic powder such as iron (Fe) and compression-molded. In order to reduce the iron loss that is an electric energy loss of the dust core, the coercive force is reduced to reduce the hysteresis loss, and the electrical resistance is increased to reduce the eddy current loss. The hysteresis loss is caused by plastic strain or residual stress applied to the metal magnetic powder during molding (compression molding), and can be reduced by performing heat treatment to remove these. On the other hand, the eddy current loss is due to the eddy current inside the magnetic core, and can be reduced by increasing the electric resistance of the magnetic core so as to suppress this.

特に、渦電流損を低減するために、Feからなる金属磁性粉末の表面にケイ素(Si)を拡散させて絶縁表面層を設け、金属磁性粉末粒同士を絶縁することで電気抵抗を上げた圧粉磁心が知られている。例えば、特許文献1では、10〜150μmの平均粒径を有する鉄からなる金属磁性粉末の表面を覆うようにして1〜45μmの平均粒径を有するSi粉末を所定量だけ与えた原料金属磁性粉末が開示されている。この原料金属磁性粉末を所定の形状に圧縮成形した後に焼結すると、Feからなる金属磁性粉末の表面からSiが内部へ向けて拡散し、金属磁性粉末の表面にSiの濃化層が被覆形成できる。これにより、金属磁性粉末粒同士を絶縁して圧粉磁心の電気抵抗を上げている。   In particular, in order to reduce eddy current loss, an insulating surface layer is provided by diffusing silicon (Si) on the surface of the metallic magnetic powder made of Fe, and the electric resistance is increased by insulating the metallic magnetic powder grains. Powder magnetic core is known. For example, in Patent Document 1, a raw material metal magnetic powder provided with a predetermined amount of Si powder having an average particle diameter of 1 to 45 μm so as to cover the surface of a metal magnetic powder made of iron having an average particle diameter of 10 to 150 μm Is disclosed. When this raw metal magnetic powder is compressed into a predetermined shape and then sintered, Si diffuses inward from the surface of the metal magnetic powder made of Fe, and a concentrated layer of Si is formed on the surface of the metal magnetic powder. it can. Thereby, the metal magnetic powder particles are insulated from each other to increase the electric resistance of the dust core.

また、Feからなる金属磁性粉末に四塩化ケイ素(SiCl)ガスなどを気相反応させて金属磁性粉末の表面にSiの濃化層を被覆形成する浸珪処理を利用して、金属磁性粉末粒同士を絶縁し電気抵抗を上げた圧粉磁心も知られている。例えば、特許文献2では、1〜500μmの平均粒径を有する金属磁性粉末を非酸化性雰囲気中にて加熱し、SiClガスをこれに導入することで金属磁性粉末の表面にSiの濃化層を被覆形成できることを開示している。鋼板に比べて比表面積の大きい粉末では、反応性が高く、その表層部のみにSiの濃化層を一定に形成することは難しいが、かかる方法では、これを安定して形成できると述べている。 Further, the metal magnetic powder is made by utilizing a siliconizing treatment in which a silicon tetrachloride (SiCl 4 ) gas or the like is reacted in a vapor phase with the metal magnetic powder made of Fe to form a Si concentrated layer on the surface of the metal magnetic powder. Also known is a dust core in which grains are insulated to increase electrical resistance. For example, in Patent Document 2, a metal magnetic powder having an average particle diameter of 1 to 500 μm is heated in a non-oxidizing atmosphere, and SiC is concentrated on the surface of the metal magnetic powder by introducing SiCl 4 gas thereto. It is disclosed that the layer can be coated. A powder with a large specific surface area compared to a steel plate has high reactivity, and it is difficult to form a concentrated Si layer only on the surface layer, but it is said that this method can stably form this. Yes.

ところで、SiClガスを用いた浸珪処理では、SiClガスに含まれる塩素により金属磁性粉末が腐食し、圧粉磁心の性能を劣化させてしまうことがある。また、SiClガスの取り扱いが難しい。そこで、特許文献3では、SiClガスを使用せず、予備熱処理した後に粉砕して得られたFeからなる金属磁性粉末にSi粉末又はフェロシリコン粉末を添加、混合し、水素雰囲気中で加熱処理する方法を開示している。加熱処理された粉体を更に粉砕処理すると、表面高Si層被覆金属磁性粉末が得られるのである。これについて、水素雰囲気中の所定温度で加熱処理することで、短時間で効率よく、金属磁性粉末の表面にSiの濃化層を被覆形成できると述べている。 Incidentally, in the siliconizing treatment using the SiCl 4 gas, the magnetic metal powder is corroded by chlorine contained in the SiCl 4 gas, sometimes deteriorates the performance of the dust core. Also, handling of SiCl 4 gas is difficult. Therefore, in Patent Document 3, Si powder or ferrosilicon powder is added to and mixed with Fe magnetic metal powder obtained by pulverization after pre-heat treatment without using SiCl 4 gas, and heat treatment is performed in a hydrogen atmosphere. The method of doing is disclosed. When the heat-treated powder is further pulverized, a surface high Si layer-coated metal magnetic powder is obtained. In this regard, it is stated that by performing heat treatment at a predetermined temperature in a hydrogen atmosphere, a concentrated Si layer can be formed on the surface of the metal magnetic powder efficiently in a short time.

更に、特許文献2では、金属磁性粉末を被覆するようにシリコーン樹脂やリン酸塩などの絶縁材料を与えて電気抵抗を上げた圧粉磁心についても述べられている。金属磁性粉末の表面のSiの濃化層とともに、金属磁性粉末粒同士を絶縁して電気抵抗をより上げることができるのである。   Furthermore, Patent Document 2 also describes a dust core in which an insulating material such as a silicone resin or a phosphate is provided so as to cover the metal magnetic powder to increase the electric resistance. Together with the Si enriched layer on the surface of the metal magnetic powder, the metal magnetic powder particles can be insulated from each other to further increase the electric resistance.

特開2005−060830号公報JP-A-2005-060830 特開2007−231330号公報JP 2007-231330 A 特開2007−126696号公報JP 2007-126696 A

圧粉磁心において、磁束密度を高めるためには、圧縮成形による成形密度をより高める必要がある。一方で、例えば、特許文献1のように、金属磁性粉末の表面を覆うようにして与えられたSi粉末粒子は脱離しやすく、圧縮成形時による変形でSi粉末粒子が散逸し、金属磁性粉末粒同士を完全に絶縁できるようなSiの濃化層を被覆形成することは実際は難しい。また、特許文献2及び3においても、圧縮成形時による変形で被覆形成されたSiの濃化層が破壊され、金属磁性粉末粒同士を良好に絶縁し磁心の電気抵抗を上げることは難しい。   In the dust core, in order to increase the magnetic flux density, it is necessary to increase the molding density by compression molding. On the other hand, for example, as disclosed in Patent Document 1, the Si powder particles provided so as to cover the surface of the metal magnetic powder are easily detached, and the Si powder particles are dissipated by deformation caused by compression molding. In practice, it is difficult to form a coating layer of Si that can completely insulate each other. Also in Patent Documents 2 and 3, it is difficult to increase the electric resistance of the magnetic core by satisfactorily insulating the metal magnetic powder grains by destroying the concentrated Si layer formed by deformation caused by compression molding.

本発明は、かかる事情に鑑みてなされたものであって、その目的とするところは、Feを主成分とする金属粉末を加圧成形して得られる圧粉磁心において、磁束密度が高い一方、損失、特に、渦電流損の小さい圧粉磁心を提供し、さらに、このような圧粉磁心用の磁性粉体及び圧粉磁心の製造方法を提供することである。   The present invention has been made in view of such circumstances, and the object of the present invention is in a powder magnetic core obtained by pressure-molding a metal powder containing Fe as a main component, while the magnetic flux density is high, It is to provide a powder magnetic core having a small loss, particularly eddy current loss, and to provide a magnetic powder for such a powder magnetic core and a method for producing the powder magnetic core.

本発明による圧粉磁心は、Feを主成分とする金属粉末を加圧成形して得られる圧粉磁心であって、前記金属粉末の粒子同士を隔てるようにして表面酸化被膜を有する平均粒径1.0μm以下のSi粒子が介在していることを特徴とする。   The dust core according to the present invention is a dust core obtained by pressure-molding a metal powder mainly composed of Fe, and has an average particle diameter having a surface oxide film so as to separate the particles of the metal powder. Si particles of 1.0 μm or less are interposed.

かかる発明によれば、より少ない添加量のSi粒子であっても、Feを主成分とする金属粉末の粒子同士を隔て、しかもSi粒子には安定した絶縁体である二酸化ケイ素を表面酸化被膜として与えられているから、金属磁性粉末粒同士を良好に絶縁するのである。つまり、磁心の電気抵抗を上げて、渦電流損を抑えることができる。しかも、金属粉末の粒子同士を平均粒径1.0μm以下の粒子を挟んだ間隔にまで近接させ圧縮成形における成形密度を高め得るので、磁心として高い磁束密度を達成できる。   According to this invention, even if the Si particles are added in a smaller amount, the metal powder particles containing Fe as a main component are separated from each other, and the silicon particles, which are stable insulators, are used as the surface oxide film. Therefore, the metal magnetic powder particles are well insulated from each other. That is, the eddy current loss can be suppressed by increasing the electrical resistance of the magnetic core. In addition, since the metal powder particles can be brought close to each other with an average particle size of 1.0 μm or less between the particles, the molding density in compression molding can be increased, so that a high magnetic flux density can be achieved as a magnetic core.

