JP2010216772A - Chemical heat storage reactor and chemical heat storage system - Google Patents

Chemical heat storage reactor and chemical heat storage system Download PDF

Info

Publication number
JP2010216772A
JP2010216772A JP2009066936A JP2009066936A JP2010216772A JP 2010216772 A JP2010216772 A JP 2010216772A JP 2009066936 A JP2009066936 A JP 2009066936A JP 2009066936 A JP2009066936 A JP 2009066936A JP 2010216772 A JP2010216772 A JP 2010216772A
Authority
JP
Japan
Prior art keywords
heat storage
chemical heat
storage material
chemical
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009066936A
Other languages
Japanese (ja)
Inventor
Tsutomu Shinagawa
勉 品川
Takashi Shimazu
孝 志満津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009066936A priority Critical patent/JP2010216772A/en
Publication of JP2010216772A publication Critical patent/JP2010216772A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical heat storage reactor, and a chemical heat storage system including the same, capable of performing exothermic reaction on the entire chemical heat storage material and having high heat utilization efficiency. <P>SOLUTION: This chemical heat storage reactor 10 includes a chemical heat storage material composite molding 40 as a molding of the chemical heat storage material absorbing heat in accompany with dehydration reaction and radiating heat in accompany with hydration reaction, and a U-turn duct 42 constituted to exchange heat between a fluid circulated inside and the chemical heat storage material composite molding 40. The U-turn duct 42 is disposed so that a low-temperature part of the chemical heat storage material composite molding 40 can be heated by the heat obtained by heat exchange between the fluid inside and the chemical heat storage material composite molding 40. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、化学反応によって蓄熱、放熱する化学蓄熱反応器、及び該化学蓄熱反応器を備えた化学蓄熱システムに関する。   The present invention relates to a chemical heat storage reactor that stores and releases heat by a chemical reaction, and a chemical heat storage system including the chemical heat storage reactor.

CaO/Ca(OH)系のケミカルヒートポンプの熱交換器として、CaOが充填された反応器内に、CaOの脱水反応によって生じた熱を回収するための螺旋状の熱交換パイプを設けたものが知られている(例えば、特許文献1参照)。また、CaO/Ca(OH)系のケミカルヒートポンプの熱交換器として、CaOが充填された多段トレーの中央部を熱交換用パイプで貫いたものが知られている(例えば、特許文献2参照)。 As a heat exchanger for a CaO / Ca (OH) 2 chemical heat pump, a spiral heat exchange pipe for recovering the heat generated by the dehydration reaction of CaO is provided in a reactor filled with CaO. Is known (see, for example, Patent Document 1). In addition, as a heat exchanger of a CaO / Ca (OH) 2 chemical heat pump, a heat exchanger having a central portion of a multi-stage tray filled with CaO is known (see, for example, Patent Document 2). ).

特開平10−89799号公報Japanese Patent Laid-Open No. 10-89799 特開平11−182968号公報Japanese Patent Laid-Open No. 11-182968

ところで、本出願人は、CaO/Ca(OH)系の如き水和脱水反応を行う化学蓄熱材は低温環境下では高温環境下に対し発熱反応の反応速度が低いとの知見を得た。 By the way, the present applicant has found that a chemical heat storage material that performs a hydration dehydration reaction such as a CaO / Ca (OH) 2 system has a lower reaction rate of an exothermic reaction in a low temperature environment than in a high temperature environment.

この知見に基づくと、上記の如き熱媒が反応器又は多段トレーの一端側から他端側に向けて流れる構成である従来の技術では、例えば低温の熱媒を熱交換パイプに流した場合等に、化学蓄熱材が比較的高温になる下流側部分で主に発熱反応が行われることと成る。すなわち、熱媒の流れ方向上流側では限られた時間内では発熱反応を生じない未反応部分が生じることとなり、全体としての熱利用効率の観点から改善の余地がある。   Based on this knowledge, in the conventional technology in which the heat medium as described above flows from one end side to the other end side of the reactor or the multistage tray, for example, when a low-temperature heat medium is passed through the heat exchange pipe, etc. In addition, the exothermic reaction is mainly performed in the downstream portion where the chemical heat storage material is relatively hot. That is, an unreacted portion that does not cause an exothermic reaction occurs within a limited time on the upstream side in the flow direction of the heat medium, and there is room for improvement from the viewpoint of overall heat utilization efficiency.

本発明は、化学蓄熱材に全体として発熱反応を行わせることができ、熱利用効率の高い化学蓄熱反応器、及び該化学蓄熱反応器を備えた化学蓄熱システムを得ることが目的である。   An object of the present invention is to obtain a chemical heat storage reactor having a high heat utilization efficiency and a chemical heat storage system including the chemical heat storage reactor that can cause the chemical heat storage material to perform an exothermic reaction as a whole.

請求項1記載の発明に係る化学蓄熱反応器は、脱水反応に伴い吸熱し水和反応に伴い放熱する化学蓄熱材と、内部を流通する流体と前記化学蓄熱材との熱交換可能で、かつ前記化学蓄熱材と前記流体との熱交換によって得た熱によって該化学蓄熱材における低温部分を加熱されるように設けられた流路構造体と、を備えている。   The chemical heat storage reactor according to the invention described in claim 1 is capable of exchanging heat between the chemical heat storage material that absorbs heat in the dehydration reaction and dissipates heat in the hydration reaction, and the fluid circulating in the interior and the chemical heat storage material. A flow path structure provided so that a low-temperature portion of the chemical heat storage material is heated by heat obtained by heat exchange between the chemical heat storage material and the fluid.

請求項1記載の化学蓄熱反応器では、化学蓄熱材は、加熱されると脱水反応を生じ、該化学蓄熱材に蓄熱される。一方、蓄熱状態の化学蓄熱材は、水蒸気が供給されると水和反応を生じ、放熱する。この熱は、流路構造体を流れる流体との熱交換によって該流体に回収される。   In the chemical heat storage reactor according to claim 1, when the chemical heat storage material is heated, a dehydration reaction occurs, and the chemical heat storage material stores heat. On the other hand, a chemical heat storage material in a heat storage state generates a hydration reaction and dissipates heat when steam is supplied. This heat is recovered by the fluid by heat exchange with the fluid flowing through the flow channel structure.

ここで、本化学蓄熱反応器は、流路構造体を流れる流体が回収した熱によって化学蓄熱材における低温部分が加熱されるため、化学蓄熱材は、反応速度が遅い低温部分が生じることが抑制される。このため、例えば、流路構造体に低温の流体を流した場合でも、化学蓄熱材自体の発熱を利用して該化学蓄熱材の低温部分が解消され、化学蓄熱材が全体として略均一に発熱(水和)反応を生じる。すなわち、化学蓄熱材に蓄えられた熱を効率良く回収することができる。   Here, in this chemical heat storage reactor, the low temperature part of the chemical heat storage material is heated by the heat recovered by the fluid flowing through the flow channel structure, so that the chemical heat storage material suppresses the generation of a low temperature part with a slow reaction rate. Is done. For this reason, for example, even when a low-temperature fluid is passed through the flow channel structure, the low-temperature portion of the chemical heat storage material is eliminated using the heat generation of the chemical heat storage material itself, and the chemical heat storage material generates heat substantially uniformly as a whole. (Hydration) reaction occurs. That is, the heat stored in the chemical heat storage material can be efficiently recovered.

このように、請求項1記載の化学蓄熱反応器では、化学蓄熱材に全体として発熱反応を行わせることができ、熱利用効率が高い。これにより、本化学蓄熱反応器では、限られた時間で化学蓄熱材に蓄えられた熱を効率良く回収することができる。   Thus, in the chemical heat storage reactor according to claim 1, the chemical heat storage material can be caused to perform an exothermic reaction as a whole, and heat utilization efficiency is high. Thereby, in this chemical thermal storage reactor, the heat stored in the chemical thermal storage material can be efficiently recovered in a limited time.

請求項2記載の発明に係る化学蓄熱反応器は、請求項1記載の化学蓄熱反応器において、前記流路構造体は、前記化学蓄熱材における該流路構造体の流体入口部が接する部分を、該流路構造体の流体出口部で加熱するように配置されている。   The chemical heat storage reactor according to a second aspect of the present invention is the chemical heat storage reactor according to the first aspect, wherein the flow path structure is a portion where the fluid inlet portion of the flow path structure contacts the chemical heat storage material. , And is arranged to heat at the fluid outlet of the channel structure.

請求項2記載の化学蓄熱反応器では、化学蓄熱材における低温流体との熱交換によって低温になりやすい部分である流路構造体の流体入口部の近傍と接する部分が、該流路構造体の流体出口部の近傍を流れる流体(化学蓄熱材の熱を回収し、最も高温とされた流体)によって効果的に加熱される。   In the chemical heat storage reactor according to claim 2, a portion of the chemical heat storage material that is in contact with the vicinity of the fluid inlet portion of the flow channel structure, which is a portion that tends to be low temperature by heat exchange with the low temperature fluid, It is effectively heated by the fluid flowing in the vicinity of the fluid outlet (the fluid that recovers the heat of the chemical heat storage material and has the highest temperature).

請求項3記載の発明に係る化学蓄熱反応器は、請求項1又は請求項2記載の化学蓄熱反応器において、前記流路構造体は、往路と復路との間に前記化学蓄熱材を挟み込んだ折り返し構造体を含んで構成されている。   The chemical heat storage reactor according to the invention described in claim 3 is the chemical heat storage reactor according to claim 1 or claim 2, wherein the flow path structure sandwiches the chemical heat storage material between the forward path and the return path. The folded structure is included.

請求項3記載の化学蓄熱反応器では、折り返し構造体(Uターン流路)の往路と復路との間に化学蓄熱材が挟まれている。このため、化学蓄熱材における低温流体との熱交換によって低温になりやすい部分である往路の流体入口部の近傍と接する部分が、復路の流体出口部の近傍を流れる流体(化学蓄熱材の熱を回収し、最も高温とされた流体)によって効果的に加熱される。   In the chemical heat storage reactor according to the third aspect, the chemical heat storage material is sandwiched between the forward path and the return path of the folded structure (U-turn flow path). For this reason, the portion of the chemical heat storage material that is in contact with the vicinity of the fluid inlet portion of the forward path, which is likely to become a low temperature due to heat exchange with the low-temperature fluid, flows near the fluid outlet portion of the return path (the heat of the chemical heat storage material The fluid is recovered and heated to the highest temperature).

