JP2009228951A - Chemical thermal storage system - Google Patents

Chemical thermal storage system Download PDF

Info

Publication number
JP2009228951A
JP2009228951A JP2008073488A JP2008073488A JP2009228951A JP 2009228951 A JP2009228951 A JP 2009228951A JP 2008073488 A JP2008073488 A JP 2008073488A JP 2008073488 A JP2008073488 A JP 2008073488A JP 2009228951 A JP2009228951 A JP 2009228951A
Authority
JP
Japan
Prior art keywords
heat storage
chemical heat
water
storage material
hydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008073488A
Other languages
Japanese (ja)
Other versions
JP5276864B2 (en
Inventor
Takashi Shimazu
孝 志満津
Hiroyuki Mitsui
宏之 三井
Yoshiaki Fukushima
喜章 福嶋
Hideo Sofugawa
英夫 曽布川
Hiroaki Wakayama
博昭 若山
Hiroyuki Itahara
弘幸 板原
Takatsune Fujimura
崇恒 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omi Kogyo Co Ltd
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Original Assignee
Omi Kogyo Co Ltd
Toyota Central R&D Labs Inc
Omi Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omi Kogyo Co Ltd, Toyota Central R&D Labs Inc, Omi Mining Co Ltd filed Critical Omi Kogyo Co Ltd
Priority to JP2008073488A priority Critical patent/JP5276864B2/en
Publication of JP2009228951A publication Critical patent/JP2009228951A/en
Application granted granted Critical
Publication of JP5276864B2 publication Critical patent/JP5276864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical thermal storage system can repeatedly and stably carry out thermal storage and radiation throughout a long time. <P>SOLUTION: The chemical thermal storage system 2 has a reactor 21 equipped with a chemical thermal storage material 11 of a hydration reaction system, an evaporator-condenser 22 evaporating or condensing water 12 for hydration/dehydration reaction of the chemical thermal storage material 11, and a connecting part 23 connecting the reactor 21 and the evaporator-condenser 22 and circulating the water 12 for hydration/dehydration reaction. The water 12 for hydration/dehydration reaction and a water soluble organic compound 13 having a polar functional group are held in the reactor 21 or the evaporator-condenser 22. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、化学蓄熱材を用いた化学蓄熱システムに関する。   The present invention relates to a chemical heat storage system using a chemical heat storage material.

従来から、化学蓄熱材を用いた化学蓄熱システムが知られている。
例えば、化学蓄熱材として、0.3〜4mmの範囲の結晶性の石灰石を850〜1100℃の範囲で所定時間加熱した後、500〜600℃の範囲で所定時間加熱することにより、多数の気孔を生成した生石灰を生成する技術が知られている(特許文献1参照)。
Conventionally, a chemical heat storage system using a chemical heat storage material is known.
For example, as a chemical heat storage material, crystalline limestone in a range of 0.3 to 4 mm is heated in a range of 850 to 1100 ° C. for a predetermined time, and then heated in a range of 500 to 600 ° C. for a predetermined time, so that a large number of pores There is known a technique for generating quicklime that has generated lime (see Patent Document 1).

また、内部空間に対して10〜60容積%の割合で粉体化学蓄熱材を収容したカプセルを反応器又は反応塔に充填する技術が知られている(特許文献2及び3参照)。
また、溢汪管を具備した複数の蒸発皿を有する蒸発器と、冷媒液管流器と、凝縮器と、吸着剤容器と、これらを連通する連通管とを有する化学蓄熱型冷凍装置が知られている(特許文献4参照)。
Moreover, the technique which fills the reactor or reaction tower with the capsule which accommodated the powder chemical thermal storage material in the ratio of 10-60 volume% with respect to internal space is known (refer patent documents 2 and 3).
Further, there is known a chemical heat storage type refrigeration apparatus having an evaporator having a plurality of evaporating dishes provided with overflow pipes, a refrigerant liquid pipe flower, a condenser, an adsorbent container, and a communication pipe communicating these. (See Patent Document 4).

特開平1−225686号公報JP-A-1-225686 特公平6−80395号公報Japanese Patent Publication No. 6-80395 特公平6−80394号公報Japanese Patent Publication No. 6-80394 特公平7−332788号公報Japanese Patent Publication No. 7-332788

しかしながら、特許文献1に記載のように、気孔が形成された生石灰を粉体のまま化学蓄熱材として用いた場合、作動中における水和反応及び脱水反応の繰り返しにより、化学蓄熱材の粉体が体積の膨張及び収縮の繰り返しによって他の粉体と擦れ合い、微粉化してしまう。その結果、蓄熱システムとしての反応性が低下してしまうという問題があった。   However, as described in Patent Document 1, when quick lime with pores formed is used as a chemical heat storage material in the form of powder, the powder of the chemical heat storage material is obtained by repetition of hydration reaction and dehydration reaction during operation. Repetition of volume expansion and contraction causes rubbing with other powders and pulverization. As a result, there existed a problem that the reactivity as a thermal storage system will fall.

また、特許文献2及び特許文献3の構成では、カプセルの採用による熱伝導抵抗の増加や伝熱経路の複雑化により、化学蓄熱材の発熱反応による熱を効率よく取り出すことができず、さらに蓄熱反応による熱を効率よく供給することができないという問題があった。
また、特許文献4の構成は、複数の蒸発皿を用いることで蒸発器での冷媒の蒸発面積を確保することができるものの、熱交換媒体との熱交換面積が少なく、伝熱不足(律束)を起こす原因となっていた。
Moreover, in the structure of patent document 2 and patent document 3, the heat | fever by the exothermic reaction of a chemical heat storage material cannot be taken out efficiently by the increase in heat conduction resistance by adoption of a capsule, or the complication of a heat transfer path, and also heat storage. There was a problem that heat from the reaction could not be supplied efficiently.
Moreover, although the structure of patent document 4 can ensure the evaporation area of the refrigerant | coolant in an evaporator by using several evaporating dishes, there are few heat exchange areas with a heat exchange medium, and heat transfer is insufficient (Rule control). ).

また、上記構成の蓄熱システム等では、化学蓄熱材の水和反応及び脱水反応の繰り返しにより、化学蓄熱材の粒子の凝集による粗大化という問題が生じていた。すなわち、例えば、図5(a)に示すごとく、化学蓄熱材911として酸化カルシウム(CaO)を用いた場合、水和反応及び脱水反応の繰り返しにより、図5(b)に示すごとく、化学蓄熱材911の粒子の結晶成長が進み、図5(c)に示すごとく、化学蓄熱材911の粒子の凝集が起こっていた。そして、これにより、化学蓄熱材の比表面積が低下し、蓄熱システムとしての性能が低下していた。
したがって、長期間に渡って安定的に蓄熱及び放熱を繰り返し行うことができる蓄熱システムの開発が望まれていた。
In the heat storage system having the above-described configuration, there has been a problem of coarsening due to aggregation of particles of the chemical heat storage material due to repeated hydration and dehydration reactions of the chemical heat storage material. That is, for example, as shown in FIG. 5 (a), when calcium oxide (CaO) is used as the chemical heat storage material 911, the chemical heat storage material as shown in FIG. 5 (b) is obtained by repeating hydration and dehydration reactions. As the crystal growth of the particles 911 progressed, as shown in FIG. 5C, the particles of the chemical heat storage material 911 were aggregated. And thereby, the specific surface area of the chemical heat storage material was reduced, and the performance as a heat storage system was reduced.
Therefore, it has been desired to develop a heat storage system capable of repeatedly performing heat storage and heat dissipation stably over a long period of time.

本発明は、かかる従来の問題点に鑑みてなされたもので、長時間に渡って安定的に蓄熱及び放熱を繰り返し行うことができる化学蓄熱システムを提供しようとするものである。   The present invention has been made in view of such conventional problems, and an object thereof is to provide a chemical heat storage system capable of repeatedly performing heat storage and heat dissipation stably over a long period of time.

