WO2014021262A1 - Electronic apparatus - Google Patents

Electronic apparatus Download PDF

Info

Publication number
WO2014021262A1
WO2014021262A1 PCT/JP2013/070478 JP2013070478W WO2014021262A1 WO 2014021262 A1 WO2014021262 A1 WO 2014021262A1 JP 2013070478 W JP2013070478 W JP 2013070478W WO 2014021262 A1 WO2014021262 A1 WO 2014021262A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
reaction chamber
electronic device
storage material
chamber
Prior art date
Application number
PCT/JP2013/070478
Other languages
French (fr)
Japanese (ja)
Inventor
三浦 忠将
是如 山下
裕直 小倉
Original Assignee
株式会社村田製作所
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 国立大学法人 千葉大学 filed Critical 株式会社村田製作所
Priority to JP2014528144A priority Critical patent/JP6128659B2/en
Priority to CN201380040219.8A priority patent/CN104584705A/en
Publication of WO2014021262A1 publication Critical patent/WO2014021262A1/en
Priority to US14/612,351 priority patent/US20150144295A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to an electronic device, and more particularly to an electronic device including a heat generating component (or an electronic component that generates heat).
  • an electronic component built in an electronic device for example, a central processing unit (CPU) or other integrated circuit (IC)
  • CPU central processing unit
  • IC integrated circuit
  • a part of the input energy is converted into heat and lost due to heat generation.
  • an electronic component itself may fail or it may have a bad influence on other surrounding components, and the lifetime and reliability of an electronic device may be impaired.
  • the heat generation of the electronic component is not preferable in terms of usability and safety of the user of the electronic device.
  • a cooling fan is used to exhaust heat to the outside of the electronic device by forced convection, or both ends of the heat pipe are connected to the heat generating components, heat sink and heat sink, respectively.
  • a method of transporting heat using the latent heat of evaporation and condensation of the working fluid in the heat pipe to dissipate heat from a heat sink or the like is known (see, for example, Patent Document 1). These methods suppress the temperature rise of the heat generating component by directly or indirectly radiating heat from the heat generating component.
  • JP 2001-68883 A Japanese Patent Laid-Open No. 10-89799 JP 2008-1111592 A
  • the temperature of each heat generating component is measured, and when the measured temperature exceeds a predetermined threshold, the amount of energy input to the heat generating component is limited.
  • This method suppresses the temperature rise of the heat generating component by reducing the heat generation amount itself of the heat generating component.
  • the function of the heat generating component for example, the performance of the CPU
  • the performance of the electronic device is sacrificed.
  • An object of the present invention is to provide an electronic device including a novel means capable of suppressing a temperature rise of a heat generating component.
  • the present inventors paid attention to a technology for storing and transferring heat using a chemical reaction, that is, a chemical heat pump.
  • Chemical heat pumps are currently used for the purpose of exhaust heat utilization in chemical plants and power plants, and are used in large equipment such as domestic hot water supply / heating systems and refrigerator trucks (see, for example, Patent Documents 2 to 3).
  • Patent Documents 2 to 3 what applied the chemical heat pump to the electronic device is not known.
  • the present inventors have completed the present invention.
  • Heat-generating parts A reaction chamber containing a chemical heat storage material that exhibits an endothermic reaction by heat generated by a heat-generating component, a condensation evaporation chamber for condensing or evaporating a condensable component generated by the endothermic reaction of the chemical heat storage material, and a condensable component condensing with the reaction chamber
  • an electronic device including a device including a communication unit that communicates between the reaction chamber and the condensation evaporation chamber so as to be movable between the evaporation chamber and the evaporation chamber.
  • a device in which the reaction chamber and the condensing evaporation chamber are in communication with each other through a communication unit can be understood as a so-called chemical heat pump.
  • a chemical heat pump such a device is also referred to as a chemical heat pump.
  • the reaction chamber has a portion made of a thermally conductive material, and the portion made of the thermally conductive material is in direct or indirect contact with the heat generating component. May be arranged.
  • the electronic device further includes a heat conductive member
  • the condensation evaporation chamber may have a portion made of a heat conductive material, and the portion made of the heat conductive material may be disposed in direct or indirect contact with the heat conductive member.
  • the heat conductive member can be selected from the group consisting of a housing of an electronic device, a battery exterior, a substrate, and a display, for example, but is not limited thereto.
  • the heat generating component can be selected from the group consisting of, for example, an integrated circuit, a light emitting element, a field effect transistor, a motor, a coil, a converter, an inverter, and a capacitor, but is not limited thereto.
  • a first member and a second member A reaction chamber containing a chemical heat storage material that exhibits reversible endothermic and exothermic reactions, a condensation evaporation chamber for condensing or evaporating condensable components generated by the endothermic reaction of the chemical heat storage material, and a reaction chamber and a condensation evaporation chamber
  • an electronic apparatus including a device including a communication unit that communicates, wherein the first member and the reaction chamber are thermally coupled, and the condensation evaporation chamber and the second member are thermally coupled.
  • the electronic device when the temperature of the first member decreases and / or when the temperature of the second member increases, heat is transferred from the reaction chamber to the first member, and heat is generated in the reaction chamber.
  • the reaction occurs and the condensable component is consumed, the condensable component in the gaseous state moves from the condensing evaporation chamber to the reaction chamber through the communication section, and the condensable component condensed in the condensing evaporation chamber gains heat and evaporates.
  • heat can be transferred from the second member to the condensation evaporation chamber.
  • any of the electronic devices related to the first and second aspects of the present invention preferably includes at least one of the following features.
  • the communication part includes a filter that allows gas to pass but does not allow substantially solid and liquid to pass through.
  • the chemical heat storage material is molded or packed in the reaction chamber, and the molded or packed (Iii) the condensation evaporation chamber has a substance capable of trapping liquid therein or at least a part of the inner surface of the condensation evaporation chamber.
  • the chemical heat storage material (generally solid or (Solid state) can be effectively prevented from moving from the reaction chamber to the condensing evaporation chamber through the communication section (in the case of the above characteristics (i) and (ii)), and the condensation is condensed in the condensing evaporation chamber. It is possible to effectively prevent the condensable component (liquid) from moving from the condensing evaporation chamber to the reaction chamber through the communication section (in the case of the above characteristics (i) and (iii)), and thereby the performance of the device as a chemical heat pump Can be effectively prevented.
  • the mobile electronic device is used by rotating up and down and / or left and right, etc., so that the solid and liquid in the device may move between the two chambers. It addresses the issues of Conventional chemical heat pumps are installed or used while moving in the horizontal direction, and the above-mentioned problems in the use of electronic equipment have been found by the present inventors (the present invention described later). The same applies to the third gist).
  • an electronic device having a function of suppressing a temperature rise of a heat generating component, Heat-generating parts, Including at least one reaction chamber containing the chemical heat storage material, and conducting heat generated by the heat generating component from the outer surface of the heat generation component to the chemical heat storage material stored in the at least one reaction chamber.
  • An electronic device that suppresses the temperature rise of the heat generating component by absorbing heat is provided.
  • the electronic device includes a first reaction chamber containing a first chemical heat storage material and a second reaction chamber containing a second chemical heat storage material,
  • the first chemical heat storage material and the second chemical heat storage material absorb heat or generate heat due to a reaction involving the same component
  • the first reaction chamber and the second reaction chamber are in communication with each other so that the components can move by a communication portion between them.
  • Heat generated by the heat generating component is conducted to either the first chemical heat storage material in the first reaction chamber or the second chemical heat storage material in the second reaction chamber.
  • the electronic device further includes a condensation evaporation chamber for condensing or evaporating the component,
  • the condensing and evaporating chamber may communicate with the communication portion between the first reaction chamber and the second reaction chamber so that the components can move.
  • the electronic device further includes a condensation evaporation chamber for condensing or evaporating the component
  • the condensing and evaporating chamber may be connected to either the first reaction chamber or the second reaction chamber so that the component can be moved by another communication unit.
  • the electronic device preferably includes at least one of the following features.
  • the first chemical heat storage material is molded or packed in the first reaction chamber, and the minimum cross-sectional dimension of the molded or packed first chemical heat storage material is the communication portion (and preferably exists)
  • the second chemical heat storage material is formed or packed in the second reaction chamber, and the minimum of the second chemical heat storage material formed or packed
  • the cross-sectional dimension is greater than the minimum cross-sectional dimension of the communication (and preferably, if present, another communication)
  • the condensation evaporation chamber has a substance capable of trapping liquid therein or is At least a part of the inner surface of the chamber is made of a substance capable of trapping liquid.
  • the first and / or Alternatively it is possible to effectively prevent the chemical heat storage material (generally solid or solid) in the second reaction chamber from moving from the first and / or second reaction chamber to the condensing evaporation chamber through the communication portion (the above feature (i In the case of ') and (ii')), it is also effective that the condensable component (liquid) condensed in the condensing evaporation chamber moves from the condensing evaporation chamber to the first and / or second reaction chamber through the communication section. It can prevent (in the case of the said characteristics (i ') and (iii')), and can prevent effectively impairing the performance as a chemical heat pump which these members comprise.
  • “chemical heat storage material” means a substance that can store heat by an endothermic reaction.
  • the condensable component component that can be condensed or evaporated in the condensation evaporation chamber
  • the condensation evaporation chamber functions as a phase change chamber (for example, a sublimation chamber) in which the component changes phase.
  • Such a chemical heat storage material preferably exhibits an endothermic reaction at a temperature of 30 to 200 ° C.
  • thermoelectric material selected from the group consisting of zeolite, silica gel, mesoporous silica, and activated carbon instead of the chemical heat storage material throughout the gist of the present invention. Also in this case, the effect corresponding to each heat storage material can be produced.
  • an endothermic reaction is performed by applying a chemical heat pump (a device in which a reaction chamber and a condensation evaporation chamber communicate with each other through a communication unit) in an electronic device including a heat generating component.
  • a chemical heat pump a device in which a reaction chamber and a condensation evaporation chamber communicate with each other through a communication unit
  • the heat generating component generates heat
  • the chemical heat storage material reacts and takes heat from the heat generating component to store heat, thereby suppressing the temperature rise of the heat generating component.
  • at least temporal heat transfer or leveling is realized in the electronic device.
  • a chemical heat pump is applied between the first member and the second member in the electronic device, and the reaction chamber and the condensation evaporation chamber of the chemical heat pump are respectively used as the first member and the second member. Since they are thermally coupled, heat can be transferred from the first member to the second member or from the second member to the first member while storing or radiating heat with the chemical heat storage material, in other words In the electronic equipment, temporal and spatial heat transfer or leveling is realized.
  • a reaction chamber containing a chemical heat storage material is provided, and heat generated by the heat generating component is stored in the reaction chamber from the outer surface of the heat generating component. Conduction to the chemical heat storage material is performed, and the chemical heat storage material absorbs heat (stores heat) by a reaction, thereby suppressing an increase in temperature of the heat-generating component.
  • any of the gist of the present invention since a chemical reaction of a chemical heat storage material can be used, a large heat storage capacity can be obtained. Further, when the heat generated by the heat generating component is reduced or decreased, the heat generated by the heat generating component is not directly transferred to the chamber (usually a condensing evaporation chamber. However, in the case of the third aspect of the present invention, the first reaction is performed. Cold heat (or a negative amount of heat) can be obtained on the side of the chamber and the second reaction chamber, including the case where the heat generated by the heat generating component is not directly conducted. Obtaining such a large heat storage capacity and cold is a remarkable feature of the present invention compared to a heat pipe using latent heat and a heat transport device using sensible heat.
  • a mechanical heat pump and a heat pump using an adsorption or absorption reaction are known.
  • a chemical reaction of a chemical heat storage material unlike a mechanical heat pump, a mechanical component having a large and complicated configuration such as a compressor is not required, and an adsorption or absorption reaction is not required. Therefore, it is possible to store heat in a wide temperature range.
  • the present invention is not limited to the one using a chemical heat storage material, and widely uses other heat storage materials such as at least one heat storage material selected from the group consisting of zeolite, silica gel, mesoporous silica and activated carbon. Can be included. Also in this case, the effect corresponding to each heat storage material can be produced. Further, such a heat storage material can be easily handled and can be simplified in structure (for example, it is not necessary to consider corrosion prevention) as compared with a chemical heat storage material.
  • FIG. 10 is a graph and a table showing changes over time in the temperature of the CPU and reaction chamber in the simulation of FIG. 9. It is a schematic schematic cross section which shows the model used by the simulation in another Example of the electronic device of this invention. It is a schematic model perspective view which shows the manufacture example of CHP used for the electronic device in one embodiment of this invention.
  • the configuration of a chemical heat pump which is a device in which the reaction chamber and the condensation evaporation chamber are in communication with each other through a communication unit, will be described.
  • the chemical heat pump 10 communicates between a reaction chamber 1 containing a chemical heat storage material, a condensation evaporation chamber 3 for condensing or evaporating a condensable component, and these. And a communication unit 5.
  • the chemical reaction of the chemical heat storage material is a driving source of heat transfer by the chemical heat pump 10
  • the condensable component is a working medium of the chemical heat pump 10.
  • the chemical heat storage material any appropriate material can be used as long as heat can be stored by an endothermic reaction.
  • the chemical heat storage material is not limited to this as long as it exhibits a reversible endothermic reaction and exothermic reaction, and any of these reactions generates a condensable component.
  • the condensable component should just be a component which can change a phase between a gaseous state (gas phase) and a liquid state (liquid phase) in use environment.
  • a chemical heat storage material that generates a condensable component by an endothermic reaction.
  • a chemical heat storage material may exhibit a dehydration reaction as an endothermic reaction and a hydration reaction as an exothermic reaction, in which case the condensable component is water.
  • inorganic chemical compound hydrates and inorganic hydroxides can be used as the chemical heat storage material. More specifically, alkaline earth metal compound hydrates and alkaline earth metal hydroxides such as calcium sulfate and calcium chloride hydrates, calcium and magnesium hydroxides, and the like can be given.
  • calcium sulfate hemihydrate exhibits the following endothermic reaction.
  • Q 1 is known to be about 16.7 kJ / mol.
  • the endothermic reaction of calcium sulfate hemihydrate can proceed at about 50 to 150 ° C., for example, although it depends on various conditions. This is a reversible reaction, and the reverse reaction is an exothermic reaction.
  • Calcium sulfate hemihydrate is in a solid state (eg, powder), calcium sulfate is in a solid state, and water is in a gaseous state.
  • calcium chloride hydrate exhibits the following endothermic reaction.
  • n can be the number of molecules to be hydrated, specifically 1, 2, 4, 6 and Q 2 is known to be about 30 to 50 kJ / mol.
  • the endothermic reaction of calcium chloride hydrate can proceed at about 30 to 150 ° C., for example, although it depends on various conditions. This is a reversible reaction, and the reverse reaction is an exothermic reaction.
  • Calcium chloride hydrate is in a solid state (eg, powder), calcium chloride is in a solid state, and water is in a gaseous state.
  • the chemical heat storage material is not limited to the above example, and any appropriate chemical heat storage material may be used (for example, it may be capable of generating ammonia). It can be selected appropriately to show the reaction.
  • the chemical heat storage material that can be used in the present invention preferably exhibits an endothermic reaction at a temperature of 30 to 200 ° C., for example, 40 ° C. or more, more preferably 50 ° C. or more, and 150 ° C. or less. It is preferable that the endothermic reaction is exhibited at a temperature of 120 ° C. or lower.
  • the chemical heat storage material is accommodated in the reaction chamber 1.
  • the chemical heat storage material may form, for example, a solid phase 2a, and a gas phase 2b containing a condensable component may exist in the reaction chamber 1. It is desirable that the pressure in the reaction chamber is substantially equal to the equilibrium pressure of the endothermic reaction and the exothermic reaction under the normal operating temperature environment (when the exothermic component is in a non-exothermic state).
  • a condensable component may be included in the gas phase 4a and the liquid phase 4b.
  • this embodiment is not limited, you may accommodate the component (for example, water of a liquid state) condensed beforehand in the condensation evaporation chamber.
  • the pressure in the condensation evaporation chamber is desirably substantially equal to the saturated vapor pressure of the condensable component (saturated water vapor pressure in the case of water) under the operating temperature environment.
  • the communication part 5 which connects the reaction chamber 1 and the condensation evaporation chamber 3 should just be able to move a condensable component between these. More specifically, the condensable component can move in a gaseous state, and in this case, the communication part 5 may be anything that allows gas to pass through. Such a communication part may be a tubular member for convenience, but is not limited thereto.
  • the communication unit 5 may or may not include a valve (not shown).
  • the communication unit 5 does not include a valve, the device configuration is simplified, and the movement of the condensable component and, consequently, the operation of the chemical heat pump 10 is caused by the progress of the reaction in the reaction chamber 1 and / or the progress of the phase change in the condensation evaporation chamber 3 ( Typically, it depends on the temperature in the reaction chamber 1 and / or the condensation evaporation chamber 3).
  • the communication part 5 is provided with a valve, the movement of the condensable component and hence the operation of the chemical heat pump 10 can be controlled by opening and closing the valve, and the timing of heat transfer, heat generation and cooling can be managed. Thermal design becomes possible.
  • Such a chemical heat pump 10 is a closed system in which no substance enters or exits, but heat can enter and exit at least in the reaction chamber 1, preferably in the reaction chamber 1 and the condensation evaporation chamber 3.
  • each of the reaction chamber 1 and preferably the condensation evaporation chamber 3 can be at least partially made of a heat conductive material.
  • the heat conductive material is not particularly limited, and may be a good heat conductor such as metal (copper and the like), oxide (alumina and the like), nitride (aluminum nitride and the like), and carbon.
  • the chemical heat pump 10 used in the electronic apparatus of the present embodiment preferably includes any one of the following features alone or in combination of two or more.
  • the communication unit 5 includes a filter that allows gas to pass but does not substantially allow solids and liquids to pass.
  • a chemical heat storage material is molded or packed, and the molding is performed. Or the minimum cross-sectional dimension of the packed chemical heat storage material is larger than the minimum cross-sectional dimension of the communication part 5 (iii)
  • the condensing and evaporating chamber 3 has a substance capable of trapping liquid inside, or the condensing evaporating chamber 3 At least a part of the surface is made of a substance that can trap liquid
  • the communication unit 5 includes a filter through which gas can pass but solids and liquids cannot substantially pass, so that the electronic device 20 rotates up and down and / or left and right. Even if it exists, it can prevent effectively that the chemical heat storage material (generally solid or solid form) in the reaction chamber 1 moves from the reaction chamber 1 to the condensation evaporation chamber 3 through the communication part 5, and the condensation evaporation chamber It is possible to effectively prevent the condensable component (liquid) condensed in 3 from moving from the condensation evaporation chamber 3 to the reaction chamber 1 through the connecting portion 5.
  • the chemical heat storage material generally solid or solid form
  • Such a filter may be any filter that allows gas to pass but does not substantially allow solids and liquids to pass.
  • solid and liquid are substantially impermeable means that a small amount of solid and liquid may be passed without impairing the performance of the chemical heat pump.
  • the filter preferably allows a small amount of liquid to pass through but does not allow solids to pass through, and more preferably prevents both solids and liquids from passing through.
  • filter, moisture permeability (JIS L1099 (B method, generally depends on the B-1 method)) is 1000g / m 2 / 24h or more, preferably particularly 10000g / m 2 / 24h or more
  • the solid non-passability is not limited as long as the chemical heat storage material does not pass through, and can be appropriately selected according to the dimensions of the chemical heat storage material to be used.
  • the waterproof property (according to JIS L1092 (Method A)) is preferably 1000 mm or more, particularly preferably 10,000 mm or more.
  • a film obtained by stretching polytetrafluoroethylene can be used, and this may be combined with a polyurethane polymer as necessary.
  • a film is commercially available, for example, under the trade name “Gore-Tex” (registered trademark).
  • Gore-Tex registered trademark
  • what gave the polyurethane coating to the fiber fabric which carried out the water repellent process can also be used.
  • Such a polyurethane coating fabric is commercially available, for example, from Toray Industries, Inc. under the trade name “ENTANT GII” (registered trademark) XT.
  • the present invention is not limited to these examples, and any suitable structure having pores with dimensions smaller than water molecules and larger than water vapor molecules can be applied to the filter.
  • the filter can be provided in the communication section 5 in any manner as long as gas can pass through but solid and liquid can pass through substantially.
  • the filter may be arranged, for example, so as to fill at least a part of the internal space of the communication part 5 (preferably in the vicinity of the reaction chamber 1), and the opening of the communication part 5 (preferably on the reaction chamber 1 side). May be arranged so as to cover the opening).
  • the chemical heat storage material is molded or packed in the reaction chamber 1, and the minimum cross-sectional dimension of the molded or packed chemical heat storage material is larger than the minimum cross-sectional dimension of the connecting portion 5, so that the electronic device Even when 20 is rotated up and down and / or left and right, the chemical heat storage material (generally solid or solid) in the reaction chamber 1 moves from the reaction chamber 1 to the condensation and evaporation chamber 3 through the communication portion 5. Can be effectively prevented.
  • the chemical heat storage material may be molded or packed by any appropriate method. If the chemical heat storage material is a hydrate of an inorganic compound (such as a hydrate of calcium sulfate or calcium chloride), it will solidify by hydration of the inorganic compound. Is possible. In addition, it is possible to mix the chemical heat storage material with a resin material and a solvent, if necessary, and mold the obtained composition with a mold press or the like (note that the resin material and the solvent if present are Part, preferably most, can be removed during molding). Alternatively, when the chemical heat storage material is a granular material, a mesh, net, fabric (for example, woven or non-woven fabric), film, etc.
  • the chemical heat storage material is a granular material, a mesh, net, fabric (for example, woven or non-woven fabric), film, etc.
  • the packaging material may be made of, for example, metal, natural or synthetic fiber, polymer material or the like.
  • the chemical heat storage material molded or packed in this way has a minimum cross-sectional dimension that is larger than the minimum cross-sectional dimension of the connecting portion 5.
  • the minimum cross-sectional dimension of the chemical heat storage material molded or packaged refers to the minimum cross-sectional dimension among arbitrary cross-sectional dimensions of the chemical heat storage material molded or packaged.
  • the minimum cross-sectional dimension of the connecting part 5 refers to the smallest cross-sectional dimension among arbitrary cross-sectional dimensions of the internal space of the connecting part 5, and normally refers to the dimension of the narrowest part of the connecting part 5.
  • the maximum dimension when the projected area is the smallest is the cross-sectional dimension perpendicular to the center line of the internal space of the connecting portion 5. It can also be said that it is larger than the minimum cross-sectional dimension.
  • the molded or packed chemical heat storage material has a size that does not pass through the connecting portion 5. For example, if the opening dimension of the reaction chamber 1 side opening of the communication part 5 (and possibly the condensation evaporation chamber 3 side opening) is smaller than the minimum cross-sectional dimension of the molded or packaged chemical heat storage material, The part between both opening parts of the connection part 5 may be enlarged.
  • the chemical heat storage material formed or packed may be present in the reaction chamber 1, but for quick and efficient movement of heat, the chemical heat storage material is disposed so as to contact a position where heat from the heat generating component 11 is well transmitted. It is preferred that
  • the condensation evaporation chamber 3 has a substance capable of trapping liquid inside, or at least a part of the inner surface of the condensation evaporation chamber 3 is made of a substance capable of trapping liquid. Even when the electronic device 20 is rotated up and down and / or left and right, the condensable component (liquid) condensed in the condensation evaporation chamber 3 moves from the condensation evaporation chamber 3 to the reaction chamber 1 through the communication unit 5. Can be effectively prevented.
  • Such a substance may be any substance that can reversibly trap a liquid. More specifically, a porous material such as a porous material made of ceramics, zeolite, metal or the like can be used, but is not limited thereto.
  • the substance capable of trapping the liquid may be accommodated in the condensation evaporation chamber 3 or may constitute at least a part of the inner surface of the condensation evaporation chamber 3.
  • a substance capable of trapping a liquid prepared in advance may be arranged in the condensation evaporation chamber 3.
  • ceramics or zeolite may be synthesized on the inner surface of the wall material of the condensation evaporation chamber 3 by, for example, hydrothermal synthesis to cover the surface.
  • the substance capable of trapping the liquid may be present in the condensation evaporation chamber 3 or on the inner surface thereof.
  • the substance to the heat conductive member 13 may be used. It is preferable that it exists in the position where heat is transmitted well.
  • the chemical heat pump 10 having such a configuration is not limited to this embodiment, but can be manufactured as follows as an example.
  • metal plates 41a and 41b are prepared. These metal plates 41a and 41b may preferably be made of a corrosion-resistant metal, for example, stainless steel such as SUS, but are not limited thereto.
  • the thickness of the metal plates 41a and 41b can be, for example, 0.01 mm or more, particularly 0.05 to 0.5 mm.
  • the material and thickness of the metal plates 41a and 41b may be the same or different.
  • two convex portions 43a corresponding to the reaction chamber 1 and the condensation evaporation chamber 3 are formed on one metal plate 41a.
  • the dimensions of the protrusions 43a can be appropriately determined according to the dimensions desired for the reaction chamber 1 and the condensation evaporation chamber 3, and the height of the protrusions 43a is, for example, 0.1 to 100 mm, particularly 0.3 to It can be 10 mm and can be the same or different.
  • a recess 43b corresponding to the connecting portion 3 is formed in the other metal plate 42b.
  • the size of the concave portion 43b may be any size as long as it forms the connecting portion 5 that communicates between the reaction chamber 1 and the condensing evaporation chamber 3, and the condensable component can move inside the concave portion 43b.
  • it may be 0.1 to 100 mm, particularly 0.3 to 10 mm.
  • Arbitrary appropriate methods may be applied to the formation of the concavo-convex shapes 43a and 43b on the metal plates 41a and 41b. For example, methods such as drawing and press forming can be used.
  • the chemical heat storage material 45 is arrange
  • the chemical heat storage material 45 is generally solid or solid, and may be, for example, granular or sheet-like.
  • the chemical heat storage material 45 is preferably molded or packed in advance as described above, but this is not essential.
  • a substance for example, a porous material, not shown
  • a substance capable of trapping the liquid is disposed on the side corresponding to the condensation evaporation chamber 3 of the two convex portions 43a of the metal plate 41a.
  • the inner surface of the two convex portions 43a corresponding to the condensation evaporation chamber 3 may be covered with a substance capable of trapping liquid as described above.
  • a filter 47 that allows the gas to pass through the recess 43 of the metal plate 41b but does not allow the solid and liquid to pass through substantially.
  • this is not essential.
  • these metal plates 41a and 41b are overlapped so that the convex portion 43a and the concave portion 43b together form an internal space. Thereby, the outer peripheral flat surfaces of the metal plates 41a and 41b are in close contact with each other.
  • superposed is airtightly sealed.
  • Hermetic sealing is performed at a desired pressure inside the chemical heat pump, generally under reduced pressure (depending on the chemical heat storage material used), for example, 0.1 to 100,000 Pa, particularly 1.0 to 10000 Pa (absolute pressure). It is preferable to carry out. Any appropriate method may be applied to the hermetic sealing, and for example, laser welding, arc welding, resistance welding, gas welding, brazing, and the like can be used. After the hermetic sealing, unnecessary edge portions of the outer peripheral portion 49 may be appropriately removed by punching or the like.
  • the chemical heat pump 10 can be manufactured as described above. However, the manufacturing method described above is merely an example, and the chemical heat pump applied to the present invention can be manufactured according to any appropriate method.
  • the chemical heat pump 10 having the above-described configuration is incorporated into the electronic device 20 including the heat generating component 11.
  • the electronic device 20 only needs to include at least one electronic component as the heat generating component 11.
  • the electronic device 20 is configured such that an electronic circuit board on which at least one electronic component is mounted on a board is accommodated in a housing (or an exterior).
  • the chemical heat pump 10 is provided in the electronic device 20 (more specifically, in the housing).
  • the chemical heat pump 10 can be understood as a means for suppressing a temperature rise of the heat generating component 11 (or cooling the heat generating component).
  • the heat generating component 11 may be an electronic component that is lost when heat is partially converted into heat.
  • Examples of the heat generating component 11 include an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR); a light emitting diode (LED), Examples include, but are not limited to, light emitting elements such as incandescent bulbs and semiconductor lasers; field effect transistors (FETs) and the like.
  • IC integrated circuit
  • CPU central processing unit
  • PMIC power management IC
  • PA power amplifier
  • Ts field effect transistors
  • FETs field effect transistors
  • the reaction chamber 1 of the chemical heat pump 10 is disposed so as to be thermally coupled to the heat generating component 11.
  • the heat generating component 11 that is thermally coupled to the reaction chamber 1 may be one or more.
  • the condensation evaporation chamber 3 of the chemical heat pump 10 is not essential to the present embodiment, but may be disposed so as to be thermally coupled to any appropriate heat conductive member 13 present in the electronic device 20.
  • the heat conductive member 13 only needs to have a temperature lower than the temperature of the heat generating component 11 when the heat generating component 11 generates heat.
  • Examples of the heat conductive member 13 include, but are not limited to, a casing of an electronic device, a battery (eg, a lithium ion battery, an alkaline battery, a nickel metal hydride battery), a substrate, and a display.
  • the two members being “thermally coupled” means that they are combined so that heat can move between these members.
  • the thermal coupling may be heat conduction by direct or indirect contact, non-contact heat radiation, or a heat medium or a heat conductive member.
  • a thermally conductive adhesive layer for example, a layer obtained by using an adhesive whose thermal conductivity is increased by a metal filler, etc.
  • the contact is preferably made via a member made of a heat conductive material (for example, a heat transfer plate made of metal or a thermal sheet).
  • the electronic device 20 of the present embodiment configured as described above can be used in the following two modes.
  • Second mode energy is input to the heat generating component 11 to generate heat, and when the temperature of the heat generating component 11 rises, heat is transmitted to the reaction chamber 1 that is thermally coupled thereto. Specifically, the heat generated by the heat generating component 11 is conducted from the outer surface of the heat generating component 11 to a chemical heat storage material accommodated in the reaction chamber 1 through, for example, a portion made of a heat conductive material in the reaction chamber 1.
  • the endothermic reaction (heat storage) of the chemical heat storage material proceeds in the reaction chamber to generate a condensable component (that is, the partial pressure of the condensable component in the reaction chamber increases). ).
  • heat is deprived from the heat generating component, and an increase in the temperature of the heat generating component (typically, the temperature of the outer surface of the heat generating component, and so on) is suppressed.
  • the condensable component generated in the reaction chamber 1 moves from the reaction chamber 1 to the condensing evaporation chamber 3 through the communication portion 5 in a gaseous state (vapor). Such movement can occur naturally due to the diffusion phenomenon, but is not limited thereto.
  • the communication unit 5 includes a valve
  • the movement of the condensable component can be controlled by opening and closing the valve.
  • the condensable components condense and generate heat (latent heat).
  • the condensable component is water
  • the gas state water changes to liquid state water by the following reaction.
  • Q 3 is known to be 20.9 kJ / mol.
  • the temperature in the condensation evaporation chamber can be increased by the generated heat.
  • the pressure in the condensation evaporation chamber is set in advance (in a non-heat generation state, for example, when the heat conductive member 13 is thermally coupled to the condensation evaporation chamber 3, It is preferable to set the saturated vapor pressure of the condensable component (at a temperature that can be set as appropriate) and keep the condensable component in a gas-liquid equilibrium state because condensation can proceed rapidly.
  • the heat generated in the condensation evaporation chamber 3 is, for example, the heat of the condensation evaporation chamber 3. It is transmitted to the heat conductive member 13 through a portion made of a conductive material.
  • the temperature increase of the heat generating component 11 can be suppressed (or the heat generating component is cooled) using the endothermic reaction (heat storage) of the chemical heat storage material.
  • the condensing and evaporating chamber 3 is thermally coupled to the housing of the electronic device 20 as the heat conductive member 13, the heat is stored in the chemical heat storage material, and the heat generating component 11 starts the reaction chamber. Since the heat emitted from the condensing and evaporating chamber 3 to the heat conductive member 13 can be made smaller (the temperature level can be changed) than the heat entering the inside 1, the temperature of the housing can be maintained at a relatively low temperature. Thereby, the temperature control of the heat generating component 11 and the electronic device 20 as a whole becomes possible.
  • the condensation evaporation chamber 3 when the condensation evaporation chamber 3 is thermally coupled to the heat conductive member 13, the same action (mechanism) as described above can be obtained by lowering the temperature of the heat conductive member 13. Heat can be removed from the heat generating component 11, and the temperature rise of the heat generating component 11 can be suppressed and further reduced.
  • the heat generating component 11 and the heat conductive member 13 can be grasped as a first member thermally coupled to the reaction chamber 1 and a second member thermally coupled to the condensation evaporation chamber 3, respectively.
  • the first member and the second member are not limited to these, and can be thermally designed by applying an arbitrary member.
  • the condensable component in the gaseous state moves from the condensing evaporation chamber 3 to the reaction chamber 1 through the communication portion 5.
  • Such movement may occur naturally due to a diffusion phenomenon, but is not limited thereto.
  • the communication unit 5 includes a valve, the movement of the condensable component can be controlled by opening and closing the valve.
  • the condensable component of the liquid phase gains heat (latent heat) and evaporates.
  • the temperature in the condensing and evaporating chamber 3 can be lowered by taking heat away.
  • the condensation evaporation chamber 3 when the condensation evaporation chamber 3 is thermally coupled to the heat conductive member 13, the heat conductive material of the condensation evaporation chamber 3, for example, is extracted from the heat conductive member 13. It is transmitted to the condensing evaporation chamber 3 through the part consisting of In other words, cold heat can be obtained from the condensation evaporation chamber 3 to the heat conductive member 13.
  • the second mode it is possible to suppress the temperature drop of the heat generating component 11 by using the exothermic reaction (heat radiation) of the chemical heat storage material.
  • the condensation evaporation chamber 3 is thermally coupled as a heat conductive member 13 to a housing of an electronic device, a battery exterior, or the like, the temperature of the housing or the battery is decreased (or the housing or The battery can also be cooled). Thereby, the temperature control of the heat generating component 11 and the electronic device 20 as a whole becomes possible.
  • the condensation evaporation chamber 3 when the condensation evaporation chamber 3 is thermally coupled to the heat conductive member 13, the same action (mechanism) as described above can be obtained by increasing the temperature of the heat conductive member 13.
  • the temperature of the heat generating component 11 can be raised.
  • the heat generating component 11 and the heat conductive member 13 can be grasped as a first member that is thermally coupled to the reaction chamber and a second member that is thermally coupled to the condensation evaporation chamber, respectively.
  • the member and the second member are not limited to these, and can be thermally designed by applying any member. For example, in the second mode, it is possible to suppress the temperature rise of the second member (or cool the second member).
  • the electronic device of the present invention does not require extra energy input for the purpose of suppressing the temperature rise of the heat-generating component, unlike the conventional heat dissipation method using a cooling fan, and is energy efficient. Excellent electronic equipment is realized.
  • the electronic device of the present invention does not dissipate heat by convection (generates an air flow and exhausts to the outside) unlike the conventional heat dissipation method using a cooling fan, and the casing of the electronic device is sealed (closed). System).
  • the electronic device of the present invention stores heat in the chemical heat storage material compared to the conventional heat dissipation method using a heat pipe, it can obtain a large heat storage capacity and can obtain a high heat dissipation capability.
  • the condensing evaporation chamber is thermally coupled to the heat conductive member, in the first mode (heat storage process), the heat conductive member from the condensing evaporation chamber rather than the heat entering the reaction chamber from the heat generating component.
  • the housing of the electronic device is used as a thermally conductive member that is thermally coupled to the condensing evaporation chamber, the temperature of the housing can be maintained at a relatively low temperature (for example, a surface temperature of 55 ° C. or lower), and the housing can be maintained.
  • the adverse effects due to temperature on other parts in the body for example, a lithium ion battery
  • the exterior of the battery is used as a thermally conductive member that is thermally coupled to the condensing evaporation chamber
  • the life of the battery (for example, a lithium ion battery in which a decrease in battery capacity due to a high use environment temperature is a problem) Can be extended.
  • a substrate is used as a heat conductive member that is thermally coupled to the condensation evaporation chamber, it is possible to prevent the reliability of other electronic components mounted on the substrate from being impaired.
  • the first member thermally coupled to the reaction chamber and the second member thermally coupled to the condensation evaporation chamber are thermally designed by applying an arbitrary member. In accordance with the specific specifications of the electronic device, a thermally optimal electronic component layout becomes possible.
  • the number of chemical heat pumps that can be incorporated into an electronic device the number of chemical heat pumps used for one heat-generating component, the number and arrangement of reaction chambers, condensation evaporation chambers, and communication parts existing in one chemical heat pump, etc. Can be appropriately selected.
  • the condensation evaporation chamber may be surrounded by the ambient atmosphere in the casing (so-called air insulation, etc.).
  • the condensing and evaporating chamber may be substantially composed of a material having low heat conductivity or heat insulation without having a portion made of a heat conductive material.
  • the condensation evaporation chamber itself may be eliminated, and in this case as well, it is possible to some extent to suppress the temperature rise of the heat generating component by the endothermic reaction of the chemical heat storage material.
  • an electronic device 21 includes a heat generating component 11 and at least one reaction chamber 1 containing a chemical heat storage material (for example, which can form the solid phase 2a). What is necessary is just to have at least.
  • the heat generated by the heat generating component 11 is conducted from the outer surface of the heat generating component 11 to the chemical heat storage material accommodated in at least one reaction chamber 1, and the chemical heat storage material absorbs heat by the reaction, thereby Temperature rise can be suppressed.
  • the exothermic component 11 can be arranged in any manner as long as it is thermally coupled to the reaction chamber 1.
  • a first reaction chamber 1a containing a first chemical heat storage material and a second reaction chamber 1b containing a second chemical heat storage material are provided in the electronic device 22 .
  • the first chemical heat storage material and the second chemical heat storage material are related to the same component (a component that serves as a working medium, for example, a condensable component, but is not limited to this and may be in a gaseous state). Any material that absorbs heat or generates heat by any reaction may be used.
  • the first chemical heat storage material and the second chemical heat storage material only need to have different reaction equilibrium states.
  • the first chemical heat storage material and the second chemical heat storage material may be appropriately selected from the chemical heat storage materials as exemplified above.
  • one of the first chemical heat storage material and the second chemical heat storage material is a half water of calcium sulfate.
  • a hydrate of calcium chloride may be used as the hydrate, and water may be involved in the reversible reaction of these endotherms and exotherms as the same component, but is not limited thereto.
  • the first reaction chamber 1a and the second reaction chamber 1b are in communication with each other so that the component (working medium) can be moved by the connecting portion 5a therebetween, and the heat generated by the heat generating component (not shown) is the first.
  • reaction chamber 1a It may be conducted to either the first chemical heat storage material in the reaction chamber 1a or the second chemical heat storage material in the second reaction chamber 1b.
  • heat generated by a heat generating component (not shown) can be selectively or switchably conducted to one of the first reaction chamber 1a and the second reaction chamber 1b, the heat generating component, the first reaction chamber 1a, and the second reaction chamber 1b
  • the arrangement of the reaction chamber 1b is not particularly limited.
  • the condensation evaporation chamber 3a for condensing or evaporating said mobile component may be further included, and the condensation evaporation chamber 3a is the 1st reaction chamber 1a.
  • the communication unit 5b communicates with the communication unit 5a between the first reaction chamber 1b and the second reaction chamber 1b.
  • the condensing and evaporating chamber 3a is arranged in parallel with the two reaction chambers 1a and 1b.
  • the electronic device 24 shown in FIG. 3 (c) may further include a condensation evaporation chamber 3b for condensing or evaporating the mobile component, and the condensation evaporation chamber 3b is the first reaction chamber 1a. Further, either one of the second reaction chambers 1b (second reaction chamber 1b in FIG. 3C) communicates with another communication unit 5c.
  • the condensing and evaporating chamber 3b is arranged in series with the two reaction chambers 1a and 1b.
  • the mobile component is a condensable component (that is, a component capable of phase change between a gas state (gas phase) and a liquid state (liquid phase)). It is not limited to this.
  • the mobile component may be a component capable of phase change between a gas state (gas phase) and a solid state (solid phase), in which case the condensation evaporation chambers 3a and 3b are understood as sublimation chambers. Can be done.
  • FIG. 3 illustrates another embodiment of the present invention by way of example, and the number of reaction chambers, the number of condensing evaporation chambers or sublimation chambers present in some cases, and the arrangement thereof can be selected as appropriate. It is.
  • the electronic device of another embodiment illustrated in FIG. 3 preferably includes any one of the following features alone or in combination of two or more.
  • a first chemical heat storage material is molded or packaged in the first reaction chamber 1a, and the molded or packaged gas is allowed to pass through, but the solid and liquid are not substantially allowed to pass through.
  • the minimum cross-sectional dimension of the first chemical heat storage material formed is larger than the minimum cross-sectional dimension of the communication portion 5a, and / or the second chemical heat storage material is molded or packed in the second reaction chamber 1b.
  • the minimum cross-sectional dimension of the second chemical heat storage material formed is greater than the minimum cross-sectional dimension of the communication part 5a (and preferably another communication part 5c, if present) (iii ') the condensation evaporation chamber 3a 3b is that the liquid has therein a trappable material, or condensation evaporation chamber 3a, at least a portion of the inner surface of the 3b, are composed of liquid from the trap substance
  • all the electronic devices in the above-described embodiments use chemical heat storage materials, but instead use other heat storage materials that generate a phase changeable component with an endothermic phenomenon. Also good.
  • the phase changeable component becomes the working medium of the device, and the component can move in a gaseous state from the reaction chamber, and the condensation evaporation chamber or the sublimation chamber described above is a chamber in which the phase changes (that is, the phase change chamber). ) And may function as a condensing evaporation chamber or a sublimation chamber.
  • Such other heat storage material can be appropriately selected according to the use of the electronic device of the present invention (for example, so as to exhibit an endothermic phenomenon by the heat generated by the heat-generating component).
  • Other heat storage materials like chemical heat storage materials, preferably exhibit an endothermic phenomenon at a temperature of, for example, 30 to 200 ° C., particularly 40 ° C. or more, further 50 ° C. or more, 150 ° C. or less, and further 120 ° C. It is preferable to exhibit an endothermic phenomenon at the following temperatures.
  • heat storage materials examples include at least one heat storage material selected from the group consisting of zeolite, silica gel, mesoporous silica, and activated carbon (hereinafter, also simply referred to as “zeolite etc.”). Any of these can, for example, reversibly adsorb and desorb water (or hydration reaction and dehydration reaction, and so on), and exhibit an endothermic phenomenon upon desorption of water.
  • Z represents the composition of zeolite or the like as a representative, and x can take various values depending on the composition.
  • Q 4 can be, for example, about 30-80 kJ / mol for zeolite, depending on the specific composition.
  • Such desorption of water proceeds depending on various conditions, for example, about 50 to 150 ° C. for zeolite, about 5 to 150 ° C. for silica gel, about 5 to 150 ° C. for mesoporous silica, and about 5 to 150 ° C. for activated carbon. Can do.
  • the zeolite is a so-called zeolite structure, that is, a crystalline hydrous aluminosilicate having a network structure in which SiO 4 tetrahedron and AlO 4 tetrahedron share apex oxygen and are connected in three dimensions as a basic skeleton.
  • Zeolites can usually be represented by the general formula: (M 1, M 2 1/2) m (Al m Si n O 2 (m + n)) ⁇ xH 2 O (n ⁇ m)
  • M 1 is a monovalent cation such as Li + , Na + , or K +
  • M 2 is a divalent cation such as Ca 2+ , Mg 2+ , or Ba 2+ .
  • Silica gel is a three-dimensional structure of colloidal silica, and has a pore diameter of several nm to several tens of nm, a specific surface area of 5 to 1000 m / g, and can control the properties of the porous material over a wide range. Moreover, the primary particle surface of silica gel is covered with silanol, and polar molecules (such as water) are selectively adsorbed under the influence of silanol.
  • Mesoporous silica is a substance having uniform and regular pores made of silicon dioxide and having a pore diameter of about 2 to 10 nm.
  • Activated carbon is a “porous carbonaceous substance having pores”, which has a large specific surface area and adsorption capacity.
  • the basic skeleton is a two-dimensional lattice planar structure in which carbon atoms are connected at an angle of 120 °.
  • the two-dimensional lattice is irregularly stacked to form a crystal lattice, and this crystal lattice is randomly connected to be activated carbon.
  • the voids between the crystal lattices are activated carbon pores, and water is adsorbed into the pores. .
  • zeolites and the like are preferably preliminarily adsorbed with water when producing the electronic device of the present invention.
  • water that is a condensable component serves as a working medium, and therefore, the embodiment using the above-described chemical heat storage material (produces water as a condensable component, The same function and effect can be obtained by the same mechanism as that of the working medium.
  • the electronic device of the present invention can be suitably used as a mobile electronic device such as a smart phone, a mobile phone, a tablet terminal, a laptop computer, a portable game machine, a portable music player, or a digital camera.
  • a mobile electronic device such as a smart phone, a mobile phone, a tablet terminal, a laptop computer, a portable game machine, a portable music player, or a digital camera.
  • CHP chemical heat pump
  • the electronic device is a laptop PC (personal computer) 20a
  • the heat generating component is CPU 11a.
  • the chemical heat pump 10 includes a reaction chamber 1, a condensation evaporation chamber 3, and a communication unit 5 that communicates between them.
  • the reaction chamber 1 is thermally coupled to the CPU 11a.
  • the reaction chamber 1 may be bonded to the CPU 11a using an adhesive whose thermal conductivity is increased with a metal filler or the like, but is not limited thereto.
  • the condensation evaporation chamber 3 is not thermally coupled to either the lithium ion battery 13a or the housing 13b, and is thermally insulated.
  • the condensation evaporation chamber 3 is preferably insulated from the CPU 11a (heat generating component).
  • the CPU 11a when the CPU 11a operates to generate heat and reaches a certain high temperature (depending on the chemical heat storage material to be used), heat is taken from the CPU 11a and the endothermic reaction of the chemical heat storage material in the reaction chamber 1 proceeds (at this time).
  • the generated condensable component can be condensed in the condensing evaporation chamber 3), thereby reducing the temperature rise of the CPU 11 a, preferably stabilizing the temperature of the CPU 11 a, and maintaining the CPU 11 a below the heat resistant temperature.
  • the exothermic reaction of the chemical heat storage material proceeds in the reaction chamber 1 to give heat to the CPU 11a (condensation at this time).
  • the condensable component can evaporate), whereby the temperature of the CPU 11 a can slightly increase. That is, the chemical heat pump 10 takes heat from the CPU 11a when the CPU 11a operates at a high temperature, and applies heat to the CPU 11a when the CPU 11a operates at a low temperature.
  • the electronic device is a laptop PC 20a
  • the heat generating component is a CPU 11a.
  • the chemical heat pump 10 includes a reaction chamber 1, a condensation evaporation chamber 3, and a communication unit 5 that communicates between them.
  • the reaction chamber 1 is thermally coupled to the CPU 11a.
  • the condensation evaporation chamber 3 is thermally coupled to the housing 13b.
  • the reaction chamber 1 and the condensation / evaporation chamber 3 may be bonded to the CPU 11a and the housing 13b using an adhesive whose thermal conductivity is increased with a metal filler or the like, but is not limited thereto.
  • the exothermic reaction of the chemical heat storage material proceeds in the reaction chamber 1 and the condensation evaporation chamber 3 starts from the housing 13b.
  • the condensable component evaporates, and as a result, the temperature of the CPU 11a slightly increases, the temperature of the housing 13b decreases, and can be maintained at a relatively low temperature (for example, 55 ° C. or lower).
  • the chemical heat pump 10 draws heat from the CPU 11a and releases the heat to the housing 13b when the CPU 11a operates at a high temperature, and gives heat to the CPU 11a and removes (cools) the heat from the housing 13b when operating at a low temperature.
  • the electronic device is a smartphone 20b
  • the heat generating component is a power management IC 11b.
  • the chemical heat pump 10 includes a reaction chamber 1, a condensation evaporation chamber 3, and a communication unit 5 that communicates between them.
  • the reaction chamber 1 is thermally coupled to the power management IC 11b.
  • the condensation evaporation chamber 3 is thermally coupled to the lithium ion battery 13a.
  • the reaction chamber 1 and the condensation evaporation chamber 3 may be bonded to the power management IC 11b and the lithium ion battery 13a, respectively, using an adhesive whose thermal conductivity is increased with a metal filler or the like, but is not limited thereto.
  • the power management IC 11b when the power management IC 11b operates to generate heat and reaches a certain high temperature (depending on the chemical heat storage material used), the heat management IC 11b takes heat away and the endothermic reaction of the chemical heat storage material in the reaction chamber 1 proceeds. Then, the condensable component generated by this endothermic reaction is condensed in the condensing evaporation chamber 3 to give heat to the lithium ion battery 13a, thereby reducing the temperature rise of the power management IC 11b, and preferably the temperature of the power management IC 11b is increased. By stabilizing, the power management IC 11b can be maintained at a heat resistant temperature or lower (for example, 85 ° C. or lower).
  • the exothermic reaction of the chemical heat storage material proceeds in the reaction chamber 1 and in the condensation evaporation chamber 3
  • the heat is removed from the lithium ion battery 13a and the condensable component evaporates.
  • the temperature of the power management IC 11b slightly increases, the temperature of the lithium ion battery 13a decreases, and the life of the lithium ion battery 13a does not decrease.
  • the temperature can be maintained below the temperature (for example, 40 ° C. or below).
  • the chemical heat pump 10 takes heat from the power management IC 11b when the power management IC 11b operates at a high temperature and releases heat to the lithium ion battery 13a, and applies heat to the power management IC 11b and removes heat from the lithium ion battery 13a when operated at a low temperature. (Cooling).
  • the electronic device is a smartphone 20b
  • the heat generating components are two power amplifiers 11c and 11c ′.
  • the first chemical heat pump 10 includes a reaction chamber 1, a condensation evaporation chamber 3, and a communication unit 5 that communicates between them.
  • the second chemical heat pump 10 ′ includes a reaction chamber 1 ′, a condensation evaporation chamber 3 ′, and a communication portion 5 ′ communicating between them.
  • Reaction chamber 1 is thermally coupled to power amplifier 11c.
  • the reaction chamber 1 ′ is thermally coupled to the power amplifier 11c ′.
  • Condensation evaporation chambers 3 and 3 ′ are thermally coupled to housing 13b.
  • reaction chamber 1 and the condensation evaporation chamber 3 are bonded to the power amplifier 11c and the housing 13b, respectively, using an adhesive whose thermal conductivity is increased with a metal filler or the like, and the reaction chamber 1 ′ and the condensation evaporation chamber 3 ′ are bonded to each other.
  • the power amplifier 11c ′ and the housing 13b may be bonded to each other, but are not limited thereto.
  • the power amplifier 11c when the band 1 is used, the power amplifier 11c operates to generate heat, and when the temperature reaches a certain level (depending on the chemical heat storage material used), the power amplifier 11c takes heat away from the chemical heat storage material in the reaction chamber 1. An endothermic reaction proceeds, and the condensable component generated by the endothermic reaction condenses in the condensing evaporation chamber 3 to give heat to the housing 13b, thereby reducing the temperature rise of the power amplifier 11c, and preferably the power amplifier 11c.
  • the power amplifier 11c can be maintained at a heat resistant temperature or lower (for example, 85 ° C. or lower). Thereafter, the band 1 is switched to the band 2 to stop the operation of the power amplifier 11c and operate the power amplifier 11c '.
  • the power amplifier 11c ′ operates to generate heat and reaches a certain high temperature (depending on the chemical heat storage material to be used)
  • heat is taken from the power amplifier 11c ′ and the endothermic reaction of the chemical heat storage material in the reaction chamber 1 ′ proceeds.
  • the condensable component generated by the endothermic reaction is condensed in the condensing evaporation chamber 3 ′ to give heat to the housing 13b, thereby reducing the temperature rise of the power amplifier 11c ′, and preferably the power amplifier 11c ′.
  • the temperature can be stabilized and the power amplifier 11c ′ can be maintained at a heat resistant temperature or lower (for example, 85 ° C. or lower).
  • the temperature of the power amplifier 11c is lowered to a certain low temperature, the exothermic reaction of the chemical heat storage material proceeds in the reaction chamber 1, and the condensable component evaporates by removing heat from the housing 13b in the condensation evaporation chamber 3.
  • the temperature of the power amplifier 11c slightly increases, and the temperature of the housing 13b decreases.
  • casing 13b can be maintained at comparatively low temperature (for example, 55 degrees C or less). That is, the chemical heat pumps 10 and 10 ′ take heat from the power amplifier 11c or 11c ′ during high-temperature operation by switching between the band 1 and the band 2, and give heat to the stopped power amplifier 11c or 11c ′.
  • Simulation model 1 Based on the model simulating the configuration of an existing smartphone, first, the suitability of the analysis method (including various conditions) used in the simulation is verified in the case of a CPU heating value of 1.8 W (equal to the measured heating value). In addition, according to this analysis method, a simulation was performed in the case of a CPU heat generation amount of 7 W as a comparative example.
  • an electronic device model 30 assumed in this simulation model includes an electronic circuit board 22 having a CPU 21a and a power management IC (PMIC) 21b mounted on the upper surface and the lower surface, a battery 24, and a camera unit 25, respectively.
  • PMIC power management IC
  • a display 26 is provided on the upper surface of the chassis 23a.
  • the camera unit 25 contacts the electronic circuit board 22, the chassis 23a, and the battery cover 23b.
  • the battery 24 is in contact with the chassis 23a and the battery cover 23b.
  • the electronic circuit board 22 does not contact the battery 24 but contacts the battery cover 23b (the contact portion is not shown).
  • the chassis 23 a comes into contact with the display 26, and the display 26 is exposed to the ambient atmosphere (air) 29.
  • a part of the battery cover 23 b comes into contact with the human body 28, and the remaining part is exposed to the ambient atmosphere (air) 29.
  • an assumed route through which heat can enter and exit is as indicated by double arrows in FIG.
  • the initial conditions and boundary conditions in this simulation were as follows.
  • Heat transfer between the display 26 and the battery cover 23b and the ambient atmosphere (atmosphere) 29 is assumed to be convective heat transfer and radiant heat transfer. In addition, unless otherwise specified, heat transfer is assumed to be conduction heat transfer.
  • Simulation model 2 A simulation was performed on one model of the embodiment of the electronic apparatus of the present invention. This model is similar to the simulation model 1 described above, but is greatly different in that one chemical heat pump is installed. This simulation was performed in the case of a CPU heat generation amount of 7 W according to the same analysis method as in the simulation model 1.
  • the reaction chamber 1 is the CPU 21a
  • the condensation evaporation chamber 3 is the chassis (upper thermal conductive member) 23a. 8 and the electronic device model 30 of FIG. 8 except that the chassis 23a is separated from the battery 24 and the camera unit 25.
  • an assumed route through which heat can enter and exit is as indicated by double arrows in FIG.
  • the reaction chamber 1 can be switched between a state where it is insulated from other members and a state where it is thermally coupled to the CPU 21a.
  • the dimensions and heat generation amount of each member excluding the chemical heat pump 10 (however, the CPU heat generation amount is only 7 W), physical properties such as density, specific heat, thermal conductivity, mc value, initial conditions and The boundary conditions are the same as those described above for the simulation model 1.
  • the chemical heat pump 10 is set and assumed as follows.
  • the reaction chamber 1 is a container made of SUS304 (outer dimensions 40 mm ⁇ 40 mm ⁇ 2.5 mm, wall thickness 0.25 mm) filled with 5.235 g of calcium sulfate.
  • the condensing evaporation chamber 3 is a container made of SUS316 (outside dimensions 15 mm ⁇ 15 mm ⁇ 1.5 mm, wall thickness 0.25 mm) filled with 0.346 g of distilled water.
  • physical property values such as a density, specific heat, and heat conductivity, were set suitably according to each material, and mc value (product of mass and specific heat) was calculated and used.
  • the temperature in the reaction chamber and the temperature in the condensation evaporation chamber are the same as the temperature of each container, the pressure in the condensation evaporation chamber is the pressure of saturated water vapor at that temperature, and the pressure in the reaction chamber is It shall be equal to the pressure in the condensing evaporation chamber in communication therewith.
  • the heat generation amount of the CPU 21a is set to 7 W, and the reaction chamber 1 of the chemical heat pump 10 is adiabatic (thermally separated from the CPU 21a) until the temperature of the CPU 21a reaches 120 ° C.
  • the calorific value of the CPU 21a is set to 7 W, and the calcium sulfate semi-hydrated in the reaction chamber 1 at 120 ° C. while the reaction chamber 1 and the CPU 21a are thermally coupled.
  • the simulation was performed until the product generated water vapor by endotherm and the reaction rate reached 90%. As a result of this simulation, the following was shown.
  • the temperature of the CPU 21a and the reaction chamber 1 (vessel and inside) is maintained at about 120 ° C.
  • the CPU can be kept at 120 ° C. or lower for about 1040 seconds from the start of the CPU heat generation even in an extreme case where the heat generation amount of the CPU is as large as 7 W. found.
  • Simulation model 3 A simulation was performed on another model of the embodiment of the present invention. This model is similar to the model used in the simulation model 1, but is greatly different in that two chemical heat pumps are mounted. This simulation was performed in the case of a CPU heat generation amount of 7 W according to the same analysis method as in the simulation model 1.
  • the electronic device model 32 assumed in this simulation model includes two chemical heat pumps 10 and 10 ′, the reaction chamber 1 as a CPU 21 a, and the reaction chamber 1 ′ as a battery cover (lower heat 8 is the same as the electronic device model 30 of FIG. 8 except that it is attached to the conductive member 23b and the condensation evaporation chambers 3 and 3 ′ are attached to each other.
  • this electronic device model 32 an assumed route through which heat can enter and exit is as shown by double arrows in FIG.
  • the dimensions and heat generation amount of each member excluding the chemical heat pumps 10 and 10 ′ (however, the CPU heat generation amount is only 7 W), physical properties such as density, specific heat, thermal conductivity, mc value,
  • the initial conditions and boundary conditions are the same as those described above for the simulation model 1.
  • the chemical heat pumps 10 and 10 ′ are set and assumed as follows, and the same settings and assumptions as those described above for the chemical heat pump 10 in the simulation model 2 apply unless otherwise specified.
  • the chemical substance charged into the reaction chamber 1 is calcium sulfate hemihydrate (5.235 g in terms of calcium sulfate)
  • the chemical substance charged into the reaction chamber 1 ′ is calcium sulfate (5.235 g).
  • the contact thermal resistance between the reaction chamber 1 and the CPU 21a, between the reaction chamber 1 ′ and the battery cover 23b, and between the condensation evaporation chamber 3 and the condensation evaporation chamber 3 ′ is ignored.
  • the condensation evaporation chamber 3 and the condensation evaporation chamber 3 ′ are assumed to be insulated from other members.
  • the heating value of the CPU 21a is set to 7 W, and in the reaction chamber 1 at 120 ° C., the calcium sulfate hemihydrate generates water vapor due to endotherm, and the reaction rate reaches 100%.
  • the calcium sulfate hemihydrate absorbs heat at an average of about 1.3 W and continues to release water vapor (heat storage).
  • the CPU 21a and The temperature of the reaction chamber 1 (vessel and inside) is maintained at about 120 ° C.
  • the temperature of the condensation evaporation chamber 3 '(vessel and interior) is maintained at about 25 ° C.
  • the CPU is kept at 120 ° C. or lower for about 1300 seconds from the start of the CPU heat generation even in an extreme case where the heat generation amount of the CPU is as large as 7 W. It turns out that it can keep.
  • the present invention can be suitably used in, for example, mobile electronic devices such as smartphones, mobile phones, tablet terminals, laptop computers, portable game machines, portable music players, and digital cameras, but is not limited thereto. It is not a thing.