請求項4記載の発明に係る化学蓄熱反応器は、請求項3記載の化学蓄熱反応器において、前記流路構造体は、複数の前記折り返し構造体を含み、かつ少なくとも一つの前記折り返し構造体の往路と他の前記折り返し構造体の復路との間に前記化学蓄熱材を挟み込んで構成されている。   A chemical heat storage reactor according to a fourth aspect of the present invention is the chemical heat storage reactor according to the third aspect, wherein the flow path structure includes a plurality of the folded structures, and at least one of the folded structures. The chemical heat storage material is sandwiched between the outward path and the return path of the other folded structure.

請求項4記載の化学蓄熱反応器では、3つ以上の化学蓄熱材を積層する構造において、各化学蓄熱材が折り返し構造体の往路と復路とで挟まれた構成とすることができる。これにより、上記の通り化学蓄熱材における往路の流体入口部の近傍と接する部分が、復路の流体出口部の近傍を流れる流体によって効果的に加熱される。しかも、本化学蓄熱反応器では、異なる折り返し流路間に化学蓄熱材を配置することができるので、全体としてコンパクト(積層方向にコンパクト)に構成することができる。   In the chemical heat storage reactor according to claim 4, in the structure in which three or more chemical heat storage materials are stacked, each chemical heat storage material can be sandwiched between the forward path and the return path of the folded structure. Thereby, as described above, the portion of the chemical heat storage material that is in contact with the vicinity of the fluid inlet portion of the forward path is effectively heated by the fluid flowing in the vicinity of the fluid outlet portion of the return path. Moreover, in the present chemical heat storage reactor, the chemical heat storage material can be disposed between the different folded flow paths, so that the entire structure can be made compact (compact in the stacking direction).

請求項5記載の発明に係る化学蓄熱反応器は、請求項1又は請求項2記載の化学蓄熱反応器において、前記流路構造体は、独立して前記流体を流通可能な複数の単位流路構造体が前記化学蓄熱材と交互に積層されて構成され、前記化学蓄熱材に放熱させる場合には前記積層方向に隣り合う前記単位流路構造体内の流体の流れ方向が逆向きとされ、前記化学蓄熱材に蓄熱させる場合には前記積層方向に隣り合う前記単位流路構造体内の流体の流れ方向が同じ向きとされるように構成されている。   The chemical heat storage reactor according to the invention described in claim 5 is the chemical heat storage reactor according to claim 1 or 2, wherein the flow channel structure is a plurality of unit flow channels capable of independently flowing the fluid. The structure is configured by alternately laminating with the chemical heat storage material, and when dissipating heat to the chemical heat storage material, the flow direction of the fluid in the unit channel structure adjacent to the stacking direction is reversed, When heat is stored in the chemical heat storage material, the fluid flow directions in the unit flow channel structures adjacent to each other in the stacking direction are configured to be the same direction.

請求項5記載の化学蓄熱反応器では、化学蓄熱材が蓄えた熱を利用する際には、積層方向に隣り合う単位流路構造体の流体流れ方向が逆向きとされる。このため、化学蓄熱材における低温流体との熱交換によって低温になりやすい部分である流体入口部の近傍と接する部分が、流体出口部の近傍を流れる流体(化学蓄熱材の熱を回収し、最も高温とされた流体)によって効果的に加熱される。一方、化学蓄熱材に熱を蓄える際には、各単位流路構造体の流れ方向が同方向とされる。このため、流体から化学蓄熱材に効率的に伝熱することができる(熱交換器としての性能が確保される)。   In the chemical heat storage reactor according to claim 5, when the heat stored in the chemical heat storage material is used, the fluid flow direction of the unit channel structures adjacent to each other in the stacking direction is reversed. For this reason, the portion in contact with the vicinity of the fluid inlet portion, which is a portion that is likely to become low temperature due to heat exchange with the low temperature fluid in the chemical heat storage material, collects the fluid flowing in the vicinity of the fluid outlet portion (the heat of the chemical heat storage material is recovered most The fluid is effectively heated by a fluid having a high temperature. On the other hand, when storing heat in the chemical heat storage material, the flow direction of each unit flow path structure is the same direction. For this reason, heat can be efficiently transferred from the fluid to the chemical heat storage material (performance as a heat exchanger is ensured).

請求項6記載の発明に係る化学蓄熱反応器は、請求項5記載の化学蓄熱反応器において、前記単位流路構造体は、前記積層方向に隣り合う前記化学蓄熱材間に往路と復路とが配置された折り返し構造体とされている。   The chemical heat storage reactor according to a sixth aspect of the present invention is the chemical heat storage reactor according to the fifth aspect, wherein the unit channel structure has an outward path and a return path between the chemical heat storage materials adjacent in the stacking direction. The folded structure is arranged.

請求項6記載の化学蓄熱反応器では、各単位流路構造体が折り返し構造体とされている。このため、化学蓄熱材が蓄えた熱を利用する際には、千鳥状に入口部、出口部が配置され、積層された化学蓄熱材が全体として均一に発熱反応を生じることに寄与する。また、熱を供給、回収する流体の入口部と出口部とが化学蓄熱反応器に対する同一側に配置されるため、該流体の入口部と出口部とを化学蓄熱反応器の片側に集約することができる。このため、化学蓄熱反応器をコンパクトに構成することができる。   In the chemical heat storage reactor according to claim 6, each unit channel structure is a folded structure. For this reason, when using the heat stored by the chemical heat storage material, the inlet and outlet portions are arranged in a staggered manner, and the stacked chemical heat storage materials contribute to the uniform generation of an exothermic reaction as a whole. Moreover, since the inlet part and outlet part of the fluid for supplying and recovering heat are arranged on the same side with respect to the chemical heat storage reactor, the inlet part and outlet part of the fluid are concentrated on one side of the chemical heat storage reactor. Can do. For this reason, a chemical heat storage reactor can be comprised compactly.

請求項7記載の発明に係る化学蓄熱反応器は、請求項1〜請求項6の何れか1項記載の化学蓄熱反応器において、前記化学蓄熱材は、所定の形状に形成された成形体であり、前記成形体は、水蒸気を流通させるための流路を複数有する構造とするか、又は水蒸気の流通が許容される多孔構造とされている。   The chemical heat storage reactor according to the invention of claim 7 is the chemical heat storage reactor according to any one of claims 1 to 6, wherein the chemical heat storage material is a molded body formed in a predetermined shape. In addition, the molded body has a structure having a plurality of flow paths for circulating water vapor, or has a porous structure in which water vapor is allowed to flow.

請求項7記載の化学蓄熱反応器では、成形体である化学蓄熱材の水蒸気用の流路間の構造部分が伝熱経路として機能する。このため、流路構造体における高温の流体が流れる部分から伝わった熱が化学蓄熱材内部で良好に伝導されて該化学蓄熱材の各部の温度が均一され、化学蓄熱材が全体として均一に発熱反応を生じることに寄与する。   In the chemical heat storage reactor according to claim 7, a structural portion between the water vapor flow paths of the chemical heat storage material which is a molded body functions as a heat transfer path. For this reason, the heat transferred from the part where the high-temperature fluid flows in the channel structure is well conducted inside the chemical heat storage material, the temperature of each part of the chemical heat storage material is made uniform, and the chemical heat storage material generates heat uniformly as a whole. Contributes to producing a reaction.

請求項8記載の発明に係る化学蓄熱システムは、請求項1〜請求項7の何れか1項記載の化学蓄熱反応器と、化学蓄熱反応器の水蒸気系統に連通され、前記化学蓄熱材部の前記脱水反応に伴って生じた水蒸気を凝縮させて貯留する凝縮部と、化学蓄熱反応器の水蒸気系統に連通され、前記凝縮部で貯留された水を蒸発させて前記化学蓄熱材に供給する水蒸気を発生する蒸発部と、を備えている。   The chemical heat storage system according to the invention described in claim 8 is communicated with the chemical heat storage reactor according to any one of claims 1 to 7 and the steam system of the chemical heat storage reactor, Water vapor that condenses and stores water vapor generated by the dehydration reaction, and water vapor that is communicated with the water vapor system of the chemical heat storage reactor and that evaporates the water stored in the condensing unit and supplies the water to the chemical heat storage material And an evaporation unit that generates

請求項8記載の化学蓄熱システムでは、化学蓄熱反応器が加熱されると、化学蓄熱材が脱水反応を生じることで蓄熱される。この脱水反応に伴って生じた水蒸気は、凝縮部にて凝縮され水として貯留される。凝縮部化学蓄熱材に放熱させる場合には、凝縮部の水を蒸発部において蒸発させ、この水蒸気を化学蓄熱反応器に導入する。すると、化学蓄熱反応器の化学蓄熱材は水和反応を生じて放熱する。この熱にて、例えば加熱対象を加熱することができる。   In the chemical heat storage system according to claim 8, when the chemical heat storage reactor is heated, the chemical heat storage material stores heat by causing a dehydration reaction. The water vapor generated with this dehydration reaction is condensed in the condensing part and stored as water. In the case where heat is radiated to the condensing unit chemical heat storage material, the water in the condensing unit is evaporated in the evaporation unit, and this water vapor is introduced into the chemical heat storage reactor. Then, the chemical heat storage material of the chemical heat storage reactor generates a hydration reaction and dissipates heat. With this heat, for example, a heating object can be heated.

そして、本化学蓄熱システムは、上記した請求項1〜請求7の何れか1項記載の化学蓄熱反応器を備えるため、化学蓄熱材に全体として発熱反応を行わせることができ、熱利用効率が高い。   And since this chemical thermal storage system is equipped with the chemical thermal storage reactor of any one of said Claims 1-7, it can make a chemical thermal storage material perform exothermic reaction as a whole, and heat utilization efficiency is high. high.

以上説明したように本発明に係る化学蓄熱反応器及び該化学蓄熱反応器を備えた化学蓄熱システムは、化学蓄熱材に全体として発熱反応を行わせることができ、熱利用効率が高いという優れた効果を有する。   As described above, the chemical heat storage reactor according to the present invention and the chemical heat storage system including the chemical heat storage reactor can cause the chemical heat storage material to perform an exothermic reaction as a whole, and have excellent heat utilization efficiency. Has an effect.