本発明は、水和反応系の化学蓄熱材を備えた反応器と、
上記化学蓄熱材の水和・脱水反応に用いる水和・脱水反応用水を蒸発させる又凝縮する蒸発凝縮器と、
上記反応器と上記蒸発凝縮器との間を連結し、上記水和・脱水反応用水を流通させる連結部とを有し、
上記反応器又は上記蒸発凝縮器内に、アンモニア又は極性官能基を有する水溶性有機化合物が蓄えられていることを特徴とする化学蓄熱システムにある(請求項1)。
The present invention includes a reactor equipped with a chemical heat storage material of a hydration reaction system,
An evaporation condenser that evaporates and condenses the water for hydration / dehydration reaction used in the hydration / dehydration reaction of the chemical heat storage material;
Connecting between the reactor and the evaporative condenser, and having a connecting part for circulating the water for hydration / dehydration reaction,
In the chemical heat storage system, a water-soluble organic compound having ammonia or a polar functional group is stored in the reactor or the evaporative condenser (claim 1).

本発明の化学蓄熱システムは、上記反応器又は上記蒸発凝縮器内に、アンモニア又は極性官能基を有する水溶性有機化合物が蓄えられている。そして、上記化学蓄熱材の水和反応時には、該化学蓄熱材と反応する上記水和・脱水反応用水とアンモニア又は上記水溶性有機化合物とが、上記反応器に備えられた上記化学蓄熱材に対して供給される。ここで、アンモニア又は上記水溶性有機化合物は、上記化学蓄熱材との親和性に優れている。そのため、アンモニア又は上記水溶性有機化合物は、上記化学蓄熱材の粒子の表面に結合し、該化学蓄熱材の結晶成長を抑制することができる。これにより、水和反応及び脱水反応の繰り返しにおいて、上記化学蓄熱材の粒子間結合による粒子の凝集を抑制することができ、該化学蓄熱材の粒子の粗大化及び比表面積の低下を抑制することができる。その結果、上記化学蓄熱システムは、長時間に渡って安定的に蓄熱及び放熱を繰り返し行うことができるものとなる。   In the chemical heat storage system of the present invention, ammonia or a water-soluble organic compound having a polar functional group is stored in the reactor or the evaporation condenser. In the hydration reaction of the chemical heat storage material, the water for hydration / dehydration reaction that reacts with the chemical heat storage material and ammonia or the water-soluble organic compound are added to the chemical heat storage material provided in the reactor. Supplied. Here, ammonia or the water-soluble organic compound is excellent in affinity with the chemical heat storage material. Therefore, ammonia or the water-soluble organic compound can be bonded to the surface of the particles of the chemical heat storage material to suppress crystal growth of the chemical heat storage material. Thereby, in repetition of the hydration reaction and the dehydration reaction, it is possible to suppress the aggregation of particles due to the inter-particle bonding of the chemical heat storage material, and to suppress the coarsening of the chemical heat storage material particles and the decrease in the specific surface area. Can do. As a result, the chemical heat storage system can repeatedly store and release heat stably over a long period of time.

一例として、上記化学蓄熱材としてCaOを用いた場合には、CaOからCa(OH)2への水和反応時にアンモニア又は上記水溶性有機化合物がCaOに結合し、六角柱厚み方向(六角柱における六角形状の面に垂直な方向)への結晶成長を抑制(制御)することができる。これにより、基本的な形状はそのまま維持された状態で、鱗片形状のCa(OH)2が形成される。この鱗片形状のCa(OH)2により、粒子間に構造的な空間を確保することができ、高比表面積で凝集耐性(耐久性)の高い構造を有する上記化学蓄熱材を備えた上記化学蓄熱システムとなる。その結果、該化学蓄熱システムは、長時間に渡って安定的に蓄熱及び放熱を繰り返し行うことができるものとなる。 As an example, when CaO is used as the chemical heat storage material, ammonia or the water-soluble organic compound is bonded to CaO during the hydration reaction from CaO to Ca (OH) 2, and the hexagonal column thickness direction (in the hexagonal column) Crystal growth in a direction perpendicular to the hexagonal surface can be suppressed (controlled). Thus, scale-shaped Ca (OH) 2 is formed while the basic shape is maintained as it is. The scale-shaped Ca (OH) 2 can secure a structural space between the particles, and has the chemical heat storage material with the chemical heat storage material having a high specific surface area and a high aggregation resistance (durability) structure. System. As a result, the chemical heat storage system can repeatedly store and release heat stably over a long period of time.

このように、本発明によれば、長時間に渡って安定的に蓄熱及び放熱を繰り返し行うことができる化学蓄熱システムを提供することができる。   As described above, according to the present invention, it is possible to provide a chemical heat storage system capable of repeatedly performing heat storage and heat dissipation stably over a long period of time.

本発明において、上記化学蓄熱材は、脱水反応に伴い酸化され、水和反応に伴い水酸化される水和反応系の化学蓄熱材である。
この場合には、上記蓄熱システムは、上記化学蓄熱材の水和反応及び脱水(逆水和)反応によって放熱及び蓄熱を良好に行うことができる。そして、上記化学蓄熱材は、水酸化物(化学蓄熱材水酸化物)又は酸化物(化学蓄熱材酸化物)の形態をとることにより蓄熱・放熱を行うことができる。
In the present invention, the chemical heat storage material is a hydration reaction type chemical heat storage material that is oxidized with a dehydration reaction and hydroxylated with a hydration reaction.
In this case, the heat storage system can perform heat radiation and heat storage well by the hydration reaction and dehydration (reverse hydration) reaction of the chemical heat storage material. And the said chemical heat storage material can perform heat storage and thermal radiation by taking the form of a hydroxide (chemical heat storage material hydroxide) or an oxide (chemical heat storage material oxide).

ところで、水和反応系の上記化学蓄熱材においては、水和反応及び脱水反応に伴ってその粒子の体積が膨張及び収縮を繰り返すが、本発明の上記化学蓄熱システムにおいては、上述のごとく、アンモニア又は上記水溶性有機化合物が上記化学蓄熱材の粒子の表面に結合し、該化学蓄熱材の粒子間結合による粒子の凝集を抑制することができる。そのため、上記化学蓄熱材の粒子同士の間隔を維持することができ、粒子の粗大化を充分に抑制することができる。   By the way, in the chemical heat storage material of the hydration reaction system, the volume of the particles repeatedly expands and contracts with the hydration reaction and dehydration reaction, but in the chemical heat storage system of the present invention, as described above, ammonia Or the said water-soluble organic compound couple | bonds with the surface of the particle | grains of the said chemical heat storage material, and aggregation of the particle | grains by the coupling | bonding between the particles of this chemical heat storage material can be suppressed. Therefore, the interval between the particles of the chemical heat storage material can be maintained, and the coarsening of the particles can be sufficiently suppressed.

また、上記化学蓄熱材として、例えばアルカリ土類金属の酸化物及び水酸化物を用いた場合には、水和反応及び脱水反応は、下記の式で表すことができる。ただし、Aはアルカリ土類金属元素を示し、Qは放熱量及び蓄熱量を示す。
AO+H2O→A(OH)2+Q(水和反応)
A(OH)2+Q→AO+H2O(脱水反応)
上記反応式のごとく、水和反応系の上記化学蓄熱材を用いた場合には、水(水蒸気)が上記化学蓄熱材との反応物及び反応生成物となり、放熱及び蓄熱が起こる。そして、上記の反応式で表される水和反応・脱水反応が可逆的に起こることにより、放熱及び蓄熱を繰り返し行うことができる。
In addition, when an alkaline earth metal oxide or hydroxide is used as the chemical heat storage material, for example, the hydration reaction and the dehydration reaction can be expressed by the following equations. However, A shows an alkaline earth metal element, and Q shows a heat release amount and a heat storage amount.
AO + H 2 O → A (OH) 2 + Q (hydration reaction)
A (OH) 2 + Q → AO + H 2 O (dehydration reaction)
As in the above reaction formula, when the chemical heat storage material of the hydration reaction system is used, water (steam) becomes a reaction product and a reaction product with the chemical heat storage material, and heat dissipation and heat storage occur. And heat dissipation and heat storage can be repeatedly performed because the hydration reaction and dehydration reaction represented by the above reaction formula occur reversibly.