Abstract

Provided is an electronic apparatus provided with a new means capable of suppressing temperature increases in a heat emitting component. The electronic apparatus (20), which is provided with a heat emitting part, has a device (or a chemical heat pump) (10) comprising: a reaction chamber (1) which houses a chemical heat storage material which exhibits an endothermic reaction in response to heat emitted by the heat emitting part (11); a condensation/evaporation chamber (3) for either condensing or evaporating condensable components generated from the endothermic reaction of the chemical heat storage material; and a communication part (5) which communicates between the reaction chamber (1) and the condensation/evaporation chamber (3) such that the condensable components are capable of moving between the reaction chamber (1) and the condensation/evaporation chamber (3).

Description

電子機器Electronics
 本発明は、電子機器に関し、より詳細には、発熱部品(または発熱する電子部品)を備える電子機器に関する。 The present invention relates to an electronic device, and more particularly to an electronic device including a heat generating component (or an electronic component that generates heat).
 電子機器に内蔵されている電子部品、例えば中央処理装置(CPU)その他の集積回路(IC)等においては、投入されたエネルギーの一部が熱に変換されて、発熱することにより失われている。そして、発熱による温度上昇が顕著になると、電子部品そのものが故障したり、周囲の他の部品に悪影響を及ぼしたりして、電子機器の寿命や信頼性を損ね得る。また、電子部品の発熱は、電子機器のユーザの使用感や安全性のうえでも好ましくない。 In an electronic component built in an electronic device, for example, a central processing unit (CPU) or other integrated circuit (IC), a part of the input energy is converted into heat and lost due to heat generation. . And if the temperature rise by heat_generation | fever becomes remarkable, an electronic component itself may fail or it may have a bad influence on other surrounding components, and the lifetime and reliability of an electronic device may be impaired. Moreover, the heat generation of the electronic component is not preferable in terms of usability and safety of the user of the electronic device.
 かかる発熱部品の温度上昇を抑制するために、従来、冷却ファンを用いて強制対流により電子機器の外部へ熱を排気する方法や、ヒートパイプの両端をそれぞれ発熱部品およびヒートシンクや放熱板に接続し、ヒートパイプ内の作動液の蒸発および凝縮の潜熱を利用して熱を輸送してヒートシンク等から放熱する方法が知られている(例えば特許文献1を参照のこと)。これら方法は、発熱部品から直接または間接に放熱することにより、発熱部品の温度上昇を抑制するものである。 In order to suppress the temperature rise of such heat generating components, conventionally, a cooling fan is used to exhaust heat to the outside of the electronic device by forced convection, or both ends of the heat pipe are connected to the heat generating components, heat sink and heat sink, respectively. A method of transporting heat using the latent heat of evaporation and condensation of the working fluid in the heat pipe to dissipate heat from a heat sink or the like is known (see, for example, Patent Document 1). These methods suppress the temperature rise of the heat generating component by directly or indirectly radiating heat from the heat generating component.
特開2001-68883号公報JP 2001-68883 A 特開平10-89799号公報Japanese Patent Laid-Open No. 10-89799 特開2008-111592号公報JP 2008-1111592 A
 近年、電子機器の高性能化に伴い、1つの電子機器に内蔵される発熱部品の数が増加すると共に、個々の発熱部品に投入されるエネルギー量が増大し、これらの結果、電子機器における発熱量が増大している。 In recent years, with the increase in performance of electronic devices, the number of heat generating components built in one electronic device has increased, and the amount of energy input to each heat generating component has increased. As a result, heat generation in electronic devices has increased. The amount is increasing.
 冷却ファンを用いた従来の放熱方法では、冷却ファンを駆動するために追加のエネルギーを要しており、より高い放熱能力を得るためには電子機器の電力消費量が更に増すこととなり、好ましくない。そもそも、この方法は、エネルギー損失である発熱に対して、エネルギー投入により放熱するというものであり、効率的でない。加えて、冷却ファンを設置するには比較的大きなスペースを要し、小型の電子機器には不向きである。更に、スマートフォンやタブレット型端末などでは、電子機器の筺体が密閉されており、冷却ファンで気流を起こして外部へ排気することはできない。 In the conventional heat dissipation method using a cooling fan, additional energy is required to drive the cooling fan, and in order to obtain a higher heat dissipation capacity, the power consumption of the electronic device further increases, which is not preferable. . In the first place, this method is not efficient because heat is dissipated by energy input with respect to heat generation that is energy loss. In addition, a relatively large space is required to install the cooling fan, which is not suitable for small electronic devices. Furthermore, in a smart phone, a tablet-type terminal, etc., the housing of the electronic device is sealed, and an air current cannot be generated by a cooling fan and exhausted to the outside.
 また、ヒートパイプを用いた従来の放熱方法では、熱を速やかに輸送することができるものの、この熱を放熱するにはヒートシンクや放熱板が必要である。ヒートシンク等を設置するには比較的大きなスペースを要し、小型の電子機器には不向きである。ヒートシンク等に代えて、電子機器の筐体等に熱を逃がすことも考えられ得るが、電子機器の小型薄型化により、筺体の表面積が減少しており、高い放熱能力を得ることはできない。加えて、筐体の温度が上昇し過ぎると、ユーザの使用感や安全性のうえで好ましくない。更に、スマートフォンなどの高性能モバイル機器ではリチウムイオンバッテリの寿命低下が問題となっているところ、筐体に熱を逃すと、リチウムイオンバッテリの使用環境温度が高くなり、バッテリ容量の経時低下を招き得る。 In the conventional heat dissipation method using a heat pipe, heat can be transported quickly, but a heat sink or a heat sink is required to dissipate this heat. A relatively large space is required to install a heat sink or the like, which is not suitable for small electronic devices. Although it can be considered that heat is transferred to the housing of the electronic device instead of the heat sink or the like, the surface area of the housing is reduced due to the downsizing and thinning of the electronic device, and high heat dissipation capability cannot be obtained. In addition, if the temperature of the casing rises too much, it is not preferable in terms of user's feeling of use and safety. Furthermore, in high-performance mobile devices such as smartphones, there is a problem in reducing the life of lithium-ion batteries. If heat is released to the housing, the operating environment temperature of the lithium-ion battery will increase, leading to a decrease in battery capacity over time. obtain.
 かかる状況下、個々の発熱部品の温度を測定し、温度測定値が所定の閾値を超えた場合に、発熱部品に投入するエネルギー量を制限することが行われているのが実状である。この方法は、発熱部品の発熱量自体を減少させることにより、発熱部品の温度上昇を抑制するものである。しかしながら、この方法では、発熱部品の温度上昇により、発熱部品の機能(例えばCPUのパフォーマンス)が都度妨げられることとなり、電子機器の性能を犠牲にしたものである。 Under such circumstances, the temperature of each heat generating component is measured, and when the measured temperature exceeds a predetermined threshold, the amount of energy input to the heat generating component is limited. This method suppresses the temperature rise of the heat generating component by reducing the heat generation amount itself of the heat generating component. However, in this method, the function of the heat generating component (for example, the performance of the CPU) is hindered each time due to the temperature rise of the heat generating component, and the performance of the electronic device is sacrificed.
 本発明は、発熱部品の温度上昇を抑制し得る新規な手段を備える電子機器を提供することを目的とする。 An object of the present invention is to provide an electronic device including a novel means capable of suppressing a temperature rise of a heat generating component.
 本発明者らは、化学反応を利用して熱を蓄熱および移動させる技術、即ち、ケミカルヒートポンプに着目した。ケミカルヒートポンプは、現在、化学プラントや発電所における排熱利用の目的で用いられたり、家庭の給湯・暖房システムや冷凍車などの大型の装置に用いられている(例えば特許文献2~3を参照のこと)。しかしながら、ケミカルヒートポンプを電子機器に適用したものは知られていない。本発明者らは、発熱部品の温度上昇を抑制し得る新規な手段として、ケミカルヒートポンプを利用するという独自の発想に基づいて鋭意検討した結果、本発明を完成するに至った。 The present inventors paid attention to a technology for storing and transferring heat using a chemical reaction, that is, a chemical heat pump. Chemical heat pumps are currently used for the purpose of exhaust heat utilization in chemical plants and power plants, and are used in large equipment such as domestic hot water supply / heating systems and refrigerator trucks (see, for example, Patent Documents 2 to 3). ) However, what applied the chemical heat pump to the electronic device is not known. As a result of intensive studies based on the original idea of using a chemical heat pump as a novel means that can suppress the temperature rise of the heat-generating component, the present inventors have completed the present invention.
 本発明の第1の要旨によれば、
 発熱部品と、
 発熱部品が発する熱によって吸熱反応を示す化学蓄熱材を収容した反応室、化学蓄熱材の吸熱反応によって生じる凝縮性成分を凝縮または蒸発させるための凝縮蒸発室、および凝縮性成分が反応室と凝縮蒸発室との間を移動可能なように反応室と凝縮蒸発室とを連絡する連絡部を備えるデバイスと
を含む電子機器が提供される。
According to the first aspect of the present invention,
Heat-generating parts,
A reaction chamber containing a chemical heat storage material that exhibits an endothermic reaction by heat generated by a heat-generating component, a condensation evaporation chamber for condensing or evaporating a condensable component generated by the endothermic reaction of the chemical heat storage material, and a condensable component condensing with the reaction chamber There is provided an electronic device including a device including a communication unit that communicates between the reaction chamber and the condensation evaporation chamber so as to be movable between the evaporation chamber and the evaporation chamber.
 本発明を限定する趣旨ではないが、反応室と凝縮蒸発室とが連絡部によって連絡しているデバイスは、いわゆるケミカルヒートポンプとして理解され得る。本明細書において、かかるデバイスをケミカルヒートポンプとも言う。 Although not intended to limit the present invention, a device in which the reaction chamber and the condensing evaporation chamber are in communication with each other through a communication unit can be understood as a so-called chemical heat pump. In this specification, such a device is also referred to as a chemical heat pump.
 本発明の第1の要旨に関連した1つの態様においては、反応室が、熱伝導性材料から成る部分を有し、該熱伝導性材料から成る部分が、発熱部品と直接または間接的に接触して配置されていてよい。 In one aspect related to the first aspect of the present invention, the reaction chamber has a portion made of a thermally conductive material, and the portion made of the thermally conductive material is in direct or indirect contact with the heat generating component. May be arranged.
 本発明の上記の態様に代えてまたは加えて、電子機器が、熱伝導性部材を更に含み、
 凝縮蒸発室が、熱伝導性材料から成る部分を有し、該熱伝導性材料から成る部分が、前記熱伝導性部材に直接または間接的に接触して配置されていてよい。
Instead of or in addition to the above aspect of the present invention, the electronic device further includes a heat conductive member,
The condensation evaporation chamber may have a portion made of a heat conductive material, and the portion made of the heat conductive material may be disposed in direct or indirect contact with the heat conductive member.
 熱伝導性部材は、例えば、電子機器の筐体、バッテリの外装、基板およびディスプレイからなる群より選択され得るが、これらに限定されるものではない。 The heat conductive member can be selected from the group consisting of a housing of an electronic device, a battery exterior, a substrate, and a display, for example, but is not limited thereto.
 発熱部品は、例えば、集積回路、発光素子、電界効果トランジスタ、モーター、コイル、コンバーター、インバーターおよびコンデンサーからなる群より選択され得るが、これらに限定されるものではない。 The heat generating component can be selected from the group consisting of, for example, an integrated circuit, a light emitting element, a field effect transistor, a motor, a coil, a converter, an inverter, and a capacitor, but is not limited thereto.
 本発明の第2の要旨によれば、
 第1部材および第2部材と、
 互いに可逆な吸熱反応および発熱反応を示す化学蓄熱材を収容した反応室、化学蓄熱材の吸熱反応によって生じる凝縮性成分を凝縮または蒸発させるための凝縮蒸発室、および反応室と凝縮蒸発室とを連絡する連絡部を備えるデバイスと
を含み、第1部材と反応室とが熱的に結合され、かつ、凝縮蒸発室と第2部材とが熱的に結合されている電子機器が提供される。
According to the second aspect of the present invention,
A first member and a second member;
A reaction chamber containing a chemical heat storage material that exhibits reversible endothermic and exothermic reactions, a condensation evaporation chamber for condensing or evaporating condensable components generated by the endothermic reaction of the chemical heat storage material, and a reaction chamber and a condensation evaporation chamber There is provided an electronic apparatus including a device including a communication unit that communicates, wherein the first member and the reaction chamber are thermally coupled, and the condensation evaporation chamber and the second member are thermally coupled.
 かかる本発明の電子機器においては、第1部材の温度が上昇したときおよび/または第2部材の温度が低下したときに、第1部材から反応室に熱が伝達され、反応室内で化学蓄熱材が吸熱反応により凝縮性成分を生じ、凝縮性成分が気体状態で反応室から連絡部を通って凝縮蒸発室へ移動し、凝縮蒸発室内で凝縮性成分が凝縮して熱を生じ、凝縮蒸発室から第2部材に熱が伝達され得る。 In such an electronic device of the present invention, when the temperature of the first member rises and / or when the temperature of the second member falls, heat is transferred from the first member to the reaction chamber, and the chemical heat storage material in the reaction chamber Produces a condensable component due to endothermic reaction, the condensable component moves from the reaction chamber to the condensing evaporation chamber in a gaseous state, and the condensable component condenses in the condensing evaporation chamber to generate heat. Heat can be transferred from the first member to the second member.
 また、かかる本発明の電子機器においては、第1部材の温度が低下したときおよび/または第2部材の温度が上昇したときに、反応室から第1部材に熱が伝達され、反応室内で発熱反応が生じて凝縮性成分が消費され、気体状態の凝縮性成分が凝縮蒸発室から連絡部を通って反応室へ移動し、凝縮蒸発室内で凝縮している凝縮性成分が熱を得て蒸発し、第2部材から凝縮蒸発室に熱が伝達され得る。 In the electronic device according to the present invention, when the temperature of the first member decreases and / or when the temperature of the second member increases, heat is transferred from the reaction chamber to the first member, and heat is generated in the reaction chamber. The reaction occurs and the condensable component is consumed, the condensable component in the gaseous state moves from the condensing evaporation chamber to the reaction chamber through the communication section, and the condensable component condensed in the condensing evaporation chamber gains heat and evaporates. In addition, heat can be transferred from the second member to the condensation evaporation chamber.
 本発明の第1の要旨および第2の要旨に関連した電子機器はいずれも、以下の特徴の少なくとも1つを備えることが好ましい。
 (i)連絡部が、気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルターを備えること
 (ii)反応室において化学蓄熱材が成形または梱包されており、該成形または梱包された化学蓄熱材の最小断面寸法が、連絡部の最小断面寸法より大きいこと
 (iii)凝縮蒸発室が、液体をトラップ可能な物質を内部に有する、または凝縮蒸発室の内表面の少なくとも一部が、液体をトラップ可能な物質から構成されていること
 かかる特徴によれば、電子機器が上下および/または左右に回転等した場合であっても、反応室内の化学蓄熱材(一般的に固体または固形状)が反応室から連絡部を通じて凝縮蒸発室へ移動することを効果的に防止でき(上記特徴(i)および(ii)の場合)、また、凝縮蒸発室において凝縮した凝縮性成分(液体)が凝縮蒸発室から連絡部を通じて反応室へ移動することを効果的に防止でき(上記特徴(i)および(iii)の場合)、これにより、デバイスのケミカルヒートポンプとしての性能を損なうことを効果的に防止できる。上記特徴およびそれによって得られる効果は、モバイル型の電子機器が上下および/または左右に回転等して使用されるため、デバイス内の固体および液体が2室間を移動する可能性があるという特有の課題に対処したものである。従来のケミカルヒートポンプは、設置して、または水平方向に移動しつつ使用されるものであり、電子機器の用途における上記課題は本発明者らが独自に見いだしたものである(後述する本発明の第3の要旨においても同様である)。
Any of the electronic devices related to the first and second aspects of the present invention preferably includes at least one of the following features.
(I) The communication part includes a filter that allows gas to pass but does not allow substantially solid and liquid to pass through. (Ii) The chemical heat storage material is molded or packed in the reaction chamber, and the molded or packed (Iii) the condensation evaporation chamber has a substance capable of trapping liquid therein or at least a part of the inner surface of the condensation evaporation chamber. However, according to this feature, even when the electronic device is rotated up and down and / or left and right, the chemical heat storage material (generally solid or (Solid state) can be effectively prevented from moving from the reaction chamber to the condensing evaporation chamber through the communication section (in the case of the above characteristics (i) and (ii)), and the condensation is condensed in the condensing evaporation chamber. It is possible to effectively prevent the condensable component (liquid) from moving from the condensing evaporation chamber to the reaction chamber through the communication section (in the case of the above characteristics (i) and (iii)), and thereby the performance of the device as a chemical heat pump Can be effectively prevented. The above-described features and the effects obtained thereby are unique in that the mobile electronic device is used by rotating up and down and / or left and right, etc., so that the solid and liquid in the device may move between the two chambers. It addresses the issues of Conventional chemical heat pumps are installed or used while moving in the horizontal direction, and the above-mentioned problems in the use of electronic equipment have been found by the present inventors (the present invention described later). The same applies to the third gist).
 本発明の第3の要旨によれば、発熱部品の温度上昇を抑制する機能を有する電子機器であって、
 発熱部品と、
 化学蓄熱材を収容した少なくとも1つの反応室と
を含み、発熱部品が発する熱を、発熱部品の外表面から、少なくとも1つの反応室に収容した化学蓄熱材へ伝導し、化学蓄熱材が反応により吸熱することによって、発熱部品の温度上昇を抑制する、電子機器が提供される。
According to a third aspect of the present invention, there is provided an electronic device having a function of suppressing a temperature rise of a heat generating component,
Heat-generating parts,
Including at least one reaction chamber containing the chemical heat storage material, and conducting heat generated by the heat generating component from the outer surface of the heat generation component to the chemical heat storage material stored in the at least one reaction chamber. An electronic device that suppresses the temperature rise of the heat generating component by absorbing heat is provided.
 本発明の第3の要旨に関連した1つの態様においては、電子機器が、第1化学蓄熱材を収容した第1反応室と、第2化学蓄熱材を収容した第2反応室とを含み、
 第1化学蓄熱材および第2化学蓄熱材は、同じ成分が関与する反応によって吸熱または発熱し、
 第1反応室および第2反応室は、それらの間の連絡部によって該成分が移動可能に連絡しており、
 発熱部品が発する熱は、第1反応室の第1化学蓄熱材および第2反応室の第2化学蓄熱材のいずれかに伝導される。
In one aspect related to the third aspect of the present invention, the electronic device includes a first reaction chamber containing a first chemical heat storage material and a second reaction chamber containing a second chemical heat storage material,
The first chemical heat storage material and the second chemical heat storage material absorb heat or generate heat due to a reaction involving the same component,
The first reaction chamber and the second reaction chamber are in communication with each other so that the components can move by a communication portion between them.
Heat generated by the heat generating component is conducted to either the first chemical heat storage material in the first reaction chamber or the second chemical heat storage material in the second reaction chamber.
 本発明の上記の態様において、電子機器は、前記成分を凝縮または蒸発させるための凝縮蒸発室を更に含み、
 凝縮蒸発室は、第1反応室と第2反応室の間の前記連絡部に対して、該成分が移動可能に連絡していてよい。
In the above aspect of the present invention, the electronic device further includes a condensation evaporation chamber for condensing or evaporating the component,
The condensing and evaporating chamber may communicate with the communication portion between the first reaction chamber and the second reaction chamber so that the components can move.
 あるいは、本発明の上記の態様において、電子機器は、前記成分を凝縮または蒸発させるための凝縮蒸発室を更に含み、
 凝縮蒸発室は、第1反応室および第2反応室のいずれかに対して、別の連絡部によって該成分が移動可能に連絡していてよい。
Alternatively, in the above aspect of the present invention, the electronic device further includes a condensation evaporation chamber for condensing or evaporating the component,
The condensing and evaporating chamber may be connected to either the first reaction chamber or the second reaction chamber so that the component can be moved by another communication unit.
 本発明の第3の要旨における電子機器は、以下の特徴の少なくとも1つを備えることが好ましい。
 (i’)各室(第1反応室、第2反応室および凝縮蒸発室)間をつなぐ連絡部のいずれかにおいて、気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルターを備えること
 (ii’)第1反応室において第1化学蓄熱材が成形または梱包されており、該成形または梱包された第1化学蓄熱材の最小断面寸法が、連絡部(および好ましくは、存在する場合は別の連絡部)の最小断面寸法より大きいこと、および/または第2反応室において第2化学蓄熱材が成形または梱包されており、該成形または梱包された第2化学蓄熱材の最小断面寸法が、連絡部(および好ましくは、存在する場合は別の連絡部)の最小断面寸法より大きいこと
 (iii’)凝縮蒸発室が、液体をトラップ可能な物質を内部に有する、あるいは凝縮蒸発室の内表面の少なくとも一部が、液体をトラップ可能な物質から構成されていること
 かかる特徴によれば、電子機器が上下および/または左右に回転等した場合であっても、第1および/または第2反応室内の化学蓄熱材(一般的に固体または固形状)が第1および/または第2反応室から連絡部を通じて凝縮蒸発室へ移動することを効果的に防止でき(上記特徴(i’)および(ii’)の場合)、また、凝縮蒸発室において凝縮した凝縮性成分(液体)が凝縮蒸発室から連絡部を通じて第1および/または第2反応室へ移動することを効果的に防止でき(上記特徴(i’)および(iii’)の場合)、これにより、これらの部材が構成するケミカルヒートポンプとしての性能を損なうことを効果的に防止できる。
The electronic device according to the third aspect of the present invention preferably includes at least one of the following features.
(I ′) A filter through which gas can pass but solids and liquids cannot substantially pass through any of the connecting portions connecting the chambers (the first reaction chamber, the second reaction chamber, and the condensation evaporation chamber). (Ii ′) the first chemical heat storage material is molded or packed in the first reaction chamber, and the minimum cross-sectional dimension of the molded or packed first chemical heat storage material is the communication portion (and preferably exists) And the second chemical heat storage material is formed or packed in the second reaction chamber, and the minimum of the second chemical heat storage material formed or packed The cross-sectional dimension is greater than the minimum cross-sectional dimension of the communication (and preferably, if present, another communication) (iii ') the condensation evaporation chamber has a substance capable of trapping liquid therein or is At least a part of the inner surface of the chamber is made of a substance capable of trapping liquid. According to this feature, even if the electronic device is rotated up and down and / or left and right, the first and / or Alternatively, it is possible to effectively prevent the chemical heat storage material (generally solid or solid) in the second reaction chamber from moving from the first and / or second reaction chamber to the condensing evaporation chamber through the communication portion (the above feature (i In the case of ') and (ii')), it is also effective that the condensable component (liquid) condensed in the condensing evaporation chamber moves from the condensing evaporation chamber to the first and / or second reaction chamber through the communication section. It can prevent (in the case of the said characteristics (i ') and (iii')), and can prevent effectively impairing the performance as a chemical heat pump which these members comprise.
 本発明の全ての要旨を通じて、「化学蓄熱材」とは、吸熱反応により熱を蓄熱できる物質を意味する。本発明において、化学蓄熱材が、吸熱反応によって生じる凝縮性成分(凝縮蒸発室において凝縮または蒸発が可能な成分)は水であり得るが、これに限定されるものではない。あるいは、本発明の第3の要旨に関して、化学蓄熱材は、吸熱反応によって、凝縮性成分に代えて、他の相変化(例えば昇華)可能な成分を生じるものであってもよい。この場合、凝縮蒸発室は、該成分が相変化する相変化室(例えば昇華室)として機能する。 Throughout all the gist of the present invention, “chemical heat storage material” means a substance that can store heat by an endothermic reaction. In the present invention, the condensable component (component that can be condensed or evaporated in the condensation evaporation chamber) generated by the endothermic reaction of the chemical heat storage material can be water, but is not limited thereto. Or regarding the 3rd summary of this invention, a chemical heat storage material may produce the component which can be changed to another phase change (for example, sublimation) instead of a condensable component by endothermic reaction. In this case, the condensation evaporation chamber functions as a phase change chamber (for example, a sublimation chamber) in which the component changes phase.
 かかる化学蓄熱材は、30~200℃の温度で吸熱反応を示すことが好ましい。 Such a chemical heat storage material preferably exhibits an endothermic reaction at a temperature of 30 to 200 ° C.
 また、本発明の全ての要旨を通じて、化学蓄熱材に代えて、ゼオライト、シリカゲル、メソポーラスシリカおよび活性炭から成る群より選択される少なくとも1種の蓄熱材を用いることが可能である。この場合にも、各蓄熱材に相応した効果を奏することができる。 In addition, it is possible to use at least one kind of heat storage material selected from the group consisting of zeolite, silica gel, mesoporous silica, and activated carbon instead of the chemical heat storage material throughout the gist of the present invention. Also in this case, the effect corresponding to each heat storage material can be produced.
 本発明の第1の要旨によれば、発熱部品を備える電子機器においてケミカルヒートポンプ(反応室と凝縮蒸発室とが連絡部によって連絡しているデバイス)を適用し、発熱部品が発する熱によって吸熱反応を示す化学蓄熱材を使用しているので、発熱部品が発熱したときに、化学蓄熱材が反応して発熱部品から熱を奪って蓄熱し、これにより、発熱部品の温度上昇を抑制することができ、換言すれば、電子機器において少なくとも時間的な熱の移動ないし平準化が実現される。 According to the first aspect of the present invention, an endothermic reaction is performed by applying a chemical heat pump (a device in which a reaction chamber and a condensation evaporation chamber communicate with each other through a communication unit) in an electronic device including a heat generating component. When the heat generating component generates heat, the chemical heat storage material reacts and takes heat from the heat generating component to store heat, thereby suppressing the temperature rise of the heat generating component. In other words, at least temporal heat transfer or leveling is realized in the electronic device.
 本発明の第2の要旨によれば、電子機器において第1部材と第2部材との間にケミカルヒートポンプを適用し、ケミカルヒートポンプの反応室および凝縮蒸発室を第1部材および第2部材にそれぞれ熱的に結合しているので、化学蓄熱材で蓄熱または放熱しながら、第1部材から第2部材へ、または第2部材から第1部材へと、熱を移動させることができ、換言すれば、電子機器において時間的および空間的な熱の移動ないし平準化が実現される。 According to the second aspect of the present invention, a chemical heat pump is applied between the first member and the second member in the electronic device, and the reaction chamber and the condensation evaporation chamber of the chemical heat pump are respectively used as the first member and the second member. Since they are thermally coupled, heat can be transferred from the first member to the second member or from the second member to the first member while storing or radiating heat with the chemical heat storage material, in other words In the electronic equipment, temporal and spatial heat transfer or leveling is realized.
 本発明の第3の要旨によれば、発熱部品を備える電子機器において、化学蓄熱材を収容した反応室を設けて、発熱部品が発する熱を、発熱部品の外表面から、反応室に収容した化学蓄熱材へ伝導し、化学蓄熱材が反応により吸熱(蓄熱)する構成としており、これにより、発熱部品の温度上昇を抑制することができる。 According to the third aspect of the present invention, in an electronic device including a heat generating component, a reaction chamber containing a chemical heat storage material is provided, and heat generated by the heat generating component is stored in the reaction chamber from the outer surface of the heat generating component. Conduction to the chemical heat storage material is performed, and the chemical heat storage material absorbs heat (stores heat) by a reaction, thereby suppressing an increase in temperature of the heat-generating component.
 本発明のいずれの要旨においても、化学蓄熱材の化学反応を利用し得るので、大きい蓄熱容量を得ることができる。更に、発熱部品の発する熱が減少ないし低下したときには、発熱部品が発する熱が直接伝導されない室(通常、凝縮蒸発室であるが、本発明の第3の要旨による場合には、第1の反応室および第2の反応室のうち発熱部品が発する熱が直接伝導されないほうも含む)側にて冷熱(または負の熱量)を得ることができる。このように大きい蓄熱容量および冷熱が得られることは、潜熱を利用したヒートパイプや、顕熱を利用した熱輸送デバイスに比した、本発明の顕著な特徴である。化学反応を利用したケミカルヒートポンプを除く他のヒートポンプとしては、機械式(メカニカル)ヒートポンプや、吸着または吸収反応を利用したヒートポンプが知られている。本発明によれば、化学蓄熱材の化学反応を利用しているので、機械式ヒートポンプとは異なり、コンプレッサーのような大きくて複雑な構成を有する機械部品を必要とせず、また、吸着または吸収反応による場合よりも大きな蓄熱容量が得られ、幅広い温度範囲で蓄熱が可能である。 In any of the gist of the present invention, since a chemical reaction of a chemical heat storage material can be used, a large heat storage capacity can be obtained. Further, when the heat generated by the heat generating component is reduced or decreased, the heat generated by the heat generating component is not directly transferred to the chamber (usually a condensing evaporation chamber. However, in the case of the third aspect of the present invention, the first reaction is performed. Cold heat (or a negative amount of heat) can be obtained on the side of the chamber and the second reaction chamber, including the case where the heat generated by the heat generating component is not directly conducted. Obtaining such a large heat storage capacity and cold is a remarkable feature of the present invention compared to a heat pipe using latent heat and a heat transport device using sensible heat. As other heat pumps excluding the chemical heat pump using a chemical reaction, a mechanical heat pump and a heat pump using an adsorption or absorption reaction are known. According to the present invention, since a chemical reaction of a chemical heat storage material is used, unlike a mechanical heat pump, a mechanical component having a large and complicated configuration such as a compressor is not required, and an adsorption or absorption reaction is not required. Therefore, it is possible to store heat in a wide temperature range.