本発明の第1の実施形態に係る化学蓄熱反応器の概略全体構成を模式的に示す図であって、(A)は斜視図、(B)は分解斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the schematic whole structure of the chemical thermal storage reactor which concerns on the 1st Embodiment of this invention, Comprising: (A) is a perspective view, (B) is a disassembled perspective view. 本発明の第1の実施形態に係る化学蓄熱システムの概略全体構成を模式的に示すシステム構成図である。It is a system configuration figure showing typically the outline whole composition of the chemical heat storage system concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る化学蓄熱システムが自動車Aに適用された適用例を概念的に示す図であって、(A)蓄熱モードの概念図、(B)は、放熱モードの概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows notionally the application example with which the chemical heat storage system which concerns on the 1st Embodiment of this invention was applied to the motor vehicle A, Comprising: (A) The conceptual diagram of heat storage mode, (B) is the concept of heat dissipation mode. FIG. 本発明の第1の実施形態に係る化学蓄熱システムの動作モードを説明するための図であって、(A)は蓄熱モードのシステム構成図、(B)は、放熱モードのシステム構成図である。It is a figure for demonstrating the operation mode of the chemical heat storage system which concerns on the 1st Embodiment of this invention, Comprising: (A) is a system block diagram of heat storage mode, (B) is a system block diagram of heat dissipation mode. . 本発明の第1の実施形態に係る車両用化学蓄熱システムの蓄熱、放熱サイクルを示すPT線図である。It is PT diagram which shows the thermal storage of the chemical thermal storage system for vehicles which concerns on the 1st Embodiment of this invention, and a thermal radiation cycle. 本発明の第2の実施形態に係る化学蓄熱反応器の概略全体構成を模式的に示す図であって、(A)は斜視図、(B)は分解斜視図である。It is a figure which shows typically the schematic whole structure of the chemical thermal storage reactor which concerns on the 2nd Embodiment of this invention, Comprising: (A) is a perspective view, (B) is a disassembled perspective view. 本発明の第3の実施形態に係る化学蓄熱反応器の概略全体構成を模式的に示す図であって、(A)は放熱モードの流れ状態を示す斜視図、(B)は蓄熱モードの流れ状態を示す斜視図である。It is a figure which shows the general | schematic whole structure of the chemical heat storage reactor which concerns on the 3rd Embodiment of this invention, Comprising: (A) is a perspective view which shows the flow state of heat dissipation mode, (B) is the flow of heat storage mode. It is a perspective view which shows a state. 本発明の第3の実施形態に係る化学蓄熱反応器の分解斜視図である。It is a disassembled perspective view of the chemical heat storage reactor which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る化学蓄熱反応器を構成する切り替え機構を模式的に説明する模式図である。It is a schematic diagram which illustrates typically the switching mechanism which comprises the chemical thermal storage reactor which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る化学蓄熱反応器の概略全体構成を模式的に示す図であって、(A)は放熱モードの流れ状態を示す斜視図、(B)は蓄熱モードの流れ状態を示す斜視図である。It is a figure which shows typically the schematic whole structure of the chemical heat storage reactor which concerns on the 4th Embodiment of this invention, Comprising: (A) is a perspective view which shows the flow state of heat dissipation mode, (B) is the flow of heat storage mode. It is a perspective view which shows a state. 本発明の第4の実施形態に係る化学蓄熱反応器の分解斜視図である。It is a disassembled perspective view of the chemical heat storage reactor which concerns on the 4th Embodiment of this invention.

本発明の第1の実施形態に係る化学蓄熱反応器10及び該化学蓄熱反応器10が適用された化学蓄熱システム11について、図1〜図5に基づいて説明する。先ず、化学蓄熱システム11の概略全体構成を説明し、次いで、化学蓄熱反応器10の詳細構成を説明することとする。   A chemical heat storage reactor 10 according to a first embodiment of the present invention and a chemical heat storage system 11 to which the chemical heat storage reactor 10 is applied will be described with reference to FIGS. First, the schematic overall configuration of the chemical heat storage system 11 will be described, and then the detailed configuration of the chemical heat storage reactor 10 will be described.

図2には、化学蓄熱システム11の概略全体構成が模式的なシステム構成図にて示されている。この図に示される如く、化学蓄熱システム11は、容器12内に化学蓄熱材14が充填されて構成された化学蓄熱反応器10を備えている。化学蓄熱反応器10を構成する化学蓄熱材14は、脱水に伴って蓄熱(吸熱)し、水和(水酸化カルシウムへの復原)に伴って放熱(発熱)する構成とされている。   FIG. 2 is a schematic system configuration diagram showing a schematic overall configuration of the chemical heat storage system 11. As shown in this figure, the chemical heat storage system 11 includes a chemical heat storage reactor 10 configured by filling a container 12 with a chemical heat storage material 14. The chemical heat storage material 14 constituting the chemical heat storage reactor 10 stores heat (absorbs heat) with dehydration and dissipates heat (heat generation) with hydration (restoration to calcium hydroxide).

この実施形態では、化学蓄熱材として、アルカリ土類金属の水酸化物の1つである水酸化カルシウム(Ca(OH))が採用されている。したがって、化学蓄熱反応器10内では、以下に示す反応で蓄熱、放熱を可逆的に繰り返し得る構成とされている。
Ca(OH) ⇔ CaO + H
In this embodiment, calcium hydroxide (Ca (OH) 2 ), which is one of alkaline earth metal hydroxides, is employed as the chemical heat storage material. Therefore, in the chemical heat storage reactor 10, it is set as the structure which can reversibly repeat heat storage and heat dissipation by the reaction shown below.
Ca (OH) 2 Ca CaO + H 2 O

この式に蓄熱量、発熱量Qを併せて示すと、
Ca(OH) + Q → CaO + H
CaO + HO → Ca(OH) + Q
となる。この化学蓄熱材14(Ca(OH))の1kg当たりの蓄熱容量は、略1.86[MJ/kg−Ca(OH)]とされている。
When the heat storage amount and the heat generation amount Q are shown together in this equation,
Ca (OH) 2 + Q → CaO + H 2 O
CaO + H 2 O → Ca (OH) 2 + Q
It becomes. The heat storage capacity per kg of the chemical heat storage material 14 (Ca (OH) 2 ) is about 1.86 [MJ / kg-Ca (OH) 2 ].

さらに、この実施形態では、化学蓄熱反応器10には、化学蓄熱材14に熱を供給するための加熱流路18と、化学蓄熱材14からの熱を加熱対象に輸送するための放熱流路20とが設けられている。加熱流路18は、加熱源(熱媒)と化学蓄熱材14と熱交換部とされ、放熱流路20は、熱輸送媒体と化学蓄熱材14との熱交換部とされている。なお、容器12の壁面を加熱源及び熱輸送媒体の少なくとも一方との熱交換部として構成しても良い。   Furthermore, in this embodiment, the chemical heat storage reactor 10 includes a heating channel 18 for supplying heat to the chemical heat storage material 14 and a heat dissipation channel for transporting heat from the chemical heat storage material 14 to the heating target. 20 is provided. The heating channel 18 is a heat source (heat medium), the chemical heat storage material 14, and a heat exchange unit, and the heat radiation channel 20 is a heat exchange unit between the heat transport medium and the chemical heat storage material 14. In addition, you may comprise the wall surface of the container 12 as a heat exchange part with at least one of a heat source and a heat transport medium.

また、化学蓄熱システム11は、化学蓄熱反応器10から導入された水蒸気を凝縮する凝縮部、水蒸気が凝縮された水(液相の水、以下同じ)を貯留する貯留部、及び貯留した水を蒸発させて化学蓄熱反応器10に供給する水蒸気を生成する蒸発部としての各機能を兼ね備える蒸発・凝縮器22を備えている。蒸発・凝縮器22は、容器24内に、水蒸気凝縮用の冷媒流路26及び蒸発用の熱媒流路28が設けられて構成されている。この実施形態では、冷媒流路26は、容器24内における少なくとも気相部24Aを含む部分で熱交換を行うように設けられており、熱媒流路28は、容器24内における少なくとも液相部(貯留部)24Bを含む部分で熱交換を行うように設けられている。   In addition, the chemical heat storage system 11 includes a condensing unit that condenses water vapor introduced from the chemical heat storage reactor 10, a storage unit that stores water condensed with water vapor (liquid phase water, the same applies hereinafter), and stored water. An evaporation / condenser 22 having both functions as an evaporation unit that generates water vapor that is evaporated and supplied to the chemical heat storage reactor 10 is provided. The evaporator / condenser 22 is configured such that a water vapor condensation refrigerant channel 26 and an evaporation heat medium channel 28 are provided in a container 24. In this embodiment, the refrigerant channel 26 is provided so as to perform heat exchange in a portion including at least the gas phase portion 24 </ b> A in the container 24, and the heat medium channel 28 is at least a liquid phase portion in the container 24. (Storage part) It is provided so that heat exchange may be performed in the part including 24B.

この蒸発・凝縮器22の容器24は、水蒸気循環系を構成する水蒸気循環路30を介して化学蓄熱反応器10の容器12に連通されている。水蒸気循環路30には、容器24と容器12との連通、非連通を切り替えるための開閉弁32が設けられている。この実施形態では、容器12、容器24、水蒸気循環路30、開閉弁32は、互いの接続部位が気密に構成されており、これらの内部空間は真空脱気されている。   The container 24 of the evaporator / condenser 22 is communicated with the container 12 of the chemical heat storage reactor 10 through a water vapor circulation path 30 constituting a water vapor circulation system. The water vapor circulation path 30 is provided with an on-off valve 32 for switching between communication and non-communication between the container 24 and the container 12. In this embodiment, the container 12, the container 24, the water vapor circulation path 30, and the on-off valve 32 are configured such that their connection portions are airtight, and these internal spaces are evacuated.