また、本発明における上記化学蓄熱材の上記水和・脱水反応用水とは、上記の反応式において、上記化学蓄熱材との反応物及び反応生成物となる水(水蒸気)のことである。上記水和・脱水反応用水は、通常、上記蒸発凝縮器に蓄えられている。そして、水和反応時には、上記蒸発凝縮器において蒸発させ、水蒸気の状態で上記反応器に供給される。また、脱水反応時には、上記反応器から水蒸気の状態で上記蒸発凝縮器に回収され、該蒸発凝縮器において凝縮させて液体(水)の状態で蓄えられる。   The water for hydration / dehydration reaction of the chemical heat storage material in the present invention is water (steam) that becomes a reaction product and a reaction product with the chemical heat storage material in the above reaction formula. The water for hydration / dehydration reaction is usually stored in the evaporative condenser. And at the time of a hydration reaction, it evaporates in the said evaporative condenser, and is supplied to the said reactor in the state of water vapor | steam. Further, during the dehydration reaction, it is recovered from the reactor in the state of water vapor in the evaporation condenser and condensed in the evaporation condenser and stored in a liquid (water) state.

また、上記化学蓄熱材の最初の水和反応前には、上記蒸発凝縮器内に、上記水和・脱水反応用水とアンモニア又は上記水溶性有機化合物とが蓄えられていることが好ましい(請求項2)。
この場合には、上記化学蓄熱材の水和反応時において、該化学蓄熱材と反応する上記水和・脱水反応用水と共にアンモニア又は上記水溶性有機化合物が、上記蒸発凝縮器から上記連結部を介して上記反応器に供給される。そのため、アンモニア又は上記水溶性有機化合物は、上記化学蓄熱材の粒子の表面に結合し、該化学蓄熱材の結晶成長を抑制することができる。
Further, before the first hydration reaction of the chemical heat storage material, it is preferable that the water for hydration / dehydration reaction and ammonia or the water-soluble organic compound are stored in the evaporation condenser (claims). 2).
In this case, during the hydration reaction of the chemical heat storage material, ammonia or the water-soluble organic compound together with the water for hydration / dehydration reaction that reacts with the chemical heat storage material is passed from the evaporation condenser through the connection portion. And fed to the reactor. Therefore, ammonia or the water-soluble organic compound can be bonded to the surface of the particles of the chemical heat storage material to suppress crystal growth of the chemical heat storage material.

また、上記水溶性有機化合物としては、上記化学蓄熱材の水和反応時において、該化学蓄熱材(化学蓄熱材酸化物)に対して結合するものを選択することができる。
また、上記水溶性有機化合物は、上記水和・脱水反応用水よりも沸点が低いことが好ましい(請求項3)。
この場合には、上記化学蓄熱材の水和反応時に、例えば上記蒸発凝縮器において蒸発させた上記水和・脱水反応用水及び上記水溶性有機化合物を上記反応器に供給する際、上記水和・脱水用水よりも先に、すなわち上記化学蓄熱材と上記水和・脱水反応用水とが水和反応を起こす前に、上記水溶性有機化合物が上記反応器に供給される。そのため、上記水溶性有機化合物は、上記化学蓄熱材に対して結合が容易となる。これにより、該化学蓄熱材の粒子間結合による粒子の凝集をより一層抑制することができる。
In addition, as the water-soluble organic compound, one that is bonded to the chemical heat storage material (chemical heat storage material oxide) during the hydration reaction of the chemical heat storage material can be selected.
The water-soluble organic compound preferably has a boiling point lower than that of the water for hydration / dehydration reaction.
In this case, during the hydration reaction of the chemical heat storage material, for example, when supplying the water for hydration / dehydration reaction and the water-soluble organic compound evaporated in the evaporation condenser to the reactor, The water-soluble organic compound is supplied to the reactor before the dehydration water, that is, before the chemical heat storage material and the hydration / dehydration reaction water cause a hydration reaction. Therefore, the water-soluble organic compound is easily bonded to the chemical heat storage material. Thereby, aggregation of the particle | grains by the coupling | bonding between particle | grains of this chemical heat storage material can be suppressed further.

また、上記水溶性有機化合物は、酸素及び/又は窒素を含有する極性官能基を有することが好ましい(請求項4)。
この場合には、上記水溶性有機化合物の上記極性官能基は、比較的高い極性を示す。そのため、上記水溶性有機化合物は、上記化学蓄熱材に対して結合し易くなる。これにより、該化学蓄熱材の粒子間結合による粒子の凝集をより一層抑制することができる。
Moreover, it is preferable that the said water-soluble organic compound has a polar functional group containing oxygen and / or nitrogen.
In this case, the polar functional group of the water-soluble organic compound exhibits a relatively high polarity. Therefore, the water-soluble organic compound is easily bonded to the chemical heat storage material. Thereby, aggregation of the particle | grains by the coupling | bonding between particle | grains of this chemical heat storage material can be suppressed further.

なお、酸素及び/又は窒素を含有する極性官能基としては、例えば−OH、−COOR1、−NR23(R23は、明細書作成の便宜のため横に並べて記載してあるが、これらはいずれもNに結合しているものである)等がある。R1、R2、R3としては、H、CH3、C25、CH2OH、C24OH等があり、R2とR3とは同じであっても異なっていてもよい。
このような極性官能基を有する上記水溶性有機化合物は、炭素と酸素と水素、炭素と酸素、炭素と窒素、炭素と窒素と水素等の結合を有するため、比較的大きな極性を示すことができ、上記化学蓄熱材に対してより結合し易くなる。
In addition, as a polar functional group containing oxygen and / or nitrogen, for example, —OH, —COOR 1 , —NR 2 R 3 (R 2 R 3 are listed side by side for the convenience of preparing the specification. These are all bonded to N). Examples of R 1 , R 2 , and R 3 include H, CH 3 , C 2 H 5 , CH 2 OH, and C 2 H 4 OH. R 2 and R 3 may be the same or different. Good.
The above water-soluble organic compound having such a polar functional group has a bond of carbon, oxygen and hydrogen, carbon and oxygen, carbon and nitrogen, carbon, nitrogen and hydrogen, etc., and therefore can exhibit a relatively large polarity. It becomes easier to bond to the chemical heat storage material.

また、上記水溶性有機化合物は、上記極性官能基として、水酸基、アミノ基及びカルボキシル基から選ばれるいずれか1種以上を含有することが好ましい(請求項5)。
すなわち、上記水溶性有機化合物は、アルコール、アミン、カルボン酸であることが好ましい。
この場合には、上記極性官能基の高い極性を生かして、上記水溶性有機化合物は、上記化学蓄熱材に優れた親和性を示すことができる。そのため、上記水溶性有機化合物は、上記化学蓄熱材に対して結合し易くなる。これにより、該化学蓄熱材の粒子間結合による粒子の凝集をより一層抑制することができる。
Moreover, it is preferable that the said water-soluble organic compound contains any 1 or more types chosen from a hydroxyl group, an amino group, and a carboxyl group as said polar functional group (Claim 5).
That is, the water-soluble organic compound is preferably alcohol, amine, or carboxylic acid.
In this case, making use of the high polarity of the polar functional group, the water-soluble organic compound can exhibit excellent affinity for the chemical heat storage material. Therefore, the water-soluble organic compound is easily bonded to the chemical heat storage material. Thereby, aggregation of the particle | grains by the coupling | bonding between particle | grains of this chemical heat storage material can be suppressed further.

また、アルコールとしては、上記極性官能基として水酸基を1つ含有するものを用いることもできるし、2つ以上含有する多価アルコールを用いることもできる。
多価アルコールとしては、水酸基を2つ含有するジオール、3つ含有するトリオール等がある。
具体的には、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール等のグリコール類、ソルビトール、キシリトール等の糖類等がある。
Moreover, as alcohol, what contains one hydroxyl group as said polar functional group can also be used, and the polyhydric alcohol containing 2 or more can also be used.
Examples of the polyhydric alcohol include a diol containing two hydroxyl groups and a triol containing three hydroxyl groups.
Specific examples include glycols such as ethylene glycol, diethylene glycol, and polyethylene glycol, and sugars such as sorbitol and xylitol.