上記した発明において、前記金属粉末の粒子同士を隔てるようにシロキサン結合を含むガラス質膜を有することを特徴としてもよい。かかる発明によれば、絶縁体である二酸化ケイ素を表面酸化被膜として有するSi粒子と親和性の高い絶縁体であるガラス質膜によりFeを主成分とする金属粉末の粒子同士を確実に隔て、金属磁性粉末粒同士をより良好に絶縁する。つまり、磁心の電気抵抗をより上げて、渦電流損をより抑えることができる。   In the above-described invention, a glassy film containing a siloxane bond may be provided so as to separate the particles of the metal powder. According to this invention, the particles of the metal powder mainly composed of Fe are reliably separated from each other by the vitreous film which is an insulator having high affinity with Si particles having silicon dioxide as an insulator as a surface oxide film. Insulate the magnetic powder grains better. That is, the electric resistance of the magnetic core can be further increased to further suppress eddy current loss.

上記した発明において、前記金属粉末は、純Feからなることを特徴としてもよい。かかる発明によれば、塑性変形能の大きい純Feにより、金属粉末の粒子同士を塑性変形させた上に、平均粒径1.0μm以下の粒子を挟んだ間隔にまで圧縮成形し成形密度を高め、得られる磁心に高い磁束密度を与え得る。また、塑性変形した金属粉末の粒子同士をSi粒子で確実に隔て、金属磁性粉末粒同士を絶縁体である二酸化ケイ素を表面酸化被膜として有するSi粒子で良好に絶縁する。つまり、磁心の電気抵抗をより上げて、渦電流損をより抑え得る。   In the above-described invention, the metal powder may be made of pure Fe. According to this invention, the metal powder particles are plastically deformed with pure Fe having a large plastic deformability, and then compression molding is performed to an interval between particles having an average particle size of 1.0 μm or less to increase the molding density. The magnetic core obtained can be given a high magnetic flux density. Further, the plastically deformed metal powder particles are reliably separated by Si particles, and the metal magnetic powder particles are well insulated by Si particles having silicon dioxide as an insulating oxide film as a surface oxide film. That is, the electric resistance of the magnetic core can be further increased to further suppress eddy current loss.

上記した発明において、前記金属粉末は、Fe−Si合金からなることを特徴としてもよい。かかる発明によれば、Fe−Si合金の高い透磁率を圧粉磁心に与え得る。また、塑性変形した金属粉末の粒子同士を絶縁体である二酸化ケイ素を表面酸化被膜として有するSi粒子によって良好に絶縁できる。つまり、磁心の電気抵抗をより上げて、渦電流損をより抑え得る。   In the above-described invention, the metal powder may be made of an Fe—Si alloy. According to this invention, the high magnetic permeability of the Fe—Si alloy can be imparted to the dust core. Further, the plastically deformed metal powder particles can be well insulated by Si particles having silicon dioxide as an insulator as a surface oxide film. That is, the electric resistance of the magnetic core can be further increased to further suppress eddy current loss.

本発明による圧粉磁心用磁性粉体は、Feを主成分とする金属粉末からなる圧粉磁心用磁性粉体であって、表面酸化被膜を有する平均粒径1.0μm以下のSi粒子を前記金属粉末の粒子表面に凝着させ且つバインダによってこれを被覆させたことを特徴とする。   The magnetic powder for a dust core according to the present invention is a magnetic powder for a dust core made of a metal powder containing Fe as a main component, and Si particles having a surface oxide film and having an average particle diameter of 1.0 μm or less are described above. It is characterized by being adhered to the particle surface of the metal powder and coated with a binder.

かかる発明によれば、安定した絶縁体である二酸化ケイ素を表面酸化被膜として有するSi粒子がFeを主成分とする金属粉末の表面に強固に且つ均一に凝着した状態を崩壊させることなく、加圧成形により金属粉末を塑性変形させ得て圧粉磁心が得られる。つまり、圧粉磁心において、より少ない添加量のSi粒子であっても、該金属粉末の粒子同士が該Si粒子で確実に隔てられ、しかもSi粒子には安定した絶縁体である二酸化ケイ素を表面酸化被膜として与えられているから、電気抵抗を上げて、渦電流損を抑えることができる。しかも、金属粉末の粒子同士は平均粒径1.0μm以下の粒子を挟んだ間隔にまで圧縮成形されて成形密度を高め得るので、得られる磁心に高い磁束密度を与え得る。   According to this invention, Si particles having silicon dioxide, which is a stable insulator, as a surface oxide film, can be applied without collapsing the state in which the Si particles are firmly and uniformly adhered to the surface of the metal powder mainly composed of Fe. The metal powder can be plastically deformed by pressure forming to obtain a dust core. That is, in the dust core, even if the Si particles are added in a smaller amount, the metal powder particles are surely separated from each other by the Si particles, and the silicon particles, which are stable insulators, are surfaced. Since it is provided as an oxide film, it is possible to increase electrical resistance and suppress eddy current loss. In addition, since the metal powder particles are compression-molded to an interval between particles having an average particle size of 1.0 μm or less to increase the molding density, a high magnetic flux density can be given to the obtained magnetic core.

上記した発明において、前記金属粉末は、純Feからなることを特徴としてもよい。かかる発明によれば、塑性変形能の大きい純Feにより、金属粉末の粒子同士を塑性変形させた上に、平均粒径1.0μm以下の粒子を挟んだ間隔にまで圧縮成形し成形密度を高め得るので、高い磁束密度の圧粉磁心を与え得る。また、塑性変形した金属粉末の粒子同士を絶縁体である二酸化ケイ素を表面酸化被膜として有するSi粒子で確実に隔てることができて、金属磁性粉末粒同士をより良好に絶縁できる。つまり、磁心の電気抵抗をより上げて、渦電流損をより抑えた圧粉磁心を与え得る。   In the above-described invention, the metal powder may be made of pure Fe. According to this invention, the metal powder particles are plastically deformed with pure Fe having a large plastic deformability, and then compression molding is performed to an interval between particles having an average particle size of 1.0 μm or less to increase the molding density. Therefore, a dust core with a high magnetic flux density can be provided. In addition, the plastically deformed metal powder particles can be reliably separated from each other by Si particles having silicon dioxide as an insulator as a surface oxide film, and the metal magnetic powder particles can be better insulated. That is, it is possible to provide a dust core in which the electrical resistance of the magnetic core is further increased and eddy current loss is further suppressed.

上記した発明において、前記金属粉末は、Fe−Si合金からなることを特徴としてもよい。かかる発明によれば、Fe−Si合金の高い透磁率を圧粉磁心に与え得る。また、Siを含み塑性変形しにくい金属粉末の粒子同士であっても、Si粒子が金属粉末の粒子同士を良好に結着し成形加工を容易にするから、Si粒子を間に挟んだ間隔にまで圧縮成形でき、良好に絶縁できる。つまり、磁心の電気抵抗をより上げて、渦電流損をより抑え得る。   In the above-described invention, the metal powder may be made of an Fe—Si alloy. According to this invention, the high magnetic permeability of the Fe—Si alloy can be imparted to the dust core. Further, even if the metal powder particles containing Si are difficult to be plastically deformed, the Si particles favorably bind the metal powder particles and facilitate the forming process. Can be compression-molded and well insulated. That is, the electric resistance of the magnetic core can be further increased to further suppress eddy current loss.

上記した発明において、前記バインダは、アルコキシオリゴマーからなることを特徴としてもよい。かかる発明によれば、絶縁体である二酸化ケイ素を表面酸化皮膜として有するSi粒子によりFeを主成分とする金属粉末の粒子同士を隔てるのに併せて、アルコキシオリゴマー由来のシロキサン結合を含み、Si粒子と親和性の高いガラス質膜によっても該金属粉末の粒子同士を隔て、絶縁性を向上させた圧粉磁心を与え得る。つまり、電気抵抗をより上げて、渦電流損をより抑えた圧粉磁心を与え得る。   In the above-described invention, the binder may be made of an alkoxy oligomer. According to this invention, in addition to separating the particles of the metal powder mainly composed of Fe from the Si particles having silicon dioxide as the surface oxide film as the surface oxide film, the Si particles include the siloxane bond derived from the alkoxy oligomer. Even with a glassy film having a high affinity, the metal powder particles can be separated from each other to provide a dust core with improved insulation. In other words, it is possible to provide a dust core with higher electrical resistance and further reduced eddy current loss.

本発明による圧粉磁心の製造方法は、Feを主成分とする金属粉末を加圧成形して得られる圧粉磁心の製造方法であって、平均粒径1.0μm以下のSi粒子が凝着しバインダでこれを被覆させた金属粉末の粒子からなる複合粉体を用意する準備ステップと、加圧成形して加圧成形体を得るステップと、前記加圧成形体を硬化熱処理する熱処理ステップと、を含むことを特徴とする。   The method for producing a dust core according to the present invention is a method for producing a dust core obtained by press-molding a metal powder containing Fe as a main component, and Si particles having an average particle size of 1.0 μm or less are adhered. A preparation step of preparing a composite powder composed of metal powder particles coated with a binder, a step of obtaining a pressure-formed body by pressure molding, and a heat treatment step of curing and heat-treating the pressure-formed body. , Including.