 しかしながら、本発明は、化学蓄熱材を用いたものに限定されず、その他の蓄熱材、例えばゼオライト、シリカゲル、メソポーラスシリカおよび活性炭から成る群より選択される少なくとも1種の蓄熱材を用いることも幅広く包含し得る。この場合にも、各蓄熱材に相応した効果を奏することができる。また、かかる蓄熱材は、化学蓄熱材と比べて、取り扱いが容易であり、構成を簡素化できる(例えば、腐食防止を考慮しなくてよい)という効果を奏し得る。 However, the present invention is not limited to the one using a chemical heat storage material, and widely uses other heat storage materials such as at least one heat storage material selected from the group consisting of zeolite, silica gel, mesoporous silica and activated carbon. Can be included. Also in this case, the effect corresponding to each heat storage material can be produced. Further, such a heat storage material can be easily handled and can be simplified in structure (for example, it is not necessary to consider corrosion prevention) as compared with a chemical heat storage material.
本発明の1つの実施形態における電子機器の概略模式断面図である。It is a schematic schematic cross section of the electronic device in one embodiment of this invention. 本発明の別の実施形態における電子機器の概略模式断面図である。It is a schematic schematic cross section of the electronic device in another embodiment of this invention. 本発明の別の実施形態における電子機器の種々の改変例を示す概略模式上面図である。It is a schematic model top view which shows the various modifications of the electronic device in another embodiment of this invention. 本発明の電子機器の実施例における1つのCHP搭載例を示す概略模式上面図である。It is a schematic model top view which shows one CHP mounting example in the Example of the electronic device of this invention. 本発明の電子機器の実施例におけるもう1つのCHP搭載例を示す概略模式上面図である。It is a schematic model top view which shows another CHP mounting example in the Example of the electronic device of this invention. 本発明の電子機器の実施例におけるもう1つのCHP搭載例を示す概略模式上面図である。It is a schematic model top view which shows another CHP mounting example in the Example of the electronic device of this invention. 本発明の電子機器の実施例におけるもう1つのCHP搭載例を示す概略模式上面図である。It is a schematic model top view which shows another CHP mounting example in the Example of the electronic device of this invention. 本発明の電子機器の比較例におけるシミュレーションで用いたモデルを示す概略模式断面図である。It is a schematic schematic cross section which shows the model used by the simulation in the comparative example of the electronic device of this invention. 本発明の電子機器の1つの実施例におけるシミュレーションで用いたモデルを示す概略模式断面図である。It is a schematic schematic cross section which shows the model used by the simulation in one Example of the electronic device of this invention. 図9のシミュレーションにおけるCPUおよび反応室の温度の経時変化を示すグラフおよび表である。FIG. 10 is a graph and a table showing changes over time in the temperature of the CPU and reaction chamber in the simulation of FIG. 9. 本発明の電子機器の別の実施例におけるシミュレーションで用いたモデルを示す概略模式断面図である。It is a schematic schematic cross section which shows the model used by the simulation in another Example of the electronic device of this invention. 本発明の1つの実施形態における電子機器に用いられるCHPの製造例を示す概略模式斜視図である。It is a schematic model perspective view which shows the manufacture example of CHP used for the electronic device in one embodiment of this invention.
 本発明のいくつかの実施形態における電子機器について、以下、図面を参照しながら詳述するが、本発明はこれに限定されるものではない。 The electronic device according to some embodiments of the present invention will be described in detail below with reference to the drawings, but the present invention is not limited thereto.
 まず、反応室と凝縮蒸発室とが連絡部によって連絡しているデバイスであるケミカルヒートポンプ(CHP)の構成について説明する。本実施形態において、図1に示すように、ケミカルヒートポンプ10は、化学蓄熱材を収容した反応室1と、凝縮性成分を凝縮または蒸発させるための凝縮蒸発室3と、これらの間を連絡する連絡部5とを備える。化学蓄熱材の化学反応は、ケミカルヒートポンプ10による熱の移動の駆動源であり、凝縮性成分は、ケミカルヒートポンプ10の作動媒体である。 First, the configuration of a chemical heat pump (CHP), which is a device in which the reaction chamber and the condensation evaporation chamber are in communication with each other through a communication unit, will be described. In this embodiment, as shown in FIG. 1, the chemical heat pump 10 communicates between a reaction chamber 1 containing a chemical heat storage material, a condensation evaporation chamber 3 for condensing or evaporating a condensable component, and these. And a communication unit 5. The chemical reaction of the chemical heat storage material is a driving source of heat transfer by the chemical heat pump 10, and the condensable component is a working medium of the chemical heat pump 10.
 化学蓄熱材には、吸熱反応により熱を蓄熱できる限り、任意の適切な材料を使用し得る。ケミカルヒートポンプの原理上は、化学蓄熱材は、互いに可逆な吸熱反応および発熱反応を示し、これらのいずれかの反応によって凝縮性成分を生じるものであればよいが、これに限定されない。凝縮性成分は、使用環境下にて、気体状態(気相)と液体状態(液相)との間で相変化可能な成分であればよい。 As the chemical heat storage material, any appropriate material can be used as long as heat can be stored by an endothermic reaction. In terms of the principle of the chemical heat pump, the chemical heat storage material is not limited to this as long as it exhibits a reversible endothermic reaction and exothermic reaction, and any of these reactions generates a condensable component. The condensable component should just be a component which can change a phase between a gaseous state (gas phase) and a liquid state (liquid phase) in use environment.
 本実施形態においては、吸熱反応によって凝縮性成分を生じる化学蓄熱材を使用する。かかる化学蓄熱材は、吸熱反応として脱水反応を示し、発熱反応として水和反応を示すものであり得、この場合、凝縮性成分は水である。 In this embodiment, a chemical heat storage material that generates a condensable component by an endothermic reaction is used. Such a chemical heat storage material may exhibit a dehydration reaction as an endothermic reaction and a hydration reaction as an exothermic reaction, in which case the condensable component is water.
 より具体的には、上記の化学蓄熱材としては、無機化合物の水和物および無機水酸化物などが使用され得る。より詳細には、アルカリ土類金属化合物の水和物およびアルカリ土類金属の水酸化物、例えば硫酸カルシウムや塩化カルシウムなどの水和物、カルシウムやマグネシウムの水酸化物などが挙げられる。 More specifically, inorganic chemical compound hydrates and inorganic hydroxides can be used as the chemical heat storage material. More specifically, alkaline earth metal compound hydrates and alkaline earth metal hydroxides such as calcium sulfate and calcium chloride hydrates, calcium and magnesium hydroxides, and the like can be given.
 例えば、硫酸カルシウムの半水和物は、以下の吸熱反応を示す。
Figure JPOXMLDOC01-appb-C000001
 式中、Qは、16.7kJ/mol程度であることが知られている。
 硫酸カルシウムの半水和物の吸熱反応は、種々の条件にもよるが、例えば約50~150℃程度で進行し得る。これは可逆反応であり、上記の逆反応は、発熱反応となる。硫酸カルシウムの半水和物は、固体状態(例えば粉末)であり、硫酸カルシウムは固体状態であり、水は気体状態である。
For example, calcium sulfate hemihydrate exhibits the following endothermic reaction.
Figure JPOXMLDOC01-appb-C000001
In the formula, Q 1 is known to be about 16.7 kJ / mol.
The endothermic reaction of calcium sulfate hemihydrate can proceed at about 50 to 150 ° C., for example, although it depends on various conditions. This is a reversible reaction, and the reverse reaction is an exothermic reaction. Calcium sulfate hemihydrate is in a solid state (eg, powder), calcium sulfate is in a solid state, and water is in a gaseous state.
 また例えば、塩化カルシウムの水和物は、以下の吸熱反応を示す。
Figure JPOXMLDOC01-appb-C000002
 式中、nは水和する分子数、具体的には1、2、4、6であり得、Qは、30~50kJ/mol程度であることが知られている。
 塩化カルシウムの水和物の吸熱反応は、種々の条件にもよるが、例えば約30~150℃程度で進行し得る。これは可逆反応であり、上記の逆反応は、発熱反応となる。塩化カルシウムの水和物は、固体状態(例えば粉末)であり、塩化カルシウムは固体状態であり、水は気体状態である。
For example, calcium chloride hydrate exhibits the following endothermic reaction.
Figure JPOXMLDOC01-appb-C000002
In the formula, n can be the number of molecules to be hydrated, specifically 1, 2, 4, 6 and Q 2 is known to be about 30 to 50 kJ / mol.
The endothermic reaction of calcium chloride hydrate can proceed at about 30 to 150 ° C., for example, although it depends on various conditions. This is a reversible reaction, and the reverse reaction is an exothermic reaction. Calcium chloride hydrate is in a solid state (eg, powder), calcium chloride is in a solid state, and water is in a gaseous state.
 しかしながら、化学蓄熱材は、上記の例に限定されず、任意の適切な化学蓄熱材を使用してよく(例えば、アンモニアを発生し得るものであってもよい)、発熱部品が発する熱によって吸熱反応を示すように適宜選択され得る。 However, the chemical heat storage material is not limited to the above example, and any appropriate chemical heat storage material may be used (for example, it may be capable of generating ammonia). It can be selected appropriately to show the reaction.
 より広範な概念において、本発明に利用可能な化学蓄熱材は、例えば30~200℃の温度で吸熱反応を示すものであることが好ましく、特に40℃以上、更に50℃以上で、150℃以下、より更に120℃以下の温度で吸熱反応を示すものであることが好ましい。 In a broader concept, the chemical heat storage material that can be used in the present invention preferably exhibits an endothermic reaction at a temperature of 30 to 200 ° C., for example, 40 ° C. or more, more preferably 50 ° C. or more, and 150 ° C. or less. It is preferable that the endothermic reaction is exhibited at a temperature of 120 ° C. or lower.
 かかる化学蓄熱材は、反応室1に収容される。化学蓄熱材は、例えば固相2aを成していてよく、反応室1内には、凝縮性成分を含む気相2bが存在し得る。反応室内の圧力は、通常(発熱部品が非発熱状態であるとき)の使用温度環境下にて、吸熱反応と発熱反応の平衡圧力に実質的に等しいことが望ましい。 Such chemical heat storage material is accommodated in the reaction chamber 1. The chemical heat storage material may form, for example, a solid phase 2a, and a gas phase 2b containing a condensable component may exist in the reaction chamber 1. It is desirable that the pressure in the reaction chamber is substantially equal to the equilibrium pressure of the endothermic reaction and the exothermic reaction under the normal operating temperature environment (when the exothermic component is in a non-exothermic state).
 他方、凝縮蒸発室3には、凝縮性成分が気相4aおよび液相4bに含まれて存在し得る。本実施形態を限定するものではないが、凝縮蒸発室に予め凝縮させた成分(例えば液体状態の水)を収容しておいてよい。凝縮蒸発室内の圧力は、使用温度環境下にて、凝縮性成分の飽和蒸気圧(水の場合には飽和水蒸気圧)に実質的に等しいことが望ましい。 On the other hand, in the condensing evaporation chamber 3, a condensable component may be included in the gas phase 4a and the liquid phase 4b. Although this embodiment is not limited, you may accommodate the component (for example, water of a liquid state) condensed beforehand in the condensation evaporation chamber. The pressure in the condensation evaporation chamber is desirably substantially equal to the saturated vapor pressure of the condensable component (saturated water vapor pressure in the case of water) under the operating temperature environment.
 反応室1と凝縮蒸発室3とを連絡する連絡部5は、これらの間を凝縮性成分が移動可能なようになっていればよい。より詳細には、凝縮性成分は気体状態で移動し得、この場合、連絡部5は気体が通過し得るものであればよい。かかる連絡部は、簡便には、管状部材であってよいが、これに限定されない。 The communication part 5 which connects the reaction chamber 1 and the condensation evaporation chamber 3 should just be able to move a condensable component between these. More specifically, the condensable component can move in a gaseous state, and in this case, the communication part 5 may be anything that allows gas to pass through. Such a communication part may be a tubular member for convenience, but is not limited thereto.
 連絡部5は、バルブ(図示せず)を備えていても、いなくてもよい。連絡部5がバルブを備えない場合、デバイス構成が簡単になり、凝縮性成分の移動ひいてはケミカルヒートポンプ10の作動は、反応室1における反応の進行および/または凝縮蒸発室3における相変化の進行(代表的には、反応室1および/または凝縮蒸発室3における温度)に依存する。連絡部5がバルブを備える場合、凝縮性成分の移動ひいてはケミカルヒートポンプ10の作動は、バルブの開閉によって制御でき、熱の移動、発熱および冷却のタイミングを管理できるので、より綿密な電子機器内部の熱設計ができるようになる。 The communication unit 5 may or may not include a valve (not shown). When the communication unit 5 does not include a valve, the device configuration is simplified, and the movement of the condensable component and, consequently, the operation of the chemical heat pump 10 is caused by the progress of the reaction in the reaction chamber 1 and / or the progress of the phase change in the condensation evaporation chamber 3 ( Typically, it depends on the temperature in the reaction chamber 1 and / or the condensation evaporation chamber 3). When the communication part 5 is provided with a valve, the movement of the condensable component and hence the operation of the chemical heat pump 10 can be controlled by opening and closing the valve, and the timing of heat transfer, heat generation and cooling can be managed. Thermal design becomes possible.
 かかるケミカルヒートポンプ10は、物質の出入りのない閉じた系となっているが、熱の出入りは、少なくとも反応室1において、好ましくは反応室1および凝縮蒸発室3において可能なように構成される。具体的には、反応室1および好ましくは凝縮蒸発室3は、それぞれ少なくとも一部が熱伝導性材料から構成され得る。熱伝導性材料は、特に限定されないが、例えば金属(銅など)、酸化物(アルミナなど)、窒化物(窒化アルミニウムなど)、カーボンなどの熱の良導体であってよい。 Such a chemical heat pump 10 is a closed system in which no substance enters or exits, but heat can enter and exit at least in the reaction chamber 1, preferably in the reaction chamber 1 and the condensation evaporation chamber 3. Specifically, each of the reaction chamber 1 and preferably the condensation evaporation chamber 3 can be at least partially made of a heat conductive material. The heat conductive material is not particularly limited, and may be a good heat conductor such as metal (copper and the like), oxide (alumina and the like), nitride (aluminum nitride and the like), and carbon.
 本実施形態の電子機器に用いられるケミカルヒートポンプ10は、以下の特徴のいずれか1つを単独で、または任意の2つ以上を組み合わせて備えることが好ましい。
 (i)連絡部5が、気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルターを備えること
 (ii)反応室1において化学蓄熱材が成形または梱包されており、該成形または梱包された化学蓄熱材の最小断面寸法が、連絡部5の最小断面寸法より大きいこと
 (iii)凝縮蒸発室3が、液体をトラップ可能な物質を内部に有する、または凝縮蒸発室3の内表面の少なくとも一部が、液体をトラップ可能な物質から構成されていること
The chemical heat pump 10 used in the electronic apparatus of the present embodiment preferably includes any one of the following features alone or in combination of two or more.
(I) The communication unit 5 includes a filter that allows gas to pass but does not substantially allow solids and liquids to pass. (Ii) In the reaction chamber 1, a chemical heat storage material is molded or packed, and the molding is performed. Or the minimum cross-sectional dimension of the packed chemical heat storage material is larger than the minimum cross-sectional dimension of the communication part 5 (iii) The condensing and evaporating chamber 3 has a substance capable of trapping liquid inside, or the condensing evaporating chamber 3 At least a part of the surface is made of a substance that can trap liquid
 上記(i)について、連絡部5が、気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルターを備えることにより、電子機器20が上下および/または左右に回転等した場合であっても、反応室1内の化学蓄熱材(一般的に固体または固形状)が反応室1から連絡部5を通じて凝縮蒸発室3へ移動することを効果的に防止でき、また、凝縮蒸発室3において凝縮した凝縮性成分(液体)が凝縮蒸発室3から連絡部5を通じて反応室1へ移動することを効果的に防止できる。 With regard to (i) above, the communication unit 5 includes a filter through which gas can pass but solids and liquids cannot substantially pass, so that the electronic device 20 rotates up and down and / or left and right. Even if it exists, it can prevent effectively that the chemical heat storage material (generally solid or solid form) in the reaction chamber 1 moves from the reaction chamber 1 to the condensation evaporation chamber 3 through the communication part 5, and the condensation evaporation chamber It is possible to effectively prevent the condensable component (liquid) condensed in 3 from moving from the condensation evaporation chamber 3 to the reaction chamber 1 through the connecting portion 5.
 かかるフィルターは、気体は通過可能であるが、固体および液体は実質的に通過可能でないものであればよい。「固体および液体は実質的に通過可能でない」とは、ケミカルヒートポンプの性能を損なわない程度で、固体および液体を少量通過するものであってもよいことを意味する。フィルターは、液体は少量通過させても、固体は通過可能でないことが好ましく、固体および液体の双方が通過可能でないことがより好ましい。 Such a filter may be any filter that allows gas to pass but does not substantially allow solids and liquids to pass. The phrase “solid and liquid are substantially impermeable” means that a small amount of solid and liquid may be passed without impairing the performance of the chemical heat pump. The filter preferably allows a small amount of liquid to pass through but does not allow solids to pass through, and more preferably prevents both solids and liquids from passing through.
 より詳細には、フィルターは、透湿性(JIS L1099(B法、一般的にはB-1法)による)が1000g/m/24h以上、特に10000g/m/24h以上であることが好ましく、これによりフィルターに起因する圧力損失を十分に小さくすることができる。固体の非通過性については、化学蓄熱材が通過しないものであればよく、使用する化学蓄熱材の寸法に応じて適宜選択可能である。液体の非通過性については、防水性(JIS L1092(A法)による)が1000mm以上、特に10000mm以上であることが好ましい。 More specifically, filter, moisture permeability (JIS L1099 (B method, generally depends on the B-1 method)) is 1000g / m 2 / 24h or more, preferably particularly 10000g / m 2 / 24h or more Thus, the pressure loss due to the filter can be sufficiently reduced. The solid non-passability is not limited as long as the chemical heat storage material does not pass through, and can be appropriately selected according to the dimensions of the chemical heat storage material to be used. As for the non-passability of the liquid, the waterproof property (according to JIS L1092 (Method A)) is preferably 1000 mm or more, particularly preferably 10,000 mm or more.
 具体的には、例えば、ポリテトラフルオロエチレンを延伸加工したフィルム(微細孔フィルター)を使用することができ、これは、必要に応じてポリウレタンポリマーと複合化されていてもよい。かかるフィルムは、例えば、商品名「ゴアテックス」(登録商標)として市販で入手可能である。また、撥水加工した繊維生地にポリウレタンコーティングを施したものを使用することもできる。かかるポリウレタンコーティング生地は、例えば、東レ株式会社より、商品名「エントラントGII」(登録商標)XT等として市販で入手可能である。 Specifically, for example, a film (micropore filter) obtained by stretching polytetrafluoroethylene can be used, and this may be combined with a polyurethane polymer as necessary. Such a film is commercially available, for example, under the trade name “Gore-Tex” (registered trademark). Moreover, what gave the polyurethane coating to the fiber fabric which carried out the water repellent process can also be used. Such a polyurethane coating fabric is commercially available, for example, from Toray Industries, Inc. under the trade name “ENTANT GII” (registered trademark) XT.
 しかしながら、これらの例に限定されず、フィルターには、水分子よりも小さく、かつ、水蒸気分子よりも大きい寸法の孔を有する任意の適切な構造体を適用することができる。 However, the present invention is not limited to these examples, and any suitable structure having pores with dimensions smaller than water molecules and larger than water vapor molecules can be applied to the filter.
 フィルターは、気体は通過可能であるが、固体および液体は実質的に通過可能とし得る限り、任意の様式で連絡部5に備えられ得る。フィルターは、例えば、連絡部5の内部空間の少なくとも一部(好ましくは反応室1の近傍)を充填するように配置されていてよく、また、連絡部5の開口部(好ましくは反応室1側の開口部)を覆うように配置されていてよい。 The filter can be provided in the communication section 5 in any manner as long as gas can pass through but solid and liquid can pass through substantially. The filter may be arranged, for example, so as to fill at least a part of the internal space of the communication part 5 (preferably in the vicinity of the reaction chamber 1), and the opening of the communication part 5 (preferably on the reaction chamber 1 side). May be arranged so as to cover the opening).
 上記(ii)について、反応室1において化学蓄熱材が成形または梱包されており、該成形または梱包された化学蓄熱材の最小断面寸法が、連絡部5の最小断面寸法より大きいことにより、電子機器20が上下および/または左右に回転等した場合であっても、反応室1内の化学蓄熱材(一般的に固体または固形状)が反応室1から連絡部5を通じて凝縮蒸発室3へ移動することを効果的に防止できる。 Regarding the above (ii), the chemical heat storage material is molded or packed in the reaction chamber 1, and the minimum cross-sectional dimension of the molded or packed chemical heat storage material is larger than the minimum cross-sectional dimension of the connecting portion 5, so that the electronic device Even when 20 is rotated up and down and / or left and right, the chemical heat storage material (generally solid or solid) in the reaction chamber 1 moves from the reaction chamber 1 to the condensation and evaporation chamber 3 through the communication portion 5. Can be effectively prevented.
 反応室1において化学蓄熱材は、任意の適切な方法で成形または梱包されていてよい。化学蓄熱材が無機化合物の水和物(例えば硫酸カルシウムや塩化カルシウムなどの水和物)である場合には、無機化合物の水和により固化するので、その際に型等を用いて成形することが可能である。また、化学蓄熱材を樹脂材料および必要に応じて溶媒等と混合し、得られた組成物を型プレス等で成形することが可能である(なお、樹脂材料および存在する場合には溶媒等は、成形時にその一部、好ましくは大部分が除去され得る)。またあるいは、化学蓄熱材が粒状物である場合には、化学室熱材の粒径(例えば平均粒径)よりも小さい開口寸法を有するメッシュ、ネット、布帛(例えば織布または不織布)、フィルム等の梱包材料を用いて、化学蓄熱材を梱包することが可能である。梱包材料は、例えば金属、天然または合成繊維、高分子材料等からなっていてよい。 In the reaction chamber 1, the chemical heat storage material may be molded or packed by any appropriate method. If the chemical heat storage material is a hydrate of an inorganic compound (such as a hydrate of calcium sulfate or calcium chloride), it will solidify by hydration of the inorganic compound. Is possible. In addition, it is possible to mix the chemical heat storage material with a resin material and a solvent, if necessary, and mold the obtained composition with a mold press or the like (note that the resin material and the solvent if present are Part, preferably most, can be removed during molding). Alternatively, when the chemical heat storage material is a granular material, a mesh, net, fabric (for example, woven or non-woven fabric), film, etc. having an opening size smaller than the particle size (for example, average particle size) of the chemical chamber heat material It is possible to pack the chemical heat storage material by using the packing material. The packaging material may be made of, for example, metal, natural or synthetic fiber, polymer material or the like.
 このように成形または梱包された化学蓄熱材は、その最小断面寸法が、連絡部5の最小断面寸法より大きいものとされる。成形または梱包された化学蓄熱材の最小断面寸法は、成形または梱包された化学蓄熱材の任意の断面寸法のうち、最小となる断面寸法を言う。また、連絡部5の最小断面寸法は、連絡部5の内部空間の任意の断面寸法のうち、最小となる断面寸法を言い、通常は、連絡部5の最も狭い部分の寸法を言う。別の表現では、成形または梱包された化学蓄熱材の任意の投影面積のうち、投影面積が最小となるときの最大寸法が、連絡部5の内部空間の中心線に対して垂直な断面寸法のうち、最小となる断面寸法より大きいと言うこともできる。要するに、成形または梱包された化学蓄熱材が、連絡部5を通過できない寸法となっていればよい。例えば、成形または梱包された化学蓄熱材の最小断面寸法より、連絡部5の反応室1側の開口部(および場合により凝縮蒸発室3側の開口部)の開口寸法が小さくなっていれば、連絡部5の両開口部の間の部分は大きくなっていてよい。 The chemical heat storage material molded or packed in this way has a minimum cross-sectional dimension that is larger than the minimum cross-sectional dimension of the connecting portion 5. The minimum cross-sectional dimension of the chemical heat storage material molded or packaged refers to the minimum cross-sectional dimension among arbitrary cross-sectional dimensions of the chemical heat storage material molded or packaged. Further, the minimum cross-sectional dimension of the connecting part 5 refers to the smallest cross-sectional dimension among arbitrary cross-sectional dimensions of the internal space of the connecting part 5, and normally refers to the dimension of the narrowest part of the connecting part 5. In another expression, among the arbitrary projected areas of the molded or packaged chemical heat storage material, the maximum dimension when the projected area is the smallest is the cross-sectional dimension perpendicular to the center line of the internal space of the connecting portion 5. It can also be said that it is larger than the minimum cross-sectional dimension. In short, it is only necessary that the molded or packed chemical heat storage material has a size that does not pass through the connecting portion 5. For example, if the opening dimension of the reaction chamber 1 side opening of the communication part 5 (and possibly the condensation evaporation chamber 3 side opening) is smaller than the minimum cross-sectional dimension of the molded or packaged chemical heat storage material, The part between both opening parts of the connection part 5 may be enlarged.
 成形または梱包された化学蓄熱材は、反応室1内に存在すればよいが、熱の速やかかつ効率的な移動のためには、発熱部品11からの熱がよく伝わる位置に接触するように配置されることが好ましい。 The chemical heat storage material formed or packed may be present in the reaction chamber 1, but for quick and efficient movement of heat, the chemical heat storage material is disposed so as to contact a position where heat from the heat generating component 11 is well transmitted. It is preferred that
 上記(iii)について、凝縮蒸発室3が、液体をトラップ可能な物質を内部に有する、または凝縮蒸発室3の内表面の少なくとも一部が、液体をトラップ可能な物質から構成されていることにより、電子機器20が上下および/または左右に回転等した場合であっても、凝縮蒸発室3において凝縮した凝縮性成分(液体)が凝縮蒸発室3から連絡部5を通じて反応室1へ移動することを効果的に防止できる。 Regarding (iii) above, the condensation evaporation chamber 3 has a substance capable of trapping liquid inside, or at least a part of the inner surface of the condensation evaporation chamber 3 is made of a substance capable of trapping liquid. Even when the electronic device 20 is rotated up and down and / or left and right, the condensable component (liquid) condensed in the condensation evaporation chamber 3 moves from the condensation evaporation chamber 3 to the reaction chamber 1 through the communication unit 5. Can be effectively prevented.
 かかる物質は、液体を可逆的にトラップできるものであればよい。より詳細には、多孔質材料、例えばセラミックス、ゼオライト、金属等から成る多孔質材料を使用することができるが、これに限定されない。 Such a substance may be any substance that can reversibly trap a liquid. More specifically, a porous material such as a porous material made of ceramics, zeolite, metal or the like can be used, but is not limited thereto.
 液体をトラップ可能な物質は、凝縮蒸発室3の内部に収容されていても、凝縮蒸発室3の内表面の少なくとも一部を構成していてもよい。前者の場合、予め準備した液体をトラップ可能な物質を、凝縮蒸発室3内に配置すればよい。後者の場合、例えば、凝縮蒸発室3の壁面材料の内側表面上に、例えば水熱合成などによりセラミックスやゼオライトを合成して、該表面を覆うようにしてよい。いずれの場合にも、液体をトラップ可能な物質は、凝縮蒸発室3内またはその内表面に存在すればよいが、熱の速やかかつ効率的な移動のためには、熱伝導性部材13に対して熱がよく伝わる位置に存在することが好ましい。 The substance capable of trapping the liquid may be accommodated in the condensation evaporation chamber 3 or may constitute at least a part of the inner surface of the condensation evaporation chamber 3. In the former case, a substance capable of trapping a liquid prepared in advance may be arranged in the condensation evaporation chamber 3. In the latter case, for example, ceramics or zeolite may be synthesized on the inner surface of the wall material of the condensation evaporation chamber 3 by, for example, hydrothermal synthesis to cover the surface. In any case, the substance capable of trapping the liquid may be present in the condensation evaporation chamber 3 or on the inner surface thereof. However, for quick and efficient movement of the heat, the substance to the heat conductive member 13 may be used. It is preferable that it exists in the position where heat is transmitted well.
 このような構成のケミカルヒートポンプ10は、本実施形態を限定するものではないが、一例として、以下のようにして作製することができる。 The chemical heat pump 10 having such a configuration is not limited to this embodiment, but can be manufactured as follows as an example.
 まず、図12(a)を参照して、2枚の金属板41a、41bを用意する。これら金属板41a、41bは、好ましくは耐食性金属、例えばSUS等のステンレス鋼から成っていてよいが、これに限定されない。金属板41a、41bの厚さは、例えば0.01mm以上、特に0.05~0.5mmとし得る。金属板41a、41bの材質および厚さは、互いに同じであっても、異なっていてもよい。 First, referring to FIG. 12A, two metal plates 41a and 41b are prepared. These metal plates 41a and 41b may preferably be made of a corrosion-resistant metal, for example, stainless steel such as SUS, but are not limited thereto. The thickness of the metal plates 41a and 41b can be, for example, 0.01 mm or more, particularly 0.05 to 0.5 mm. The material and thickness of the metal plates 41a and 41b may be the same or different.
 次に、図12(b)に示すように、1つの金属板41aに、反応室1および凝縮蒸発室3に対応する2つの凸部43aを形成する。凸部43aの寸法は、反応室1および凝縮蒸発室3に対して所望される寸法に応じて適宜決定され得、凸部43aの高さは、例えば0.1~100mm、特に0.3~10mmとし得、互いに同じであっても、異なっていてもよい。他方、もう1つの金属板42bには、連絡部3に対応する凹部43bを形成する。凹部43bの寸法は、反応室1と凝縮蒸発室3との間を連絡する連絡部5を形成し、その内部を凝縮性成分が移動し得るものであればよく、凹部43bの深さは、例えば0.1~100mm、特に0.3~10mmとし得る。これら金属板41a、41bへの凹凸形状43a、43bの形成は、任意の適切な方法を適用してよく、例えば絞り加工、プレス成形などの方法を利用できる。 Next, as shown in FIG. 12B, two convex portions 43a corresponding to the reaction chamber 1 and the condensation evaporation chamber 3 are formed on one metal plate 41a. The dimensions of the protrusions 43a can be appropriately determined according to the dimensions desired for the reaction chamber 1 and the condensation evaporation chamber 3, and the height of the protrusions 43a is, for example, 0.1 to 100 mm, particularly 0.3 to It can be 10 mm and can be the same or different. On the other hand, a recess 43b corresponding to the connecting portion 3 is formed in the other metal plate 42b. The size of the concave portion 43b may be any size as long as it forms the connecting portion 5 that communicates between the reaction chamber 1 and the condensing evaporation chamber 3, and the condensable component can move inside the concave portion 43b. For example, it may be 0.1 to 100 mm, particularly 0.3 to 10 mm. Arbitrary appropriate methods may be applied to the formation of the concavo- convex shapes 43a and 43b on the metal plates 41a and 41b. For example, methods such as drawing and press forming can be used.
 そして、金属板41aの2つの凸部43aのうち反応室1に対応するほうに、化学蓄熱材45を配置する。化学蓄熱材45は、一般的に固体または固形状であり、例えば粒状、シート状等であり得る。化学蓄熱材45は、予め上記のように成形または梱包されていることが好ましいが、このことは必須ではない。 And the chemical heat storage material 45 is arrange | positioned in the direction corresponding to the reaction chamber 1 among the two convex parts 43a of the metal plate 41a. The chemical heat storage material 45 is generally solid or solid, and may be, for example, granular or sheet-like. The chemical heat storage material 45 is preferably molded or packed in advance as described above, but this is not essential.