また、アミンとしては、上記極性官能基としてアミノ基を1つ含有するものを用いることもできるし、2つ以上含有するものを用いることもできる。
アミノ基を2つ以上含有するアミンとしては、アミノ基を2つ含有するジアミン、アミノ基を3つ含有するトリアミン等がある。ジアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン等がある。また、トリアミンとしては、例えば、エチレントリアミン、プロピレントリアミン、ブチレントリアミン等がある。
Moreover, as an amine, what contains one amino group as said polar functional group can also be used, and what contains two or more can also be used.
Examples of amines containing two or more amino groups include diamines containing two amino groups and triamines containing three amino groups. Examples of the diamine include ethylene diamine, propylene diamine, butylene diamine, and the like. Examples of the triamine include ethylene triamine, propylene triamine, and butylene triamine.

また、その他にも、例えば、メタノール及びエタノール等のアルコール、メチルアミン、エチルアミン及びジエチルアミン等のアルキルアミン、ジエタノールアミン及びトリエタノールアミン等のアルカノールアミン等がある。   Other examples include alcohols such as methanol and ethanol, alkylamines such as methylamine, ethylamine and diethylamine, and alkanolamines such as diethanolamine and triethanolamine.

また、上記水溶性有機化合物は、上記極性官能基としてアミノ基を含有する第1級アミンであることが好ましい(請求項6)。
第1級アミン(R−NH2)は、アミノ基の窒素原子の周囲に大きな極性を生じ易く、例えば水中においては、極性の大きなアンモニウムイオン(R−NH3 )を形成することができる。そのため、この場合には、上記極性官能基の高い極性を生かして、上記水溶性有機化合物は、上記化学蓄熱材に優れた親和性を示すことができる。これにより、上記水溶性有機化合物は、上記化学蓄熱材に対して結合し易くなる。その結果、該化学蓄熱材の粒子間結合による粒子の凝集をより一層抑制することができる。
The water-soluble organic compound is preferably a primary amine containing an amino group as the polar functional group.
The primary amine (R—NH 2 ) tends to generate a large polarity around the nitrogen atom of the amino group, and can form ammonium ions (R—NH 3 + ) having a large polarity in water, for example. Therefore, in this case, taking advantage of the high polarity of the polar functional group, the water-soluble organic compound can exhibit excellent affinity for the chemical heat storage material. Thereby, the water-soluble organic compound is easily bonded to the chemical heat storage material. As a result, aggregation of particles due to bonding between the chemical heat storage materials can be further suppressed.

また、上記化学蓄熱材は、無機化合物であることが好ましい(請求項7)。
この場合には、無機化合物の優れた安定性を生かして、水和・脱水反応等の蓄熱・放熱反応に対する材料安定性を向上させることができる。そのため、上記化学蓄熱システムは、長期間に渡って安定的に性能を維持することができる。
The chemical heat storage material is preferably an inorganic compound (claim 7).
In this case, it is possible to improve the material stability against the heat storage / heat dissipation reaction such as hydration / dehydration reaction by utilizing the excellent stability of the inorganic compound. Therefore, the chemical heat storage system can stably maintain performance over a long period of time.

また、上記化学蓄熱材は、上記化学蓄熱材は、ニッケル化合物、アルミニウム化合物、コバルト化合物、銅化合物及びアルカリ土類金属化合物から選ばれる1種以上の化合物からなることが好ましく(請求項8)、その中でもアルカリ土類金属化合物がより好ましい。
この場合にも、水和・脱水反応等の蓄熱・放熱反応に対する材料安定性を向上させることができる。そのため、上記化学蓄熱システムは、長期間に渡って安定的に性能を維持することができる。また、上記化学蓄熱材として環境負荷の小さい安全な材料を用いることにより、上記化学蓄熱システムの製造、使用、リサイクル等を含めた安全性の確保が容易になる。
The chemical heat storage material is preferably composed of one or more compounds selected from a nickel compound, an aluminum compound, a cobalt compound, a copper compound and an alkaline earth metal compound (claim 8), Among these, alkaline earth metal compounds are more preferable.
Also in this case, the material stability against heat storage / heat dissipation reactions such as hydration / dehydration reactions can be improved. Therefore, the chemical heat storage system can stably maintain performance over a long period of time. Further, by using a safe material with a small environmental load as the chemical heat storage material, it becomes easy to ensure safety including manufacture, use, recycling, and the like of the chemical heat storage system.

また、上記化学蓄熱材として水和反応系の化学蓄熱材を用いる場合には、上記化学蓄熱材は、蓄熱(脱水反応)時には酸化物の形態をとり、放熱(水和反応)時には水酸化物の形態をとることができる。   When a hydration reaction type chemical heat storage material is used as the chemical heat storage material, the chemical heat storage material takes the form of an oxide during heat storage (dehydration reaction) and a hydroxide during heat release (hydration reaction). It can take the form of

また、上記化学蓄熱材は、水酸化ニッケル、水酸化アルミニウム、水酸化コバルト、水酸化銅、水酸化バリウム、水酸化カルシウム及び水酸化マグネシウムから選ばれる1種以上の水酸化物からなることが好ましく(請求項9)、その中でも水酸化カルシウム及び水酸化マグネシウムがより好ましく、水酸化カルシウムがさらに好ましい。
また、上記化学蓄熱材は、酸化ニッケル、酸化アルミニウム、酸化コバルト、酸化銅、酸化バリウム、酸化カルシウム及び酸化マグネシウムから選ばれる1種以上の酸化物からなることが好ましく(請求項10)、その中でも酸化カルシウム及び酸化マグネシウムがより好ましく、酸化カルシウムがさらに好ましい。
この場合には、上記化学蓄熱材は、比較的高い蓄熱量を発揮できると共に、優れた安定性を示すことができる。
The chemical heat storage material is preferably composed of one or more hydroxides selected from nickel hydroxide, aluminum hydroxide, cobalt hydroxide, copper hydroxide, barium hydroxide, calcium hydroxide and magnesium hydroxide. (Claim 9) Among them, calcium hydroxide and magnesium hydroxide are more preferable, and calcium hydroxide is more preferable.
The chemical heat storage material is preferably composed of one or more oxides selected from nickel oxide, aluminum oxide, cobalt oxide, copper oxide, barium oxide, calcium oxide, and magnesium oxide (claim 10). Calcium oxide and magnesium oxide are more preferable, and calcium oxide is more preferable.
In this case, the chemical heat storage material can exhibit a relatively high heat storage amount and can exhibit excellent stability.

(実施例1)
本発明の実施例にかかる化学蓄熱システムについて、図を用いて説明する。
本例の化学蓄熱システム2は、図1(a)、(b)に示すごとく、反応器21と、蒸発凝縮器22と、反応器21と蒸発凝縮器22との間を連結する連結部23とにより構成されている。連結部23には、連結部23内の連通状態を開閉するためのバルブ231が設けられている。
Example 1
The chemical heat storage system concerning the Example of this invention is demonstrated using figures.
As shown in FIGS. 1A and 1B, the chemical heat storage system 2 of this example includes a reactor 21, an evaporation condenser 22, and a connecting portion 23 that connects between the reactor 21 and the evaporation condenser 22. It is comprised by. The connecting portion 23 is provided with a valve 231 for opening and closing the communication state in the connecting portion 23.

反応器21は、水和反応系の化学蓄熱材11の水和・脱水反応を行うためのものである。反応器21内には、化学蓄熱材11が収容されている。
また、蒸発凝縮器22は、化学蓄熱材11の水和・脱水反応に用いる水和・脱水反応用水12を蒸発又凝縮させるためのものである。蒸発凝縮器22内には、水和・脱水反応用水12と極性官能基を有する水溶性有機化合物13とが蓄えられている。すなわち、蒸発凝縮器22内には、水和・脱水反応用水12と水溶性有機化合物13との混合液14が蓄えられている。
The reactor 21 is for performing a hydration / dehydration reaction of the chemical heat storage material 11 of the hydration reaction system. The chemical heat storage material 11 is accommodated in the reactor 21.
The evaporative condenser 22 is for evaporating or condensing the water 12 for hydration / dehydration reaction used for the hydration / dehydration reaction of the chemical heat storage material 11. In the evaporative condenser 22, hydration / dehydration reaction water 12 and a water-soluble organic compound 13 having a polar functional group are stored. That is, in the evaporative condenser 22, a mixed solution 14 of hydration / dehydration reaction water 12 and the water-soluble organic compound 13 is stored.