かかる発明によれば、安定した絶縁体である二酸化ケイ素を表面酸化被膜として有するSi粒子がFeを主成分とする金属粉末の粒子の表面に強固に且つ均一に凝着した状態を崩壊させることなく、加圧成形により金属粉末の粒子を塑性変形させ得て圧粉磁心が得られる。つまり、得られる圧粉磁心において、より少ない添加量のSi粒子であっても、該金属粉末の粒子同士が該Si粒子で確実に隔てられ、しかもSi粒子には安定した絶縁体である二酸化ケイ素を表面酸化被膜として与えられているから、電気抵抗を上げて、渦電流損を抑えることができる。しかも、金属粉末の粒子同士は平均粒径1.0μm以下の粒子を挟んだ間隔にまで圧縮成形されて成形密度を高め得るので、得られる磁心に高い磁束密度を与え得る。   According to this invention, without destroying the state in which Si particles having silicon dioxide as a stable insulator as a surface oxide film are firmly and uniformly adhered to the surface of metal powder particles mainly composed of Fe. The metal powder particles can be plastically deformed by pressure forming to obtain a dust core. That is, in the obtained powder magnetic core, even if there is a smaller amount of Si particles, the metal powder particles are reliably separated by the Si particles, and the silicon particles are stable insulators. Is provided as a surface oxide film, the electrical resistance can be increased and eddy current loss can be suppressed. In addition, since the metal powder particles are compression-molded to an interval between particles having an average particle size of 1.0 μm or less to increase the molding density, a high magnetic flux density can be given to the obtained magnetic core.

上記した発明において、前記準備ステップに続いて、前記複合粉体の少なくとも一部を乾燥させる仮乾燥ステップを含むことを特徴としてもよい。かかる発明によれば、金属粉末の粒子表面に凝着したSi粒子を大きく移動させたり脱離させたりすることなく圧粉磁心を加圧成形できて、得られる圧粉磁心において、金属粉末の粒子同士をより確実に隔てることができ、渦電流損をより抑えることができる。また、複合粉体に含まれる水分等によりSi粒子の表面を更に酸化させ、酸化被膜を厚くし得る。   In the above-described invention, following the preparation step, a provisional drying step of drying at least a part of the composite powder may be included. According to this invention, the powder magnetic core can be pressure-molded without greatly moving or desorbing the Si particles adhered to the particle surface of the metal powder. They can be separated more reliably, and eddy current loss can be further suppressed. Moreover, the surface of Si particle | grains can be further oxidized with the water | moisture content etc. which are contained in composite powder, and an oxide film can be thickened.

上記した発明において、前記バインダは、アルコキシオリゴマーからなることを特徴としてもよい。かかる発明によれば、絶縁体である二酸化ケイ素を表面酸化被膜として有するSi粒子によりFeを主成分とする金属粉末の粒子同士を隔てるのに併せて、アルコキシオリゴマー由来のシロキサン結合を含みSi粒子との親和性の高いガラス質膜によっても該金属粉末の粒子同士を隔て、絶縁性を向上させる。つまり、磁心の電気抵抗をより上げて、渦電流損をより抑えることができる。   In the above-described invention, the binder may be made of an alkoxy oligomer. According to this invention, in addition to separating the particles of the metal powder mainly composed of Fe by the Si particles having silicon dioxide as an insulator as the surface oxide film, the Si particles containing an alkoxy oligomer-derived siloxane bond and Even with a glassy film having a high affinity, the particles of the metal powder are separated from each other to improve insulation. That is, the electric resistance of the magnetic core can be further increased to further suppress eddy current loss.

上記した発明において、前記仮乾燥ステップは前記アルコキシオリゴマーの縮合脱水を生じる温度域で行われることを特徴としてもよい。かかる発明によれば、アルコキシオリゴマーの縮合脱水により生じる水分により、Si粒子の表面の二酸化ケイ素からなる表面酸化被膜をより厚く与え得る。つまり、金属磁性粉末粒同士をより確実に絶縁できて、磁心の電気抵抗をより上げて、渦電流損をより抑えることができる。   In the above-described invention, the temporary drying step may be performed in a temperature range in which condensation dehydration of the alkoxy oligomer occurs. According to this invention, the surface oxide film made of silicon dioxide on the surface of the Si particles can be provided thicker due to moisture generated by condensation dehydration of the alkoxy oligomer. That is, the metal magnetic powder particles can be more reliably insulated from each other, the electric resistance of the magnetic core can be further increased, and eddy current loss can be further suppressed.

本発明による圧粉磁心を示す斜視図である。It is a perspective view which shows the powder magnetic core by this invention. 本発明による圧粉磁心を示す拡大断面図である。It is an expanded sectional view which shows the powder magnetic core by this invention. 本発明による圧粉磁心の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the powder magnetic core by this invention. 金属粉末の粒子とSi粒子の凝着状態を示す断面図である。It is sectional drawing which shows the adhesion state of the particle | grains of metal powder and Si particle | grains. 本発明による圧粉磁心用磁性粉体の走査電子顕微鏡写真である。It is a scanning electron micrograph of the magnetic powder for dust cores according to the present invention. 本発明による圧粉磁心用磁性粉体を示す断面図である。It is sectional drawing which shows the magnetic powder for dust cores by this invention. 本発明による圧粉磁心用磁性粉体の断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the magnetic powder for dust cores by this invention. 実施例及び比較例における製造条件の一覧図である。It is a list figure of the manufacturing conditions in an Example and a comparative example. 実施例及び比較例における磁気特性の一覧図である。It is a list of the magnetic characteristics in an Example and a comparative example.

本発明の1つの実施例による圧粉磁心について、図1及び図2を用いて説明する。   A dust core according to one embodiment of the present invention will be described with reference to FIGS.

図1に示すように、金属粉末を加圧成形して得られる圧粉磁心1は、一次側巻き線11及び二次側巻き線12をそれぞれ巻回される環状のコアである。かかる圧粉磁心1は、例えばOA機器や車両などに搭載されるスイッチング電源のトランスのコア、DC/DCモータの磁心などに使用され得る。なお、圧粉磁心1の形状は用途に応じて適宜、変更され得る。   As shown in FIG. 1, a powder magnetic core 1 obtained by pressure-molding metal powder is an annular core around which a primary winding 11 and a secondary winding 12 are wound. Such a dust core 1 can be used, for example, for a core of a transformer of a switching power supply mounted on an OA device or a vehicle, a magnetic core of a DC / DC motor, or the like. In addition, the shape of the powder magnetic core 1 can be changed as appropriate according to the application.

図2の圧粉磁心1の拡大断面図に示すように、圧粉磁心1は、Feを主成分とする金属粉末3からなる。金属粉末3は、透磁率の高い材料が好ましく、成形密度を高め磁心としての磁束密度を上げるために塑性変形能の高い材料から選択される。   As shown in the enlarged sectional view of the dust core 1 in FIG. 2, the dust core 1 is made of a metal powder 3 containing Fe as a main component. The metal powder 3 is preferably a material having a high magnetic permeability, and is selected from materials having a high plastic deformability in order to increase the molding density and increase the magnetic flux density as the magnetic core.

1つの実施例として、金属粉末3は、透磁率の高いFe−Si合金からなる。また、他の実施例として、金属粉末3は、Fe−Si合金よりも透磁率が低いが、塑性変形能のより高い純Feからなる。後述するように、Si粒子4を金属粉末3の表面にファンデルワールス力によって均一に凝着させるには、後者の方がより優れている(図4乃至7参照)。   As one example, the metal powder 3 is made of an Fe—Si alloy having a high magnetic permeability. As another example, the metal powder 3 is made of pure Fe having a lower magnetic permeability than that of the Fe—Si alloy but having a higher plastic deformability. As will be described later, the latter is more excellent for uniformly adhering the Si particles 4 to the surface of the metal powder 3 by van der Waals force (see FIGS. 4 to 7).

Feを主成分とする金属粉末3の隣り合う粒子同士は、塑性変形しつつも、その表面を酸化被膜8で覆われた硬い平均粒径1.0μm以下のSi粒子4をいわゆる「スペーサー」として互いに接触することなく間隔を隔てられる。二酸化ケイ素(SiO)は安定した絶縁体であって塑性変形した金属粉末の粒子同士は電気的に独立している。このSi粒子4において、平均粒径1.0μm以下のナノオーダーの大きさの粒子では通常の大きさの粒子に比べ、質量あたりの表面積の比が大であり、空気中の酸素や水などで酸化されやすく、その表面は酸化被膜8で完全に覆われやすい。 Adjacent particles of the metal powder 3 mainly composed of Fe are plastically deformed, but the Si particles 4 having a hard average particle diameter of 1.0 μm or less whose surface is covered with an oxide film 8 are so-called “spacers”. They are spaced apart without touching each other. Silicon dioxide (SiO 2 ) is a stable insulator, and the plastically deformed metal powder particles are electrically independent. In this Si particle 4, a nano-order particle having an average particle size of 1.0 μm or less has a larger surface area ratio per mass than a normal particle, such as oxygen or water in the air. It is easily oxidized and its surface is easily covered with the oxide film 8.