以上説明した化学蓄熱システム11は、例えば図3に示される如く自動車Aに適用される。自動車Aは、内燃機関としてのエンジンE、電気モータであるモータMとを備えている。すなわち、自動車Aは、動力源としてエンジンEとモータMとを備えたハイブリッド車とされており、モータMに電力を供給するためのインバータ(パワーコントロールユニット)I、バッテリBをさらに備える。この実施形態では、エンジンE及びモータMの双方に車両走行のための駆動力を生じさせ得るパラレル式のハイブリッド車とされている。また、自動車Aは、エンジンEからの排気ガスを浄化して大気放出する排気系Exを備えている。排気系Exでは、一端がエンジンEに接続されると共に他端が大気開放端とされた排気ライン(排気管)に触媒コンバータCが設けられている。   The chemical heat storage system 11 described above is applied to an automobile A as shown in FIG. The automobile A includes an engine E as an internal combustion engine and a motor M as an electric motor. That is, the automobile A is a hybrid vehicle including an engine E and a motor M as power sources, and further includes an inverter (power control unit) I and a battery B for supplying electric power to the motor M. In this embodiment, a parallel hybrid vehicle that can generate a driving force for vehicle travel in both the engine E and the motor M is provided. In addition, the automobile A is provided with an exhaust system Ex that purifies exhaust gas from the engine E and releases it to the atmosphere. In the exhaust system Ex, a catalytic converter C is provided in an exhaust line (exhaust pipe) having one end connected to the engine E and the other end open to the atmosphere.

この自動車Aへの適用例に係る化学蓄熱システム11は、図3(A)に模式的に示される如く自動車AのエンジンEの排気ガスを排出するための排気系Exの排気熱を化学蓄熱反応器10(化学蓄熱材14)に蓄熱し、図3(B)に模式的に示される如く所要の場合に蓄熱した熱を化学蓄熱反応器10から放熱させることで、自動車Aを構成する加熱対象(例えばバッテリBや触媒コンバータC等)を加熱するようになっている。   The chemical heat storage system 11 according to the application example to the automobile A uses the exhaust heat of the exhaust system Ex for exhausting the exhaust gas of the engine E of the automobile A as shown in FIG. Heat storage object constituting the automobile A by storing heat in the vessel 10 (chemical heat storage material 14) and dissipating the heat stored in the chemical heat storage reactor 10 when necessary as schematically shown in FIG. (For example, the battery B, the catalytic converter C, etc.) are heated.

(化学蓄熱反応器の詳細構成)
図1(A)には、化学蓄熱反応器10の概略全体構成が斜視図にて示されており、図1(B)には、化学蓄熱反応器10の分解斜視図が示されている。これらの図に示される如く、化学蓄熱反応器10は、化学蓄熱材複合物成形体40と、流路構造体、折り返し構造体としてのUターンダクト42と、図示を省略した容器12とを主要部として構成されている。
(Detailed configuration of chemical heat storage reactor)
FIG. 1 (A) shows a schematic overall configuration of the chemical heat storage reactor 10 in a perspective view, and FIG. 1 (B) shows an exploded perspective view of the chemical heat storage reactor 10. As shown in these drawings, the chemical heat storage reactor 10 includes a chemical heat storage material composite formed body 40, a U-turn duct 42 as a flow path structure and a folded structure, and a container 12 (not shown). It is configured as a part.

化学蓄熱材複合物成形体40は、例えば粉体の化学蓄熱材14をバインダ(例えば粘土鉱物等)と混練し、焼成することで、内部に水蒸気が流通するための複数の水蒸気流路44が形成された略矩形板状に形成されている。この実施形態では、複数の水蒸気流路44は、それぞれ化学蓄熱材複合物成形体40の側面(厚み部分)に開口されると共に、該側面の長手方向に沿って配置されている。したがって、化学蓄熱材複合物成形体40における複数の水蒸気流路44間には、厚み方向の両側を連結する連結部45が形成されているものと捉えることができる。なお、化学蓄熱材複合物成形体40は、複数の水蒸気流路44を有する構成に代えて内部に水蒸気を流通させ得る多孔体構造とされても良く、多孔体構造において複数の水蒸気流路44を有する構成としても良い。   The chemical heat storage material composite molded body 40 includes, for example, a plurality of water vapor channels 44 for circulating water vapor therein by kneading the powder chemical heat storage material 14 with a binder (for example, clay mineral) and firing the mixture. It is formed in a substantially rectangular plate shape. In this embodiment, each of the plurality of water vapor channels 44 is opened on the side surface (thickness portion) of the chemical heat storage material composite molded body 40 and is disposed along the longitudinal direction of the side surface. Therefore, it can be understood that the connection part 45 which connects the both sides of the thickness direction between the some water vapor flow paths 44 in the chemical heat storage material composite molded body 40 is formed. The chemical heat storage material composite molded body 40 may have a porous structure in which water vapor can be circulated therein instead of the structure having the plurality of water vapor channels 44. It is good also as a structure which has.

Uターンダクト42は、往路46と復路48とがUターン部50にて連結された側面視で略U字状を成す偏平矩形断面の折り返し筒体として構成されている。図1(A)に示される如く、Uターンダクト42は、往路46と復路48との間に化学蓄熱材複合物成形体40を厚み方向に挟んで、該化学蓄熱材複合物成形体40の表面に接触(密着)されている。この実施形態では、Uターンダクト42は、その内部での流体の流れ方向が化学蓄熱材複合物成形体40に対する水蒸気の出入り方向と略直交する方向となるように配置されている。   The U-turn duct 42 is configured as a folded cylindrical body having a flat rectangular cross section that is substantially U-shaped in a side view in which an outward path 46 and a return path 48 are connected by a U-turn portion 50. As shown in FIG. 1A, the U-turn duct 42 sandwiches the chemical heat storage material composite formed body 40 between the forward path 46 and the return path 48 in the thickness direction. It is in contact (contact) with the surface. In this embodiment, the U-turn duct 42 is arranged so that the flow direction of the fluid in the U-turn duct 42 is in a direction substantially orthogonal to the direction in which the water vapor enters and exits the chemical heat storage material composite formed body 40.

容器12は、水蒸気循環路30との連通部(複数の水蒸気流路44の共通ヘッダ)を形成すると共に、Uターンダクト42の内部(流体入口46A及び流体出口48A)とは非連通と成るように、化学蓄熱材複合物成形体40及びUターンダクト42を覆っている。   The container 12 forms a communication part (common header of the plurality of water vapor flow paths 44) with the water vapor circulation path 30, and is not in communication with the inside of the U-turn duct 42 (fluid inlet 46A and fluid outlet 48A). Further, the chemical heat storage material composite molded body 40 and the U-turn duct 42 are covered.

以上説明した化学蓄熱反応器10では、Uターンダクト42は、加熱流路18と放熱流路20とを兼ねた流路とされている。このため、例えば図3に示す適用例の場合には、図示しない流体切替装置(切換弁等)によって、蓄熱モード実行時には排気系Exの排気ガスがUターンダクト42に導入され、放熱モード実行時にはバッテリB等の加熱のための加熱用空気がUターンダクト42に導入されるようになっている。   In the chemical heat storage reactor 10 described above, the U-turn duct 42 is a flow path that serves as both the heating flow path 18 and the heat dissipation flow path 20. For this reason, for example, in the case of the application example shown in FIG. 3, the exhaust gas of the exhaust system Ex is introduced into the U-turn duct 42 by the fluid switching device (switching valve or the like) (not shown) when executing the heat storage mode, Heating air for heating the battery B or the like is introduced into the U-turn duct 42.

次に、第1の実施形態の作用を説明する。   Next, the operation of the first embodiment will be described.

上記構成の化学蓄熱システム11では、化学蓄熱反応器10の化学蓄熱材14(化学蓄熱材複合物成形体40)に蓄熱する蓄熱モードでは、図4(A)に示される如く、開閉弁32を開放した状態で、加熱流路18として機能するUターンダクト42に熱源からの熱媒(図3の適用例では排気ガス)を流通させる。すると、加熱流路18からの熱によって化学蓄熱材14が脱水反応を生じ、この熱が化学蓄熱材14に蓄熱される。この際、化学蓄熱材14から脱水された水蒸気は、水蒸気循環路30を介して蒸発・凝縮器22に導入される。蒸発・凝縮器22では、冷媒流路26を流通する冷媒によって水蒸気が冷却され、凝縮された水が容器24の液相部24Bに貯留される。   In the chemical heat storage system 11 having the above configuration, in the heat storage mode in which heat is stored in the chemical heat storage material 14 (chemical heat storage material composite formed body 40) of the chemical heat storage reactor 10, the on-off valve 32 is provided as shown in FIG. In the opened state, a heat medium (exhaust gas in the application example of FIG. 3) from the heat source is circulated through the U-turn duct 42 that functions as the heating flow path 18. Then, the chemical heat storage material 14 undergoes a dehydration reaction due to the heat from the heating flow path 18, and this heat is stored in the chemical heat storage material 14. At this time, the water dehydrated from the chemical heat storage material 14 is introduced into the evaporator / condenser 22 through the water vapor circulation path 30. In the evaporator / condenser 22, the water vapor is cooled by the refrigerant flowing through the refrigerant flow path 26, and the condensed water is stored in the liquid phase portion 24 </ b> B of the container 24.

一方、化学蓄熱反応器10に蓄熱された熱を放熱する放熱モードでは、図4(B)に示される如く、化学蓄熱システム11は、開閉弁32を開放した状態で、蒸発・凝縮器22の熱媒流路28に熱媒を流通させる。すると、熱媒流路28の熱媒との熱交換によって液相部24Bの水が蒸発され、水蒸気が水蒸気循環路30を介して化学蓄熱反応器10内の化学蓄熱材14(化学蓄熱材複合物成形体40)に供給される。これにより、化学蓄熱材14は、水和反応を生じつつ放熱する。この熱は、放熱流路20として機能するUターンダクト42を流通する熱輸送媒体(図3の適用例では加熱用空気)によって回収され加熱対象の加熱に供される。   On the other hand, in the heat dissipation mode in which the heat stored in the chemical heat storage reactor 10 is dissipated, the chemical heat storage system 11 opens the on-off valve 32 and opens the on-off valve 32 as shown in FIG. A heat medium is circulated through the heat medium flow path 28. Then, the water in the liquid phase portion 24B is evaporated by heat exchange with the heat medium in the heat medium flow path 28, and the water vapor is converted into the chemical heat storage material 14 (chemical heat storage material composite) in the chemical heat storage reactor 10 through the water vapor circulation path 30. To the molded product 40). Thereby, the chemical heat storage material 14 dissipates heat while causing a hydration reaction. This heat is recovered by a heat transport medium (heating air in the application example of FIG. 3) that flows through the U-turn duct 42 that functions as the heat radiating flow path 20 and is used for heating the heating target.