また、化学蓄熱材11は、水和反応に伴って水酸化され、脱水反応に伴って酸化される水和反応系のカルシウム化合物である。本例の化学蓄熱材11は、水和反応時には水酸化されて水酸化物(水酸化カルシウム(Ca(OH)2))の形態をとり、脱水反応時には酸化されて酸化物(酸化カルシウム(CaO))の形態をとる。 The chemical heat storage material 11 is a hydration reaction-type calcium compound that is hydroxylated with a hydration reaction and oxidized with a dehydration reaction. The chemical heat storage material 11 of this example is hydroxylated during the hydration reaction to take the form of a hydroxide (calcium hydroxide (Ca (OH) 2 )), and oxidized during the dehydration reaction to be oxidized (calcium oxide (CaO)). )).

そして、化学蓄熱材11は、水和反応に伴って放熱(発熱)し、脱水反応に伴って蓄熱(吸熱)する。すなわち、化学蓄熱材11は、以下に示す反応で放熱及び蓄熱を可逆的に繰り返す。
Ca(OH)2⇔CaO+H2
さらに、上記の式に放熱量、蓄熱量Qを併せて示すと、以下のようになる。
CaO+H2O→Ca(OH)2+Q ・・・(1)
Ca(OH)2+Q→CaO+H2O ・・・(2)
The chemical heat storage material 11 radiates heat (generates heat) with the hydration reaction, and stores heat (heat absorption) with the dehydration reaction. That is, the chemical heat storage material 11 reversibly repeats heat dissipation and heat storage by the reaction shown below.
Ca (OH) 2 ⇔CaO + H 2 O
Further, when the heat dissipation amount and the heat storage amount Q are also shown in the above formula, the following is obtained.
CaO + H 2 O → Ca (OH) 2 + Q (1)
Ca (OH) 2 + Q → CaO + H 2 O (2)

また、混合液14に含まれる水和・脱水反応用水12は、水である。すなわち、水和・脱水反応用水12は、上記反応式(1)、(2)に示すごとく、化学蓄熱材11との反応物及び反応生成物となる水(H2O)である。
また、混合液14に含まれる水溶性有機化合物13は、エタノール(C26O)である。エタノールの沸点は78℃であり、水の沸点(100℃)よりも低い。
本例では、混合液14における水とエタノールとの重量比を10:1としている。
Further, the water 12 for hydration / dehydration reaction contained in the mixed solution 14 is water. That is, the water 12 for hydration / dehydration reaction is water (H 2 O) that becomes a reaction product and a reaction product with the chemical heat storage material 11 as shown in the above reaction formulas (1) and (2).
Further, the water-soluble organic compound 13 contained in the mixed solution 14 is ethanol (C 2 H 6 O). The boiling point of ethanol is 78 ° C., which is lower than the boiling point of water (100 ° C.).
In this example, the weight ratio of water and ethanol in the mixed solution 14 is 10: 1.

次に、本例の化学蓄熱システム2の作動について説明する。
<放熱モード>
図1(a)に示すごとく、連結部23のバルブ231を開放する。そして、蒸発凝縮器22の内部の蒸気圧力により、混合液14を蒸発(気化)させる。このとき、混合液14中において沸点の低いエタノール13が水12より沸点が低いために先に蒸発し、気体の状態で連結部23を流通して反応器21に供給される。反応器21に供給されたエタノール13は、図2(a)に示すごとく、化学蓄熱材11と反応し、化学蓄熱材11の粒子の表面に結合する。
Next, the operation of the chemical heat storage system 2 of this example will be described.
<Heat dissipation mode>
As shown in FIG. 1A, the valve 231 of the connecting portion 23 is opened. Then, the liquid mixture 14 is evaporated (vaporized) by the vapor pressure inside the evaporation condenser 22. At this time, the ethanol 13 having a low boiling point in the mixed solution 14 has a lower boiling point than the water 12 and thus evaporates first, and flows through the connecting portion 23 in a gaseous state and is supplied to the reactor 21. The ethanol 13 supplied to the reactor 21 reacts with the chemical heat storage material 11 and binds to the surface of the particles of the chemical heat storage material 11 as shown in FIG.

その後、混合液14中における水12が蒸発し、水蒸気の状態で連結部23を流通して反応器21に供給される。反応器21に供給された水12は、化学蓄熱材(酸化カルシウム)11と水和反応を起こす。これにより、上記反応式(1)に示すごとく、酸化カルシウム(CaO)は、水和反応によって水酸化され、水酸化カルシウム(Ca(OH)2)となると共に放熱(発熱)する。 Thereafter, the water 12 in the mixed liquid 14 evaporates, flows through the connecting portion 23 in the state of water vapor, and is supplied to the reactor 21. The water 12 supplied to the reactor 21 causes a hydration reaction with the chemical heat storage material (calcium oxide) 11. Thereby, as shown in the above reaction formula (1), calcium oxide (CaO) is hydroxylated by the hydration reaction to become calcium hydroxide (Ca (OH) 2 ) and dissipate heat (heat generation).

このとき、化学蓄熱材11の粒子の表面に結合したエタノール13は、図2(b)に示すごとく、化学蓄熱材11の結晶成長を抑制する。つまり、六角柱厚み方向(六角柱における六角形状の面に垂直な方向)への結晶成長を抑制(制御)する。
そして、図2(c)に示すごとく、化学蓄熱材11は、基本的な形状がそのまま維持され、化学蓄熱材11の粒子間結合による粒子の凝集を抑制する。また、エタノール13は、400℃以上で脱離する。
At this time, the ethanol 13 bonded to the surface of the particles of the chemical heat storage material 11 suppresses crystal growth of the chemical heat storage material 11 as shown in FIG. That is, the crystal growth in the thickness direction of the hexagonal column (direction perpendicular to the hexagonal surface in the hexagonal column) is suppressed (controlled).
And as shown in FIG.2 (c), the chemical heat storage material 11 maintains a basic shape as it is, and suppresses aggregation of the particle | grains by the coupling | bonding of the chemical heat storage material 11 between particles. Further, ethanol 13 is desorbed at 400 ° C. or higher.

<蓄熱モード>
図1(b)に示すごとく、まず、連結部23のバルブ231を開放する。そして、反応器21内の化学蓄熱材(水酸化カルシウム)11を加熱(424℃)し、脱水反応を起こす。これにより、上記反応式(2)に示すごとく、水酸化カルシウム(Ca(OH)2)は、脱水反応によって酸化され、酸化カルシウム(CaO)となると共に蓄熱(吸熱)する。
<Heat storage mode>
As shown in FIG. 1B, first, the valve 231 of the connecting portion 23 is opened. Then, the chemical heat storage material (calcium hydroxide) 11 in the reactor 21 is heated (424 ° C.) to cause a dehydration reaction. Thereby, as shown in the above reaction formula (2), calcium hydroxide (Ca (OH) 2 ) is oxidized by dehydration reaction to become calcium oxide (CaO) and also stores heat (heat absorption).

また、化学蓄熱材(水酸化カルシウム)11から脱水された水12は、水蒸気の状態で連結部23を流通して蒸発凝縮器22に回収される。同様に、化学蓄熱材(水酸化カルシウム)11から脱離したエタノール13は、気体の状態で連結部23を流通して蒸発凝縮器22に回収される。蒸発凝縮器22に回収された水12及びエタノール13は、冷媒との熱交換により冷却・凝縮され、液体の状態で混合液14として蒸発凝縮器22に蓄えられる。   Further, the water 12 dehydrated from the chemical heat storage material (calcium hydroxide) 11 flows through the connecting portion 23 in the state of water vapor and is collected in the evaporative condenser 22. Similarly, ethanol 13 desorbed from the chemical heat storage material (calcium hydroxide) 11 circulates through the connecting portion 23 in a gas state and is recovered by the evaporation condenser 22. The water 12 and ethanol 13 collected in the evaporative condenser 22 are cooled and condensed by heat exchange with the refrigerant, and are stored in the evaporative condenser 22 as a mixed liquid 14 in a liquid state.