磁性体である金属粉末3の粒子同士が絶縁体としてのSi粒子4を間に挟んで電気的に独立し完全に絶縁されているので、圧粉磁心1の電気抵抗を上げることができて、渦電流損を抑えることができる。また、金属粉末3の粒子同士は、詳細を後述するように、Si粒子4をスペーサーとして平均粒径1.0μm以下の粒子を挟んだ間隔にまで圧縮成形されているので、圧粉磁心1の成形密度を非常に高め得る。つまり、高い磁束密度を達成できるのである。   Since the particles of the metal powder 3 that is a magnetic material are electrically isolated and completely insulated with the Si particles 4 as an insulator in between, the electrical resistance of the dust core 1 can be increased, Eddy current loss can be suppressed. Moreover, since the particles of the metal powder 3 are compression-molded to an interval sandwiching particles having an average particle diameter of 1.0 μm or less using the Si particles 4 as spacers, as will be described in detail later, The molding density can be greatly increased. That is, a high magnetic flux density can be achieved.

加えて、圧粉磁心1には、上記したSi粒子4のスペーサーとしての機能を補完するように、シロキサン結合を含みSi粒子4と親和性の高いガラス質膜7が金属粉末3の粒子同士を隔てるように与えられる。ガラス質膜7は、高温まで安定な絶縁体であり、ガラス質膜も金属粉末3の粒子同士の絶縁を与える。なお、後述するようにガラス質膜7を形成するバインダは、加圧成形の過程で金属粉末3の粒子同士の潤滑作用を与えて、金属粉末3の粒子同士の塑性変形能を高め、且つ、金属粉末3の表面に凝着したSi粒子4が脱離することをより確実に防止し、磁性体である金属粉末3の粒子同士の上記した絶縁をより高め得る。つまり、圧粉磁心1の電気抵抗をより確実に上げて、渦電流損をより低減させるのである。ガラス質膜7の詳細については後述する。   In addition, in the dust core 1, a glassy film 7 containing a siloxane bond and having a high affinity with the Si particles 4 is used to complement the particles of the metal powder 3 so as to complement the function of the Si particles 4 as a spacer. Given to be separated. The glassy film 7 is an insulator that is stable up to a high temperature, and the glassy film also provides insulation between the particles of the metal powder 3. In addition, as will be described later, the binder that forms the vitreous film 7 gives a lubricating action between the particles of the metal powder 3 in the process of pressure molding, and increases the plastic deformability between the particles of the metal powder 3, and It is possible to more reliably prevent the Si particles 4 adhered to the surface of the metal powder 3 from being detached, and to further increase the above-described insulation between the particles of the metal powder 3 that is a magnetic substance. That is, the electrical resistance of the dust core 1 is increased more reliably and eddy current loss is further reduced. Details of the glassy film 7 will be described later.

次に、上記した圧粉磁心1の製造方法について、図4乃至7を参照しつつ、図3に沿って説明する。   Next, a method for manufacturing the above-described powder magnetic core 1 will be described with reference to FIGS. 4 to 7 and FIG.

圧粉磁心1の製造に先だって原材料を用意する。例えば、ガス噴霧装置、水噴霧装置、又は、遠心噴霧装置などを用いて金属粉末3を用意する。ガス噴霧装置を用いる場合、所定成分の金属材料を溶解後、ノズルから噴出された溶湯に高圧ガスを高速で吹き付け、空間中で微細粒に凝固させる公知の粉末製造法で製造できる。また、例えば、ビーズミル装置、ボールミル装置、又は、アトライタミル装置などを用いてSi粒子4を用意する。Si粒子4は、後述するように平均粒径で1μm以下の非常に微細な粒子であるため、質量に対する表面積の比が大きく、大気中の酸素や水によって急激に酸化され発火しやすい。前記した装置では不活性雰囲気中や真空中、または溶媒中で粒子を得るが、かかる粒子を雰囲気や溶媒から取り出すにあたっては、徐々に酸素分圧の高い状態に移し、表面に薄い二酸化ケイ素からなる酸化被膜8を形成し、大気中でも安定なSi粒子4を得た。   Prior to manufacturing the dust core 1, raw materials are prepared. For example, the metal powder 3 is prepared using a gas spray device, a water spray device, a centrifugal spray device, or the like. In the case of using a gas spraying device, it can be manufactured by a known powder manufacturing method in which a high-pressure gas is sprayed at high speed onto molten metal ejected from a nozzle after a metal material of a predetermined component is melted and solidified into fine particles in a space. Further, for example, Si particles 4 are prepared using a bead mill device, a ball mill device, an attritor mill device, or the like. Since the Si particles 4 are very fine particles having an average particle size of 1 μm or less as will be described later, the ratio of the surface area to the mass is large, and they are easily oxidized and ignited by oxygen or water in the atmosphere. In the above-mentioned apparatus, particles are obtained in an inert atmosphere, in a vacuum, or in a solvent. When taking out such particles from the atmosphere or solvent, the particles are gradually transferred to a state where the oxygen partial pressure is high, and the surface is made of thin silicon dioxide. An oxide film 8 was formed to obtain stable Si particles 4 even in the atmosphere.

続いて、Si粒子凝着ステップ(S1)では、平均粒径1.0μm以下のSi粒子4同士が凝集しないように例えばアセトンなどの分散溶媒中に分散させた上で、金属粉末3と混合し、その後乾燥させて金属粉末3の表面にSi粒子4を凝着させる。図4にはこれを模式的に示した。平均粒径1.0μm以下の微細なSi粒子4と、金属粉末3の粒子との間で働くファンデルワールス力により、金属粉末3の表面にSi粒子4を強固に且つ均一に凝着させ得る。なお、金属粉末3がFe−Si合金の場合よりも、純Feの場合の方が、金属粉末3の表面にSi粒子4をより凝着させやすい傾向にある。また、Si粒子4の平均粒径が小さくなるほどかかる凝着が強固になる傾向にある。   Subsequently, in the Si particle adhesion step (S1), the Si particles 4 having an average particle size of 1.0 μm or less are dispersed in a dispersion solvent such as acetone so as not to aggregate, and then mixed with the metal powder 3. Thereafter, the Si particles 4 are adhered to the surface of the metal powder 3 by drying. FIG. 4 schematically shows this. The Si particles 4 can be firmly and uniformly adhered to the surface of the metal powder 3 by van der Waals force acting between the fine Si particles 4 having an average particle size of 1.0 μm or less and the metal powder 3 particles. . Note that, when the metal powder 3 is pure Fe, the Si particles 4 tend to adhere to the surface of the metal powder 3 more easily than when the metal powder 3 is an Fe—Si alloy. Further, the adhesion tends to become stronger as the average particle size of the Si particles 4 becomes smaller.

続いて、被覆ステップ(S2)では、まず、後述するバインダを溶媒に溶かし、上記した金属粉末3の表面にSi粒子4を凝着させて得た粉体2を加えて混合し、その後乾燥して圧粉磁心用磁性粉体5を得る。なお、かかる圧粉磁心用磁性粉体5は、Si粒子4をあらかじめバインダに混合し、これを金属粉末3と混合させて得ることも出来得る。   Subsequently, in the coating step (S2), first, a binder described later is dissolved in a solvent, and the powder 2 obtained by adhering the Si particles 4 to the surface of the metal powder 3 is added and mixed, and then dried. Thus, the magnetic powder 5 for dust core is obtained. The magnetic powder 5 for a dust core can be obtained by previously mixing the Si particles 4 with a binder and mixing it with the metal powder 3.

図5乃至図7に示すように、圧粉磁心用磁性粉体5では、被膜8の形成されたSi粒子4が金属粉末3に凝着し、金属粉末3を被覆するバインダ被膜9内に埋入している。   As shown in FIGS. 5 to 7, in the magnetic powder 5 for a dust core, the Si particles 4 on which the film 8 is formed adhere to the metal powder 3 and are embedded in the binder film 9 that covers the metal powder 3. It has entered.

ところで、バインダは、後述する加圧成形ステップ(S4)において、金属粉末3の表面にSi粒子4を凝着させて得た粉体2を崩壊させることなくその加工成形性を高め、且つ、圧粉磁心用磁性粉体5を圧粉磁心1の形状に固定するために与えられる。さらに、後述する熱処理ステップ(S5)において金属粉末3の粒子の表面にガラス質膜7を形成し、金属粉末3の粒子同士を隔てつつ接着し、Si粒子4を金属粉末3の表面に固着させてSi粒子4のスペーサーとしての機能を補完する目的でも与えられ得る。このようなバインダの1つの実施例としては、Si粒子4との親和性の高いシリコンバインダであり、熱処理ステップ(S4)の後に高い絶縁性を有するシロキサン結合を含むガラス質膜を与えるアルコキシシリル基を含むアルコキシオリゴマーからなるバインダである。   By the way, the binder improves its workability without collapsing the powder 2 obtained by adhering the Si particles 4 to the surface of the metal powder 3 in the pressure forming step (S4) described later, It is provided to fix the magnetic powder 5 for the powder magnetic core in the shape of the powder magnetic core 1. Further, in a heat treatment step (S5) described later, a glassy film 7 is formed on the surface of the metal powder 3 particles, and the particles of the metal powder 3 are bonded to each other so that the Si particles 4 are fixed to the surface of the metal powder 3. Thus, it may be given for the purpose of complementing the function of the Si particles 4 as a spacer. One example of such a binder is an alkoxysilyl group which is a silicon binder having a high affinity with Si particles 4 and provides a glassy film containing a siloxane bond having a high insulating property after the heat treatment step (S4). Is a binder composed of an alkoxy oligomer.