以上説明した化学蓄熱材14の蓄熱・放熱について、図5に示す化学蓄熱システム11のサイクルを参照しつつ補足する。図5には、PT線図に示された圧力平衡点における化学蓄熱システム11のサイクルが示されている。この図において、上側の等圧線が脱水(吸熱)反応を示し、下側の等圧線が水和(発熱)反応を示している。このサイクルに示されるように、化学蓄熱材の温度が略424℃で蓄熱された場合、水蒸気は略50℃が平衡温度となる。化学蓄熱システム11では、水蒸気は蒸発・凝縮器22において冷媒流路26の冷媒との熱交換によって50℃以下に冷却され、凝縮されて水になる。   The heat storage and heat dissipation of the chemical heat storage material 14 described above will be supplemented with reference to the cycle of the chemical heat storage system 11 shown in FIG. FIG. 5 shows a cycle of the chemical heat storage system 11 at the pressure equilibrium point shown in the PT diagram. In this figure, the upper isobaric line represents a dehydration (endothermic) reaction, and the lower isobaric line represents a hydration (exothermic) reaction. As shown in this cycle, when the temperature of the chemical heat storage material is stored at about 424 ° C., the equilibrium temperature of water vapor is about 50 ° C. In the chemical heat storage system 11, the water vapor is cooled to 50 ° C. or less by heat exchange with the refrigerant in the refrigerant flow path 26 in the evaporator / condenser 22, and condensed to become water.

また、化学蓄熱システム11では、熱媒流路28に熱媒を供給することで、該熱媒の温度に応じた蒸気圧の水蒸気が発生する。図5に示される如く、熱媒流路28の熱媒によって0℃で水蒸気を発生させる場合、その平衡圧力は、略0.65[kPa]となり、化学蓄熱材14は略330℃で放熱することが解る。このように、水蒸気循環系内が真空脱気されている化学蓄熱システム11では、0℃付近の低温熱源から熱を汲み上げて、330℃もの高温を得ることができる。   Further, in the chemical heat storage system 11, by supplying a heat medium to the heat medium flow path 28, water vapor having a vapor pressure corresponding to the temperature of the heat medium is generated. As shown in FIG. 5, when water vapor is generated at 0 ° C. by the heat medium in the heat medium flow path 28, the equilibrium pressure becomes approximately 0.65 [kPa], and the chemical heat storage material 14 radiates heat at approximately 330 ° C. I understand that. Thus, in the chemical heat storage system 11 in which the inside of the water vapor circulation system is evacuated, heat can be pumped from a low-temperature heat source near 0 ° C. to obtain a high temperature of 330 ° C.

ところで、水酸化カルシウムのように水和、脱水反応により放熱、蓄熱する水和脱水系の化学蓄熱材14(化学蓄熱材複合物成形体40)は、略50℃以下の低温では、50℃を超える(相対的に高温の)場合と比較して、発熱反応の反応速度が著しく小さくなるとの知見を得た。そして、放熱モードにおいて化学蓄熱材複合物成形体40から放熱流路20を流れる熱輸送媒体によって熱を回収する場合、化学蓄熱材14における相対的に低温である上流側の熱輸送媒体と熱交換する部分は、該熱輸送媒体との熱交換によって冷却されるので、特に初期反応時間(反応率X<<1)において温度が上がり難い。このようにして温度分布が生じた化学蓄熱材複合物成形体40は、高温側部分で主に発熱反応が生じ、反応速度が低い低温側部分は、限られた時間内では反応が完了しない未反応領域となってしまい、該未反応領域に蓄熱されている熱を有効利用できないこととなる。   By the way, the hydration dehydration-type chemical heat storage material 14 (chemical heat storage material composite molded body 40) that radiates and stores heat by hydration and dehydration reactions like calcium hydroxide has a temperature of 50 ° C. at a low temperature of about 50 ° C. or less. It was found that the reaction rate of the exothermic reaction was significantly reduced as compared with the case of exceeding (relatively high temperature). In the heat dissipation mode, when heat is recovered from the chemical heat storage material composite molded body 40 by the heat transport medium flowing through the heat dissipation flow path 20, heat exchange with the upstream heat transport medium having a relatively low temperature in the chemical heat storage material 14 is performed. Since the portion to be cooled is cooled by heat exchange with the heat transport medium, it is difficult to increase the temperature particularly in the initial reaction time (reaction rate X << 1). In the chemical heat storage material composite molded body 40 in which the temperature distribution is generated in this manner, an exothermic reaction mainly occurs in the high temperature side portion, and the reaction in the low temperature side portion where the reaction rate is low is not completed within a limited time. It becomes a reaction area, and the heat stored in the unreacted area cannot be effectively used.

ここで、化学蓄熱反応器10では、化学蓄熱材複合物成形体40におけるUターンダクト42の流体入口46Aの近傍に接触している部分(の裏面)が、該Uターンダクト42の流体出口48Aの近傍に接触している。このため、化学蓄熱材複合物成形体40における放熱モード実行時(熱回収時)にUターンダクト42に導入される熱輸送媒体によって冷却されることで低温になりやすい部分が、該化学蓄熱材複合物成形体40との熱交換によって加熱された下流側の(高温の)熱輸送媒体にて加熱される。これにより、化学蓄熱反応器10では、放熱モード実行時(特に放熱開始の初期)に化学蓄熱材複合物成形体40に低温部分が生じることが抑制される。   Here, in the chemical heat storage reactor 10, the portion (the back surface) of the chemical heat storage material composite formed body 40 that is in contact with the vicinity of the fluid inlet 46 </ b> A of the U-turn duct 42 is the fluid outlet 48 </ b> A of the U-turn duct 42. In the vicinity of For this reason, in the chemical heat storage material composite molded body 40, when the heat release mode is executed (at the time of heat recovery), the portion that is likely to become low temperature by being cooled by the heat transport medium introduced into the U-turn duct 42 is the chemical heat storage material. Heated by a downstream (high temperature) heat transport medium heated by heat exchange with the composite molded body 40. Thereby, in the chemical heat storage reactor 10, it is suppressed that a low temperature part arises in the chemical heat storage material composite molded object 40 at the time of thermal radiation mode execution (especially the initial stage of heat radiation start).

このように、化学蓄熱反応器10では、化学蓄熱材複合物成形体40の発熱を利用して該化学蓄熱材複合物成形体40に部分的な低温部が生じることが効果的に抑制されるため、化学蓄熱材複合物成形体40は全体として略均一に発熱(水和)反応を生じる。このため、図3の適用例における化学蓄熱反応器10では、例えば冬場等に低温の加熱用空気をUターンダクト42に導入した場合でも、反応開始から短時間で化学蓄熱材複合物成形体40各部の温度を反応が促進される温度にすることができ、該化学蓄熱材複合物成形体40に蓄えられた熱を限られた時間でバッテリBの暖機等に有効に利用することができる。   As described above, in the chemical heat storage reactor 10, it is effectively suppressed that a partial low temperature portion is generated in the chemical heat storage material composite molded body 40 by using heat generated by the chemical heat storage material composite molded body 40. Therefore, the chemical heat storage material composite molded body 40 generates an exothermic (hydration) reaction substantially uniformly as a whole. For this reason, in the chemical heat storage reactor 10 in the application example of FIG. 3, even when low-temperature heating air is introduced into the U-turn duct 42 in winter, for example, the chemical heat storage material composite compact 40 in a short time from the start of the reaction. The temperature of each part can be set to a temperature at which the reaction is promoted, and the heat stored in the chemical heat storage material composite molded body 40 can be effectively used for warming up the battery B in a limited time. .

また、化学蓄熱反応器10では、Uターンダクト42内で熱輸送媒体の流れを反転させる(折り返させる)簡単な構造で、上記の如く化学蓄熱材複合物成形体40における放熱モード実行時(熱回収時)に低温になりやすい部分を効果的に加熱することができる。   The chemical heat storage reactor 10 has a simple structure in which the flow of the heat transport medium is reversed (turned back) in the U-turn duct 42, and when the heat release mode is executed in the chemical heat storage material composite formed body 40 as described above (heat It is possible to effectively heat the portion that tends to be low temperature during recovery.

さらに、化学蓄熱反応器10では、化学蓄熱材複合物成形体40における複数の水蒸気流路44間に連結部45が形成されているため、化学蓄熱材複合物成形体40では、流体出口48A側からの熱が連結部45を経由して流体入口46A側(低温側)に効率的に伝達される。すなわち、化学蓄熱反応器10では、化学蓄熱材複合物成形体40に複数の水蒸気流路44を設けることで、伝熱経路としての連結部45が形成されている。   Furthermore, in the chemical heat storage reactor 10, since the connection part 45 is formed between the some water vapor flow paths 44 in the chemical heat storage material composite molded body 40, in the chemical heat storage material composite molded body 40, the fluid outlet 48A side. Is efficiently transmitted to the fluid inlet 46A side (low temperature side) via the connecting portion 45. In other words, in the chemical heat storage reactor 10, the plurality of water vapor channels 44 are provided in the chemical heat storage material composite formed body 40, thereby forming the connecting portion 45 as a heat transfer path.

そして、上記構成の化学蓄熱反応器10を備えた化学蓄熱システム11では、化学蓄熱材複合物成形体40に蓄熱された熱を短時間で効率的に回収することができ、熱利用効率が高い。   And in the chemical heat storage system 11 provided with the chemical heat storage reactor 10 of the said structure, the heat stored by the chemical heat storage material composite molded object 40 can be collect | recovered efficiently in a short time, and heat utilization efficiency is high. .

次に、本発明の他の実施形態を説明する。なお、上記第1の実施形態又は前出の構成と基本的に同一の部品、部分については、上記第1の実施形態又は前出の構成同一の符号を付して説明を省略し、また図示を省略する場合がある。   Next, another embodiment of the present invention will be described. Note that parts and portions that are basically the same as those in the first embodiment or the previous configuration are denoted by the same reference numerals as those in the first embodiment or the previous configuration, and the description thereof is omitted. May be omitted.