 また、必要に応じて、金属板41aの2つの凸部43aのうち凝縮蒸発室3に対応するほうに、上記した液体をトラップ可能な物質(例えば多孔質材料、図示せず)を配置する。あるいは、2つの凸部43aのうち凝縮蒸発室3に対応するほうの内側表面を、上述したようにして液体をトラップ可能な物質で覆っておいてもよい。 Further, if necessary, a substance (for example, a porous material, not shown) capable of trapping the liquid is disposed on the side corresponding to the condensation evaporation chamber 3 of the two convex portions 43a of the metal plate 41a. Alternatively, the inner surface of the two convex portions 43a corresponding to the condensation evaporation chamber 3 may be covered with a substance capable of trapping liquid as described above.
 他方、金属板41bの凹部43に、上記の気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルター47を配置することが好ましいが、このことも必須ではない。 On the other hand, it is preferable to dispose a filter 47 that allows the gas to pass through the recess 43 of the metal plate 41b but does not allow the solid and liquid to pass through substantially. However, this is not essential.
 その後、図12(c)に示すように、これら金属板41a、41bを、凸部43aと凹部43bとが一緒になって内部空間を形成するように重ね合わせる。これにより、金属板41a、41bの外周平坦面が互いに密接することとなる。 Thereafter, as shown in FIG. 12C, these metal plates 41a and 41b are overlapped so that the convex portion 43a and the concave portion 43b together form an internal space. Thereby, the outer peripheral flat surfaces of the metal plates 41a and 41b are in close contact with each other.
 そして、図12(d)に示すように、重ね合わせた金属板41a、41bの外周部49を気密封止する。気密封止は、ケミカルヒートポンプ内部に所望される圧力、一般的には(使用する化学蓄熱材にもよるが)減圧下、例えば0.1~100000Pa、特に1.0~10000Pa(絶対圧)にて実施することが好ましい。気密封止には、任意の適切な方法を適用してよく、例えばレーザ溶接、アーク溶接、抵抗溶接、ガス溶接、ろう付けなどの方法を利用できる。気密封止後、外周部49のうち不要な縁部は、適宜、打ち抜き加工などによって除去してもよい。 And as shown in FIG.12 (d), the outer peripheral part 49 of the metal plates 41a and 41b which overlap | superposed is airtightly sealed. Hermetic sealing is performed at a desired pressure inside the chemical heat pump, generally under reduced pressure (depending on the chemical heat storage material used), for example, 0.1 to 100,000 Pa, particularly 1.0 to 10000 Pa (absolute pressure). It is preferable to carry out. Any appropriate method may be applied to the hermetic sealing, and for example, laser welding, arc welding, resistance welding, gas welding, brazing, and the like can be used. After the hermetic sealing, unnecessary edge portions of the outer peripheral portion 49 may be appropriately removed by punching or the like.
 以上のようにして、ケミカルヒートポンプ10を作製することができる。但し、上記の製造方法は単なる例示に過ぎず、本発明に適用されるケミカルヒートポンプは、任意の適切な方法に従って製造可能である。 The chemical heat pump 10 can be manufactured as described above. However, the manufacturing method described above is merely an example, and the chemical heat pump applied to the present invention can be manufactured according to any appropriate method.
 次に、上述のような構成のケミカルヒートポンプ10を、発熱部品11を備える電子機器20に組み込む。電子機器20は、少なくとも1つの電子部品を発熱部品11として備えるものであればよい。電子機器20は、一般的には、少なくとも1つの電子部品が基板に実装された電子回路基板が、筐体(または外装)内に収容されて成る。かかる電子機器20内(より詳細にはその筐体内)にケミカルヒートポンプ10が設けられる。本実施形態において、ケミカルヒートポンプ10は、発熱部品11の温度上昇を抑制する(または発熱部品を冷却する)ための手段として理解され得る。 Next, the chemical heat pump 10 having the above-described configuration is incorporated into the electronic device 20 including the heat generating component 11. The electronic device 20 only needs to include at least one electronic component as the heat generating component 11. In general, the electronic device 20 is configured such that an electronic circuit board on which at least one electronic component is mounted on a board is accommodated in a housing (or an exterior). The chemical heat pump 10 is provided in the electronic device 20 (more specifically, in the housing). In the present embodiment, the chemical heat pump 10 can be understood as a means for suppressing a temperature rise of the heat generating component 11 (or cooling the heat generating component).
 発熱部品11は、投入されたエネルギーの一部が熱に変換されて、発熱することにより失われる電子部品であればよい。発熱部品11の例としては、中央処理装置(CPU)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC);発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子;電界効果トランジスタ(FET)などが挙げられるが、これらに限定されない。発熱部品は、電子機器20において少なくとも1つ、一般的には複数存在し得る。 The heat generating component 11 may be an electronic component that is lost when heat is partially converted into heat. Examples of the heat generating component 11 include an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR); a light emitting diode (LED), Examples include, but are not limited to, light emitting elements such as incandescent bulbs and semiconductor lasers; field effect transistors (FETs) and the like. There may be at least one, generally a plurality of heat generating components in the electronic device 20.
 かかる発熱部品11に対して、上述のケミカルヒートポンプ10の反応室1が熱的に結合するように配置される。例えば、発熱部品11に対して、反応室1の熱伝導性材料から成る部分を直接または間接的に接触させて配置してよい。これにより、発熱部品11と反応室1との間で熱の移動が可能となる。電子機器20に発熱部品が複数存在する場合、反応室1と熱的に結合される発熱部品11は1つまたは複数であってよい。 The reaction chamber 1 of the chemical heat pump 10 is disposed so as to be thermally coupled to the heat generating component 11. For example, you may arrange | position the part which consists of a heat conductive material of the reaction chamber 1 with respect to the heat-emitting component 11 directly or indirectly. Thereby, heat can be transferred between the heat generating component 11 and the reaction chamber 1. When the electronic device 20 includes a plurality of heat generating components, the heat generating component 11 that is thermally coupled to the reaction chamber 1 may be one or more.
 他方、ケミカルヒートポンプ10の凝縮蒸発室3は、本実施形態に必須ではないが、電子機器20に存在する任意の適切な熱伝導性部材13に対して熱的に結合するように配置してよい。この熱伝導性部材13は、発熱部品11が発熱しているときに、発熱部品11の温度より低い温度を有するものであればよい。熱伝導性部材13の例としては、電子機器の筐体、バッテリ(例えばリチウムイオンバッテリ、アルカリバッテリ、ニッケル水素バッテリなど)の外装、基板、ディスプレイなどが挙げられるが、これらに限定されない。例えば、熱伝導性部材13に対して、凝縮蒸発室3の熱伝導性材料から成る部分を直接または間接的に接触させて配置してよい。これにより、凝縮蒸発室3と熱伝導性部材13との間で熱の移動が可能となる。凝縮蒸発室3と熱的に結合される熱伝導性部材13は1つまたは複数であってよい。 On the other hand, the condensation evaporation chamber 3 of the chemical heat pump 10 is not essential to the present embodiment, but may be disposed so as to be thermally coupled to any appropriate heat conductive member 13 present in the electronic device 20. . The heat conductive member 13 only needs to have a temperature lower than the temperature of the heat generating component 11 when the heat generating component 11 generates heat. Examples of the heat conductive member 13 include, but are not limited to, a casing of an electronic device, a battery (eg, a lithium ion battery, an alkaline battery, a nickel metal hydride battery), a substrate, and a display. For example, you may arrange | position the part which consists of a heat conductive material of the condensation evaporation chamber 3 with respect to the heat conductive member 13 directly or indirectly. Thereby, heat can be transferred between the condensing evaporation chamber 3 and the heat conductive member 13. There may be one or more thermally conductive members 13 that are thermally coupled to the condensation evaporation chamber 3.
 なお、本発明において、2つの部材が「熱的に結合する」とは、これら部材の間を熱が移動可能なように組み合わせることを意味する。熱的な結合は、直接または間接的な接触による熱伝導でもよいし、非接触で熱放射によるものでもよいし、熱媒または熱伝導性部材を利用したものであってもよい。2つの部材を熱的に結合させるために間接的に接触させる場合には、熱伝導性の接着剤層(例えば、金属フィラーなどで熱伝導性を高めた接着剤を用いて得られる層)や、熱伝導性材料から成る部材(例えば、金属などから成る伝熱板や、サーマルシート)等を介して接触させることが好ましい。 In the present invention, the two members being “thermally coupled” means that they are combined so that heat can move between these members. The thermal coupling may be heat conduction by direct or indirect contact, non-contact heat radiation, or a heat medium or a heat conductive member. When contacting two members indirectly to thermally bond them, a thermally conductive adhesive layer (for example, a layer obtained by using an adhesive whose thermal conductivity is increased by a metal filler, etc.) The contact is preferably made via a member made of a heat conductive material (for example, a heat transfer plate made of metal or a thermal sheet).
 以上のようにして構成される本実施形態の電子機器20は、次の2つのモードで使用され得る。 The electronic device 20 of the present embodiment configured as described above can be used in the following two modes.
・第1モード(蓄熱過程)
 まず、発熱部品11にエネルギーが投入されて熱を発するようになり、発熱部品11の温度が上昇すると、これと熱的に結合している反応室1へと熱が伝達される。具体的には、発熱部品11が発する熱は、発熱部品11の外表面から、例えば反応室1の熱伝導性材料から成る部分を通じて、反応室1に収容した化学蓄熱材へと伝導される。このようにして反応室に熱が供給されると、反応室内で化学蓄熱材の吸熱反応(蓄熱)が進行して凝縮性成分を生じる(即ち、反応室内の凝縮性成分の分圧が上昇する)。この結果、発熱部品から熱が奪われ、発熱部品の温度(代表的には、発熱部品の外表面の温度、以下も同様)の上昇が抑制される。
・ First mode (heat storage process)
First, energy is input to the heat generating component 11 to generate heat, and when the temperature of the heat generating component 11 rises, heat is transmitted to the reaction chamber 1 that is thermally coupled thereto. Specifically, the heat generated by the heat generating component 11 is conducted from the outer surface of the heat generating component 11 to a chemical heat storage material accommodated in the reaction chamber 1 through, for example, a portion made of a heat conductive material in the reaction chamber 1. When heat is supplied to the reaction chamber in this way, the endothermic reaction (heat storage) of the chemical heat storage material proceeds in the reaction chamber to generate a condensable component (that is, the partial pressure of the condensable component in the reaction chamber increases). ). As a result, heat is deprived from the heat generating component, and an increase in the temperature of the heat generating component (typically, the temperature of the outer surface of the heat generating component, and so on) is suppressed.
 このようにして反応室1内で生じた凝縮性成分は、気体状態(蒸気)で反応室1から連絡部5を通って凝縮蒸発室3へ移動する。かかる移動は、拡散現象により自然に起り得るが、これに限定されない。連絡部5がバルブを備える場合には、バルブの開閉によって凝縮性成分の移動を制御できる。 Thus, the condensable component generated in the reaction chamber 1 moves from the reaction chamber 1 to the condensing evaporation chamber 3 through the communication portion 5 in a gaseous state (vapor). Such movement can occur naturally due to the diffusion phenomenon, but is not limited thereto. When the communication unit 5 includes a valve, the movement of the condensable component can be controlled by opening and closing the valve.
 凝縮蒸発室3内では、凝縮性成分が凝縮して熱(潜熱)を生じる。例えば、凝縮性成分が水の場合、以下の反応により、気体状態の水が液体状態の水に相変化する。
Figure JPOXMLDOC01-appb-C000003
 式中、Qは、20.9kJ/molであることが知られている。
In the condensing evaporation chamber 3, the condensable components condense and generate heat (latent heat). For example, when the condensable component is water, the gas state water changes to liquid state water by the following reaction.
Figure JPOXMLDOC01-appb-C000003
In the formula, Q 3 is known to be 20.9 kJ / mol.
 凝縮蒸発室内の温度は、生じた熱により上昇し得る。このとき、凝縮蒸発室内の圧力を予め(非発熱状態において、例えば熱伝導性部材13が凝縮蒸発室3に熱的に結合して配置されている場合には、熱伝導性部材13に対して適宜設定され得る温度にて)凝縮性成分の飽和蒸気圧とし、凝縮性成分を気液平衡状態にしておくと、凝縮が速やかに進行し得るので好ましい。 ¡The temperature in the condensation evaporation chamber can be increased by the generated heat. At this time, the pressure in the condensation evaporation chamber is set in advance (in a non-heat generation state, for example, when the heat conductive member 13 is thermally coupled to the condensation evaporation chamber 3, It is preferable to set the saturated vapor pressure of the condensable component (at a temperature that can be set as appropriate) and keep the condensable component in a gas-liquid equilibrium state because condensation can proceed rapidly.
 そして、本実施形態に必須ではないが、凝縮蒸発室3が熱伝導性部材13に熱的に結合されている場合には、凝縮蒸発室3で生じた熱は、例えば凝縮蒸発室3の熱伝導性材料から成る部分を通じて、熱伝導性部材13に伝達される。 Although not essential to the present embodiment, when the condensation evaporation chamber 3 is thermally coupled to the heat conductive member 13, the heat generated in the condensation evaporation chamber 3 is, for example, the heat of the condensation evaporation chamber 3. It is transmitted to the heat conductive member 13 through a portion made of a conductive material.
 以上、第1モードによれば、化学蓄熱材の吸熱反応(蓄熱)を利用して、発熱部品11の温度上昇を抑制する(または発熱部品を冷却する)ことができる。また、凝縮蒸発室3が、熱伝導性部材13として電子機器20の筐体に熱的に結合されている場合には、化学蓄熱材に蓄熱していること、および、発熱部品11から反応室1内に入る熱よりも凝縮蒸発室3から熱伝導性部材13へ出る熱を小さくできる(温度レベルを変えられる)ことによって、筐体の温度を比較的低温に維持できる。これにより、発熱部品11ひいては電子機器20全体の温度制御が可能になる。 As described above, according to the first mode, the temperature increase of the heat generating component 11 can be suppressed (or the heat generating component is cooled) using the endothermic reaction (heat storage) of the chemical heat storage material. Further, when the condensing and evaporating chamber 3 is thermally coupled to the housing of the electronic device 20 as the heat conductive member 13, the heat is stored in the chemical heat storage material, and the heat generating component 11 starts the reaction chamber. Since the heat emitted from the condensing and evaporating chamber 3 to the heat conductive member 13 can be made smaller (the temperature level can be changed) than the heat entering the inside 1, the temperature of the housing can be maintained at a relatively low temperature. Thereby, the temperature control of the heat generating component 11 and the electronic device 20 as a whole becomes possible.
 なお、凝縮蒸発室3が熱伝導性部材13に熱的に結合されている場合には、熱伝導性部材13の温度を低下させることによっても、上記と同様の作用(メカニズム)が得られ、発熱部品11から熱を奪うことができ、発熱部品11の温度の上昇を抑制し、更には低下させることも可能である。本実施形態では、発熱部品11および熱伝導性部材13は、反応室1と熱的に結合される第1部材および凝縮蒸発室3と熱的に結合される第2部材としてそれぞれ把握できるが、第1部材および第2部材はこれらに限定されず、任意の部材を適用して熱設計することができる。 In addition, when the condensation evaporation chamber 3 is thermally coupled to the heat conductive member 13, the same action (mechanism) as described above can be obtained by lowering the temperature of the heat conductive member 13. Heat can be removed from the heat generating component 11, and the temperature rise of the heat generating component 11 can be suppressed and further reduced. In the present embodiment, the heat generating component 11 and the heat conductive member 13 can be grasped as a first member thermally coupled to the reaction chamber 1 and a second member thermally coupled to the condensation evaporation chamber 3, respectively. The first member and the second member are not limited to these, and can be thermally designed by applying an arbitrary member.
・第2モード(放熱過程)
 次に、例えば発熱部品11へのエネルギー投入を減少または停止するなどして、発熱部品11の温度が低下すると、これと熱的に結合している反応室1から発熱部品11へと熱が伝達される。具体的には、反応室1内の系から、例えば反応室1の熱伝導性材料から成る部分を通じて、発熱部品11へと伝導される。このようにして反応室1内の系から熱が奪われると、反応室1内で、化学蓄熱材の上記吸熱反応と逆の発熱反応(放熱)が進行して凝縮性成分を消費する(即ち、反応室内の凝縮性成分の分圧が低下する)。この結果、発熱部品11の温度は上昇に転じることとなる。
・ Second mode (heat dissipation process)
Next, when the temperature of the heat generating component 11 decreases, for example, by reducing or stopping energy input to the heat generating component 11, heat is transferred from the reaction chamber 1 thermally coupled to the heat generating component 11 to the heat generating component 11. Is done. Specifically, the heat is transmitted from the system in the reaction chamber 1 to the heat generating component 11 through, for example, a portion made of a heat conductive material in the reaction chamber 1. When heat is taken away from the system in the reaction chamber 1 in this way, an exothermic reaction (radiation) opposite to the endothermic reaction of the chemical heat storage material proceeds in the reaction chamber 1 to consume the condensable component (that is, , The partial pressure of the condensable component in the reaction chamber decreases). As a result, the temperature of the heat generating component 11 starts to rise.
 このようにして反応室1内で凝縮性成分が消費されると、気体状態(蒸気)の凝縮性成分が凝縮蒸発室3から連絡部5を通って反応室1へ移動する。かかる移動も、拡散現象により自然に起り得るが、これに限定されない。連絡部5がバルブを備える場合には、バルブの開閉によって凝縮性成分の移動を制御できる。 When the condensable component is consumed in the reaction chamber 1 in this manner, the condensable component in the gaseous state (vapor) moves from the condensing evaporation chamber 3 to the reaction chamber 1 through the communication portion 5. Such movement may occur naturally due to a diffusion phenomenon, but is not limited thereto. When the communication unit 5 includes a valve, the movement of the condensable component can be controlled by opening and closing the valve.
 凝縮蒸発室3内では、液相の凝縮性成分が熱(潜熱)を得て蒸発する。凝縮蒸発室3内の温度は、熱を奪われることにより低下し得る。 In the condensation evaporation chamber 3, the condensable component of the liquid phase gains heat (latent heat) and evaporates. The temperature in the condensing and evaporating chamber 3 can be lowered by taking heat away.
 そして、本実施形態に必須ではないが、凝縮蒸発室3が熱伝導性部材13に熱的に結合されている場合には、熱伝導性部材13から、例えば凝縮蒸発室3の熱伝導性材料から成る部分を通じて、凝縮蒸発室3に伝達される。換言すれば、凝縮蒸発室3から熱伝導性部材13に対して、冷熱を得ることができる。 Although not essential to the present embodiment, when the condensation evaporation chamber 3 is thermally coupled to the heat conductive member 13, the heat conductive material of the condensation evaporation chamber 3, for example, is extracted from the heat conductive member 13. It is transmitted to the condensing evaporation chamber 3 through the part consisting of In other words, cold heat can be obtained from the condensation evaporation chamber 3 to the heat conductive member 13.
 以上、第2モードによれば、化学蓄熱材の発熱反応(放熱)を利用して、発熱部品11の温度低下を抑制することができる。また、凝縮蒸発室3が、熱伝導性部材13として電子機器の筐体やバッテリの外装などに熱的に結合されている場合には、筐体やバッテリの温度を低下させる(または筐体やバッテリを冷却する)こともできる。これにより、発熱部品11ひいては電子機器20全体の温度制御が可能になる。 As described above, according to the second mode, it is possible to suppress the temperature drop of the heat generating component 11 by using the exothermic reaction (heat radiation) of the chemical heat storage material. In addition, when the condensation evaporation chamber 3 is thermally coupled as a heat conductive member 13 to a housing of an electronic device, a battery exterior, or the like, the temperature of the housing or the battery is decreased (or the housing or The battery can also be cooled). Thereby, the temperature control of the heat generating component 11 and the electronic device 20 as a whole becomes possible.
 なお、凝縮蒸発室3が熱伝導性部材13に熱的に結合されている場合には、熱伝導性部材13の温度を上昇させることによっても、上記と同様の作用(メカニズム)が得られ、発熱部品11の温度を上昇させることができる。本実施形態では、発熱部品11および熱伝導性部材13は、反応室と熱的に結合される第1部材および凝縮蒸発室と熱的に結合される第2部材としてそれぞれ把握できるが、第1部材および第2部材はこれらに限定されず、任意の部材を適用して熱設計することができる。例えば、第2モードで、第2部材の温度上昇の抑制(または第2部材の冷却)を行うことも可能である。 In addition, when the condensation evaporation chamber 3 is thermally coupled to the heat conductive member 13, the same action (mechanism) as described above can be obtained by increasing the temperature of the heat conductive member 13. The temperature of the heat generating component 11 can be raised. In the present embodiment, the heat generating component 11 and the heat conductive member 13 can be grasped as a first member that is thermally coupled to the reaction chamber and a second member that is thermally coupled to the condensation evaporation chamber, respectively. The member and the second member are not limited to these, and can be thermally designed by applying any member. For example, in the second mode, it is possible to suppress the temperature rise of the second member (or cool the second member).
 以上から理解されるように、本発明の電子機器は、冷却ファンを用いた従来の放熱方法にように、発熱部品の温度上昇を抑制する目的で余計にエネルギー投入する必要がなく、エネルギー効率に優れた電子機器が実現される。 As understood from the above, the electronic device of the present invention does not require extra energy input for the purpose of suppressing the temperature rise of the heat-generating component, unlike the conventional heat dissipation method using a cooling fan, and is energy efficient. Excellent electronic equipment is realized.
 また、本発明の電子機器は、冷却ファンを用いた従来の放熱方法にように、対流により放熱する(気流を起こして外部へ排気する)ものではなく、電子機器の筐体は密閉状態(閉じられた系)であってもよい。 Further, the electronic device of the present invention does not dissipate heat by convection (generates an air flow and exhausts to the outside) unlike the conventional heat dissipation method using a cooling fan, and the casing of the electronic device is sealed (closed). System).
 また、本発明の電子機器は、ヒートパイプを用いた従来の放熱方法に比べて、化学蓄熱材に蓄熱しているので大きい蓄熱容量を得ることができ、高い放熱能力を得ることができる。更に、凝縮蒸発室が、熱伝導性部材に熱的に結合されている場合には、上記第1モード(蓄熱過程)では発熱部品から反応室に入る熱よりも凝縮蒸発室から熱伝導性部材へ出る熱を小さくできる(温度レベルを変えられる)うえ、上記第2モード(放熱過程)では熱伝導性部材に対して冷熱を得ることができる。よって、凝縮蒸発室と熱的に結合される熱伝導性部材として電子機器の筐体を利用すれば、筐体の温度を比較的低温(例えば、表面温度55℃以下)に維持できると共に、筐体内の他の部品(例えばリチウムイオンバッテリ)への温度による悪影響を低減することができる。また、凝縮蒸発室と熱的に結合される熱伝導性部材としてバッテリの外装を利用すれば、バッテリ(例えば、高い使用環境温度によるバッテリ容量の低下が問題とされているリチウムイオンバッテリ)の寿命を延すことができる。また、凝縮蒸発室と熱的に結合される熱伝導性部材として基板を利用すれば、基板に実装されている他の電子部品の信頼性を損なうことを防止できる。 Moreover, since the electronic device of the present invention stores heat in the chemical heat storage material compared to the conventional heat dissipation method using a heat pipe, it can obtain a large heat storage capacity and can obtain a high heat dissipation capability. Further, when the condensing evaporation chamber is thermally coupled to the heat conductive member, in the first mode (heat storage process), the heat conductive member from the condensing evaporation chamber rather than the heat entering the reaction chamber from the heat generating component. In addition, it is possible to reduce the heat that flows out (the temperature level can be changed), and in the second mode (heat radiation process), cold heat can be obtained for the heat conductive member. Therefore, if the housing of the electronic device is used as a thermally conductive member that is thermally coupled to the condensing evaporation chamber, the temperature of the housing can be maintained at a relatively low temperature (for example, a surface temperature of 55 ° C. or lower), and the housing can be maintained. The adverse effects due to temperature on other parts in the body (for example, a lithium ion battery) can be reduced. In addition, if the exterior of the battery is used as a thermally conductive member that is thermally coupled to the condensing evaporation chamber, the life of the battery (for example, a lithium ion battery in which a decrease in battery capacity due to a high use environment temperature is a problem) Can be extended. In addition, if a substrate is used as a heat conductive member that is thermally coupled to the condensation evaporation chamber, it is possible to prevent the reliability of other electronic components mounted on the substrate from being impaired.
 加えて、本発明の電子機器によれば、反応室と熱的に結合される第1部材および凝縮蒸発室と熱的に結合される第2部材として、任意の部材を適用して熱設計することができ、電子機器の具体的な仕様に応じて、熱的に最適な電子部品のレイアウトが可能となる。 In addition, according to the electronic apparatus of the present invention, the first member thermally coupled to the reaction chamber and the second member thermally coupled to the condensation evaporation chamber are thermally designed by applying an arbitrary member. In accordance with the specific specifications of the electronic device, a thermally optimal electronic component layout becomes possible.
 以上、本発明の1つの実施形態における電子機器について詳述したが、本発明の電子機器はかかる実施形態に限定されず、本発明の基本的概念に基づいて種々の改変が可能である。 As mentioned above, although the electronic device in one embodiment of this invention was explained in full detail, the electronic device of this invention is not limited to this embodiment, Various modifications are possible based on the basic concept of this invention.
 例えば、電子機器に組み込まれ得るケミカルヒートポンプの数、1つの発熱部品に対して使用されるケミカルヒートポンプの数、1つのケミカルヒートポンプに存在する反応室、凝縮蒸発室および連絡部の数および配置等は、適宜選択可能である。 For example, the number of chemical heat pumps that can be incorporated into an electronic device, the number of chemical heat pumps used for one heat-generating component, the number and arrangement of reaction chambers, condensation evaporation chambers, and communication parts existing in one chemical heat pump, etc. Can be appropriately selected.
 また例えば、凝縮蒸発室は筐体内の周囲雰囲気により取り囲まれていてもよい(いわゆる空気断熱など)。あるいは、凝縮蒸発室が熱伝導性材料から成る部分を実質的に有さず、低熱伝導性ないし断熱性の材料から構成されていてもよい。更に、凝縮蒸発室そのものを無くしてもよく、この場合にも、化学蓄熱材の吸熱反応により発熱部品の温度上昇を抑制することは、ある程度可能である。 Also, for example, the condensation evaporation chamber may be surrounded by the ambient atmosphere in the casing (so-called air insulation, etc.). Alternatively, the condensing and evaporating chamber may be substantially composed of a material having low heat conductivity or heat insulation without having a portion made of a heat conductive material. Furthermore, the condensation evaporation chamber itself may be eliminated, and in this case as well, it is possible to some extent to suppress the temperature rise of the heat generating component by the endothermic reaction of the chemical heat storage material.
 即ち、本発明の別の実施形態における電子機器21は、図2に示すように、発熱部品11と、化学蓄熱材(例えば固相2aを成し得る)を収容した少なくとも1つの反応室1とを最低限有するものであればよい。この場合、発熱部品11が発する熱を、発熱部品11の外表面から、少なくとも1つの反応室1に収容した化学蓄熱材へ伝導し、化学蓄熱材が反応により吸熱することによって、発熱部品11の温度上昇を抑制することができる。なお、発熱部品11は、反応室1に熱的に結合する限り、任意の態様で配置され得る。 That is, as shown in FIG. 2, an electronic device 21 according to another embodiment of the present invention includes a heat generating component 11 and at least one reaction chamber 1 containing a chemical heat storage material (for example, which can form the solid phase 2a). What is necessary is just to have at least. In this case, the heat generated by the heat generating component 11 is conducted from the outer surface of the heat generating component 11 to the chemical heat storage material accommodated in at least one reaction chamber 1, and the chemical heat storage material absorbs heat by the reaction, thereby Temperature rise can be suppressed. The exothermic component 11 can be arranged in any manner as long as it is thermally coupled to the reaction chamber 1.
 かかる別の実施形態の電子機器において、2つの反応室が存在してよい。より詳細には、図3(a)に示すように、電子機器22において、第1化学蓄熱材を収容した第1反応室1aと、第2化学蓄熱材を収容した第2反応室1bとが存在していてよい。第1化学蓄熱材および第2化学蓄熱材は、同じ成分(作動媒体となる成分、例えば凝縮性成分であるが、これに限定されず、気体状態をとり得るものであればよい)が関与する任意の反応によって吸熱または発熱するものであればよい。かかる第1化学蓄熱材および第2化学蓄熱材は、相互に異なる反応平衡状態を有するものであればよい。第1化学蓄熱材および第2化学蓄熱材は、上記で例示したような化学蓄熱材から適宜選択してよく、例えば、第1化学蓄熱材および第2化学蓄熱材の一方を硫酸カルシウムの半水和物とし、他方を塩化カルシウムの水和物としてよく、上記同じ成分として水が、これらの吸熱および発熱の可逆反応に関与するが、これに限定されない。第1反応室1aおよび第2反応室1bは、それらの間の連絡部5aによってこの成分(作動媒体)が移動可能に連絡しており、発熱部品(図示せず)が発する熱は、第1反応室1aの第1化学蓄熱材および第2反応室1bの第2化学蓄熱材のいずれかに伝導されればよい。発熱部品(図示せず)が発する熱は、第1反応室1aおよび第2反応室1bのいずれか一方に選択的または切り替え可能に伝導され得る限り、発熱部品、第1反応室1aおよび第2反応室1bの配置は特に限定されない。 In such an electronic device of another embodiment, there may be two reaction chambers. More specifically, as shown in FIG. 3A, in the electronic device 22, a first reaction chamber 1a containing a first chemical heat storage material and a second reaction chamber 1b containing a second chemical heat storage material are provided. May exist. The first chemical heat storage material and the second chemical heat storage material are related to the same component (a component that serves as a working medium, for example, a condensable component, but is not limited to this and may be in a gaseous state). Any material that absorbs heat or generates heat by any reaction may be used. The first chemical heat storage material and the second chemical heat storage material only need to have different reaction equilibrium states. The first chemical heat storage material and the second chemical heat storage material may be appropriately selected from the chemical heat storage materials as exemplified above. For example, one of the first chemical heat storage material and the second chemical heat storage material is a half water of calcium sulfate. A hydrate of calcium chloride may be used as the hydrate, and water may be involved in the reversible reaction of these endotherms and exotherms as the same component, but is not limited thereto. The first reaction chamber 1a and the second reaction chamber 1b are in communication with each other so that the component (working medium) can be moved by the connecting portion 5a therebetween, and the heat generated by the heat generating component (not shown) is the first. It may be conducted to either the first chemical heat storage material in the reaction chamber 1a or the second chemical heat storage material in the second reaction chamber 1b. As long as heat generated by a heat generating component (not shown) can be selectively or switchably conducted to one of the first reaction chamber 1a and the second reaction chamber 1b, the heat generating component, the first reaction chamber 1a, and the second reaction chamber 1b The arrangement of the reaction chamber 1b is not particularly limited.