次に、仮乾燥ステップ(S3)では、後述する加圧成形ステップ(S4)において所望される圧粉磁心1の形状に加工できるよう、圧粉磁心用磁性粉体5を加熱してこれに含まれる水分や溶媒、また、アルコキシオリゴマーの縮合脱水によって生じる水分を揮発させて除去する。このようにして得られる仮乾燥後の複合粉体では、後述する加圧成形ステップ(S4)において、金属粉末3を塑性変形せしめても、Si粒子4を金属粉末3の表面から大きく移動させ脱離させることなく圧粉磁心1を成形できる。   Next, in the temporary drying step (S3), the magnetic powder 5 for dust core is heated and included so as to be processed into the desired shape of the dust core 1 in the pressure forming step (S4) described later. Moisture generated by condensation and dehydration of alkoxy oligomers is volatilized and removed. In the composite powder after temporary drying obtained in this way, even if the metal powder 3 is plastically deformed in the pressure forming step (S4) described later, the Si particles 4 are largely moved from the surface of the metal powder 3 and removed. The dust core 1 can be formed without being separated.

仮乾燥ステップ(S3)では、バインダの乾燥によって生じる水分や、複合粉体に含まれる溶媒がSi粒子4の表面を更に酸化させる。すなわち、薄い酸化被膜を有するSi粒子4をまずファンデルワールス力により金属粉末3の粒子に凝着させた後、これを更に酸化させてSi粒子4の表面により厚い酸化被膜8を形成するのである。これにより、最終的に得られる圧粉磁心1では金属粉末3の粒子同士の絶縁をより確実にすることができる。   In the temporary drying step (S3), moisture generated by drying the binder and a solvent contained in the composite powder further oxidize the surface of the Si particles 4. That is, the Si particles 4 having a thin oxide film are first adhered to the particles of the metal powder 3 by van der Waals force and then further oxidized to form a thick oxide film 8 on the surface of the Si particles 4. . Thereby, in the powder magnetic core 1 finally obtained, the insulation of the particles of the metal powder 3 can be made more reliable.

続いて、加圧成形ステップ(S4)では、圧粉磁心用磁性粉体5の複合粉体を加圧成形して加圧成形体を得る。公知のプレス装置を用いて、所望とする圧粉磁心1の形状に成形する。金属粉末3はバインダによる潤滑作用を与えられて塑性変形され、Si粒子4をその間に挟んだ間隔にまで圧縮成形される。よって加圧成形体の成形密度を高め得る。すなわち、得られる磁心の磁束密度をより高くし得る。バインダによる潤滑作用とSi粒子4の凝着作用により、Si粒子4が金属粉末3から脱離しづらく、最終的に得られる圧粉磁心1において金属粉末3の粒子同士をより確実に絶縁することができる。   Subsequently, in the pressure molding step (S4), the composite powder of the magnetic powder 5 for dust core is pressure molded to obtain a pressure molded body. Using a known press machine, the desired shape of the dust core 1 is formed. The metal powder 3 is plastically deformed by being given a lubricating action by a binder, and is compression-molded to an interval between which the Si particles 4 are sandwiched. Therefore, the molding density of the pressure molded body can be increased. That is, the magnetic flux density of the obtained magnetic core can be made higher. Due to the lubricating action by the binder and the adhesion action of the Si particles 4, the Si particles 4 are not easily detached from the metal powder 3, and the particles of the metal powder 3 can be more reliably insulated from each other in the finally obtained dust core 1. it can.

続いて、熱処理ステップ(S5)では、加圧成形体を熱処理し、バインダを硬化させて圧粉磁心1を得る。加圧成形ステップ(S4)において成形密度を高めることで、バインダは完全に金属粉末3を覆う。上記したアルコキシシリル基を含むアルコキシオリゴマーからなるバインダであれば、この熱処理で高い絶縁性を有するガラス質膜7を金属粉末3の粒子間に与え、最終的に得られる圧粉磁心1において、金属粉末3の粒子同士をより確実に絶縁するのである。   Subsequently, in the heat treatment step (S5), the pressure-molded body is heat-treated and the binder is cured to obtain the dust core 1. By increasing the molding density in the pressure molding step (S4), the binder completely covers the metal powder 3. If the binder is made of an alkoxy oligomer containing an alkoxysilyl group as described above, a glassy film 7 having high insulating properties is provided between the particles of the metal powder 3 by this heat treatment. The particles of the powder 3 are insulated more reliably.

以上により、圧粉磁心1が得られる。かかる圧粉磁心1では、上記したように、渦電流損を抑え、高い磁束密度を達成できるのである。   Thus, the dust core 1 is obtained. In the dust core 1, as described above, eddy current loss can be suppressed and a high magnetic flux density can be achieved.

[評価試験]
次に、上記した製造方法により、図8に示す複数の製造条件で圧粉磁心1を製造し、その磁気特性の評価を行った。この結果は、図9に示した。製造方法の一部詳細は以下の如きである。
[Evaluation test]
Next, the dust core 1 was manufactured by the above-described manufacturing method under a plurality of manufacturing conditions shown in FIG. 8, and the magnetic characteristics were evaluated. The results are shown in FIG. Some details of the manufacturing method are as follows.

図1に示すように、かかる評価に用いた圧粉磁心1は、外形28mm、内径20mm、高さ5mmのリング形状のコアである。   As shown in FIG. 1, the dust core 1 used for the evaluation is a ring-shaped core having an outer diameter of 28 mm, an inner diameter of 20 mm, and a height of 5 mm.

金属粉末3は、特記(実施例10〜12、比較例3)のない限り、平均粒径(D50)=51μm(実測値)を有するFeの粉体である。また、Si粒子4は、特記(実施例12〜15、比較例2及び3)のない限り、平均粒径(D50)=0.2μmの粉体である。つまり、測定値から算出される金属粉末3とSi粒子4との粒径比は0.004であり、これについては後述する。かかるSi粒子4は、ビーズミル装置を用いて分散溶媒中で湿式粉砕した後、真空乾燥器中で分散溶媒を除去し、その後、徐々に酸素分圧の高い状態に移し、表面に二酸化ケイ素からなる酸化被膜8を形成しつつ安定化させて得られる。   The metal powder 3 is an Fe powder having an average particle diameter (D50) = 51 μm (actual measurement value) unless otherwise specified (Examples 10 to 12 and Comparative Example 3). Further, the Si particles 4 are powders having an average particle diameter (D50) = 0.2 μm unless otherwise specified (Examples 12 to 15, Comparative Examples 2 and 3). That is, the particle size ratio between the metal powder 3 and the Si particles 4 calculated from the measured value is 0.004, which will be described later. The Si particles 4 are wet pulverized in a dispersion solvent using a bead mill apparatus, then the dispersion solvent is removed in a vacuum dryer, and then gradually transferred to a state where the oxygen partial pressure is high, and the surface is made of silicon dioxide. It is obtained by stabilizing while forming the oxide film 8.

Si粒子凝着ステップ(S1)及び被覆ステップ(S2)では、アルコキシオリゴマーからなるバインダをアセトン溶媒に溶解させ、所定のSi比(図8参照)で金属粉末3とSi粒子4とを混合させた。これを攪拌した後乾燥すると圧粉磁心用磁性粉体5が得られる。なお、金属粉末3及びSi粒子4の合計質量に対するバインダの質量の比(バインダ比)は、特記(実施例9)のない限り、1%となるようにした。   In the Si particle adhesion step (S1) and the coating step (S2), a binder made of an alkoxy oligomer was dissolved in an acetone solvent, and the metal powder 3 and the Si particles 4 were mixed at a predetermined Si ratio (see FIG. 8). . When this is stirred and dried, the magnetic powder 5 for a dust core is obtained. The ratio of the binder mass to the total mass of the metal powder 3 and Si particles 4 (binder ratio) was 1% unless otherwise specified (Example 9).

仮乾燥ステップ(S3)では、特記(実施例6)のない限り、圧粉磁心用磁性粉体5を減圧雰囲気においてバインダのアルコキシオリゴマーが縮合脱水を生じる温度である200℃の温度で10分間加熱した。   In the temporary drying step (S3), unless otherwise specified (Example 6), the magnetic powder 5 for dust core is heated in a reduced pressure atmosphere at a temperature of 200 ° C. for 10 minutes at which the alkoxy oligomer of the binder undergoes condensation dehydration. did.

加圧成形ステップ(S4)では、仮乾燥後の圧粉磁心用磁性粉体5を図1に示すような形状を成形するための金型に充填し、100℃で15ton/cmを与え、プレス加圧成形した。 In the pressure molding step (S4), the magnetic powder 5 for dust core after temporary drying is filled in a mold for molding a shape as shown in FIG. 1, and 15 ton / cm 2 is given at 100 ° C., Press-press molding was performed.

熱処理ステップ(S5)では、バインダのアルコキシシリル基をシロキサン結合を有するガラス質に変化させるよう、加圧成形体を窒素雰囲気中において、特記(実施例7及び8)のない限り、550℃、0.5時間加熱した。   In the heat treatment step (S5), in order to change the alkoxysilyl group of the binder into a vitreous having a siloxane bond, the pressure-molded body was placed in a nitrogen atmosphere at 550 ° C., 0 unless otherwise specified (Examples 7 and 8). Heated for 5 hours.