(第2の実施形態)
本発明の第2の実施形態に係る化学蓄熱反応器60について、図6に基づいて説明する。図6(A)には、化学蓄熱反応器60の概略全体構成が斜視図にて示されており、図6(B)には、化学蓄熱反応器60の分解斜視図が示されている。これらの図に示される如く、化学蓄熱反応器60は、それぞれ複数の化学蓄熱材複合物成形体40、Uターンダクト42を備えて構成されている点で、第1の実施形態に係る化学蓄熱反応器10とは異なる。
(Second Embodiment)
A chemical heat storage reactor 60 according to a second embodiment of the present invention will be described with reference to FIG. FIG. 6A shows a schematic overall configuration of the chemical heat storage reactor 60 in a perspective view, and FIG. 6B shows an exploded perspective view of the chemical heat storage reactor 60. As shown in these drawings, the chemical heat storage reactor 60 includes a plurality of chemical heat storage material composite molded bodies 40 and U-turn ducts 42, respectively, and thus the chemical heat storage reactor according to the first embodiment. Different from the reactor 10.

具体的には、化学蓄熱反応器60では、往路46と復路48との間に化学蓄熱材複合物成形体40(以下、化学蓄熱材複合物成形体40Aという場合がある)を挟んだ複数のUターンダクト42が該化学蓄熱材複合物成形体40の厚み方向に複数積層されている。そして、化学蓄熱反応器60では、積層方向に隣り合うUターンダクト42間にさらに化学蓄熱材複合物成形体40(以下、化学蓄熱材複合物成形体40Bという場合がある)が挟まれて構成されている。より具体的には、化学蓄熱材複合物成形体40Bは、一方のUターンダクト42の往路46と、他方のUターンダクト42の復路48との間に挟まれている。   Specifically, in the chemical heat storage reactor 60, a plurality of chemical heat storage material composite molded bodies 40 (hereinafter sometimes referred to as chemical heat storage material composite formed bodies 40 </ b> A) are sandwiched between the forward path 46 and the return path 48. A plurality of U-turn ducts 42 are laminated in the thickness direction of the chemical heat storage material composite molded body 40. In the chemical heat storage reactor 60, a chemical heat storage material composite formed body 40 (hereinafter, sometimes referred to as a chemical heat storage material composite formed body 40B) is further sandwiched between U-turn ducts 42 adjacent in the stacking direction. Has been. More specifically, the chemical heat storage material composite molded body 40 </ b> B is sandwiched between the forward path 46 of one U-turn duct 42 and the return path 48 of the other U-turn duct 42.

これにより、化学蓄熱反応器60では、図6(A)に示される如く、流体入口46Aと流体出口48Aとが化学蓄熱材複合物成形体40を挟んで積層方向に交互に配置された構成とされている。この化学蓄熱反応器60では、複数の流体入口46A同士、流体出口48A同士が図示しないヘッダ構造を介して互いに連通されている。化学蓄熱反応器60における他の構成は、化学蓄熱反応器10の対応する構成と同じである。   Thereby, in the chemical heat storage reactor 60, as shown in FIG. 6A, the fluid inlet 46A and the fluid outlet 48A are alternately arranged in the stacking direction with the chemical heat storage material composite formed body 40 interposed therebetween. Has been. In the chemical heat storage reactor 60, the plurality of fluid inlets 46A and the fluid outlets 48A communicate with each other via a header structure (not shown). The other structure in the chemical heat storage reactor 60 is the same as the corresponding structure of the chemical heat storage reactor 10.

したがって、第2の実施形態に係る化学蓄熱反応器60によっても、基本的に第1の実施形態に係る化学蓄熱反応器10と同様の作用によって同様の効果を得ることができる。   Therefore, also by the chemical heat storage reactor 60 according to the second embodiment, the same effect can be obtained basically by the same operation as the chemical heat storage reactor 10 according to the first embodiment.

また、化学蓄熱反応器60では、流体入口46Aと流体出口48Aとが化学蓄熱材複合物成形体40を挟んで積層方向に交互に配置されているため、積層された化学蓄熱材複合物成形体40全体として放熱モード実行時(熱回収時)に低温部分が生じることを効果的に抑制することができる(複数の化学蓄熱材複合物成形体40全体としての温度分布を小さく抑えることができる)。これにより、化学蓄熱反応器10では、蓄熱密度の高い構成において、上記の通り化学蓄熱材複合物成形体40に蓄熱された熱を短時間で効率的に回収することができ、熱利用効率が高い。   Further, in the chemical heat storage reactor 60, the fluid inlet 46A and the fluid outlet 48A are alternately arranged in the stacking direction with the chemical heat storage material composite formed body 40 interposed therebetween. As a whole, it is possible to effectively suppress the occurrence of a low-temperature portion when the heat release mode is executed (during heat recovery) as a whole (the temperature distribution of the plurality of chemical heat storage material composite molded bodies 40 as a whole can be kept small). . Thereby, in the chemical heat storage reactor 10, in the structure with high heat storage density, the heat stored in the chemical heat storage material composite molded body 40 can be efficiently recovered in a short time as described above, and the heat utilization efficiency is high. high.

しかも、化学蓄熱反応器60では、積層方向に隣り合うUターンダクト42間に化学蓄熱材複合物成形体40Bを挟んでいるため、化学蓄熱材複合物成形体40Bに対しては専用のUターンダクト42を設ける必要がない(化学蓄熱材複合物成形体40間に往路46、復路48の両者が位置することがない)。このため、化学蓄熱材複合物成形体40の積層構造体をコンパクトに構成することができる。すなわち、化学蓄熱反応器60のサイズ(蓄熱容量に対するサイズ)を小さく設定することができる。   Moreover, in the chemical heat storage reactor 60, the chemical heat storage material composite molded body 40B is sandwiched between the U-turn ducts 42 adjacent to each other in the stacking direction. It is not necessary to provide the duct 42 (both the forward path 46 and the return path 48 are not located between the chemical heat storage material composite molded bodies 40). For this reason, the laminated structure of the chemical heat storage material composite molded body 40 can be configured compactly. That is, the size of the chemical heat storage reactor 60 (size with respect to the heat storage capacity) can be set small.

(第3の実施形態)
本発明の第3の実施形態に係る化学蓄熱反応器70について、図7〜図9に基づいて説明する。図7(A)には、放熱モード実行時の化学蓄熱反応器70の概略全体構成が斜視図にて示されており、図7(B)には、蓄熱モード実行時の化学蓄熱反応器70が斜視図にて示されている。また、図8には、化学蓄熱反応器70の分解斜視図が示されている。これらの図に示される如く、化学蓄熱反応器70は、側面視で略U字状を成すUターンダクト42に代えて、平面視で略U字状を成す複数のUターンダクト72が化学蓄熱材複合物成形体40と交互に積層されている点で、第1及び第2の実施形態に係る化学蓄熱反応器10、60とは異なる。
(Third embodiment)
A chemical heat storage reactor 70 according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 7A shows a schematic overall configuration of the chemical heat storage reactor 70 when the heat release mode is executed, and FIG. 7B shows a chemical heat storage reactor 70 when the heat storage mode is executed. Is shown in a perspective view. FIG. 8 is an exploded perspective view of the chemical heat storage reactor 70. As shown in these drawings, the chemical heat storage reactor 70 is configured by a plurality of U-turn ducts 72 having a substantially U shape in plan view, instead of the U turn duct 42 having a substantially U shape in side view. It differs from the chemical heat storage reactors 10 and 60 according to the first and second embodiments in that they are alternately laminated with the material composite molded body 40.

それぞれ本発明における単位流路構造体としてのUターンダクト72は、幅方向に並列された往路及び復路の何れか一方としての第1路74と、復路及び往路の他方としての第2路76とがUターン部78を介して連結されて構成されている。各Uターンダクト72は、第1路74と第2路76の開口端が同じ側を向くように配置されている。   Each of the U-turn ducts 72 as unit flow channel structures in the present invention includes a first path 74 as one of the forward path and the return path paralleled in the width direction, and a second path 76 as the other of the return path and the forward path. Are connected via a U-turn portion 78. Each U-turn duct 72 is arranged such that the open ends of the first path 74 and the second path 76 face the same side.

そして、化学蓄熱反応器70は、図7(A)に示される如く、放熱モード実行時(熱回収時)に積層方向に隣り合うUターンダクト72の熱輸送媒体の流れ方向を逆方向にする状態と、図7(B)に示される如く、蓄熱モード実行時に積層方向に隣り合うUターンダクト72の加熱源の流れ方向を同じ方向にする状態とを切り替えるための切替構造80を備えている。   Then, as shown in FIG. 7A, the chemical heat storage reactor 70 reverses the flow direction of the heat transport medium in the U-turn duct 72 adjacent in the stacking direction when the heat release mode is executed (at the time of heat recovery). As shown in FIG. 7B, a switching structure 80 is provided for switching between the state and the state in which the flow direction of the heating source of the U-turn duct 72 adjacent in the stacking direction is the same when the heat storage mode is executed. .

切替構造80は、図9に示される如く、排気ガス等の加熱源を各Uターンダクト72の第1路74に導入するための加熱源入口ヘッダ82と、加熱源を各Uターンダクト72の第2路76から導出するための加熱源出口ヘッダ84とを備える。また、切替構造80は、加熱用空気等の熱輸送媒体を第1路74、第2路76の順に積層方向に交互に導入するための熱輸送媒体入口ヘッダ86と、熱輸送媒体を第2路76、第1路74の順に積層方向に交互に導出するための熱輸送媒体出口ヘッダ88とを備える。   As shown in FIG. 9, the switching structure 80 includes a heating source inlet header 82 for introducing a heating source such as exhaust gas into the first path 74 of each U-turn duct 72, and a heating source for each U-turn duct 72. And a heat source outlet header 84 for leading out from the second path 76. In addition, the switching structure 80 includes a heat transport medium inlet header 86 for alternately introducing a heat transport medium such as heating air in the stacking direction in the order of the first path 74 and the second path 76, and a second heat transport medium. A heat transport medium outlet header 88 for alternately leading in the stacking direction in the order of the path 76 and the first path 74 is provided.