本例の化学蓄熱システムにおける作用効果について説明する。
本例の化学蓄熱システム2は、化学蓄熱材11の水和反応時には、化学蓄熱材11と反応する水和・脱水反応用水12と共に水溶性有機化合物13が、蒸発凝縮器22から連結部23を介して反応器21に供給される。ここで、水溶性有機化合物13は、化学蓄熱材11との親和性に優れている。そのため、水溶性有機化合物13は、化学蓄熱材11の粒子の表面に結合し(図2(a)参照)、化学蓄熱材11の結晶成長を抑制することができる(図2(b)参照)。これにより、水和反応及び脱水反応の繰り返しにおいて、化学蓄熱材11の粒子間結合による粒子の凝集を抑制することができ(図2(c)参照)、化学蓄熱材11の粒子の粗大化及び比表面積の低下を抑制することができる。その結果、化学蓄熱システム2は、長時間に渡って安定的に蓄熱及び放熱を繰り返し行うことができるものとなる。
The effect in the chemical heat storage system of this example is demonstrated.
In the chemical heat storage system 2 of the present example, during the hydration reaction of the chemical heat storage material 11, the water-soluble organic compound 13 together with the water 12 for hydration / dehydration reaction that reacts with the chemical heat storage material 11 is connected from the evaporation condenser 22 to the connection portion 23. To the reactor 21. Here, the water-soluble organic compound 13 is excellent in affinity with the chemical heat storage material 11. Therefore, the water-soluble organic compound 13 is bonded to the surface of the particles of the chemical heat storage material 11 (see FIG. 2A) and can suppress the crystal growth of the chemical heat storage material 11 (see FIG. 2B). . Thereby, in the repetition of a hydration reaction and a dehydration reaction, aggregation of the particle | grains by the coupling | bonding between the particles of the chemical heat storage material 11 can be suppressed (refer FIG.2 (c)), and the coarsening of the particle | grains of the chemical heat storage material 11 and A decrease in specific surface area can be suppressed. As a result, the chemical heat storage system 2 can repeatedly store and release heat stably over a long period of time.

また、本例のように、化学蓄熱材11としてCaOを用いた場合には、CaOからCa(OH)2への水和反応時に水溶性有機化合物13であるエタノールがCaOに結合し(図2(a)参照)、六角柱厚み方向(六角柱における六角形状の面に垂直な方向)への結晶成長を抑制(制御)することができる(図2(b)参照)。これにより、基本的な形状はそのまま維持された状態で、鱗片形状のCa(OH)2が形成される(図2(c)参照)。この鱗片形状のCa(OH)2により、粒子間に構造的な空間を確保することができ、高比表面積で凝集耐性(耐久性)の高い構造を有するものとなる。その結果、化学蓄熱システムは、長時間に渡って安定的に蓄熱及び放熱を繰り返し行うことができるものとなる。 Further, as in this example, when CaO is used as the chemical heat storage material 11, ethanol as the water-soluble organic compound 13 is bonded to CaO during the hydration reaction from CaO to Ca (OH) 2 (FIG. 2). (See (a)), the crystal growth in the thickness direction of the hexagonal column (direction perpendicular to the hexagonal surface in the hexagonal column) can be suppressed (controlled) (see FIG. 2B). Thereby, scale-shaped Ca (OH) 2 is formed in a state where the basic shape is maintained as it is (see FIG. 2C). This scale-like Ca (OH) 2 can secure a structural space between the particles, and has a structure with a high specific surface area and high aggregation resistance (durability). As a result, the chemical heat storage system can repeatedly store and release heat stably over a long period of time.

また、本例では、水溶性有機化合物13としては、水和・脱水反応用水12よりも沸点が低いエタノールを用いている。そのため、化学蓄熱材11の水和反応時に、蒸発凝縮器22において蒸発させた水和・脱水反応用水12及び水溶性有機化合物13の混合液14を反応器21に供給する際、水和・脱水用水12よりも先に水溶性有機化合物13が反応器21に供給される。そのため、水溶性有機化合物13は、化学蓄熱材11に対して結合が容易となる。これにより、化学蓄熱材11の粒子間結合による粒子の凝集をより一層抑制することができる。   In this example, ethanol having a boiling point lower than that of water 12 for hydration / dehydration reaction is used as the water-soluble organic compound 13. Therefore, when supplying the mixed liquid 14 of the water 12 for hydration / dehydration reaction and the water-soluble organic compound 13 evaporated in the evaporative condenser 22 during the hydration reaction of the chemical heat storage material 11, The water-soluble organic compound 13 is supplied to the reactor 21 before the water 12 is used. Therefore, the water-soluble organic compound 13 can be easily bonded to the chemical heat storage material 11. Thereby, aggregation of the particle | grains by the coupling | bonding between the particles of the chemical heat storage material 11 can be suppressed further.

また、水溶性有機化合物13としては、酸素を含有する極性官能基を有するエタノールを用いている。この場合には、水溶性有機化合物13の極性官能基は、比較的高い極性を示す。そのため、水溶性有機化合物13は、化学蓄熱材11に対して結合し易くなる。これにより、化学蓄熱材11の粒子間結合による粒子の凝集をより一層抑制することができる。   Further, as the water-soluble organic compound 13, ethanol having a polar functional group containing oxygen is used. In this case, the polar functional group of the water-soluble organic compound 13 exhibits a relatively high polarity. Therefore, the water-soluble organic compound 13 is easily bonded to the chemical heat storage material 11. Thereby, aggregation of the particle | grains by the coupling | bonding between the particles of the chemical heat storage material 11 can be suppressed further.

また、水溶性有機化合物13としては、極性官能基として、水酸基を含有するエタノールを用いている。そのため、水溶性有機化合物13は、極性官能基の高い極性を生かして、化学蓄熱材11に優れた親和性を示すことができる。そのため、水溶性有機化合物13は、化学蓄熱材11に対して結合し易くなる。これにより、化学蓄熱材11の粒子間結合による粒子の凝集をより一層抑制することができる。   As the water-soluble organic compound 13, ethanol containing a hydroxyl group is used as a polar functional group. Therefore, the water-soluble organic compound 13 can exhibit excellent affinity for the chemical heat storage material 11 by utilizing the high polarity of the polar functional group. Therefore, the water-soluble organic compound 13 is easily bonded to the chemical heat storage material 11. Thereby, aggregation of the particle | grains by the coupling | bonding between the particles of the chemical heat storage material 11 can be suppressed further.

また、化学蓄熱材11は、無機化合物である。そのため、無機化合物の優れた安定性を生かして、水和・脱水反応等の蓄熱・放熱反応に対する材料安定性を向上させることができる。そのため、化学蓄熱システム2は、長期間に渡って安定的に性能を維持することができる。   The chemical heat storage material 11 is an inorganic compound. Therefore, the material stability with respect to heat storage / heat dissipation reactions such as hydration / dehydration reaction can be improved by utilizing the excellent stability of the inorganic compound. Therefore, the chemical heat storage system 2 can maintain performance stably over a long period of time.

また、化学蓄熱材11は、アルカリ土類金属化合物である。そのため、アルカリ土類金属化合物の優れた安定性を生かして、水和・脱水反応等の蓄熱・放熱反応に対する材料安定性を向上させることができる。そのため、化学蓄熱システム2は、長期間に渡って安定的に性能を維持することができる。また、化学蓄熱材11として環境負荷の小さい安全なアルカリ土類金属化合物を用いることにより、化学蓄熱システム2の製造、使用、リサイクル等を含めた安全性の確保が容易になる。   The chemical heat storage material 11 is an alkaline earth metal compound. Therefore, the material stability with respect to heat storage and heat dissipation reactions such as hydration and dehydration reactions can be improved by utilizing the excellent stability of the alkaline earth metal compound. Therefore, the chemical heat storage system 2 can maintain performance stably over a long period of time. Further, by using a safe alkaline earth metal compound having a small environmental load as the chemical heat storage material 11, it is easy to ensure safety including manufacture, use, recycling, and the like of the chemical heat storage system 2.