上記したように得られた圧粉磁心1にエナメル線からなる80ターンの一次巻線11と20ターンの二次巻線12とを巻回した。その評価においては、交流BH測定装置を用い、励磁磁束密度0.2T、周波数10kHzの正弦波の交流磁界を与えて、10kA/mの印加磁界での磁束密度(B10k)を測定し、図9に示す結果を得た。   An 80-turn primary winding 11 and a 20-turn secondary winding 12 made of enameled wire were wound around the dust core 1 obtained as described above. In the evaluation, an alternating current BH measuring device was used to measure a magnetic flux density (B10k) at an applied magnetic field of 10 kA / m by applying a sinusoidal alternating magnetic field having an excitation magnetic flux density of 0.2 T and a frequency of 10 kHz. The result shown in was obtained.

まず、比較例1では、Si粒子4を加えていないため、圧粉磁心1における塑性変形能の高いFeの割合が高く、加圧成形による密度を比較的高くすることができる。つまり、密度7.29(g/cm)及び磁束密度1.55(T)を得ることができた。一方、比抵抗は2.2×10(μΩ・m)であり、コアロス(損失)は4086kW/mであった。Si粒子4による上記したスペーサーとしての作用はなく、ガラス質膜7による金属粉末3の粒子同士の絶縁のみを与えられると考える。 First, in Comparative Example 1, since Si particles 4 are not added, the ratio of Fe having high plastic deformability in the powder magnetic core 1 is high, and the density by pressure molding can be made relatively high. That is, a density of 7.29 (g / cm 3 ) and a magnetic flux density of 1.55 (T) could be obtained. On the other hand, the specific resistance was 2.2 × 10 2 (μΩ · m), and the core loss (loss) was 4086 kW / m 3 . It is considered that the Si particles 4 do not act as the spacer described above, and only the insulation between the particles of the metal powder 3 by the vitreous film 7 can be given.

これに対して、実施例1乃至4のように、金属粉末3及びSi粒子4の合計質量に対するSi粒子4の質量の比(Si比)を0.1〜2.0%の範囲となるように、Si粒子4を加えた場合、加圧成形による密度は比較例1よりも低くなる。つまり、密度は6.90〜7.17(g/cm)であったが、磁束密度は1.45〜1.48(T)を得ることができて、比較例1と遜色はなかった。一方、ガラス質膜7に併せ、Si粒子4により金属粉末3の粒子同士の絶縁が与えられるため、比抵抗は6.0×10〜2.8×10(μΩ・m)と、比較例1に比べて非常に高かった。つまり、コアロスも698〜990kW/m3、と、比較例1に比べて非常に小さく抑えることができる。 On the other hand, as in Examples 1 to 4, the ratio of the mass of the Si particles 4 to the total mass of the metal powder 3 and the Si particles 4 (Si ratio) is in the range of 0.1 to 2.0%. In addition, when Si particles 4 are added, the density by pressure molding becomes lower than that of Comparative Example 1. That is, the density was 6.90 to 7.17 (g / cm 3 ), but the magnetic flux density was 1.45 to 1.48 (T), which was not inferior to Comparative Example 1. . On the other hand, since the Si particles 4 provide insulation between the particles of the metal powder 3 together with the vitreous film 7, the specific resistance is 6.0 × 10 5 to 2.8 × 10 6 (μΩ · m). Compared to Example 1, it was very high. That is, the core loss can be suppressed to 698 to 990 kW / m 3, which is much smaller than that of Comparative Example 1.

また、実施例5のように、Si比を3.0%程度にまで高めてSi粒子4を加えると、加圧成形による密度が低くなる。すなわち、密度が6.61(g/cm)となり、磁束密度は1.17(T)であった。また、比抵抗は8.8×10(μΩ・m)であったものの、コアロスが1030kW/mとSi比の低い実施例3及び4に比べて高くなる。 Further, as in Example 5, when the Si ratio is increased to about 3.0% and the Si particles 4 are added, the density by pressure molding is lowered. That is, the density was 6.61 (g / cm 3 ), and the magnetic flux density was 1.17 (T). Further, although the specific resistance was 8.8 × 10 5 (μΩ · m), the core loss was 1030 kW / m 3 , which is higher than those in Examples 3 and 4 having a low Si ratio.

以上のことから、上記した加圧成形ステップ(S4)の製造条件の下では、これに束縛されるものではないが、Si比による磁束密度及びコアロスの双方を同時に向上させ得る好ましい範囲が存在し、これは0.1〜3.0質量%程度である。   From the above, there is a preferable range in which both the magnetic flux density and the core loss due to the Si ratio can be improved at the same time under the manufacturing conditions of the above-described pressure forming step (S4). This is about 0.1 to 3.0% by mass.

ところで、比較例2のように、Si粒子4の平均粒径(D50)を1.2μmと大きくすると、密度が7.10(g/cm)、磁束密度は1.45(T)であった。一方で、比抵抗は4.5×10(μΩ・m)と低く、コアロスは2831kW/mと実施例3に比べて高くなってしまった。つまり、平均粒径の大きなSi粒子4では、金属粉末3の粒子との間で働くファンデルワールス力が弱く、金属粉末3の粒子の表面への凝着が起こりづらくなる。その結果、Si粒子4が加圧成形ステップ(S4)において移動せしめられ、金属粉末3の粒子同士の接触が増加したと考えられる。 By the way, when the average particle diameter (D50) of the Si particles 4 is increased to 1.2 μm as in Comparative Example 2, the density is 7.10 (g / cm 3 ) and the magnetic flux density is 1.45 (T). It was. On the other hand, the specific resistance was as low as 4.5 × 10 2 (μΩ · m), and the core loss was 2831 kW / m 3 , which was higher than that in Example 3. That is, in the Si particles 4 having a large average particle diameter, the van der Waals force acting between the particles of the metal powder 3 is weak and it is difficult for the particles of the metal powder 3 to adhere to the surface. As a result, it is considered that the Si particles 4 are moved in the pressure forming step (S4), and the contact between the particles of the metal powder 3 is increased.

実施例6では、実施例3に対して仮乾燥ステップ(S3)を省略している。しかしながら、密度は7.00(g/cm)であり、磁束密度は1.44(T)と、ほとんど実施例3と変化が無かった。その一方で、比抵抗は9.8×10(μΩ・m)と実施例3よりもやや高い傾向にあって、コアロスは1121kW/mとやや高めになった。上述したように、バインダが金属粉末3の塑性変形の潤滑作用をもたらさず、Si粒子4が金属粉末3の粒子同士のスペーサーとしてあまり機能しなかったためと考える。すなわち、磁束密度を高めるとともにコアロスをより抑えるには、仮乾燥ステップ(S3)を行うことが好ましい。 In Example 6, the temporary drying step (S3) is omitted from Example 3. However, the density was 7.00 (g / cm 3 ), and the magnetic flux density was 1.44 (T), almost unchanged from Example 3. On the other hand, the specific resistance was 9.8 × 10 5 (μΩ · m), which was slightly higher than Example 3, and the core loss was slightly higher at 1121 kW / m 3 . As described above, it is considered that the binder did not provide a plastic deformation lubrication action of the metal powder 3 and the Si particles 4 did not function as a spacer between the metal powder 3 particles. That is, in order to increase the magnetic flux density and further suppress the core loss, it is preferable to perform the temporary drying step (S3).

更に、実施例7及び8では、実施例3に対して、熱処理ステップ(S5)の温度を高めて、700及び850℃とした。すると、密度7.10及び7.15(g/cm)並びに磁束密度1.45及び1.46(T)と、ほとんど実施例3と変化が無かった。一方、比抵抗は5.9×10及び5.0×10(μΩ・m)と実施例3よりも小さくなる傾向にあるものの、コアロスが655及び607kW/mと低くなる傾向にあった。これは高い熱処理温度によって、金属粉末3の結晶粒が粗大化してヒステリシス損が減少するとともに、金属粉末3の粒子同士を隔てるようにより強固なガラス質膜が形成されて高い絶縁性を得たためと考える。すなわち、熱処理ステップ(S5)の温度は所定温度まで高くすることが好ましく、詳細を更に検討した結果、好ましくは、500〜1150℃の範囲であり、さらに好ましくは700〜850℃の範囲である。 Furthermore, in Examples 7 and 8, the temperature of the heat treatment step (S5) was increased to 700 and 850 ° C. compared to Example 3. Then, the densities of 7.10 and 7.15 (g / cm 3 ) and the magnetic flux densities of 1.45 and 1.46 (T) were almost the same as in Example 3. On the other hand, the specific resistance tends to be 5.9 × 10 4 and 5.0 × 10 4 (μΩ · m), which is smaller than that of Example 3, but the core loss tends to be low, 655 and 607 kW / m 3. It was. This is because, due to the high heat treatment temperature, the crystal grains of the metal powder 3 are coarsened to reduce the hysteresis loss, and a stronger glassy film is formed so as to separate the particles of the metal powder 3, thereby obtaining high insulation. Think. That is, it is preferable to raise the temperature of the heat treatment step (S5) to a predetermined temperature, and as a result of further examination of details, it is preferably in the range of 500 to 1150 ° C, more preferably in the range of 700 to 850 ° C.