 また、図3(b)に示す電子機器23のように、上記の移動性成分を凝縮または蒸発させるための凝縮蒸発室3aを更に含んでいてよく、凝縮蒸発室3aは、第1反応室1aと第2反応室1bの間の連絡部5aに対して、連絡部5bによって連絡している。この凝縮蒸発室3aの配置は、2つの反応室1aおよび1bに対して並列の配置である。 Moreover, like the electronic device 23 shown in FIG.3 (b), the condensation evaporation chamber 3a for condensing or evaporating said mobile component may be further included, and the condensation evaporation chamber 3a is the 1st reaction chamber 1a. The communication unit 5b communicates with the communication unit 5a between the first reaction chamber 1b and the second reaction chamber 1b. The condensing and evaporating chamber 3a is arranged in parallel with the two reaction chambers 1a and 1b.
 あるいは、図3(c)に示す電子機器24のように、上記の移動性成分を凝縮または蒸発させるための凝縮蒸発室3bを更に含んでいてよく、凝縮蒸発室3bは、第1反応室1aおよび第2反応室1bのいずれか(図3(c)では第2反応室1b)に対して、別の連絡部5cによって連絡している。この凝縮蒸発室3bの配置は、2つの反応室1aおよび1bに対して直列な配置である。 Alternatively, as in the electronic device 24 shown in FIG. 3 (c), it may further include a condensation evaporation chamber 3b for condensing or evaporating the mobile component, and the condensation evaporation chamber 3b is the first reaction chamber 1a. Further, either one of the second reaction chambers 1b (second reaction chamber 1b in FIG. 3C) communicates with another communication unit 5c. The condensing and evaporating chamber 3b is arranged in series with the two reaction chambers 1a and 1b.
 図3(b)および(c)の例では、移動性成分は凝縮性成分(即ち、気体状態(気相)と液体状態(液相)との間で相変化可能な成分)であるが、これに限定されない。例えば、移動性成分は、気体状態(気相)と固体状態(固相)との間で相変化可能な成分であってもよく、この場合、凝縮蒸発室3aおよび3bは、昇華室として理解され得る。 In the example of FIGS. 3B and 3C, the mobile component is a condensable component (that is, a component capable of phase change between a gas state (gas phase) and a liquid state (liquid phase)). It is not limited to this. For example, the mobile component may be a component capable of phase change between a gas state (gas phase) and a solid state (solid phase), in which case the condensation evaporation chambers 3a and 3b are understood as sublimation chambers. Can be done.
 なお、図3は本発明の別の実施形態を例示的に説明するものであり、反応室の数および場合により存在する凝縮蒸発室または昇華室の数、ならびにこれらの配置等は、適宜選択可能である。 FIG. 3 illustrates another embodiment of the present invention by way of example, and the number of reaction chambers, the number of condensing evaporation chambers or sublimation chambers present in some cases, and the arrangement thereof can be selected as appropriate. It is.
 かかる本発明の別の実施形態における電子機器について、特に説明のない限り、上述の実施形態と同様の説明が当て嵌まり得る。 For the electronic device in another embodiment of the present invention, the same description as in the above embodiment can be applied unless otherwise specified.
 例えば、図3に例示した別の実施形態の電子機器は、以下の特徴のいずれか1つを単独で、または任意の2つ以上を組み合わせて備えることが好ましい。
 (i’)第1反応室1aおよび第2反応室1b、ならびに凝縮蒸発室3aまたは3b間をつなぐ連絡部5a、5b、5cのいずれか、好ましくは凝縮蒸発室側の連絡部5b、5cにおいて、気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルターを備えること
 (ii’)第1反応室1aにおいて第1化学蓄熱材が成形または梱包されており、該成形または梱包された第1化学蓄熱材の最小断面寸法が、連絡部5aの最小断面寸法より大きいこと、および/または第2反応室1bにおいて第2化学蓄熱材が成形または梱包されており、該成形または梱包された第2化学蓄熱材の最小断面寸法が、連絡部5a(および好ましくは、存在する場合は別の連絡部5c)の最小断面寸法より大きいこと
 (iii’)凝縮蒸発室3a、3bが、液体をトラップ可能な物質を内部に有する、あるいは凝縮蒸発室3a、3bの内表面の少なくとも一部が、液体をトラップ可能な物質から構成されていること
For example, the electronic device of another embodiment illustrated in FIG. 3 preferably includes any one of the following features alone or in combination of two or more.
(I ′) In the first reaction chamber 1a and the second reaction chamber 1b, and any one of the connecting portions 5a, 5b, and 5c that connect the condensing evaporation chamber 3a or 3b, preferably in the connecting portions 5b and 5c on the condensing evaporation chamber side. (Ii) a first chemical heat storage material is molded or packaged in the first reaction chamber 1a, and the molded or packaged gas is allowed to pass through, but the solid and liquid are not substantially allowed to pass through. The minimum cross-sectional dimension of the first chemical heat storage material formed is larger than the minimum cross-sectional dimension of the communication portion 5a, and / or the second chemical heat storage material is molded or packed in the second reaction chamber 1b. The minimum cross-sectional dimension of the second chemical heat storage material formed is greater than the minimum cross-sectional dimension of the communication part 5a (and preferably another communication part 5c, if present) (iii ') the condensation evaporation chamber 3a 3b is that the liquid has therein a trappable material, or condensation evaporation chamber 3a, at least a portion of the inner surface of the 3b, are composed of liquid from the trap substance
 これら特徴については、図1および図12を参照して上述した実施形態と同様の説明が当て嵌まり、これと同様の作用効果を奏する。 For these features, the same description as that of the embodiment described above with reference to FIGS. 1 and 12 is applied, and the same effect as this is achieved.
 以上、本発明のいくつかの実施形態における電子機器について説明したが、これらは全て更なる改変が可能である。 As mentioned above, although the electronic device in some embodiment of this invention was demonstrated, all these can change further.
 即ち、上記した実施形態における電子機器は、いずれも、化学蓄熱材を用いたものであるが、これに代えて、吸熱現象を伴って相変化可能な成分を生じる他の蓄熱材を使用してもよい。この場合、相変化可能な成分がデバイスの作動媒体となり、該成分は反応室から気体状態で移動し得、上述した凝縮蒸発室または昇華室は、該成分が相変化する室(即ち相変化室)として理解され、凝縮蒸発室として機能しても、昇華室として機能してもよい。 In other words, all the electronic devices in the above-described embodiments use chemical heat storage materials, but instead use other heat storage materials that generate a phase changeable component with an endothermic phenomenon. Also good. In this case, the phase changeable component becomes the working medium of the device, and the component can move in a gaseous state from the reaction chamber, and the condensation evaporation chamber or the sublimation chamber described above is a chamber in which the phase changes (that is, the phase change chamber). ) And may function as a condensing evaporation chamber or a sublimation chamber.
 かかる他の蓄熱材は、本発明の電子機器の用途に応じて(例えば、発熱部品が発する熱によって吸熱現象を示すように)適宜選択され得る。他の蓄熱材も、化学蓄熱材と同様、例えば30~200℃の温度で吸熱現象を示すものであることが好ましく、特に40℃以上、更に50℃以上で、150℃以下、より更に120℃以下の温度で吸熱現象を示すものであることが好ましい。 Such other heat storage material can be appropriately selected according to the use of the electronic device of the present invention (for example, so as to exhibit an endothermic phenomenon by the heat generated by the heat-generating component). Other heat storage materials, like chemical heat storage materials, preferably exhibit an endothermic phenomenon at a temperature of, for example, 30 to 200 ° C., particularly 40 ° C. or more, further 50 ° C. or more, 150 ° C. or less, and further 120 ° C. It is preferable to exhibit an endothermic phenomenon at the following temperatures.
 本発明に利用可能な他の蓄熱材としては、例えばゼオライト、シリカゲル、メソポーラスシリカおよび活性炭から成る群より選択される少なくとも1種の蓄熱材(以下、単に「ゼオライト等」とも言う)が挙げられる。これらはいずれも、例えば水を可逆的に吸着および脱着すること(または水和反応および脱水反応、以下も同様)が可能であり、水の脱着の際に吸熱現象を示す。
Figure JPOXMLDOC01-appb-C000004
 式中、Zは、ゼオライト等の組成を代表して表したものであり、その組成に応じてxは種々の値をとり得る。Qは、具体的な組成にもよるが、例えば、ゼオライトで約30~80kJ/molであり得る。かかる水の脱着は、種々の条件にもよるが、例えば、ゼオライトで約50~150℃、シリカゲルで約5~150℃、メソポーラスシリカで約5~150℃、活性炭で約5~150℃で進行し得る。
Examples of other heat storage materials that can be used in the present invention include at least one heat storage material selected from the group consisting of zeolite, silica gel, mesoporous silica, and activated carbon (hereinafter, also simply referred to as “zeolite etc.”). Any of these can, for example, reversibly adsorb and desorb water (or hydration reaction and dehydration reaction, and so on), and exhibit an endothermic phenomenon upon desorption of water.
Figure JPOXMLDOC01-appb-C000004
In the formula, Z represents the composition of zeolite or the like as a representative, and x can take various values depending on the composition. Q 4 can be, for example, about 30-80 kJ / mol for zeolite, depending on the specific composition. Such desorption of water proceeds depending on various conditions, for example, about 50 to 150 ° C. for zeolite, about 5 to 150 ° C. for silica gel, about 5 to 150 ° C. for mesoporous silica, and about 5 to 150 ° C. for activated carbon. Can do.
 ゼオライトとは、いわゆるゼオライト構造、即ち、SiO四面体およびAlO四面体が頂点酸素を共有し3次元に連なった網目状構造を基本骨格として有する結晶性含水アルミノケイ酸塩を言う。ゼオライトは、通常、下記の一般式で表され得る。
 (M,M 1/2(AlSi2(m+n))・xHO (n≧m)
 Mは、Li、Na、K等の1価のカチオンであり、Mは、Ca2+、Mg2+、Ba2+等の2価のカチオンである。
The zeolite is a so-called zeolite structure, that is, a crystalline hydrous aluminosilicate having a network structure in which SiO 4 tetrahedron and AlO 4 tetrahedron share apex oxygen and are connected in three dimensions as a basic skeleton. Zeolites can usually be represented by the general formula:
(M 1, M 2 1/2) m (Al m Si n O 2 (m + n)) · xH 2 O (n ≧ m)
M 1 is a monovalent cation such as Li + , Na + , or K + , and M 2 is a divalent cation such as Ca 2+ , Mg 2+ , or Ba 2+ .
 なかでも、本発明に好適に利用され得るゼオライトとしては、A型ゼオライト(LTA)、X型ゼオライト(FAU)、Y型ゼオライト(FAU)、ベータ型ゼオライト(BEA)、AlPO-5(AFI)などである。 Among these, zeolites that can be suitably used in the present invention include A-type zeolite (LTA), X-type zeolite (FAU), Y-type zeolite (FAU), beta-type zeolite (BEA), AlPO-5 (AFI), and the like. It is.
 シリカゲルは、コロイド状シリカの三次元構造体であり、細孔径が数nm~数十nm、比表面積は5~1000m/gと多孔体特性を広範囲に制御できる。また、シリカゲルの一次粒子表面はシラノールに覆われており、シラノールの影響で極性分子(水など)を選択的に吸着する。 Silica gel is a three-dimensional structure of colloidal silica, and has a pore diameter of several nm to several tens of nm, a specific surface area of 5 to 1000 m / g, and can control the properties of the porous material over a wide range. Moreover, the primary particle surface of silica gel is covered with silanol, and polar molecules (such as water) are selectively adsorbed under the influence of silanol.
 メソポーラスシリカは、二酸化ケイ素を材質として均一で規則的な細孔を持つ物質で、細孔径は約2~10nmのものを言う。 Mesoporous silica is a substance having uniform and regular pores made of silicon dioxide and having a pore diameter of about 2 to 10 nm.
 活性炭は、「細孔を有する多孔質の炭素質物質」で、大きな比表面積と吸着能力を持つ物質を言う。その基本骨格は炭素原子が120°の角度で結ばれた二次元格子の平面構造である。この二次元格子が不規則に積層して結晶格子を形成し、この結晶格子がランダムにつながったものが活性炭であり、結晶格子間の空隙が活性炭細孔であり、細孔に水が吸着する。 Activated carbon is a “porous carbonaceous substance having pores”, which has a large specific surface area and adsorption capacity. The basic skeleton is a two-dimensional lattice planar structure in which carbon atoms are connected at an angle of 120 °. The two-dimensional lattice is irregularly stacked to form a crystal lattice, and this crystal lattice is randomly connected to be activated carbon. The voids between the crystal lattices are activated carbon pores, and water is adsorbed into the pores. .
 これらゼオライト等は、本発明の電子機器を作製するに際して、予め水を十分に吸着させておくことが好ましい。 These zeolites and the like are preferably preliminarily adsorbed with water when producing the electronic device of the present invention.
 本発明の電子機器において他の蓄熱材としてゼオライト等を用いた場合、凝縮性成分である水が作動媒体となり、従って、上述の化学蓄熱材を用いた実施形態(凝縮性成分として水を生じ、これを作動媒体とするもの)と同様のメカニズムにより、同様の作用効果を奏する。 When zeolite or the like is used as the other heat storage material in the electronic apparatus of the present invention, water that is a condensable component serves as a working medium, and therefore, the embodiment using the above-described chemical heat storage material (produces water as a condensable component, The same function and effect can be obtained by the same mechanism as that of the working medium.
 本発明の電子機器は、例えばスマートフォン、携帯電話、タブレット型端末、ラップトップ型パソコン、携帯型ゲーム機、携帯型音楽プレイヤー、デジタルカメラなどのモバイル型電子機器として好適に利用され得る。 The electronic device of the present invention can be suitably used as a mobile electronic device such as a smart phone, a mobile phone, a tablet terminal, a laptop computer, a portable game machine, a portable music player, or a digital camera.
・CHP搭載例
 本発明の電子機器において、第1部材/発熱部材11および第2部材/熱伝導性部材13として種々の部品/部材を適用したケミカルヒートポンプ(CHP)搭載例について、以下、図面を参照しながらより具体的に説明するが、これらに限定されない。
-CHP mounting example In the electronic device of the present invention, a chemical heat pump (CHP) mounting example in which various parts / members are applied as the first member / heating member 11 and the second member / thermal conductive member 13 will be described below. Although it demonstrates more concretely with reference, it is not limited to these.
(搭載例1)
 図4を参照して、この搭載例では、電子機器がラップトップ型PC(パーソナルコンピュータ)20aであり、発熱部品がCPU11aである。ケミカルヒートポンプ10は、反応室1、凝縮蒸発室3およびこれらの間を連絡する連絡部5を含む。反応室1は、CPU11aに対して熱的に結合されている。例えば、金属フィラーなどで熱伝導性を高めた接着剤を用いて、反応室1をCPU11aに接着してよいが、これに限定されない。凝縮蒸発室3は、リチウムイオンバッテリ13aおよび筐体13bのいずれとも熱的に結合されておらず、空気断熱されている。凝縮蒸発室3は、CPU11a(発熱部品)と断熱されていることが好ましい。
(Mounting example 1)
Referring to FIG. 4, in this mounting example, the electronic device is a laptop PC (personal computer) 20a, and the heat generating component is CPU 11a. The chemical heat pump 10 includes a reaction chamber 1, a condensation evaporation chamber 3, and a communication unit 5 that communicates between them. The reaction chamber 1 is thermally coupled to the CPU 11a. For example, the reaction chamber 1 may be bonded to the CPU 11a using an adhesive whose thermal conductivity is increased with a metal filler or the like, but is not limited thereto. The condensation evaporation chamber 3 is not thermally coupled to either the lithium ion battery 13a or the housing 13b, and is thermally insulated. The condensation evaporation chamber 3 is preferably insulated from the CPU 11a (heat generating component).
 この搭載例では、CPU11aが動作して発熱し、ある程度高い温度(使用する化学蓄熱材による)に達すると、CPU11aから熱を奪って反応室1の化学蓄熱材の吸熱反応が進行し(このとき発生した凝縮性成分は凝縮蒸発室3で凝縮し得る)、これにより、CPU11aの温度上昇を低減し、好ましくはCPU11aの温度を安定化させて、CPU11aを耐熱温度以下に維持できる。その後、CPU11aの動作がより低いレベルに変化ないし停止して、CPU11aの温度がある程度低い温度まで低下すると、反応室1で化学蓄熱材の発熱反応が進行してCPU11aに熱を与え(このとき凝縮蒸発室3では凝縮性成分が蒸発し得る)、これにより、CPU11aの温度は若干上昇し得る。すなわち、ケミカルヒートポンプ10は、CPU11aの高温動作時にはCPU11aから熱を奪い、低温動作時にはCPU11aに熱を与える。 In this mounting example, when the CPU 11a operates to generate heat and reaches a certain high temperature (depending on the chemical heat storage material to be used), heat is taken from the CPU 11a and the endothermic reaction of the chemical heat storage material in the reaction chamber 1 proceeds (at this time). The generated condensable component can be condensed in the condensing evaporation chamber 3), thereby reducing the temperature rise of the CPU 11 a, preferably stabilizing the temperature of the CPU 11 a, and maintaining the CPU 11 a below the heat resistant temperature. After that, when the operation of the CPU 11a is changed or stopped to a lower level and the temperature of the CPU 11a is lowered to a certain low temperature, the exothermic reaction of the chemical heat storage material proceeds in the reaction chamber 1 to give heat to the CPU 11a (condensation at this time). In the evaporation chamber 3, the condensable component can evaporate), whereby the temperature of the CPU 11 a can slightly increase. That is, the chemical heat pump 10 takes heat from the CPU 11a when the CPU 11a operates at a high temperature, and applies heat to the CPU 11a when the CPU 11a operates at a low temperature.
(搭載例2)
 図5を参照して、この搭載例では、電子機器がラップトップ型PC20aであり、発熱部品がCPU11aである。ケミカルヒートポンプ10は、反応室1、凝縮蒸発室3およびこれらの間を連絡する連絡部5を含む。反応室1は、CPU11aに対して熱的に結合されている。凝縮蒸発室3は、筐体13bに対して熱的に結合されている。例えば、金属フィラーなどで熱伝導性を高めた接着剤を用いて、反応室1および凝縮蒸発室3をCPU11aおよび筐体13bにそれぞれ接着してよいが、これに限定されない。
(Installation example 2)
Referring to FIG. 5, in this mounting example, the electronic device is a laptop PC 20a, and the heat generating component is a CPU 11a. The chemical heat pump 10 includes a reaction chamber 1, a condensation evaporation chamber 3, and a communication unit 5 that communicates between them. The reaction chamber 1 is thermally coupled to the CPU 11a. The condensation evaporation chamber 3 is thermally coupled to the housing 13b. For example, the reaction chamber 1 and the condensation / evaporation chamber 3 may be bonded to the CPU 11a and the housing 13b using an adhesive whose thermal conductivity is increased with a metal filler or the like, but is not limited thereto.
 この搭載例では、CPU11aが動作して発熱し、ある程度高い温度(使用する化学蓄熱材による)に達すると、CPU11aから熱を奪って反応室1の化学蓄熱材の吸熱反応が進行し、この吸熱反応で発生した凝縮性成分は凝縮蒸発室3で凝縮して筐体13bに熱を与え、これにより、CPU11aの温度上昇を低減し、好ましくはCPU11aの温度を安定化させて、CPU11aを耐熱温度以下(例えば120℃以下)に維持できる。その後、CPU11aの動作がより低いレベルに変化ないし停止して、CPU11aの温度がある程度低い温度まで低下すると、反応室1で化学蓄熱材の発熱反応が進行すると共に凝縮蒸発室3では筐体13bから熱を奪って凝縮性成分が蒸発し、これにより、CPU11aの温度は若干上昇し、筐体13bの温度は低下し、比較的低温(例えば55℃以下)に維持できる。すなわち、ケミカルヒートポンプ10は、CPU11aの高温動作時にはCPU11aから熱を奪うと共に筐体13bに熱を逃がし、低温動作時にはCPU11aに熱を与えると共に筐体13bから熱を奪う(冷却する)。 In this mounting example, when the CPU 11a operates to generate heat and reaches a certain high temperature (depending on the chemical heat storage material to be used), heat is taken from the CPU 11a and the endothermic reaction of the chemical heat storage material in the reaction chamber 1 proceeds. The condensable component generated by the reaction is condensed in the condensing evaporation chamber 3 to give heat to the housing 13b, thereby reducing the temperature rise of the CPU 11a, preferably stabilizing the temperature of the CPU 11a, and keeping the CPU 11a at the heat resistant temperature. It can maintain below (for example, 120 degrees C or less). After that, when the operation of the CPU 11a is changed or stopped to a lower level and the temperature of the CPU 11a is lowered to a certain low temperature, the exothermic reaction of the chemical heat storage material proceeds in the reaction chamber 1 and the condensation evaporation chamber 3 starts from the housing 13b. By depriving the heat, the condensable component evaporates, and as a result, the temperature of the CPU 11a slightly increases, the temperature of the housing 13b decreases, and can be maintained at a relatively low temperature (for example, 55 ° C. or lower). That is, the chemical heat pump 10 draws heat from the CPU 11a and releases the heat to the housing 13b when the CPU 11a operates at a high temperature, and gives heat to the CPU 11a and removes (cools) the heat from the housing 13b when operating at a low temperature.
(搭載例3)
 図6を参照して、この搭載例では、電子機器がスマートフォン20bであり、発熱部品がパワーマネージメントIC11bである。ケミカルヒートポンプ10は、反応室1、凝縮蒸発室3およびこれらの間を連絡する連絡部5を含む。反応室1は、パワーマネージメントIC11bに対して熱的に結合されている。凝縮蒸発室3は、リチウムイオンバッテリ13aに対して熱的に結合されている。例えば、金属フィラーなどで熱伝導性を高めた接着剤を用いて、反応室1および凝縮蒸発室3をパワーマネージメントIC11bおよびリチウムイオンバッテリ13aにそれぞれ接着してよいが、これに限定されない。
(Mounting example 3)
Referring to FIG. 6, in this mounting example, the electronic device is a smartphone 20b, and the heat generating component is a power management IC 11b. The chemical heat pump 10 includes a reaction chamber 1, a condensation evaporation chamber 3, and a communication unit 5 that communicates between them. The reaction chamber 1 is thermally coupled to the power management IC 11b. The condensation evaporation chamber 3 is thermally coupled to the lithium ion battery 13a. For example, the reaction chamber 1 and the condensation evaporation chamber 3 may be bonded to the power management IC 11b and the lithium ion battery 13a, respectively, using an adhesive whose thermal conductivity is increased with a metal filler or the like, but is not limited thereto.
 この搭載例では、パワーマネージメントIC11bが動作して発熱し、ある程度高い温度(使用する化学蓄熱材による)に達すると、パワーマネージメントIC11bから熱を奪って反応室1の化学蓄熱材の吸熱反応が進行し、この吸熱反応で発生した凝縮性成分は凝縮蒸発室3で凝縮してリチウムイオンバッテリ13aに熱を与え、これにより、パワーマネージメントIC11bの温度上昇を低減し、好ましくはパワーマネージメントIC11bの温度を安定化させて、パワーマネージメントIC11bを耐熱温度以下(例えば85℃以下)に維持できる。その後、パワーマネージメントIC11bの動作がより低いレベルに変化ないし停止して、パワーマネージメントIC11bの温度がある程度低い温度まで低下すると、反応室1で化学蓄熱材の発熱反応が進行すると共に凝縮蒸発室3ではリチウムイオンバッテリ13aから熱を奪って凝縮性成分が蒸発し、これにより、パワーマネージメントIC11bの温度は若干上昇し、リチウムイオンバッテリ13aの温度は低下し、リチウムイオンバッテリ13aの寿命低下が問題とならない温度以下(例えば40℃以下)に維持できる。すなわち、ケミカルヒートポンプ10は、パワーマネージメントIC11bの高温動作時にはパワーマネージメントIC11bから熱を奪うと共にリチウムイオンバッテリ13aに熱を逃がし、低温動作時にはパワーマネージメントIC11bに熱を与えると共にリチウムイオンバッテリ13aから熱を奪う(冷却する)。 In this mounting example, when the power management IC 11b operates to generate heat and reaches a certain high temperature (depending on the chemical heat storage material used), the heat management IC 11b takes heat away and the endothermic reaction of the chemical heat storage material in the reaction chamber 1 proceeds. Then, the condensable component generated by this endothermic reaction is condensed in the condensing evaporation chamber 3 to give heat to the lithium ion battery 13a, thereby reducing the temperature rise of the power management IC 11b, and preferably the temperature of the power management IC 11b is increased. By stabilizing, the power management IC 11b can be maintained at a heat resistant temperature or lower (for example, 85 ° C. or lower). Thereafter, when the operation of the power management IC 11b is changed or stopped to a lower level and the temperature of the power management IC 11b is lowered to a certain low temperature, the exothermic reaction of the chemical heat storage material proceeds in the reaction chamber 1 and in the condensation evaporation chamber 3 The heat is removed from the lithium ion battery 13a and the condensable component evaporates. As a result, the temperature of the power management IC 11b slightly increases, the temperature of the lithium ion battery 13a decreases, and the life of the lithium ion battery 13a does not decrease. The temperature can be maintained below the temperature (for example, 40 ° C. or below). That is, the chemical heat pump 10 takes heat from the power management IC 11b when the power management IC 11b operates at a high temperature and releases heat to the lithium ion battery 13a, and applies heat to the power management IC 11b and removes heat from the lithium ion battery 13a when operated at a low temperature. (Cooling).
(搭載例4)
 図7を参照して、この搭載例では、電子機器がスマートフォン20bであり、発熱部品が2つのパワーアンプ11cおよび11c’である。第1のケミカルヒートポンプ10は、反応室1、凝縮蒸発室3およびこれらの間を連絡する連絡部5を含む。第2のケミカルヒートポンプ10’は、反応室1’、凝縮蒸発室3’およびこれらの間を連絡する連絡部5’を含む。反応室1は、パワーアンプ11cに対して熱的に結合されている。反応室1’は、パワーアンプ11c’に対して熱的に結合されている。凝縮蒸発室3および3’は、筐体13bに対して熱的に結合されている。例えば、金属フィラーなどで熱伝導性を高めた接着剤を用いて、反応室1および凝縮蒸発室3をパワーアンプ11cおよび筐体13bにそれぞれ接着し、反応室1’および凝縮蒸発室3’をパワーアンプ11c’および筐体13bにそれぞれ接着してよいが、これに限定されない。
(Mounting example 4)
Referring to FIG. 7, in this mounting example, the electronic device is a smartphone 20b, and the heat generating components are two power amplifiers 11c and 11c ′. The first chemical heat pump 10 includes a reaction chamber 1, a condensation evaporation chamber 3, and a communication unit 5 that communicates between them. The second chemical heat pump 10 ′ includes a reaction chamber 1 ′, a condensation evaporation chamber 3 ′, and a communication portion 5 ′ communicating between them. Reaction chamber 1 is thermally coupled to power amplifier 11c. The reaction chamber 1 ′ is thermally coupled to the power amplifier 11c ′. Condensation evaporation chambers 3 and 3 ′ are thermally coupled to housing 13b. For example, the reaction chamber 1 and the condensation evaporation chamber 3 are bonded to the power amplifier 11c and the housing 13b, respectively, using an adhesive whose thermal conductivity is increased with a metal filler or the like, and the reaction chamber 1 ′ and the condensation evaporation chamber 3 ′ are bonded to each other. The power amplifier 11c ′ and the housing 13b may be bonded to each other, but are not limited thereto.
 この搭載例では、バンド1使用時にパワーアンプ11cが動作して発熱し、ある程度高い温度(使用する化学蓄熱材による)に達すると、パワーアンプ11cから熱を奪って反応室1の化学蓄熱材の吸熱反応が進行し、この吸熱反応で発生した凝縮性成分は凝縮蒸発室3で凝縮して筐体13bに熱を与え、これにより、パワーアンプ11cの温度上昇を低減し、好ましくはパワーアンプ11cの温度を安定化させて、パワーアンプ11cを耐熱温度以下(例えば85℃以下)に維持できる。その後、バンド1からバンド2に切り替えて、パワーアンプ11cの動作を停止すると共にパワーアンプ11c’を動作させる。すると、パワーアンプ11c’が動作して発熱し、ある程度高い温度(使用する化学蓄熱材による)に達すると、パワーアンプ11c’から熱を奪って反応室1’の化学蓄熱材の吸熱反応が進行し、この吸熱反応で発生した凝縮性成分は凝縮蒸発室3’で凝縮して筐体13bに熱を与え、これにより、パワーアンプ11c’の温度上昇を低減し、好ましくはパワーアンプ11c’の温度を安定化させて、パワーアンプ11c’を耐熱温度以下(例えば85℃以下)に維持できる。一方、パワーアンプ11cの温度がある程度低い温度まで低下し、反応室1で化学蓄熱材の発熱反応が進行すると共に凝縮蒸発室3では筐体13bから熱を奪って凝縮性成分が蒸発し、これにより、パワーアンプ11cの温度は若干上昇し、筐体13bの温度は低下する。これにより、筐体13bを比較的低温(例えば55℃以下)に維持できる。すなわち、ケミカルヒートポンプ10および10’は、バンド1とバンド2の切り替え使用により、高温動作時中のパワーアンプ11cまたは11c’から熱を奪うと共に、停止中のパワーアンプ11cまたは11c’に熱を与えて、筐体13bへの熱の出入りを制御し得る。 In this mounting example, when the band 1 is used, the power amplifier 11c operates to generate heat, and when the temperature reaches a certain level (depending on the chemical heat storage material used), the power amplifier 11c takes heat away from the chemical heat storage material in the reaction chamber 1. An endothermic reaction proceeds, and the condensable component generated by the endothermic reaction condenses in the condensing evaporation chamber 3 to give heat to the housing 13b, thereby reducing the temperature rise of the power amplifier 11c, and preferably the power amplifier 11c. Thus, the power amplifier 11c can be maintained at a heat resistant temperature or lower (for example, 85 ° C. or lower). Thereafter, the band 1 is switched to the band 2 to stop the operation of the power amplifier 11c and operate the power amplifier 11c '. Then, when the power amplifier 11c ′ operates to generate heat and reaches a certain high temperature (depending on the chemical heat storage material to be used), heat is taken from the power amplifier 11c ′ and the endothermic reaction of the chemical heat storage material in the reaction chamber 1 ′ proceeds. Then, the condensable component generated by the endothermic reaction is condensed in the condensing evaporation chamber 3 ′ to give heat to the housing 13b, thereby reducing the temperature rise of the power amplifier 11c ′, and preferably the power amplifier 11c ′. The temperature can be stabilized and the power amplifier 11c ′ can be maintained at a heat resistant temperature or lower (for example, 85 ° C. or lower). On the other hand, the temperature of the power amplifier 11c is lowered to a certain low temperature, the exothermic reaction of the chemical heat storage material proceeds in the reaction chamber 1, and the condensable component evaporates by removing heat from the housing 13b in the condensation evaporation chamber 3. As a result, the temperature of the power amplifier 11c slightly increases, and the temperature of the housing 13b decreases. Thereby, the housing | casing 13b can be maintained at comparatively low temperature (for example, 55 degrees C or less). That is, the chemical heat pumps 10 and 10 ′ take heat from the power amplifier 11c or 11c ′ during high-temperature operation by switching between the band 1 and the band 2, and give heat to the stopped power amplifier 11c or 11c ′. Thus, it is possible to control the heat entering and leaving the housing 13b.
・シミュレーション
 次に、いくつかのモデルに基づいて、熱収支のシミュレーションを行った。
・ Simulation Next, the heat balance was simulated based on several models.
(シミュレーションモデル1)
 既存のスマートフォンの構成を模したモデルに基づいて、まず、シミュレーションで使用する解析方法(各種条件を含む)の適否についてCPU発熱量1.8W(実測発熱量に等しい)の場合で検証し、次に、この解析方法に従って、比較例としてCPU発熱量7Wの場合でシミュレーションを行った。
(Simulation model 1)
Based on the model simulating the configuration of an existing smartphone, first, the suitability of the analysis method (including various conditions) used in the simulation is verified in the case of a CPU heating value of 1.8 W (equal to the measured heating value). In addition, according to this analysis method, a simulation was performed in the case of a CPU heat generation amount of 7 W as a comparative example.