また、化学蓄熱材11は、蓄熱(脱水反応)時には酸化物(酸化カルシウム(CaO))の形態をとり、放熱(水和反応)時には水酸化物(水酸化カルシウム(Ca(OH)2))の形態をとるカルシウム化合物である。そのため、化学蓄熱材11は、比較的高い蓄熱量を発揮できると共に、優れた安定性を示すことができる。 The chemical heat storage material 11 takes the form of an oxide (calcium oxide (CaO)) during heat storage (dehydration reaction), and a hydroxide (calcium hydroxide (Ca (OH) 2 )) during heat dissipation (hydration reaction). It is a calcium compound which takes the form of Therefore, the chemical heat storage material 11 can exhibit a relatively high heat storage amount and can exhibit excellent stability.

このように、本例によれば、長時間に渡って安定的に蓄熱及び放熱を繰り返し行うことができる化学蓄熱システムを得ることができる。   Thus, according to this example, it is possible to obtain a chemical heat storage system capable of repeatedly performing heat storage and heat dissipation stably over a long period of time.

なお、本例では、化学蓄熱システムとして単純な構成の例を示したが、本発明の化学蓄熱システムは、これに限定されるものではなく、公知の様々な化学蓄熱システムに適用することができる。   In addition, in this example, although the example of the simple structure was shown as a chemical heat storage system, the chemical heat storage system of this invention is not limited to this, It can apply to well-known various chemical heat storage systems. .

(実施例2)
本例は、水溶性有機化合物13を実施例1のエタノールからジエチレングリコールに変更した例である。
そして、本例では、水溶性有機化合物13を水和・脱水反応用水12に混合した場合(本実施例)と、水溶性有機化合物13を水和・脱水反応用水12に混合しない場合(従来例)とにおいて、水和反応後に生成される化学蓄熱材11(Ca(OH)2)の結晶状態をSEMにより観察した。
(Example 2)
In this example, the water-soluble organic compound 13 is changed from ethanol in Example 1 to diethylene glycol.
In this example, the water-soluble organic compound 13 is mixed with the water 12 for hydration / dehydration reaction (this example) and the water-soluble organic compound 13 is not mixed with the water 12 for hydration / dehydration reaction (conventional example). ), The crystalline state of the chemical heat storage material 11 (Ca (OH) 2 ) produced after the hydration reaction was observed by SEM.

なお、本例の化学蓄熱システム2の構成やその他の材料(化学蓄熱材11(CaO)、水和・脱水反応用水12(水))は、実施例1と同様である。また、混合液14は、水和・脱水反応用水12としての水と水溶性有機化合物13としてのジエチレングリコールとの混合液である。   The configuration of the chemical heat storage system 2 and other materials (chemical heat storage material 11 (CaO), water for hydration / dehydration reaction 12 (water)) of this example are the same as those in Example 1. The mixed solution 14 is a mixed solution of water as the hydration / dehydration reaction water 12 and diethylene glycol as the water-soluble organic compound 13.

図3は、本実施例における水和反応後に形成された(Ca(OH)2)を示したものである。一方、図4は、従来例における水和反応後に形成された(Ca(OH)2)を示したものである。
図4に示すごとく、従来例では、化学蓄熱材の粒子の結晶成長が進み、粒子が凝集した状態のCa(OH)2が形成されている。
一方、図3に示すごとく、本実施例では、化学蓄熱材の表面に結合した水溶性有機化合物の作用により、六角柱厚み方向(六角柱における六角形状の面に垂直な方向)への結晶成長が抑制(制御)された鱗片形状のCa(OH)2が形成されている(例えば、図中のA参照)。
FIG. 3 shows (Ca (OH) 2 ) formed after the hydration reaction in this example. On the other hand, FIG. 4 shows (Ca (OH) 2 ) formed after the hydration reaction in the conventional example.
As shown in FIG. 4, in the conventional example, the crystal growth of the particles of the chemical heat storage material proceeds, and Ca (OH) 2 in a state where the particles are aggregated is formed.
On the other hand, as shown in FIG. 3, in this example, the crystal growth in the thickness direction of the hexagonal column (direction perpendicular to the hexagonal surface of the hexagonal column) is caused by the action of the water-soluble organic compound bonded to the surface of the chemical heat storage material. Scale-shaped Ca (OH) 2 is suppressed (controlled) (see, for example, A in the figure).

実施例1における、化学蓄熱システム及びその作動を示す説明図。Explanatory drawing which shows the chemical thermal storage system in Example 1, and its action | operation. 実施例1における、水和反応時の化学蓄熱材の粒子形態変化を示す説明図。Explanatory drawing which shows the particle form change of the chemical heat storage material at the time of a hydration reaction in Example 1. 実施例2における、本実施例の水和反応後に形成された(Ca(OH)2)を示すSEM写真。The SEM photograph which shows (Ca (OH) 2 ) formed after the hydration reaction of the present Example in Example 2. FIG. 実施例2における、従来例の水和反応後に形成された(Ca(OH)2)を示すSEM写真。The SEM photograph which shows (Ca (OH) 2 ) formed after the hydration reaction of the prior art example in Example 2. FIG. 従来における、水和反応時の化学蓄熱材の粒子形態変化を示す説明図。Explanatory drawing which shows the particle shape change of the chemical heat storage material at the time of the hydration reaction in the past.

符号の説明Explanation of symbols

11 化学蓄熱材
12 水和・脱水反応用水
13 水溶性有機化合物
2 化学蓄熱システム
21 反応器
22 蒸発凝縮器
23 連結部
DESCRIPTION OF SYMBOLS 11 Chemical heat storage material 12 Water for hydration and dehydration reaction 13 Water-soluble organic compound 2 Chemical heat storage system 21 Reactor 22 Evaporation condenser 23 Connection part

Claims (10)

水和反応系の化学蓄熱材を備えた反応器と、
上記化学蓄熱材の水和・脱水反応に用いる水和・脱水反応用水を蒸発又凝縮させる蒸発凝縮器と、
上記反応器と上記蒸発凝縮器との間を連結し、上記水和・脱水反応用水を流通させる連結部とを有し、
上記反応器又は上記蒸発凝縮器内に、アンモニア又は極性官能基を有する水溶性有機化合物が蓄えられていることを特徴とする化学蓄熱システム。
A reactor equipped with a chemical heat storage material for a hydration reaction system;
An evaporative condenser for evaporating or condensing the water for hydration / dehydration reaction used in the hydration / dehydration reaction of the chemical heat storage material;
Connecting between the reactor and the evaporative condenser, and having a connecting part for circulating the water for hydration / dehydration reaction,
A chemical heat storage system in which ammonia or a water-soluble organic compound having a polar functional group is stored in the reactor or the evaporative condenser.
請求項1において、上記化学蓄熱材の最初の水和反応前には、上記蒸発凝縮器内に、上記水和・脱水反応用水とアンモニア又は上記水溶性有機化合物とが蓄えられていることを特徴とする化学蓄熱システム。   2. The hydration / dehydration reaction water and ammonia or the water-soluble organic compound are stored in the evaporative condenser before the first hydration reaction of the chemical heat storage material. Chemical heat storage system. 請求項1又は2において、上記水溶性有機化合物は、上記水和・脱水反応用水よりも沸点が低いことを特徴とする化学蓄熱システム。   The chemical heat storage system according to claim 1 or 2, wherein the water-soluble organic compound has a boiling point lower than that of the water for hydration / dehydration reaction. 請求項1〜3のいずれか1項において、上記水溶性有機化合物は、酸素及び/又は窒素を含有する極性官能基を有することを特徴とする化学蓄熱システム。   The chemical heat storage system according to any one of claims 1 to 3, wherein the water-soluble organic compound has a polar functional group containing oxygen and / or nitrogen. 請求項1〜4のいずれか1項において、上記水溶性有機化合物は、上記極性官能基として、水酸基、アミノ基及びカルボキシル基から選ばれるいずれか1種以上を含有することを特徴とする化学蓄熱システム。   5. The chemical heat storage according to claim 1, wherein the water-soluble organic compound contains at least one selected from a hydroxyl group, an amino group, and a carboxyl group as the polar functional group. system. 請求項1〜5のいずれか1項において、上記水溶性有機化合物は、上記極性官能基としてアミノ基を含有する第1級アミンであることを特徴とする化学蓄熱システム。   The chemical heat storage system according to claim 1, wherein the water-soluble organic compound is a primary amine containing an amino group as the polar functional group. 請求項1〜6のいずれか1項において、上記化学蓄熱材は、無機化合物であることを特徴とする化学蓄熱システム。   The chemical heat storage system according to any one of claims 1 to 6, wherein the chemical heat storage material is an inorganic compound. 請求項1〜7のいずれか1項において、上記化学蓄熱材は、ニッケル化合物、アルミニウム化合物、コバルト化合物、銅化合物及びアルカリ土類金属化合物から選ばれる1種以上の化合物からなることを特徴とする化学蓄熱システム。   8. The chemical heat storage material according to claim 1, wherein the chemical heat storage material includes one or more compounds selected from a nickel compound, an aluminum compound, a cobalt compound, a copper compound, and an alkaline earth metal compound. Chemical heat storage system. 請求項1〜8のいずれか1項において、上記化学蓄熱材は、水酸化ニッケル、水酸化アルミニウム、水酸化コバルト、水酸化銅、水酸化バリウム、水酸化カルシウム及び水酸化マグネシウムから選ばれる1種以上の水酸化物からなることを特徴とする化学蓄熱システム。   9. The chemical heat storage material according to claim 1, wherein the chemical heat storage material is selected from nickel hydroxide, aluminum hydroxide, cobalt hydroxide, copper hydroxide, barium hydroxide, calcium hydroxide, and magnesium hydroxide. A chemical heat storage system comprising the above hydroxide. 請求項1〜8のいずれか1項において、上記化学蓄熱材は、酸化ニッケル、酸化アルミニウム、酸化コバルト、酸化銅、酸化バリウム、酸化カルシウム及び酸化マグネシウムから選ばれる1種以上の酸化物からなることを特徴とする化学蓄熱システム。   9. The chemical heat storage material according to claim 1, wherein the chemical heat storage material is made of one or more oxides selected from nickel oxide, aluminum oxide, cobalt oxide, copper oxide, barium oxide, calcium oxide, and magnesium oxide. A chemical heat storage system characterized by
JP2008073488A 2008-03-21 2008-03-21 Chemical heat storage system Active JP5276864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073488A JP5276864B2 (en) 2008-03-21 2008-03-21 Chemical heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073488A JP5276864B2 (en) 2008-03-21 2008-03-21 Chemical heat storage system