更に、実施例9では、実施例3に対して、バインダ比を0.1%と低くした。この場合、密度7.03(g/cm)及び磁束密度1.44(T)と、ほとんど実施例3と変化が無かった。一方、比抵抗は9.2×10(μΩ・m)であって、コアロスは856kW/mと、実施例3よりもコアロスが高くなったが、Si粒子4により金属粉末3の粒子同士の絶縁が与えられるため、大幅なコアロスの上昇は無かった。 Furthermore, in Example 9, compared with Example 3, the binder ratio was lowered to 0.1%. In this case, the density was 7.03 (g / cm 3 ) and the magnetic flux density was 1.44 (T), and there was almost no change from Example 3. On the other hand, the specific resistance was 9.2 × 10 5 (μΩ · m) and the core loss was 856 kW / m 3, which was higher than that of Example 3. There was no significant increase in core loss.

更に、実施例10では、実施例3に対して、金属粉末3のFeの平均粒径(D50)を102μmと大きくした。つまり、金属粉末3とSi粒子4との粒径比(Siの平均粒径/Feの平均粒径)を0.002と、0.004よりも小さくした。この場合も、密度7.52(g/cm)及び磁束密度1.58(T)と、実施例3よりも高い磁束密度を得られた。また、比抵抗は9.5×10(μΩ・m)であって、コアロスは833kW/mであり、実施例3よりもコアロスが若干大きくなる。 Furthermore, in Example 10, compared with Example 3, the average particle diameter (D50) of Fe of the metal powder 3 was increased to 102 μm. That is, the particle size ratio between the metal powder 3 and the Si particles 4 (average particle size of Si / average particle size of Fe) was set to 0.002 and smaller than 0.004. Also in this case, a density of 7.52 (g / cm 3 ) and a magnetic flux density of 1.58 (T), which were higher than those of Example 3, were obtained. The specific resistance is 9.5 × 10 5 (μΩ · m), the core loss is 833 kW / m 3 , and the core loss is slightly larger than that of the third embodiment.

更に、実施例11では、実施例3に対して、金属粉末3のFeの平均粒径(D50)を1.2μmと小さくした。つまり、金属粉末3とSi粒子4との粒径比を0.167と、0.004よりも大きくした。この場合、密度6.49(g/cm)及び磁束密度1.12(T)と、実施例3よりも低い磁束密度となった。また、比抵抗は8.9×10(μΩ・m)であって、コアロスは948kW/mであり、実施例3よりもコアロスが若干大きくなる。 Furthermore, in Example 11, compared with Example 3, the average particle diameter (D50) of Fe of the metal powder 3 was reduced to 1.2 μm. That is, the particle size ratio between the metal powder 3 and the Si particles 4 was 0.167, which was larger than 0.004. In this case, the density was 6.49 (g / cm 3 ) and the magnetic flux density 1.12 (T), and the magnetic flux density was lower than that in Example 3. The specific resistance is 8.9 × 10 5 (μΩ · m), the core loss is 948 kW / m 3 , and the core loss is slightly larger than that of the third embodiment.

さらに、実施例12では、実施例11と同じく、金属粉末3のFeの平均粒径(D50)を1.2μmと小さくした上で、Si粒子4の平均粒径(D50)を0.3μmと大きくした。つまり、金属粉末3とSi粒子4との粒径比を0.250と、実施例11の0.167よりも更に大きくした。この場合、密度6.56(g/cm)及び磁束密度1.10(T)と、ほとんど実施例11と変化が無かった。一方、比抵抗は2.6×10(μΩ・m)であって、コアロスは2256kW/mと、実施例3や11よりもコアロスが大きくなった。 Furthermore, in Example 12, as in Example 11, the average particle diameter (D50) of Fe of the metal powder 3 was reduced to 1.2 μm, and the average particle diameter (D50) of the Si particles 4 was 0.3 μm. Increased. That is, the particle size ratio between the metal powder 3 and the Si particles 4 was 0.250, which was larger than 0.167 in Example 11. In this case, the density was 6.56 (g / cm 3 ) and the magnetic flux density was 1.10 (T), and almost no change from Example 11. On the other hand, the specific resistance was 2.6 × 10 3 (μΩ · m), and the core loss was 2256 kW / m 3, which was larger than those in Examples 3 and 11.

更に、比較例3では、実施例3に対して、金属粉末3のFeの平均粒径(D50)を6.8μmと小さくした上で、Si粒子4の平均粒径(D50)をナノオーダーではなく1.8μmと更に大きくした。つまり、金属粉末3とSi粒子4との粒径比を0.265と、実施例12よりもわずかに大きくした。この場合、密度6.76(g/cm)及び磁束密度1.28(T)と、実施例11や実施例12よりも、高い磁束密度が得られた。一方、比抵抗は3.4×10(μΩ・m)であって、コアロスは3012kW/mと、実施例3や実施例11はもとより、実施例12に比べても急激に大きくなってしまった。つまり急激なコアロスの上昇を防止するには、少なくともSi粒子4を1.0μm以下のナノオーダーの微細粒とするとともに、これを凝着させ易いよう、これに対する粒径差の大きい、好ましくはこの比を0.25以下とするような、大なる粒径の金属粉末3を用いることが好ましい。例えば、金属粉末3の粒子の平均粒径(D50)については、1〜300μmとすることが好ましい Furthermore, in Comparative Example 3, the average particle diameter (D50) of the Si particles 4 is reduced to 6.8 μm and the average particle diameter (D50) of the Si particles 4 is smaller than that of Example 3 in the nano order. The size was further increased to 1.8 μm. That is, the particle size ratio between the metal powder 3 and the Si particles 4 was 0.265, slightly larger than that of Example 12. In this case, a density of 6.76 (g / cm 3 ) and a magnetic flux density of 1.28 (T), which were higher than those of Examples 11 and 12, were obtained. On the other hand, the specific resistance is 3.4 × 10 2 (μΩ · m), and the core loss is 3012 kW / m 3 , which is abruptly larger than Example 12 as well as Example 3 and Example 11. Oops. In other words, in order to prevent an abrupt increase in core loss, at least the Si particles 4 are made to be nano-order fine particles of 1.0 μm or less, and the particle size difference with respect to this is large so that they can be easily adhered. It is preferable to use a metal powder 3 having a large particle size such that the ratio is 0.25 or less. For example, the average particle diameter (D50) of the metal powder 3 particles is preferably 1 to 300 μm.

ところで、実施例13及び14では、実施例3に対して、金属粉末3に純Feよりも透磁率の高いFe−3Si及びFe−6.5Siからなる合金を使用した。すると、純Feよりも金属粉末3の塑性変形能が固溶強化により低下するため、密度7.28及び6.53(g/cm)及び磁束密度1.38及び1.10(T)と、実施例3よりも磁束密度が低くなる傾向にあった。一方、比抵抗は1.6×10及び7.1×10(μΩ・m)と実施例3と同等程度以上であり、コアロスは400及び350kW/mと実施例3よりも非常に小さくできた。 By the way, in Example 13 and 14, the alloy which consists of Fe-3Si and Fe-6.5Si whose magnetic permeability is higher than pure Fe was used for the metal powder 3 with respect to Example 3. Then, since the plastic deformability of the metal powder 3 is lowered by solid solution strengthening compared to pure Fe, the density 7.28 and 6.53 (g / cm 3 ) and the magnetic flux densities 1.38 and 1.10 (T) The magnetic flux density tended to be lower than in Example 3. On the other hand, the specific resistance is 1.6 × 10 6 and 7.1 × 10 5 (μΩ · m), which is equal to or higher than that of Example 3, and the core loss is 400 and 350 kW / m 3 which is much higher than that of Example 3. I was able to make it smaller.

これに対して、実施例15では、実施例3に対して、金属粉末3にFe−10Siからなる合金を使用した。すなわち、実施例13及び14よりも金属粉末3のFeに対するSiの比を高めた。すると、比抵抗は3.2×10(μΩ・m)であり、コアロスは300kW/mと、実施例13及び14よりも更に小さくできた。一方、密度は6.53(g/cm)と実施例14とほぼ同じでありながら、磁束密度が0.71(T)と小さくなった。 On the other hand, in Example 15, an alloy made of Fe-10Si was used for the metal powder 3 as compared to Example 3. That is, the ratio of Si to Fe of the metal powder 3 was increased as compared with Examples 13 and 14. Then, the specific resistance was 3.2 × 10 5 (μΩ · m), and the core loss was 300 kW / m 3 , which was even smaller than in Examples 13 and 14. On the other hand, the magnetic flux density was as small as 0.71 (T) while the density was 6.53 (g / cm 3 ), which was almost the same as in Example 14.

以上のことから、金属粉末3に使用するFe−Si合金のSiの比を増すと磁束密度を増大させるが、コアロスをも増大させる傾向であることがわかる。つまり、金属粉末3は、純Feでなくとも、Fe−Si合金であってもよく、Fe−Si合金である場合は、Siを質量%で10%以下とすることが好ましく、6.5%以下とすることがより好ましい。   From the above, it can be seen that increasing the Si ratio of the Fe—Si alloy used for the metal powder 3 increases the magnetic flux density but also tends to increase the core loss. That is, the metal powder 3 may not be pure Fe, but may be an Fe—Si alloy. When the metal powder 3 is an Fe—Si alloy, Si is preferably 10% by mass or less, and 6.5%. More preferably, it is as follows.

ここまで本発明による代表的実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができる。   So far, representative embodiments and modifications based on the embodiments have been described. However, the present invention is not necessarily limited thereto, and those skilled in the art will not depart from the scope of the appended claims. Various alternative embodiments and modifications can be found.