 図8に示すように、本シミュレーションモデルで想定した電子機器モデル30は、CPU21aおよびパワーマネージメントIC(PMIC)21bが上面および下面にそれぞれ実装された電子回路基板22と、バッテリ24と、カメラユニット25とが、シャーシ(上側熱伝導性部材)23aとバッテリカバー(下側熱伝導性部材)23bとの間の内部空間に収容され、シャーシ23aの上面にディスプレイ26を備える。カメラユニット25は、電子回路基板22、シャーシ23aおよびバッテリカバー23bと接触する。バッテリ24は、シャーシ23aおよびバッテリカバー23bと接触する。電子回路基板22は、バッテリ24と接触せずに、バッテリカバー23bと接触する(接触部は図示せず)。シャーシ23aはディスプレイ26と接触し、ディスプレイ26は周囲雰囲気(大気)29に曝される。バッテリカバー23bはその一部分が人体28と接触し、残りの部分は周囲雰囲気(大気)29に曝される。この電子機器モデル30において熱の出入り可能な想定ルートは、図8中に両矢印にて示す通りである。 As shown in FIG. 8, an electronic device model 30 assumed in this simulation model includes an electronic circuit board 22 having a CPU 21a and a power management IC (PMIC) 21b mounted on the upper surface and the lower surface, a battery 24, and a camera unit 25, respectively. Are accommodated in an internal space between the chassis (upper thermal conductive member) 23a and the battery cover (lower thermal conductive member) 23b, and a display 26 is provided on the upper surface of the chassis 23a. The camera unit 25 contacts the electronic circuit board 22, the chassis 23a, and the battery cover 23b. The battery 24 is in contact with the chassis 23a and the battery cover 23b. The electronic circuit board 22 does not contact the battery 24 but contacts the battery cover 23b (the contact portion is not shown). The chassis 23 a comes into contact with the display 26, and the display 26 is exposed to the ambient atmosphere (air) 29. A part of the battery cover 23 b comes into contact with the human body 28, and the remaining part is exposed to the ambient atmosphere (air) 29. In this electronic device model 30, an assumed route through which heat can enter and exit is as indicated by double arrows in FIG.
 電子機器モデル30につき上述した各部材の寸法および発熱量を下記の表1の通り設定した(表1中、記号「-」は発熱量ゼロを意味する)。これら部材のうち、CPU21aおよびPMIC21bが発熱部品であり、カメラユニット25およびバッテリ24も発熱部品であるが、CPU21aおよびPMIC21bに比して発熱量が非常に小さい。 The dimensions and heat generation amount of each member described above for the electronic device model 30 were set as shown in Table 1 below (in Table 1, the symbol “-” means zero heat generation). Among these members, the CPU 21a and the PMIC 21b are heat generating components, and the camera unit 25 and the battery 24 are also heat generating components, but the heat generation amount is very small compared to the CPU 21a and the PMIC 21b.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 これら各部材について、密度、比熱、熱伝導率等の物性値を、既存のスマートフォンに使用されている各部材に相当するように適宜設定し、mc値(質量と比熱の積)を算出して使用した。なお、密度および比熱は、温度によらず一定と仮定した。 For each of these members, set physical properties such as density, specific heat, and thermal conductivity as appropriate to correspond to each member used in existing smartphones, and calculate the mc value (product of mass and specific heat) used. The density and specific heat were assumed to be constant regardless of the temperature.
 本シミュレーションにおける初期条件および境界条件は以下の通りとした。
 初期条件:
  周囲雰囲気(大気)29は25℃一定の温度とする。
  各部材は全て25℃の温度にあるものとする。
 境界条件:
  CPU21a、PMIC21b、カメラユニット25、バッテリ24は、t=0にて発熱を開始するものとする(発熱開始時点をt=0とする)。
  人体28は36℃一定の温度とし、t=0にてバッテリカバー23bの露出表面の1/3が人体28と接触(伝熱)するようになり、残りの2/3が周囲雰囲気(大気)29に曝されるものとする。
  ディスプレイ26およびバッテリカバー23bと周囲雰囲気(大気)29との間の伝熱は対流伝熱および放射伝熱によるものとする。
  その他、特に断りのない限り、伝熱は伝導伝熱によるものとする。
The initial conditions and boundary conditions in this simulation were as follows.
Initial conditions:
The ambient atmosphere (air) 29 is a constant temperature of 25 ° C.
All members shall be at a temperature of 25 ° C.
boundary condition:
The CPU 21a, the PMIC 21b, the camera unit 25, and the battery 24 start to generate heat at t = 0 (the heat generation start time is set to t = 0).
The human body 28 has a constant temperature of 36 ° C., and at t = 0, 1/3 of the exposed surface of the battery cover 23b comes into contact with the human body 28 (heat transfer), and the remaining 2/3 is the ambient atmosphere (atmosphere). 29 to be exposed.
Heat transfer between the display 26 and the battery cover 23b and the ambient atmosphere (atmosphere) 29 is assumed to be convective heat transfer and radiant heat transfer.
In addition, unless otherwise specified, heat transfer is assumed to be conduction heat transfer.
 CPU発熱量1.8Wの場合(解析方法の検証)
 既存のスマートフォンに使用されているCPUの発熱量を実測したところ、約1.8Wであった。
 そこで、まず、電子機器モデル30におけるCPU21aの発熱量を1.8Wとして、上述した各種条件/仮定を含む解析方法を適用して熱収支のシミュレーションを行った。このシミュレーションの結果、CPU21aの温度は、t=約100秒で約50℃まで上昇し、t=約1000秒で約60℃まで上昇して擬定常状態となること、および、バッテリカバー23bの温度はt=約1000秒で約40℃まで上昇して擬定常状態となることが示された。
 他方、既存のスマートフォンを同様の条件(周囲雰囲気25℃、バッテリーカバー23bの露出表面の1/3を体温約36℃の人体と接触させるものとする)で使用して、CPUおよびバッテリカバー等の温度を実測したところ、擬定常状態におけるCPUおよびバッテリカバーの温度はそれぞれ62℃および39℃であり、上記のシミュレーション値とほぼ同様であった。
 従って、このシミュレーションで適用した解析方法は適切であることが確認された。
CPU heat generation 1.8W (analysis of analysis method)
It was about 1.8W when the calorific value of CPU used for the existing smart phone was measured.
Therefore, first, a heat balance was simulated by applying the analysis method including the above-described various conditions / assumings with the heat generation amount of the CPU 21a in the electronic device model 30 set to 1.8 W. As a result of this simulation, the temperature of the CPU 21a rises to about 50 ° C. at t = about 100 seconds, rises to about 60 ° C. at t = about 1000 seconds, and becomes a quasi-steady state, and the temperature of the battery cover 23b Was shown to rise to about 40 ° C. at t = about 1000 seconds and become a quasi-steady state.
On the other hand, using an existing smartphone under the same conditions (an ambient atmosphere of 25 ° C. and 1/3 of the exposed surface of the battery cover 23b is brought into contact with a human body having a body temperature of about 36 ° C.) When the temperature was measured, the temperatures of the CPU and the battery cover in the pseudo steady state were 62 ° C. and 39 ° C., respectively, which were almost the same as the above simulation values.
Therefore, it was confirmed that the analysis method applied in this simulation is appropriate.
 CPU発熱量7Wの場合(比較例)
 電子機器モデル30においてCPU21aの発熱量を未知数とし、上述した各種条件/仮定を含む解析方法を適用して、擬定常状態でCPU21aの温度が130℃となるCPU21aの発熱量をシミュレーションにより求めたところ7Wとなった。CPUの発熱量を7Wとすることは、CPUの通常の使用条件では想定され得ないほど厳しい条件である。
 そして、電子機器モデル30におけるCPU21aの発熱量を7Wと仮定して、上述した各種条件/仮定を含む解析方法を適用して熱収支のシミュレーションを行った。このシミュレーションの結果、CPU21aの温度は、t=約100秒で100℃まで上昇し、t=約400秒で約120℃まで上昇し、t=約1000秒で約130℃の擬定常状態となること、および、バッテリカバー23bの温度はt=約1000秒で約53℃まで上昇することが示された。
In case of CPU heat generation 7W (comparative example)
The amount of heat generated by the CPU 21a in the electronic device model 30 is an unknown, and the amount of heat generated by the CPU 21a at which the temperature of the CPU 21a is 130 ° C. in a quasi-steady state is obtained by simulation by applying the analysis method including the various conditions and assumptions described above. It became 7W. Setting the heat generation amount of the CPU to 7 W is a severe condition that cannot be assumed under normal use conditions of the CPU.
Then, assuming that the heat generation amount of the CPU 21a in the electronic device model 30 is 7 W, the heat balance was simulated by applying the analysis method including the various conditions / assums described above. As a result of this simulation, the temperature of the CPU 21a rises to 100 ° C. at t = about 100 seconds, rises to about 120 ° C. at t = about 400 seconds, and reaches a pseudo steady state of about 130 ° C. at t = about 1000 seconds. It was shown that the temperature of the battery cover 23b rose to about 53 ° C. in t = about 1000 seconds.
(シミュレーションモデル2)
 本発明の電子機器の実施例の1つのモデルについてシミュレーションを行った。このモデルは、上記シミュレーションモデル1と同様にスマートフォンを模したものであるが、ケミカルヒートポンプを1つ搭載した点で大きく異なっている。本シミュレーションは、シミュレーションモデル1と同様の解析方法に従って、CPU発熱量7Wの場合について行った。
(Simulation model 2)
A simulation was performed on one model of the embodiment of the electronic apparatus of the present invention. This model is similar to the simulation model 1 described above, but is greatly different in that one chemical heat pump is installed. This simulation was performed in the case of a CPU heat generation amount of 7 W according to the same analysis method as in the simulation model 1.
 図9に示すように、本シミュレーションモデルで想定した電子機器モデル31は、1つのケミカルヒートポンプ10を追加して、反応室1をCPU21aに、凝縮蒸発室3をシャーシ(上側熱伝導性部材)23aにそれぞれ取り付けた点、およびシャーシ23aをバッテリ24およびカメラユニット25から離間させた点を除き、図8の電子機器モデル30と同様である。この電子機器モデル31において熱の出入り可能な想定ルートは、図9中に両矢印にて示す通りである。但し、この電子機器モデル31において、反応室1は、他の部材から断熱した状態と、CPU21aと熱的に結合した状態とで、切り替え可能なものとする。 As shown in FIG. 9, in the electronic device model 31 assumed in this simulation model, one chemical heat pump 10 is added, the reaction chamber 1 is the CPU 21a, and the condensation evaporation chamber 3 is the chassis (upper thermal conductive member) 23a. 8 and the electronic device model 30 of FIG. 8 except that the chassis 23a is separated from the battery 24 and the camera unit 25. In this electronic device model 31, an assumed route through which heat can enter and exit is as indicated by double arrows in FIG. However, in this electronic device model 31, the reaction chamber 1 can be switched between a state where it is insulated from other members and a state where it is thermally coupled to the CPU 21a.
 この電子機器モデル31のうち、ケミカルヒートポンプ10を除く各部材の寸法および発熱量(但し、CPUの発熱量は7Wのみ)、密度、比熱、熱伝導率等の物性値、mc値、初期条件および境界条件は、シミュレーションモデル1にて上述したものと同様とする。 Of this electronic device model 31, the dimensions and heat generation amount of each member excluding the chemical heat pump 10 (however, the CPU heat generation amount is only 7 W), physical properties such as density, specific heat, thermal conductivity, mc value, initial conditions and The boundary conditions are the same as those described above for the simulation model 1.
 ケミカルヒートポンプ10については、以下の通り設定および仮定する。
 反応室1は、SUS304から成る容器(外形寸法40mm×40mm×2.5mm、壁厚さ0.25mm)に硫酸カルシウムを5.235g充填したものとする。凝縮蒸発室3は、SUS316から成る容器(外形寸法15mm×15mm×1.5mm、壁厚さ0.25mm)に蒸留水を0.346g充填したものとする。反応室1および凝縮蒸発室3について、密度、比熱、熱伝導率等の物性値を各材質に応じて適宜設定し、mc値(質量と比熱の積)を算出して使用した。
 反応室1とCPU21aとの間ならびに凝縮蒸発室3とシャーシ23aとの間の接触熱抵抗は無視する。
 反応室1と凝縮蒸発室3との間を連絡する連絡部5について、これら部材間での伝熱は無視する。
 硫酸カルシウム半水和物の吸熱反応および硫酸カルシウムの発熱反応について、既知の化学反応速度式(化学工学論文集、第35巻、第4号、pp.390-395、2009年)を用いる。
 硫酸カルシウム半水和物/硫酸カルシウムは、平均粒径0.85mmの球状粒子の形態を有するものとし、粒子の膨張収縮は無視する。
 水蒸気について、移動拡散抵抗等は無視し、反応室内の温度および凝縮蒸発室内の温度は各容器温度と等しいものとし、凝縮蒸発室内の圧力は当該温度における飽和水蒸気の圧力とし、反応室内の圧力はこれと連絡している凝縮蒸発室内の圧力と等しいものとする。
The chemical heat pump 10 is set and assumed as follows.
The reaction chamber 1 is a container made of SUS304 (outer dimensions 40 mm × 40 mm × 2.5 mm, wall thickness 0.25 mm) filled with 5.235 g of calcium sulfate. The condensing evaporation chamber 3 is a container made of SUS316 (outside dimensions 15 mm × 15 mm × 1.5 mm, wall thickness 0.25 mm) filled with 0.346 g of distilled water. About the reaction chamber 1 and the condensation evaporation chamber 3, physical property values, such as a density, specific heat, and heat conductivity, were set suitably according to each material, and mc value (product of mass and specific heat) was calculated and used.
The contact thermal resistance between the reaction chamber 1 and the CPU 21a and between the condensation evaporation chamber 3 and the chassis 23a is ignored.
About the communication part 5 which connects between the reaction chamber 1 and the condensation evaporation chamber 3, the heat transfer between these members is disregarded.
For the endothermic reaction of calcium sulfate hemihydrate and the exothermic reaction of calcium sulfate, a known chemical reaction rate equation (Chemical Engineering, Vol. 35, No. 4, pp. 390-395, 2009) is used.
Calcium sulfate hemihydrate / calcium sulfate has the form of spherical particles having an average particle size of 0.85 mm, and the expansion and contraction of the particles are ignored.
For water vapor, the diffusion resistance and the like are ignored, the temperature in the reaction chamber and the temperature in the condensation evaporation chamber are the same as the temperature of each container, the pressure in the condensation evaporation chamber is the pressure of saturated water vapor at that temperature, and the pressure in the reaction chamber is It shall be equal to the pressure in the condensing evaporation chamber in communication therewith.
 CPU発熱量7Wの場合(実施例1)
 電子機器モデル31におけるCPU21aの発熱量を7Wと仮定して、上述した各種条件/仮定を含む解析方法を適用して熱収支のシミュレーションを行った。このシュミレーションでは、ケミカルヒートポンプ10を放熱過程で、その後、蓄熱過程で作動させるものとした。このシミュレーションにおけるCPUおよび反応室の温度の経時変化を、図10のグラフおよび表に示す。具体的には、以下の通りである。
In case of CPU heat generation amount 7W (Example 1)
Assuming that the heat generation amount of the CPU 21a in the electronic device model 31 is 7 W, the heat balance was simulated by applying the analysis method including various conditions / assums described above. In this simulation, the chemical heat pump 10 is operated in the heat release process and then in the heat storage process. The changes over time in the temperature of the CPU and reaction chamber in this simulation are shown in the graph and table of FIG. Specifically, it is as follows.
 まず、初期条件(t=0)より、CPU21aの発熱量を7Wとして、CPU21aの温度が120℃に達するまで、ケミカルヒートポンプ10の反応室1を断熱状態として(CPU21aから熱的に切り離して)発熱反応を進行させ(図10中、記号(1)にて示す)、その後、反応室1とCPU21aとを熱的に結合させて熱交換(伝熱)を開始し、CPU21aの温度が再び120℃に達するまでをシミュレーションした。このシミュレーションの結果、以下のことが示された。t=約230秒にてCPU21aの温度が120℃に達し、この間、反応室1では硫酸カルシウムが水蒸気と反応して平均1.7W程度で発熱すると共に凝縮蒸発室3では水の蒸発により潜熱2.1W程度で吸熱し、t=約230秒での反応室1の温度は70℃まで上昇する(図10中、記号(2)にて示す)。そして、t=約230秒にて、CPU21a(120℃)と反応室1(70℃)とを熱的に結合させることにより、CPU21aの温度はt=約245秒にて85℃まで低下する(図10中、記号(3)にて示す)。その後も反応室1では硫酸カルシウムが水蒸気と反応して平均1.7W程度で発熱すると共に凝縮蒸発室3では水の蒸発により潜熱2.1W程度で吸熱し続け、t=約360秒で反応室1の温度が101℃となり(図10中、記号(4)にて示す)、反応平衡圧力が凝縮蒸発室温度16℃の飽和水蒸気圧に達するため、反応室1での吸熱反応が終了することとなる(反応率約97%)。その後、t=590秒でCPU21aならびに反応室1(容器および内部)の温度が約120℃に達する(図10中、記号(5)にて示す)。この間、凝縮蒸発室3では水の蒸発により潜熱2.1W程度で吸熱し続け、t=590秒にて、凝縮蒸発室3(容器および内部)、シャーシ23a、ディスプレイ26の温度が約17℃に低下する。以上より、t=0~360秒の間、ケミカルヒートポンプ10は放熱過程で作動し(反応率約97%)、t=0~590秒の間、CPU21aの温度を120℃以下とすることができる。 First, from the initial condition (t = 0), the heat generation amount of the CPU 21a is set to 7 W, and the reaction chamber 1 of the chemical heat pump 10 is adiabatic (thermally separated from the CPU 21a) until the temperature of the CPU 21a reaches 120 ° C. The reaction is allowed to proceed (indicated by symbol (1) in FIG. 10), and then the reaction chamber 1 and the CPU 21a are thermally coupled to start heat exchange (heat transfer), and the temperature of the CPU 21a is again 120 ° C. It was simulated until it reached. As a result of this simulation, the following was shown. At t = about 230 seconds, the temperature of the CPU 21a reaches 120 ° C. During this time, calcium sulfate reacts with water vapor in the reaction chamber 1 to generate heat at an average of about 1.7 W, and in the condensation evaporation chamber 3, latent heat 2 is generated due to water evaporation. The heat is absorbed at about 1 W, and the temperature of the reaction chamber 1 rises to 70 ° C. at t = about 230 seconds (indicated by symbol (2) in FIG. 10). Then, by thermally coupling the CPU 21a (120 ° C.) and the reaction chamber 1 (70 ° C.) at t = about 230 seconds, the temperature of the CPU 21a decreases to 85 ° C. at t = about 245 seconds ( (Indicated by symbol (3) in FIG. 10). Thereafter, calcium sulfate reacts with water vapor in the reaction chamber 1 and generates heat at an average of about 1.7 W, and the condensation evaporation chamber 3 continues to absorb heat with a latent heat of about 2.1 W due to evaporation of water, and the reaction chamber reaches t = about 360 seconds. 1 is 101 ° C. (indicated by symbol (4) in FIG. 10), and the reaction equilibrium pressure reaches the saturated water vapor pressure at the condensation evaporation chamber temperature of 16 ° C., so that the endothermic reaction in the reaction chamber 1 is completed. (Reaction rate about 97%). Thereafter, at t = 590 seconds, the temperatures of the CPU 21a and the reaction chamber 1 (container and inside) reach about 120 ° C. (indicated by symbol (5) in FIG. 10). During this time, the condensation evaporation chamber 3 continues to absorb heat with a latent heat of about 2.1 W due to water evaporation, and at t = 590 seconds, the temperature of the condensation evaporation chamber 3 (container and inside), the chassis 23a, and the display 26 reach about 17 ° C. descend. From the above, during t = 0 to 360 seconds, the chemical heat pump 10 operates in the heat release process (reaction rate is about 97%), and during t = 0 to 590 seconds, the temperature of the CPU 21a can be kept at 120 ° C. or lower. .
 引き続いて(t=590秒から引き続いて)、CPU21aの発熱量を7Wとし、反応室1とCPU21aとを熱的に結合させたまま、120℃となった反応室1にて硫酸カルシウム半水和物が吸熱により水蒸気を生じ、反応率が90%に達するまでをシミュレーションした。このシミュレーションの結果、以下のことが示された。反応室1にて硫酸カルシウム半水和物は平均1.3W程度で吸熱して水蒸気を放出(蓄熱)し続け、t=590~1040秒(吸熱開始から450秒後まで)の間(図10中、記号(6)にて示す)、CPU21aならびに反応室1(容器および内部)の温度が約120℃に維持される。この間に発生した水蒸気は、凝縮蒸発室3へ移動し、水になる際に潜熱1.6W程度で放熱し、t=1040秒にて凝縮蒸発室3(容器および内部)、シャーシ23a、ディスプレイ26の温度が約28℃まで上昇する。また、t=1040秒にてバッテリカバー23bの温度は約55℃に上昇する。以上より、t=590~1040秒の間、ケミカルヒートポンプ10は蓄熱過程で作動し(反応率90%)、CPU21aの温度を120℃に維持することができる。 Subsequently (continuous from t = 590 seconds), the calorific value of the CPU 21a is set to 7 W, and the calcium sulfate semi-hydrated in the reaction chamber 1 at 120 ° C. while the reaction chamber 1 and the CPU 21a are thermally coupled. The simulation was performed until the product generated water vapor by endotherm and the reaction rate reached 90%. As a result of this simulation, the following was shown. In reaction chamber 1, calcium sulfate hemihydrate absorbs heat at an average of about 1.3 W and continues to release water vapor (heat storage), and during t = 590 to 1040 seconds (from the end of heat absorption to 450 seconds later) (FIG. 10). The temperature of the CPU 21a and the reaction chamber 1 (vessel and inside) is maintained at about 120 ° C. The water vapor generated during this period moves to the condensing and evaporating chamber 3 and dissipates heat with a latent heat of about 1.6 W when it becomes water, and at t = 1040 seconds, the condensing evaporating chamber 3 (container and inside), chassis 23a, display 26 Increases to about 28 ° C. In addition, the temperature of the battery cover 23b rises to about 55 ° C. at t = 1040 seconds. From the above, during t = 590 to 1040 seconds, the chemical heat pump 10 operates in the heat storage process (reaction rate 90%), and the temperature of the CPU 21a can be maintained at 120 ° C.
 従って、本シミュレーションによれば、ケミカルヒートポンプ10を搭載することにより、CPUの発熱量が7Wと極めて大きい極端な場合でも、CPU発熱開始から約1040秒間もの間、CPUを120℃以下に保てることが判明した。 Therefore, according to this simulation, by installing the chemical heat pump 10, the CPU can be kept at 120 ° C. or lower for about 1040 seconds from the start of the CPU heat generation even in an extreme case where the heat generation amount of the CPU is as large as 7 W. found.
(シミュレーションモデル3)
 本発明の実施例のもう1つのモデルについてシミュレーションを行った。このモデルは、上記シミュレーションモデル1で用いたモデルと同様にスマートフォンを模したものであるが、ケミカルヒートポンプを2つ搭載した点で大きく異なっている。本シミュレーションは、シミュレーションモデル1と同様の解析方法に従って、CPU発熱量7Wの場合について行った。
(Simulation model 3)
A simulation was performed on another model of the embodiment of the present invention. This model is similar to the model used in the simulation model 1, but is greatly different in that two chemical heat pumps are mounted. This simulation was performed in the case of a CPU heat generation amount of 7 W according to the same analysis method as in the simulation model 1.
 図11に示すように、本シミュレーションモデルで想定した電子機器モデル32は、2つのケミカルヒートポンプ10および10’を追加して、反応室1をCPU21aに、反応室1’をバッテリカバー(下側熱伝導性部材)23bにそれぞれ取り付け、凝縮蒸発室3および3’を相互に取り付けた点を除き、図8の電子機器モデル30と同様である。この電子機器モデル32において熱の出入り可能な想定ルートは、図11中に両矢印にて示す通りである。 As shown in FIG. 11, the electronic device model 32 assumed in this simulation model includes two chemical heat pumps 10 and 10 ′, the reaction chamber 1 as a CPU 21 a, and the reaction chamber 1 ′ as a battery cover (lower heat 8 is the same as the electronic device model 30 of FIG. 8 except that it is attached to the conductive member 23b and the condensation evaporation chambers 3 and 3 ′ are attached to each other. In this electronic device model 32, an assumed route through which heat can enter and exit is as shown by double arrows in FIG.
 この電子機器モデル32のうち、ケミカルヒートポンプ10および10’を除く各部材の寸法および発熱量(但し、CPUの発熱量は7Wのみ)、密度、比熱、熱伝導率等の物性値、mc値、初期条件および境界条件は、シミュレーションモデル1にて上述したものと同様とする。 Of the electronic device model 32, the dimensions and heat generation amount of each member excluding the chemical heat pumps 10 and 10 ′ (however, the CPU heat generation amount is only 7 W), physical properties such as density, specific heat, thermal conductivity, mc value, The initial conditions and boundary conditions are the same as those described above for the simulation model 1.
 ケミカルヒートポンプ10および10’については、以下の通り設定および仮定し、特段断りのない限り、シミュレーションモデル2にてケミカルヒートポンプ10について上述したものと同様の設定および仮定が当て嵌まる。(但し、反応室1へ仕込む化学物質は硫酸カルシウム半水和物(硫酸カルシウム換算で5.235g)とし、反応室1’に仕込む化学物質は硫酸カルシウム(5.235g)とする。)
 反応室1とCPU21aとの間、反応室1’とバッテリカバー23bとの間、ならびに凝縮蒸発室3と凝縮蒸発室3’との間の接触熱抵抗は無視する。
 反応室1と凝縮蒸発室3との間を連絡する連絡部5、ならびに反応室1’と凝縮蒸発室3’との間を連絡する連絡部5’について、これら部材間での伝熱は無視する。
 凝縮蒸発室3および凝縮蒸発室3’は、他の部材から断熱した状態にあるものとする。
The chemical heat pumps 10 and 10 ′ are set and assumed as follows, and the same settings and assumptions as those described above for the chemical heat pump 10 in the simulation model 2 apply unless otherwise specified. (However, the chemical substance charged into the reaction chamber 1 is calcium sulfate hemihydrate (5.235 g in terms of calcium sulfate), and the chemical substance charged into the reaction chamber 1 ′ is calcium sulfate (5.235 g).)
The contact thermal resistance between the reaction chamber 1 and the CPU 21a, between the reaction chamber 1 ′ and the battery cover 23b, and between the condensation evaporation chamber 3 and the condensation evaporation chamber 3 ′ is ignored.
About the communication part 5 which communicates between the reaction chamber 1 and the condensation evaporation chamber 3, and the communication part 5 'which communicates between the reaction chamber 1' and the condensation evaporation chamber 3 ', the heat transfer between these members is ignored. To do.
The condensation evaporation chamber 3 and the condensation evaporation chamber 3 ′ are assumed to be insulated from other members.
 CPU発熱量7Wの場合(実施例2)
 電子機器モデル32におけるCPU21aの発熱量を7Wと仮定して、上述した各種条件/仮定を含む解析方法を適用して熱収支のシミュレーションを行った。このシュミレーションでは、最初、ケミカルヒートポンプ10および10’を作動させず、次に、ケミカルヒートポンプ10を放熱過程で作動させると同時にケミカルヒートポンプ10’を放熱過程で作動させるものとした。具体的には、以下の通りである。
In the case of CPU heat generation amount 7 W (Example 2)
Assuming that the heat generation amount of the CPU 21a in the electronic device model 32 is 7 W, the heat balance was simulated by applying the analysis method including various conditions / assums described above. In this simulation, first, the chemical heat pumps 10 and 10 ′ are not operated, and then the chemical heat pump 10 is operated in the heat release process, and at the same time, the chemical heat pump 10 ′ is operated in the heat release process. Specifically, it is as follows.
 まず、初期条件(t=0)より、CPU21aの発熱量を7Wとして、ケミカルヒートポンプ10および10’を作動させずに、CPU21aの温度が120℃に達するまでをシミュレーションした。この結果、t=800秒で、CPU21aならびに反応室1(容器および内部)の温度が120℃に上昇した。 First, from the initial condition (t = 0), the heat generation amount of the CPU 21a was set to 7 W, and the temperature until the temperature of the CPU 21a reached 120 ° C. without operating the chemical heat pumps 10 and 10 ′ was simulated. As a result, at t = 800 seconds, the temperature of the CPU 21a and the reaction chamber 1 (container and inside) rose to 120 ° C.
 その後(t=800秒から引き続いて)、CPU21aの発熱量を7Wとし、120℃となった反応室1にて硫酸カルシウム半水和物が吸熱により水蒸気を生じ、反応率が100%に達するまでをシミュレーションした。このシミュレーションの結果、以下のことが示された。反応室1にて硫酸カルシウム半水和物は平均1.3W程度で吸熱して水蒸気を放出(蓄熱)し続け、t=800~1300秒(吸熱開始から500秒後まで)の間、CPU21aならびに反応室1(容器および内部)の温度が約120℃に維持される。この間に発生した水蒸気は、凝縮蒸発室3へ移動し、水になる際に潜熱1.6W程度で放熱するが、凝縮蒸発室3はこれと熱的に結合されている凝縮蒸発器3’により冷却され、約25℃に維持される。以上より、t=800~1300秒の間、ケミカルヒートポンプ10は蓄熱過程で作動し(反応率100%)、CPU21aの温度を120℃に維持することができる。 Thereafter (continuous from t = 800 seconds), the heating value of the CPU 21a is set to 7 W, and in the reaction chamber 1 at 120 ° C., the calcium sulfate hemihydrate generates water vapor due to endotherm, and the reaction rate reaches 100%. Was simulated. As a result of this simulation, the following was shown. In the reaction chamber 1, the calcium sulfate hemihydrate absorbs heat at an average of about 1.3 W and continues to release water vapor (heat storage). During t = 800 to 1300 seconds (from the end of the endotherm to 500 seconds), the CPU 21a and The temperature of the reaction chamber 1 (vessel and inside) is maintained at about 120 ° C. The water vapor generated during this period moves to the condensation evaporation chamber 3 and dissipates heat with a latent heat of about 1.6 W when it becomes water, but the condensation evaporation chamber 3 is heated by the condensation evaporator 3 ′ that is thermally coupled thereto. Cool and maintain at about 25 ° C. From the above, during t = 800 to 1300 seconds, the chemical heat pump 10 operates in the heat storage process (reaction rate 100%), and the temperature of the CPU 21a can be maintained at 120 ° C.
 同時に(t=800秒から引き続いて)、凝縮蒸発器3’にて水が蒸発し、t=1300秒に達するまでをシミュレーションした。このシミュレーションの結果、以下のことが示された。凝縮蒸発器3’にて水が水蒸気になる際に潜熱2.1W程度で吸熱し、これにより発生した水蒸気は、反応室1’へ移動し、硫酸カルシウムと反応して1.7W程度で発熱(放熱)する。t=1190秒(発熱開始から390秒)で、反応率100%に達し、反応室1’での放熱が終了する。t=800~1190秒の間、凝縮蒸発室3’(容器および内部)の温度は約25℃に維持される。バッテリーカバー23bの温度は、硫酸カルシウム/硫酸カルシウム半水和物の顕熱効果もあり、t=1300秒にて約52℃までの上昇に留まる。これは、上述したシミュレーションモデル1の比較例におけるバッテリカバー23bの温度より1℃低い。以上より、t=800~1190秒の間、ケミカルヒートポンプ10’は放熱過程で作動する(反応率100%)。 At the same time (continuous from t = 800 seconds), simulation was performed until the water evaporated in the condenser evaporator 3 'and reached t = 1300 seconds. As a result of this simulation, the following was shown. When the water becomes steam in the condenser evaporator 3 ′, it absorbs heat with a latent heat of about 2.1 W, and the generated steam moves to the reaction chamber 1 ′ and reacts with calcium sulfate to generate heat with about 1.7 W. (Heat radiation). At t = 1190 seconds (390 seconds from the start of heat generation), the reaction rate reaches 100%, and the heat release in the reaction chamber 1 'is completed. During t = 800-1190 seconds, the temperature of the condensation evaporation chamber 3 '(vessel and interior) is maintained at about 25 ° C. The temperature of the battery cover 23b also has a sensible heat effect of calcium sulfate / calcium sulfate hemihydrate, and only rises to about 52 ° C. at t = 1300 seconds. This is 1 ° C. lower than the temperature of the battery cover 23b in the comparative example of the simulation model 1 described above. From the above, during t = 800 to 1190 seconds, the chemical heat pump 10 'operates in the heat dissipation process (reaction rate 100%).
 従って、本シミュレーションによれば、ケミカルヒートポンプ10および10’を搭載することにより、CPUの発熱量が7Wと極めて大きい極端な場合でも、CPU発熱開始から約1300秒間もの間、CPUを120℃以下に保てることが判明した。 Therefore, according to this simulation, by installing the chemical heat pumps 10 and 10 ′, the CPU is kept at 120 ° C. or lower for about 1300 seconds from the start of the CPU heat generation even in an extreme case where the heat generation amount of the CPU is as large as 7 W. It turns out that it can keep.
 本発明は、例えばスマートフォン、携帯電話、タブレット型端末、ラップトップ型パソコン、携帯型ゲーム機、携帯型音楽プレイヤー、デジタルカメラなどのモバイル型電子機器において好適に利用され得るが、これらに限定されるものではない。 The present invention can be suitably used in, for example, mobile electronic devices such as smartphones, mobile phones, tablet terminals, laptop computers, portable game machines, portable music players, and digital cameras, but is not limited thereto. It is not a thing.
 本願は、2012年8月3日付けで出願された特願2012-173042に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2012-173042, filed on August 3, 2012, the entire contents of which are incorporated herein by reference.
  1、1a、1b、1’ 反応室
  2a 固相(化学蓄熱材を含む)
  2b 気相(凝縮性成分を含む)
  3、3a、3b、3’ 凝縮蒸発室
  4a 気相(凝縮性成分を含む)
  4b 液相(凝縮性成分を含む)
  5、5a、5b、5c、5’ 連絡部
  10、10’ ケミカルヒートポンプ(デバイス)
  11 発熱部品
  13 熱伝導性部材
  20、21、22、23、24 電子機器
  21a CPU
  21b パワーマネージメントIC
  22 電子回路基板
  23a シャーシ
  23b バッテリカバー
  24 バッテリ
  25 カメラユニット
  26 ディスプレイ
  28 人体
  29 周囲雰囲気(大気)
  30、31、32 電子機器モデル
1, 1a, 1b, 1 'reaction chamber 2a solid phase (including chemical heat storage material)
2b Gas phase (condensable components included)
3, 3a, 3b, 3 'condensing evaporation chamber 4a gas phase (condensable component included)
4b Liquid phase (condensable components included)
5, 5a, 5b, 5c, 5 'connecting part 10, 10' chemical heat pump (device)
DESCRIPTION OF SYMBOLS 11 Heat-emitting component 13 Thermal conductive member 20, 21, 22, 23, 24 Electronic device 21a CPU
21b Power management IC
22 Electronic circuit board 23a Chassis 23b Battery cover 24 Battery 25 Camera unit 26 Display 28 Human body 29 Ambient atmosphere (atmosphere)
30, 31, 32 Electronic equipment model