また、切替構造80は、加熱源入口ヘッダ82への加熱源導入路82Aに設けられた開閉弁82B、加熱源出口ヘッダ84からの加熱源導出路84Aに設けられた開閉弁84B、熱輸送媒体入口ヘッダ86への熱輸送媒体導入路86Aに設けられた開閉弁86B、及び熱輸送媒体出口ヘッダ88からの熱輸送媒体導出路88Aに設けられた開閉弁88Bを備えている。切替構造80は、図示しない制御装置としてのコントローラによって開閉弁82B〜88Bの開閉を制御することで、上記の通り図7(A)の流れ状態と図7(B)の流れ状態とに切り替え得る構成とされている。   The switching structure 80 includes an on-off valve 82B provided in the heat source introduction path 82A to the heat source inlet header 82, an on-off valve 84B provided in the heat source outlet path 84A from the heating source outlet header 84, and a heat transport medium. An on-off valve 86B provided in the heat transport medium introduction path 86A to the inlet header 86 and an on-off valve 88B provided in the heat transport medium outlet path 88A from the heat transport medium outlet header 88 are provided. The switching structure 80 can be switched between the flow state of FIG. 7A and the flow state of FIG. 7B as described above by controlling the opening and closing of the on-off valves 82B to 88B by a controller (not shown) as a control device. It is configured.

具体的には、化学蓄熱反応器70では、開閉弁82B、84Bを開放すると共に開閉弁86B、88Bを閉止することで、図7(B)に示される如く各Uターンダクト72の第1路74から加熱源を導入して各第2路76から加熱源を導出する(Uターンダクト72を加熱流路18として用いる)蓄熱モードが実行されるようになっている。また、化学蓄熱反応器70では、開閉弁82B、84Bを閉止すると共に開閉弁86B、88Bを開放することで、図7(A)に示される如く積層方向に隣り合うUターンダクト72で熱輸送媒体に流れ方向が逆向きとなるように(Uターンダクト72を放熱流路20として用いる)放熱モードが実行されるようになっている。化学蓄熱反応器70における他の構成は、化学蓄熱反応器10の対応する構成と同じである。   Specifically, in the chemical heat storage reactor 70, the on-off valves 82B and 84B are opened and the on-off valves 86B and 88B are closed, so that the first path of each U-turn duct 72 is shown in FIG. 7B. The heat source is introduced from 74 and the heat source is led out from each second path 76 (using the U-turn duct 72 as the heating flow path 18) is executed. Further, in the chemical heat storage reactor 70, the on-off valves 82B and 84B are closed and the on-off valves 86B and 88B are opened, so that heat is transported by the U-turn duct 72 adjacent in the stacking direction as shown in FIG. The heat dissipation mode is executed so that the flow direction of the medium is opposite (using the U-turn duct 72 as the heat dissipation flow path 20). The other structure in the chemical heat storage reactor 70 is the same as the corresponding structure of the chemical heat storage reactor 10.

したがって、第3の実施形態に係る化学蓄熱反応器70によっても、基本的に第1の実施形態に係る化学蓄熱反応器10と同様の作用によって同様の効果を得ることができる。   Therefore, also by the chemical heat storage reactor 70 according to the third embodiment, the same effect can be obtained basically by the same operation as the chemical heat storage reactor 10 according to the first embodiment.

すなわち、化学蓄熱反応器70では、放熱モードの実行時には、図7(A)に示される如く、化学蓄熱材複合物成形体40におけるUターンダクト72の流体入口の近傍に接触している部分(の裏面)が、積層方向に隣り合うUターンダクト72の流体出口の近傍に接触する構成である。このため、化学蓄熱材複合物成形体40における放熱モード実行時(熱回収時)にUターンダクト42に導入される流体によって冷却されることで低温になりやすい部分が、化学蓄熱材複合物成形体40から顕熱として熱を回収した高温の流体にて加熱される。これにより、化学蓄熱反応器10では、放熱モード実行時(熱回収時)(特に放熱開始の初期)に化学蓄熱材複合物成形体40に低温部分が生じることが抑制される。   That is, in the chemical heat storage reactor 70, when the heat release mode is executed, as shown in FIG. 7A, a portion in contact with the vicinity of the fluid inlet of the U-turn duct 72 in the chemical heat storage material composite molded body 40 ( The back surface is in contact with the vicinity of the fluid outlet of the U-turn duct 72 adjacent in the stacking direction. For this reason, the chemical heat storage material composite molded body 40 has a portion that tends to become low temperature by being cooled by the fluid introduced into the U-turn duct 42 when the heat release mode is executed (at the time of heat recovery). The body 40 is heated by a high-temperature fluid that has recovered heat as sensible heat. Thereby, in the chemical heat storage reactor 10, it is suppressed that a low temperature part arises in the chemical heat storage material composite molded object 40 at the time of heat dissipation mode execution (at the time of heat recovery) (especially the initial stage of heat radiation start).

このように、化学蓄熱反応器70では、化学蓄熱材複合物成形体40の発熱を利用して該化学蓄熱材複合物成形体40に部分的な低温部が生じることが効果的に抑制されるため、化学蓄熱材複合物成形体40は全体として略均一に発熱(水和)反応を生じる。そして、上記構成の化学蓄熱反応器70を備えた化学蓄熱システム11では、化学蓄熱材複合物成形体40に蓄熱された熱を短時間で効率的に回収することができ、熱利用効率が高い。   As described above, in the chemical heat storage reactor 70, it is effectively suppressed that a partial low temperature portion is generated in the chemical heat storage material composite molded body 40 by using heat generated by the chemical heat storage material composite molded body 40. Therefore, the chemical heat storage material composite molded body 40 generates an exothermic (hydration) reaction substantially uniformly as a whole. And in the chemical heat storage system 11 provided with the chemical heat storage reactor 70 of the said structure, the heat stored by the chemical heat storage material composite molded object 40 can be collect | recovered efficiently in a short time, and heat utilization efficiency is high. .

一方、蓄熱モードでは、化学蓄熱材複合物成形体40は、高温の加熱源が接する該加熱源の流れ方向上流側(第1路74の入口側)から順次反応が進行するため、出口側で降温された加熱源によって化学蓄熱材複合物成形体40が冷却されても該化学蓄熱材複合物成形体40に未反応領域が生じることがない。そして、化学蓄熱反応器70では、蓄熱モード実行時には、図7(B)に示される如く、各Uターンダクト72で加熱源の流れ方向が同じになる。このため、化学蓄熱反応器70では、図7(A)の如き流れ状態で蓄熱モードを実行する場合のように出口側の低温加熱源によって入口側の高温加熱源が冷却されてしまうことが抑制され、熱損失が少ない。すなわち、化学蓄熱反応器70は、熱交換器として効率が良好であり、加熱源からの熱を効率的に蓄熱することができる。   On the other hand, in the heat storage mode, the chemical heat storage material composite molded body 40 sequentially proceeds from the upstream side in the flow direction of the heating source (the inlet side of the first passage 74) with which the high-temperature heating source is in contact. Even if the chemical heat storage material composite formed body 40 is cooled by the lowered heat source, an unreacted region does not occur in the chemical heat storage material composite formed body 40. In the chemical heat storage reactor 70, when the heat storage mode is executed, the flow direction of the heating source is the same in each U-turn duct 72 as shown in FIG. 7B. For this reason, in the chemical heat storage reactor 70, it is suppressed that the high temperature heating source on the inlet side is cooled by the low temperature heating source on the outlet side as in the case where the heat storage mode is executed in the flow state as shown in FIG. And less heat loss. That is, the chemical heat storage reactor 70 has good efficiency as a heat exchanger, and can efficiently store heat from a heating source.

さらに、化学蓄熱反応器70では、複数のUターンダクト72を化学蓄熱材複合物成形体40と交互に積層する積層構造を採ることで、加熱源、熱輸送媒体の流路をコンパクトに配置(構成)することができる。また、複数のUターンダクト72を用いることで、加熱源、熱輸送媒体の入口部と出口部となる第1路74、第2路76の開口端が化学蓄熱材複合物成形体40に対する同一側に配置され、該流体の入口部と出口部とを化学蓄熱反応器70の片側に集約することができる。このため、化学蓄熱反応器70は、全体としてコンパクトに構成することができる。   Further, the chemical heat storage reactor 70 adopts a laminated structure in which a plurality of U-turn ducts 72 are alternately laminated with the chemical heat storage material composite molded body 40, thereby arranging the heat source and the heat transport medium flow path in a compact manner ( Configuration). Further, by using a plurality of U-turn ducts 72, the opening ends of the first path 74 and the second path 76 serving as the inlet and outlet of the heating source and the heat transport medium are the same as the chemical heat storage material composite molded body 40. The fluid inlet and outlet can be concentrated on one side of the chemical heat storage reactor 70. For this reason, the chemical heat storage reactor 70 can be configured compactly as a whole.

(第4の実施形態)
本発明の第4の実施形態に係る化学蓄熱反応器90について、図10及び図11に基づいて説明する。図10(A)には、放熱モード実行時の化学蓄熱反応器90の概略全体構成が斜視図にて示されており、図10(B)には、蓄熱モード実行時の化学蓄熱反応器90が斜視図にて示されている。また、図11には、化学蓄熱反応器90の分解斜視図が示されている。これらの図に示される如く、化学蓄熱反応器90は、平面視で略U字状を成す複数のUターンダクト72に代えて、ストレート状に形成された単位流路構造体としてのダクト92が化学蓄熱材複合物成形体40と交互に積層されている点で、第3の実施形態に係る化学蓄熱反応器70とは異なる。
(Fourth embodiment)
A chemical heat storage reactor 90 according to a fourth embodiment of the present invention will be described with reference to FIGS. 10 and 11. FIG. 10 (A) shows a schematic overall configuration of the chemical heat storage reactor 90 when the heat release mode is executed, and FIG. 10 (B) shows a chemical heat storage reactor 90 when the heat storage mode is executed. Is shown in a perspective view. FIG. 11 is an exploded perspective view of the chemical heat storage reactor 90. As shown in these figures, the chemical heat storage reactor 90 includes a duct 92 as a unit channel structure formed in a straight shape instead of the plurality of U-turn ducts 72 having a substantially U shape in plan view. It differs from the chemical heat storage reactor 70 according to the third embodiment in that it is alternately laminated with the chemical heat storage material composite molded body 40.