1 圧粉磁心
3 金属粉末
4 Si粒子
5 圧粉磁心用磁性粉体
7 ガラス質膜
8 酸化被膜
DESCRIPTION OF SYMBOLS 1 Powder magnetic core 3 Metal powder 4 Si particle 5 Magnetic powder 7 for powder magnetic core Glassy film 8 Oxide film

Claims (12)

Feを主成分とする金属粉末を加圧成形して得られる圧粉磁心であって、前記金属粉末の粒子同士を隔てるようにして表面酸化被膜を有する平均粒径1.0μm以下のSi粒子が介在していることを特徴とする圧粉磁心。   A powder magnetic core obtained by pressure-molding a metal powder containing Fe as a main component, wherein Si particles having an average particle size of 1.0 μm or less having a surface oxide film so as to separate the particles of the metal powder. A dust core characterized by being interposed. 前記金属粉末の粒子同士を隔てるようにシロキサン結合を含むガラス質膜を有することを特徴とする請求項1記載の圧粉磁心。   2. The dust core according to claim 1, further comprising a vitreous film containing a siloxane bond so as to separate the particles of the metal powder. 前記金属粉末は、純Feからなることを特徴とする請求項1又は2に記載の圧粉磁心。   The dust core according to claim 1, wherein the metal powder is made of pure Fe. 前記金属粉末は、Fe−Si合金からなることを特徴とする請求項1又は2に記載の圧粉磁心。   The dust core according to claim 1 or 2, wherein the metal powder is made of an Fe-Si alloy. Feを主成分とする金属粉末からなる圧粉磁心用磁性粉体であって、表面酸化被膜を有する平均粒径1.0μm以下のSi粒子を前記金属粉末の粒子表面に凝着させ且つバインダによってこれを被覆させたことを特徴とする圧粉磁心用磁性粉体。   A magnetic powder for a powder magnetic core comprising a metal powder containing Fe as a main component, wherein Si particles having a surface oxide film and having an average particle size of 1.0 μm or less are adhered to the particle surface of the metal powder, and a binder is used. A magnetic powder for a dust core, which is coated with the powder. 前記金属粉末は、純Feからなることを特徴とする請求項5記載の圧粉磁心用磁性粉体。   6. The magnetic powder for a dust core according to claim 5, wherein the metal powder is made of pure Fe. 前記金属粉末は、Fe−Si合金からなることを特徴とする請求項5記載の圧粉磁心用磁性粉体。   6. The magnetic powder for a dust core according to claim 5, wherein the metal powder is made of an Fe-Si alloy. 前記バインダは、アルコキシオリゴマーからなることを特徴とする請求項5乃至7のうちの1つに記載の圧粉磁心用磁性粉体。   The magnetic powder for a dust core according to claim 5, wherein the binder is made of an alkoxy oligomer. Feを主成分とする金属粉末を加圧成形して得られる圧粉磁心の製造方法であって、
平均粒径1.0μm以下のSi粒子が凝着しバインダでこれを被覆させた前記金属粉末の粒子からなる複合粉体を用意する準備ステップと、
加圧成形して加圧成形体を得るステップと、
前記加圧成形体を熱処理する熱処理ステップと、を含むことを特徴とする圧粉磁心の製造方法。
A method for producing a powder magnetic core obtained by pressure molding metal powder containing Fe as a main component,
A preparation step of preparing a composite powder composed of particles of the metal powder in which Si particles having an average particle size of 1.0 μm or less are adhered and coated with a binder;
Obtaining a pressure molded body by pressure molding; and
A heat treatment step of heat-treating the pressure-formed body.
前記準備ステップに続いて、前記複合粉体の少なくとも一部を乾燥させる仮乾燥ステップを含むことを特徴とする請求項9記載の圧粉磁心の製造方法。   The method for manufacturing a dust core according to claim 9, further comprising a temporary drying step of drying at least a part of the composite powder following the preparation step. 前記バインダは、アルコキシオリゴマーからなることを特徴とする請求項10記載の圧粉磁心の製造方法。   The method for manufacturing a dust core according to claim 10, wherein the binder is made of an alkoxy oligomer. 前記仮乾燥ステップは前記アルコキシオリゴマーの縮合脱水を生じる温度域で行われることを特徴とする請求項11に記載の圧粉磁心の製造方法。   The method for producing a dust core according to claim 11, wherein the temporary drying step is performed in a temperature range in which condensation dehydration of the alkoxy oligomer occurs.
JP2010093245A 2010-04-14 2010-04-14 Dust core, magnetic powder for dust core, and method for producing dust core Pending JP2011222897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093245A JP2011222897A (en) 2010-04-14 2010-04-14 Dust core, magnetic powder for dust core, and method for producing dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093245A JP2011222897A (en) 2010-04-14 2010-04-14 Dust core, magnetic powder for dust core, and method for producing dust core

Publications (1)

Publication Number Publication Date
JP2011222897A true JP2011222897A (en) 2011-11-04

Family

ID=45039450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093245A Pending JP2011222897A (en) 2010-04-14 2010-04-14 Dust core, magnetic powder for dust core, and method for producing dust core

Country Status (1)

Country Link
JP (1) JP2011222897A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028752A (en) * 2014-06-04 2014-09-10 捷和电机制品(深圳)有限公司 Method for enhancing strength of softmagnetic powder metallurgymaterials
JP2014216495A (en) * 2013-04-25 2014-11-17 Tdk株式会社 Soft magnetic material composition, magnetic core, coil type electronic component, and process of manufacturing compact
JP2019151868A (en) * 2018-02-28 2019-09-12 セイコーエプソン株式会社 Insulator-coated soft-magnetic powder, insulator-coated soft-magnetic powder producing method, powder magnetic core, magnetic element, electronic apparatus and movable body
JP2020119932A (en) * 2019-01-21 2020-08-06 山陽特殊製鋼株式会社 Flame retardant powder for magnetic member
CN111508699A (en) * 2020-04-21 2020-08-07 东莞市南祥磁电科技有限公司 Method for reprocessing magnetic core powder after compression molding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216495A (en) * 2013-04-25 2014-11-17 Tdk株式会社 Soft magnetic material composition, magnetic core, coil type electronic component, and process of manufacturing compact
CN104028752A (en) * 2014-06-04 2014-09-10 捷和电机制品(深圳)有限公司 Method for enhancing strength of softmagnetic powder metallurgymaterials
JP2019151868A (en) * 2018-02-28 2019-09-12 セイコーエプソン株式会社 Insulator-coated soft-magnetic powder, insulator-coated soft-magnetic powder producing method, powder magnetic core, magnetic element, electronic apparatus and movable body
JP7124342B2 (en) 2018-02-28 2022-08-24 セイコーエプソン株式会社 Insulator-coated soft magnetic powder, method for producing insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device and moving object
JP2020119932A (en) * 2019-01-21 2020-08-06 山陽特殊製鋼株式会社 Flame retardant powder for magnetic member
JP7257150B2 (en) 2019-01-21 2023-04-13 山陽特殊製鋼株式会社 Flame-retardant powder for magnetic components
CN111508699A (en) * 2020-04-21 2020-08-07 东莞市南祥磁电科技有限公司 Method for reprocessing magnetic core powder after compression molding
CN111508699B (en) * 2020-04-21 2022-06-10 东莞市南祥磁电科技有限公司 Method for reprocessing magnetic core powder after compression molding

Similar Documents

Publication Publication Date Title
KR101945580B1 (en) Method of producing powder for magnetic core
JP5227756B2 (en) Method for producing soft magnetic material
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP4483624B2 (en) Soft magnetic metal powder for dust core and dust core
JP4513131B2 (en) Method for producing soft magnetic material and method for producing dust core
JP5218567B2 (en) Manufacturing method of dust core
JP5257137B2 (en) Manufacturing method of dust core
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
JPWO2009128425A1 (en) Composite magnetic material and method for producing the same
JP2008169439A (en) Magnetic powder, dust core, electric motor and reactor
JP4799583B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2011222897A (en) Dust core, magnetic powder for dust core, and method for producing dust core
JP2010183056A (en) Method for producing soft magnetic material, soft magnetic material, and powder magnetic core
WO2010061525A1 (en) Method for producing soft magnetic material and method for producing dust core
JP2014086672A (en) Powder magnetic core and manufacturing method therefor, powder for magnetic core and production method therefor
JP2013171967A (en) Soft magnetic powder dust core, reactor, choke coil, stator and motor using the same, and method for producing soft magnetic powder dust core
JP2011181624A (en) High-strength, high-specific-resistance composite soft magnetic material, electromagnetic circuit component, and method of manufacturing high-strength, high-specific-resistance composite soft magnetic material
JP2010236018A (en) High-strength low-core-loss composite soft magnetic material, method for manufacturing the same, and electromagnetic circuit parts
JP2009032880A (en) Iron-based soft magnetic powder for dust core for high frequency, and dust core
JP2007220876A (en) Soft magnetic alloy consolidation object, and its manufacturing method
JP6477124B2 (en) Soft magnetic metal dust core, and reactor or inductor
JP3145832U (en) Composite magnetic material
TWI652700B (en) Powder core, manufacturing method of the powder core, electric and electronic parts provided with the powder core, and electric and electronic equipment equipped with the electric and electronic parts
JP2012129217A (en) Pulverulent body to be pressure-molded for powder magnetic core and method for producing powder magnetic core
JP2011129857A (en) Method of manufacturing dust core and dust core obtained by the method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120501