Claims (27)

  1.  発熱部品と、
     発熱部品が発する熱によって吸熱反応を示す化学蓄熱材を収容した反応室、化学蓄熱材の吸熱反応によって生じる凝縮性成分を凝縮または蒸発させるための凝縮蒸発室、および凝縮性成分が反応室と凝縮蒸発室との間を移動可能なように反応室と凝縮蒸発室とを連絡する連絡部を備えるデバイスと
    を含む電子機器。
    Heat-generating parts,
    A reaction chamber containing a chemical heat storage material that exhibits an endothermic reaction by heat generated by a heat-generating component, a condensation evaporation chamber for condensing or evaporating a condensable component generated by the endothermic reaction of the chemical heat storage material, and a condensable component condensing with the reaction chamber An electronic apparatus comprising: a device having a communication unit that communicates between a reaction chamber and a condensation evaporation chamber so as to be movable between the evaporation chambers.
  2.  連絡部が、気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルターを備える、請求項1に記載の電子機器。 The electronic device according to claim 1, wherein the communication unit includes a filter that allows gas to pass through but does not allow substantially solid and liquid to pass through.
  3.  反応室において化学蓄熱材が成形または梱包されており、該成形または梱包された化学蓄熱材の最小断面寸法が、連絡部の最小断面寸法より大きい、請求項1または2に記載の電子機器。 3. The electronic device according to claim 1, wherein the chemical heat storage material is molded or packed in the reaction chamber, and the minimum cross-sectional dimension of the molded or packed chemical heat storage material is larger than the minimum cross-sectional dimension of the connecting portion.
  4.  凝縮蒸発室が、液体をトラップ可能な物質を内部に有する、または凝縮蒸発室の内表面の少なくとも一部が、液体をトラップ可能な物質から構成されている、請求項1~3のいずれかに記載の電子機器。 The condensation evaporation chamber has a substance capable of trapping liquid therein, or at least a part of the inner surface of the condensation evaporation chamber is made of a substance capable of trapping liquid. The electronic device described.
  5.  反応室が、熱伝導性材料から成る部分を有し、該熱伝導性材料から成る部分が、発熱部品と直接または間接的に接触して配置される、請求項1~4のいずれかに記載の電子機器。 The reaction chamber has a portion made of a heat conductive material, and the portion made of the heat conductive material is disposed in direct or indirect contact with the heat-generating component. Electronic equipment.
  6.  電子機器が、熱伝導性部材を更に含み、
     凝縮蒸発室が、熱伝導性材料から成る部分を有し、該熱伝導性材料から成る部分が、前記熱伝導性部材に直接または間接的に接触して配置される、請求項1~5のいずれかに記載の電子機器。
    The electronic device further includes a heat conductive member,
    The condensation evaporation chamber has a portion made of a heat conductive material, and the portion made of the heat conductive material is disposed in direct or indirect contact with the heat conductive member. The electronic device in any one.
  7.  熱伝導性部材が、電子機器の筐体、バッテリの外装、基板およびディスプレイからなる群より選択される、請求項6に記載の電子機器。 The electronic device according to claim 6, wherein the heat conductive member is selected from the group consisting of a housing of the electronic device, a battery exterior, a substrate, and a display.
  8.  発熱部品が、集積回路、発光素子、電界効果トランジスタ、モーター、コイル、コンバーター、インバーターおよびコンデンサーからなる群より選択される、請求項1~7のいずれかに記載の電子機器。 The electronic device according to any one of claims 1 to 7, wherein the heat generating component is selected from the group consisting of an integrated circuit, a light emitting element, a field effect transistor, a motor, a coil, a converter, an inverter, and a capacitor.
  9.  第1部材および第2部材と、
     互いに可逆な吸熱反応および発熱反応を示す化学蓄熱材を収容した反応室、化学蓄熱材の吸熱反応によって生じる凝縮性成分を凝縮または蒸発させるための凝縮蒸発室、および反応室と凝縮蒸発室とを連絡する連絡部を備えるデバイスと
    を含み、第1部材と反応室とが熱的に結合され、かつ、凝縮蒸発室と第2部材とが熱的に結合されている電子機器。
    A first member and a second member;
    A reaction chamber containing a chemical heat storage material that exhibits reversible endothermic and exothermic reactions, a condensation evaporation chamber for condensing or evaporating condensable components generated by the endothermic reaction of the chemical heat storage material, and a reaction chamber and a condensation evaporation chamber An electronic device including a device including a communication unit that communicates, wherein the first member and the reaction chamber are thermally coupled, and the condensation evaporation chamber and the second member are thermally coupled.
  10.  連絡部が、気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルターを備える、請求項9に記載の電子機器。 10. The electronic device according to claim 9, wherein the communication unit includes a filter that allows gas to pass through but does not allow substantially solid and liquid to pass through.
  11.  反応室において化学蓄熱材が成形または梱包されており、該成形または梱包された化学蓄熱材の最小断面寸法が、連絡部の最小断面寸法より大きい、請求項9または10に記載の電子機器。 The electronic device according to claim 9 or 10, wherein the chemical heat storage material is molded or packed in the reaction chamber, and the minimum cross-sectional dimension of the molded or packed chemical heat storage material is larger than the minimum cross-sectional dimension of the connecting portion.
  12.  凝縮蒸発室が、液体をトラップ可能な物質を内部に有する、または凝縮蒸発室の内表面の少なくとも一部が、液体をトラップ可能な物質から構成されている、請求項9~11のいずれかに記載の電子機器。 The condensation evaporation chamber has a substance capable of trapping liquid therein, or at least a part of the inner surface of the condensation evaporation chamber is made of a substance capable of trapping liquid. The electronic device described.
  13.  第1部材の温度が上昇したときおよび/または第2部材の温度が低下したときに、第1部材から反応室に熱が伝達され、反応室内で化学蓄熱材が吸熱反応により凝縮性成分を生じ、凝縮性成分が気体状態で反応室から連絡部を通って凝縮蒸発室へ移動し、凝縮蒸発室内で凝縮性成分が凝縮して熱を生じ、凝縮蒸発室から第2部材に熱が伝達される、請求項9~12のいずれかに記載の電子機器。 When the temperature of the first member rises and / or when the temperature of the second member falls, heat is transferred from the first member to the reaction chamber, and the chemical heat storage material generates a condensable component by an endothermic reaction in the reaction chamber. In the gaseous state, the condensable component moves from the reaction chamber to the condensing and evaporating chamber through the communication section, the condensable component condenses in the condensing and evaporating chamber to generate heat, and heat is transferred from the condensing and evaporating chamber to the second member The electronic device according to any one of claims 9 to 12.
  14.  第1部材の温度が低下したときおよび/または第2部材の温度が上昇したときに、反応室から第1部材に熱が伝達され、反応室内で発熱反応が生じて凝縮性成分が消費され、気体状態の凝縮性成分が凝縮蒸発室から連絡部を通って反応室へ移動し、凝縮蒸発室内で凝縮している凝縮性成分が熱を得て蒸発し、第2部材から凝縮蒸発室に熱が伝達される、請求項9~13のいずれかに記載の電子機器。 When the temperature of the first member decreases and / or when the temperature of the second member increases, heat is transferred from the reaction chamber to the first member, an exothermic reaction occurs in the reaction chamber, and the condensable component is consumed, The condensable component in the gaseous state moves from the condensing evaporation chamber to the reaction chamber through the connecting portion, and the condensable component condensed in the condensing evaporation chamber gains heat and evaporates, and heat is transferred from the second member to the condensing evaporation chamber. The electronic device according to any one of claims 9 to 13, wherein:
  15.  凝縮性成分が水である、請求項1~14のいずれかに記載の電子機器。 The electronic device according to any one of claims 1 to 14, wherein the condensable component is water.
  16.  発熱部品の温度上昇を抑制する機能を有する電子機器であって、
     発熱部品と、
     化学蓄熱材を収容した少なくとも1つの反応室と
    を含み、発熱部品が発する熱を、発熱部品の外表面から、少なくとも1つの反応室に収容した化学蓄熱材へ伝導し、化学蓄熱材が反応により吸熱することによって、発熱部品の温度上昇を抑制する、電子機器。
    An electronic device having a function of suppressing the temperature rise of the heat generating component,
    Heat-generating parts,
    Including at least one reaction chamber containing the chemical heat storage material, and conducting heat generated by the heat generating component from the outer surface of the heat generation component to the chemical heat storage material stored in the at least one reaction chamber. Electronic equipment that suppresses temperature rise of heat-generating components by absorbing heat.
  17.  電子機器が、第1化学蓄熱材を収容した第1反応室と、第2化学蓄熱材を収容した第2反応室とを含み、
     第1化学蓄熱材および第2化学蓄熱材は、同じ成分が関与する反応によって吸熱または発熱し、
     第1反応室および第2反応室は、それらの間の連絡部によって該成分が移動可能に連絡しており、
     発熱部品が発する熱は、第1反応室の第1化学蓄熱材および第2反応室の第2化学蓄熱材のいずれかに伝導される、請求項16に記載の電子機器。
    The electronic device includes a first reaction chamber containing a first chemical heat storage material and a second reaction chamber containing a second chemical heat storage material,
    The first chemical heat storage material and the second chemical heat storage material absorb heat or generate heat due to a reaction involving the same component,
    The first reaction chamber and the second reaction chamber are in communication with each other so that the components can move by a communication portion between them.
    The electronic device according to claim 16, wherein heat generated by the heat generating component is conducted to either the first chemical heat storage material of the first reaction chamber or the second chemical heat storage material of the second reaction chamber.
  18.  第1反応室において第1化学蓄熱材が成形または梱包されており、該成形または梱包された第1化学蓄熱材の最小断面寸法が、連絡部の最小断面寸法より大きい、請求項17に記載の電子機器。 The first chemical heat storage material is molded or packed in the first reaction chamber, and the minimum cross-sectional dimension of the molded or packed first chemical heat storage material is larger than the minimum cross-sectional dimension of the connecting portion. Electronics.
  19.  第2反応室において第2化学蓄熱材が成形または梱包されており、該成形または梱包された第2化学蓄熱材の最小断面寸法が、連絡部の最小断面寸法より大きい、請求項17または18に記載の電子機器。 The second chemical heat storage material is molded or packed in the second reaction chamber, and the minimum cross-sectional dimension of the molded or packed second chemical heat storage material is larger than the minimum cross-sectional dimension of the connecting portion. The electronic device described.
  20.  電子機器が、前記成分を凝縮または蒸発させるための凝縮蒸発室を更に含み、
     凝縮蒸発室は、第1反応室と第2反応室の間の前記連絡部に対して、該成分が移動可能に連絡している、請求項17~19のいずれかに記載の電子機器。
    The electronic device further comprises a condensation evaporation chamber for condensing or evaporating the components;
    The electronic device according to any one of claims 17 to 19, wherein the condensing and evaporating chamber is in communication with the communication portion between the first reaction chamber and the second reaction chamber so that the component can move.
  21.  第1反応室と第2反応室の間の前記連絡部および該連絡部から凝縮蒸発室に通じる連絡部のいずれかにおいて、気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルターを備える、請求項20に記載の電子機器。 In any of the communication part between the first reaction chamber and the second reaction chamber and the communication part that leads from the communication part to the condensation evaporation chamber, gas can pass but solids and liquids cannot pass substantially. The electronic device according to claim 20, further comprising a filter.
  22.  電子機器が、前記成分を凝縮または蒸発させるための凝縮蒸発室を更に含み、
     凝縮蒸発室は、第1反応室および第2反応室のいずれかに対して、別の連絡部によって該成分が移動可能に連絡している、請求項17~19のいずれかに記載の電子機器。
    The electronic device further comprises a condensation evaporation chamber for condensing or evaporating the components;
    The electronic device according to any one of claims 17 to 19, wherein the condensing and evaporating chamber is in communication with either the first reaction chamber or the second reaction chamber so that the component can be moved by another communication unit. .
  23.  別の連絡部が、気体は通過可能であるが、固体および液体は実質的に通過可能でないフィルターを備える、請求項22に記載の電子機器。 23. The electronic device according to claim 22, wherein the another communication unit includes a filter that allows gas to pass but does not allow substantially solid and liquid to pass through.
  24.  凝縮蒸発室が、液体をトラップ可能な物質を内部に有する、あるいは、凝縮蒸発室の内表面の少なくとも一部が、液体をトラップ可能な物質から構成されている、請求項20~23のいずれかに記載の電子機器。 The condensation evaporation chamber has a substance capable of trapping liquid therein, or at least a part of the inner surface of the condensation evaporation chamber is made of a substance capable of trapping liquid. The electronic device as described in.
  25.  前記成分が水である、請求項20~24のいずれかに記載の電子機器。 The electronic device according to any one of claims 20 to 24, wherein the component is water.
  26.  化学蓄熱材が、30~200℃の温度で吸熱反応を示す、請求項1~25のいずれかに記載の電子機器。 The electronic device according to any one of claims 1 to 25, wherein the chemical heat storage material exhibits an endothermic reaction at a temperature of 30 to 200 ° C.
  27.  化学蓄熱材に代えて、ゼオライト、シリカゲル、メソポーラスシリカおよび活性炭から成る群より選択される少なくとも1種の蓄熱材を用いる、請求項1~26のいずれかに記載の電子機器。 27. The electronic device according to claim 1, wherein at least one heat storage material selected from the group consisting of zeolite, silica gel, mesoporous silica, and activated carbon is used instead of the chemical heat storage material.
PCT/JP2013/070478 2012-08-03 2013-07-29 Electronic apparatus WO2014021262A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014528144A JP6128659B2 (en) 2012-08-03 2013-07-29 Electronics
CN201380040219.8A CN104584705A (en) 2012-08-03 2013-07-29 Electronic apparatus
US14/612,351 US20150144295A1 (en) 2012-08-03 2015-02-03 Electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012173042 2012-08-03
JP2012-173042 2012-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/612,351 Continuation US20150144295A1 (en) 2012-08-03 2015-02-03 Electronic apparatus