Publications (2)

Publication Number Publication Date
JP2009228951A true JP2009228951A (en) 2009-10-08
JP5276864B2 JP5276864B2 (en) 2013-08-28

Family

ID=41244562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073488A Active JP5276864B2 (en) 2008-03-21 2008-03-21 Chemical heat storage system

Country Status (1)

Country Link
JP (1) JP5276864B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097996A (en) * 2010-11-04 2012-05-24 Aisin Seiki Co Ltd Chemical heat accumulator, and chemical heat accumulation device
JP2012172901A (en) * 2011-02-21 2012-09-10 Toyota Central R&D Labs Inc Chemical heat storage heat transfer device and heat exchanger type reactor
JP2013216763A (en) * 2012-04-06 2013-10-24 Toyota Central R&D Labs Inc Chemical heat storage material, and reaction device, heat storage device, and vehicle
WO2014021262A1 (en) * 2012-08-03 2014-02-06 株式会社村田製作所 Electronic apparatus
JP2015059717A (en) * 2013-09-19 2015-03-30 株式会社豊田自動織機 Chemical heat storage device
JP2017150801A (en) * 2016-02-22 2017-08-31 株式会社豊田中央研究所 Heat exchanger and heat storage system
US10415891B2 (en) 2016-02-22 2019-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger and heat storage system
CN113883939A (en) * 2021-09-26 2022-01-04 河北工业大学 Energy storage and heat supply device for collecting and utilizing latent heat of vaporization of phase-change material
WO2024103646A1 (en) * 2021-11-23 2024-05-23 洛阳瑞昌环境工程有限公司 Thermochemical heat-accumulation energy-storage heat supply system, and energy-storage heat supply method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783588A (en) * 1993-06-24 1995-03-28 Nok Corp Heat accumulative device
JPH07113590A (en) * 1993-10-15 1995-05-02 Nok Corp Heat accumulation device for chemical heat accumulating material
JP2005024231A (en) * 2003-06-09 2005-01-27 Matsushita Electric Ind Co Ltd Heat storage type heat pump system
JP2007309561A (en) * 2006-05-17 2007-11-29 Tokyo Institute Of Technology Chemical heat pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783588A (en) * 1993-06-24 1995-03-28 Nok Corp Heat accumulative device
JPH07113590A (en) * 1993-10-15 1995-05-02 Nok Corp Heat accumulation device for chemical heat accumulating material
JP2005024231A (en) * 2003-06-09 2005-01-27 Matsushita Electric Ind Co Ltd Heat storage type heat pump system
JP2007309561A (en) * 2006-05-17 2007-11-29 Tokyo Institute Of Technology Chemical heat pump

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097996A (en) * 2010-11-04 2012-05-24 Aisin Seiki Co Ltd Chemical heat accumulator, and chemical heat accumulation device
JP2012172901A (en) * 2011-02-21 2012-09-10 Toyota Central R&D Labs Inc Chemical heat storage heat transfer device and heat exchanger type reactor
JP2013216763A (en) * 2012-04-06 2013-10-24 Toyota Central R&D Labs Inc Chemical heat storage material, and reaction device, heat storage device, and vehicle
WO2014021262A1 (en) * 2012-08-03 2014-02-06 株式会社村田製作所 Electronic apparatus
JPWO2014021262A1 (en) * 2012-08-03 2016-07-21 株式会社村田製作所 Electronics
JP2015059717A (en) * 2013-09-19 2015-03-30 株式会社豊田自動織機 Chemical heat storage device
JP2017150801A (en) * 2016-02-22 2017-08-31 株式会社豊田中央研究所 Heat exchanger and heat storage system
US10415891B2 (en) 2016-02-22 2019-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger and heat storage system
CN113883939A (en) * 2021-09-26 2022-01-04 河北工业大学 Energy storage and heat supply device for collecting and utilizing latent heat of vaporization of phase-change material
WO2023045518A1 (en) * 2021-09-26 2023-03-30 河北工业大学 Energy storage heat supply device for collecting and utilizing latent heat of vaporization of phase change materials
WO2024103646A1 (en) * 2021-11-23 2024-05-23 洛阳瑞昌环境工程有限公司 Thermochemical heat-accumulation energy-storage heat supply system, and energy-storage heat supply method

Also Published As

Publication number Publication date
JP5276864B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5276864B2 (en) Chemical heat storage system
Jiménez et al. High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants
JP5021597B2 (en) Thermal storage method and thermal storage system
JP3159448B2 (en) Dual temperature heat pump device and system
Chan et al. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation
Li et al. Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage
US9567875B2 (en) Power generation apparatus, power generation method, decomposition-gas turbine and decomposition-gas boiler
JP5170879B2 (en) Chemical heat storage material composite and manufacturing method thereof
US20230348772A1 (en) In-situ reactive absorption for equilibrium-shifting of non-condensable gases
Bao et al. Thermochemical energy storage
US8975464B2 (en) Heat recovery from sorbent-based CO2 capture
Carro et al. Analysis of a thermochemical energy storage system based on the reversible Ca (OH) 2/CaO reaction
Kim et al. Ultrahigh‐porosity MgO microparticles for heat‐energy storage
CN105992920B (en) Energy storage device
JP7374920B2 (en) Ammonia synthesis system and ammonia production method
Nguyen et al. Recent progress in thermochemical heat storage: materials and applications
Li et al. Studies on magnesium chloride hexahydrate as phase change materials
JP2015105809A (en) Heat storage system, and heat storage and heat output method
CN100415345C (en) Preparation of composite acid gas absorbent
US20190330509A1 (en) Heat-storage material
RU2729004C1 (en) Material for heat accumulation, method of making material for heat accumulation and chemical heat pump
JP4264728B2 (en) Refrigeration method and refrigeration system using gas hydrate
US20200094184A1 (en) High temperature thermochemical energy storage system
WO2018088196A1 (en) Chemical heat storage system
US20200002591A1 (en) Heat-storage material comprising metal salt of cyanuric acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5276864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250