Publications (1)

Publication Number Publication Date
WO2014021262A1 true WO2014021262A1 (en) 2014-02-06

Family

ID=50027937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070478 WO2014021262A1 (en) 2012-08-03 2013-07-29 Electronic apparatus

Country Status (4)

Country Link
US (1) US20150144295A1 (en)
JP (2) JP6128659B2 (en)
CN (1) CN104584705A (en)
WO (1) WO2014021262A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032696A (en) * 2013-08-02 2015-02-16 富士通株式会社 Electronic apparatus
WO2016006339A1 (en) * 2014-07-11 2016-01-14 株式会社村田製作所 Porous material and heat storage device
WO2016056185A1 (en) * 2014-10-08 2016-04-14 株式会社デンソー Heat storing system
WO2016076030A1 (en) * 2014-11-10 2016-05-19 日本碍子株式会社 Chemical heat pump
JP2017503424A (en) * 2013-09-18 2017-01-26 クアルコム,インコーポレイテッド Method and apparatus for keeping phone skin temperature constant using thermoelectric cooler and improving power / performance limits of mobile segment die
JPWO2016114297A1 (en) * 2015-01-15 2017-10-26 国立大学法人 千葉大学 Cold insulation container
US20200132388A1 (en) * 2018-10-26 2020-04-30 Inventec (Pudong) Technology Corporation Cooling device
WO2023053859A1 (en) * 2021-09-30 2023-04-06 キヤノンオプトロン株式会社 Heat storage structure and heat storage system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6199411B2 (en) * 2013-11-26 2017-09-20 株式会社村田製作所 Electronics
WO2017073010A1 (en) * 2015-10-27 2017-05-04 ソニー株式会社 Electronic apparatus
US10560615B2 (en) * 2015-11-10 2020-02-11 Sony Corporation Electronics apparatus
KR102660510B1 (en) * 2016-11-23 2024-04-24 삼성전자주식회사 Electronic Device Including Vapor(two phase) Chamber for Absorbing Heat
CN106954373A (en) * 2017-04-21 2017-07-14 清华大学 The heat control system that a kind of active two-phase loop is combined with phase-transition heat-storage
WO2019004314A1 (en) * 2017-06-30 2019-01-03 タテホ化学工業株式会社 Chemical heat storage material, method for producing same, chemical heat pump, and method for operating chemical heat pump
CN107358981B (en) * 2017-07-31 2023-03-14 重庆宙盾新能源技术开发有限公司 Nickel-hydrogen water energy fuel power generation system
JP7235959B2 (en) * 2019-02-05 2023-03-09 富士通株式会社 Liquid immersion cooling device
US11206746B1 (en) * 2020-06-09 2021-12-21 Chia-Hsing Liu Fluid heat dissipation device
US11357130B2 (en) 2020-06-29 2022-06-07 Microsoft Technology Licensing, Llc Scalable thermal ride-through for immersion-cooled server systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031426A (en) * 2000-07-18 2002-01-31 Matsushita Electric Ind Co Ltd Heat storage device
JP2003114067A (en) * 2001-10-05 2003-04-18 Mitsubishi Chemicals Corp Adsorption heat pump
JP2005036197A (en) * 2003-01-23 2005-02-10 Mitsubishi Chemicals Corp Heat-utilizing material and its application
JP2008111592A (en) * 2006-10-30 2008-05-15 Chiba Univ Chemical heat pump, hybrid refrigeration system using it, and hybrid refrigeration car
JP2009228951A (en) * 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc Chemical thermal storage system
JP2010043804A (en) * 2008-08-18 2010-02-25 Toshio Furukawa Adsorption type refrigerator and method for operating the same
JP2010216772A (en) * 2009-03-18 2010-09-30 Toyota Central R&D Labs Inc Chemical heat storage reactor and chemical heat storage system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231076B2 (en) * 2008-04-18 2013-07-10 株式会社豊田中央研究所 Chemical heat storage system
JP2010002084A (en) * 2008-06-18 2010-01-07 Fujitsu Ltd Loop-type heat pipe, computer, and cooling apparatus
JP5395388B2 (en) * 2008-09-24 2014-01-22 富士通株式会社 Waste heat utilization system and operation method thereof
JP5572985B2 (en) * 2009-04-15 2014-08-20 富士通株式会社 Film piping, cooling module provided with film piping, and method for manufacturing film piping
JP5747479B2 (en) * 2010-11-04 2015-07-15 アイシン精機株式会社 Heating system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031426A (en) * 2000-07-18 2002-01-31 Matsushita Electric Ind Co Ltd Heat storage device
JP2003114067A (en) * 2001-10-05 2003-04-18 Mitsubishi Chemicals Corp Adsorption heat pump
JP2005036197A (en) * 2003-01-23 2005-02-10 Mitsubishi Chemicals Corp Heat-utilizing material and its application
JP2008111592A (en) * 2006-10-30 2008-05-15 Chiba Univ Chemical heat pump, hybrid refrigeration system using it, and hybrid refrigeration car
JP2009228951A (en) * 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc Chemical thermal storage system
JP2010043804A (en) * 2008-08-18 2010-02-25 Toshio Furukawa Adsorption type refrigerator and method for operating the same
JP2010216772A (en) * 2009-03-18 2010-09-30 Toyota Central R&D Labs Inc Chemical heat storage reactor and chemical heat storage system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032696A (en) * 2013-08-02 2015-02-16 富士通株式会社 Electronic apparatus
JP2017503424A (en) * 2013-09-18 2017-01-26 クアルコム,インコーポレイテッド Method and apparatus for keeping phone skin temperature constant using thermoelectric cooler and improving power / performance limits of mobile segment die
WO2016006339A1 (en) * 2014-07-11 2016-01-14 株式会社村田製作所 Porous material and heat storage device
WO2016056185A1 (en) * 2014-10-08 2016-04-14 株式会社デンソー Heat storing system
JP2016075442A (en) * 2014-10-08 2016-05-12 株式会社デンソー Heat accumulation system
WO2016076030A1 (en) * 2014-11-10 2016-05-19 日本碍子株式会社 Chemical heat pump
JPWO2016076030A1 (en) * 2014-11-10 2017-08-17 日本碍子株式会社 Chemical heat pump
US10451323B2 (en) 2014-11-10 2019-10-22 Ngk Insulators, Ltd. Chemical heat pump
JPWO2016114297A1 (en) * 2015-01-15 2017-10-26 国立大学法人 千葉大学 Cold insulation container
US20200132388A1 (en) * 2018-10-26 2020-04-30 Inventec (Pudong) Technology Corporation Cooling device
WO2023053859A1 (en) * 2021-09-30 2023-04-06 キヤノンオプトロン株式会社 Heat storage structure and heat storage system

Also Published As

Publication number Publication date
JP6128659B2 (en) 2017-05-17
US20150144295A1 (en) 2015-05-28
JPWO2014021262A1 (en) 2016-07-21
JP6369997B2 (en) 2018-08-08
CN104584705A (en) 2015-04-29
JP2016171342A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6369997B2 (en) Electronics
JP5482681B2 (en) Heat storage device
JP3996575B2 (en) Electroadsorption cooling system: Miniaturized cooling cycle applied from microelectronics to general air conditioning
BR112016016131B1 (en) HYBRID ADSORBOR HEAT EXCHANGE DEVICE AND MANUFACTURING METHOD
WO2011142431A1 (en) Battery temperature adjustment device
JP2009257686A (en) Chemical heat-storage system
WO2018056074A1 (en) Energy conversion device
US10420252B2 (en) Electronic apparatus
JP2017218492A (en) Chemical thermal storage material and heat storage container using chemical thermal storage material
JP2012172902A (en) Heat transfer system and heat exchanger type reactor
JP2007263427A (en) Loop type heat pipe
JP2004319658A (en) Electronic cooler
WO2012161002A1 (en) Flat plate cooling device, and method for using same
JP6372126B2 (en) Heat transport equipment
JP5304479B2 (en) Heat transport device, electronic equipment
JP2000353774A (en) Water evaporating-type heating body cooling device
WO2015079770A1 (en) Heat storage device
JP6350661B2 (en) Porous body and heat storage device
Narayanan et al. Recent advances in adsorption-based heating and cooling systems
JP2013253212A (en) Molded article of chemical heat storage material and method for producing the same, and chemical heat storage apparatus
WO2015079771A1 (en) Electronic device
CN214378593U (en) Fully-immersed heat dissipation power module
CN216291914U (en) Electronic device
JP6428472B2 (en) Liquid transport system, heat storage system and heat pump
JP2017009224A (en) Reactor and heat storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826023

Country of ref document: EP

Kind code of ref document: A1