そして、化学蓄熱反応器90は、図10(A)に示される如く、放熱モード実行時(熱回収時)に積層方向に隣り合うダクト92の流体の流れ方向を互いに逆方向にする状態と、図10(B)に示される如く、蓄熱モード実行時に積層方向に隣り合うダクト92の流体の流れ方向を同じ方向にする状態とを切り替えるための図示しない切替構造を備えている。この切り替え機構は、ダクト92の一端側を第1路74、他端側を第2路76として捉えて適用した切替構造80と同様に構成することができる。   And, as shown in FIG. 10A, the chemical heat storage reactor 90 has a state in which the flow directions of the fluids in the ducts 92 adjacent to each other in the stacking direction are opposite to each other when the heat release mode is executed (at the time of heat recovery). As shown in FIG. 10B, there is provided a switching structure (not shown) for switching the state in which the flow direction of the fluid in the ducts 92 adjacent to each other in the stacking direction is the same when the heat storage mode is executed. This switching mechanism can be configured in the same manner as the switching structure 80 in which one end side of the duct 92 is regarded as the first path 74 and the other end side is regarded as the second path 76.

すなわち、化学蓄熱反応器90は、化学蓄熱反応器70(化学蓄熱材複合物成形体40を含めてUターンダクト72)を、平面視折り返し形状から直線状に展開した如く構成されている。化学蓄熱反応器70における他の構成は、化学蓄熱反応器10の対応する構成と同じである。   That is, the chemical heat storage reactor 90 is configured such that the chemical heat storage reactor 70 (the U-turn duct 72 including the chemical heat storage material composite formed body 40) is expanded from a folded shape in a plan view. The other structure in the chemical heat storage reactor 70 is the same as the corresponding structure of the chemical heat storage reactor 10.

したがって、第4の実施形態に係る化学蓄熱反応器90によっても、基本的に第3の実施形態に係る化学蓄熱反応器70(化学蓄熱反応器10)と同様の作用によって同様の効果を得ることができる。   Therefore, even with the chemical heat storage reactor 90 according to the fourth embodiment, basically the same effect is obtained by the same operation as that of the chemical heat storage reactor 70 (chemical heat storage reactor 10) according to the third embodiment. Can do.

なお、上記した実施形態では、化学蓄熱材として水酸化カルシウムを用いた例を示したが、本発明はこれに限定されず、水和・脱水による各種の放熱・蓄熱する各種の化学蓄熱材を用いて実施することができる。   In the above-described embodiment, an example in which calcium hydroxide is used as the chemical heat storage material has been shown. However, the present invention is not limited to this, and various chemical heat storage materials that perform various heat dissipation and heat storage by hydration and dehydration are used. Can be implemented.

また、上記した各実施形態では、化学蓄熱反応器10、60、70、90が自動車Aに適用された例を示したが、本発明はこれに限定されず、各種用途に適用可能であることが言うまでもない。   Moreover, in each above-mentioned embodiment, although the chemical heat storage reactor 10, 60, 70, 90 was shown the example applied to the motor vehicle A, this invention is not limited to this, It can be applied to various uses. Needless to say.

10 化学蓄熱反応器
11 化学蓄熱システム
14 化学蓄熱材
22 蒸発・凝縮器(蒸発部、凝縮部)
40 化学蓄熱材複合物成形体(化学蓄熱材)
42 Uターンダクト(流路構造体)
44 水蒸気流路
46 往路
46A 流体入口
48 復路
48A 流体出口
60・70・90 化学蓄熱反応器
72 Uターンダクト(単位流路構造体)
74 第1路(往路、復路)
76 第2路(復路、往路)
92 ダクト(単位流路構造体)
10 Chemical thermal storage reactor 11 Chemical thermal storage system 14 Chemical thermal storage material 22 Evaporation / condenser (evaporation part, condensation part)
40 Chemical heat storage material composite molded body (chemical heat storage material)
42 U-turn duct (channel structure)
44 Water vapor flow path 46 Outward path 46A Fluid inlet 48 Return path 48A Fluid outlet 60/70/90 Chemical heat storage reactor 72 U-turn duct (unit flow path structure)
74 Route 1 (Outbound and Return)
76 Second Road (Return, Outbound)
92 Duct (Unit flow channel structure)

Claims (8)

脱水反応に伴い吸熱し水和反応に伴い放熱する化学蓄熱材と、
内部を流通する流体と前記化学蓄熱材との熱交換可能で、かつ前記化学蓄熱材と前記流体との熱交換によって得た熱によって該化学蓄熱材における低温部分が加熱されるように設けられた流路構造体と、
を備えた化学蓄熱反応器。
A chemical heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction;
Heat exchange between the fluid circulating in the interior and the chemical heat storage material is possible, and the low temperature portion of the chemical heat storage material is heated by heat obtained by heat exchange between the chemical heat storage material and the fluid. A flow channel structure;
Chemical heat storage reactor equipped with.
前記流路構造体は、前記化学蓄熱材における該流路構造体の流体入口部が接する部分を、該流路構造体の流体出口部で加熱するように配置されている請求項1記載の化学蓄熱反応器。   2. The chemistry according to claim 1, wherein the flow path structure is arranged so that a portion of the chemical heat storage material that is in contact with a fluid inlet of the flow path structure is heated by a fluid outlet of the flow path structure. Thermal storage reactor. 前記流路構造体は、往路と復路との間に前記化学蓄熱材を挟み込んだ折り返し構造体を含んで構成されている請求項1又は請求項2記載の化学蓄熱反応器。   The chemical heat storage reactor according to claim 1, wherein the flow path structure includes a folded structure in which the chemical heat storage material is sandwiched between an outward path and a return path. 前記流路構造体は、複数の前記折り返し構造体を含み、かつ少なくとも一つの前記折り返し構造体の往路と他の前記折り返し構造体の復路との間に前記化学蓄熱材を挟み込んで構成されている請求項3記載の化学蓄熱反応器。   The flow path structure includes a plurality of the folded structures, and is configured such that the chemical heat storage material is sandwiched between the forward path of at least one folded structure and the return path of another folded structure. The chemical heat storage reactor according to claim 3. 前記流路構造体は、独立して前記流体を流通可能な複数の単位流路構造体が前記化学蓄熱材と交互に積層されて構成され、前記化学蓄熱材に放熱させる場合には前記積層方向に隣り合う前記単位流路構造体内の流体の流れ方向が逆向きとされ、前記化学蓄熱材に蓄熱させる場合には前記積層方向に隣り合う前記単位流路構造体内の流体の流れ方向が同じ向きとされるように構成されている請求項1又は請求項2記載の化学蓄熱反応器。   The flow path structure is configured such that a plurality of unit flow path structures capable of independently flowing the fluid are alternately stacked with the chemical heat storage material, and in the case of dissipating heat to the chemical heat storage material, the stacking direction The flow direction of the fluid in the unit flow channel structure adjacent to each other is reversed, and when the chemical heat storage material stores heat, the flow direction of the fluid in the unit flow channel structure adjacent to the stacking direction is the same direction. The chemical heat storage reactor according to claim 1 or 2, wherein the chemical heat storage reactor is configured as described above. 前記単位流路構造体は、前記積層方向に隣り合う前記化学蓄熱材間に往路と復路とが配置された折り返し構造体とされている請求項5記載の化学蓄熱反応器。   6. The chemical heat storage reactor according to claim 5, wherein the unit flow path structure is a folded structure in which a forward path and a return path are disposed between the chemical heat storage materials adjacent in the stacking direction. 前記化学蓄熱材は、所定の形状に形成された成形体であり、
前記成形体は、水蒸気を流通させるための流路を複数有する構造とするか、又は水蒸気の流通が許容される多孔構造とされている請求項1〜請求項6の何れか1項記載の化学蓄熱反応器。
The chemical heat storage material is a molded body formed in a predetermined shape,
The chemistry according to any one of claims 1 to 6, wherein the molded body has a structure having a plurality of flow paths for allowing water vapor to flow therethrough, or has a porous structure that allows water vapor to flow therethrough. Thermal storage reactor.
請求項1〜請求項7の何れか1項記載の化学蓄熱反応器と、
化学蓄熱反応器の水蒸気系統に連通され、前記化学蓄熱材部の前記脱水反応に伴って生じた水蒸気を凝縮させて貯留する凝縮部と、
化学蓄熱反応器の水蒸気系統に連通され、前記凝縮部で貯留された水を蒸発させて前記化学蓄熱材に供給する水蒸気を発生する蒸発部と、
を備えた化学蓄熱システム。
The chemical heat storage reactor according to any one of claims 1 to 7,
A condensing unit that communicates with the steam system of the chemical heat storage reactor, condenses and stores the water vapor generated by the dehydration reaction of the chemical heat storage material unit;
An evaporation unit that is connected to the steam system of the chemical heat storage reactor and generates water vapor that evaporates the water stored in the condensing unit and supplies the chemical heat storage material;
Chemical heat storage system with
JP2009066936A 2009-03-18 2009-03-18 Chemical heat storage reactor and chemical heat storage system Pending JP2010216772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009066936A JP2010216772A (en) 2009-03-18 2009-03-18 Chemical heat storage reactor and chemical heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066936A JP2010216772A (en) 2009-03-18 2009-03-18 Chemical heat storage reactor and chemical heat storage system

Publications (1)

Publication Number Publication Date
JP2010216772A true JP2010216772A (en) 2010-09-30

Family

ID=42975804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066936A Pending JP2010216772A (en) 2009-03-18 2009-03-18 Chemical heat storage reactor and chemical heat storage system

Country Status (1)

Country Link
JP (1) JP2010216772A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128379A1 (en) * 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
WO2012128380A1 (en) * 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
JP2013113565A (en) * 2011-11-30 2013-06-10 Toyota Central R&D Labs Inc Chemical heat pump
JP2013137125A (en) * 2011-12-28 2013-07-11 Aisin Seiki Co Ltd Chemical heat storage device
EP2685197A2 (en) 2012-07-12 2014-01-15 Aisin Seiki Kabushiki Kaisha Chemical heat storage device
WO2014021262A1 (en) * 2012-08-03 2014-02-06 株式会社村田製作所 Electronic apparatus
JP2014105925A (en) * 2012-11-27 2014-06-09 Tokyo Gas Co Ltd Heat storage method, heat storage apparatus, and heat storage system
JP2014206363A (en) * 2013-03-21 2014-10-30 株式会社デンソー Chemical heat storage device
WO2015005085A1 (en) * 2013-07-12 2015-01-15 アイシン精機株式会社 Chemical thermal energy storage device
JP2016070542A (en) * 2014-09-29 2016-05-09 古河電気工業株式会社 Heat storage container and heat storage device with the same
WO2018061990A1 (en) * 2016-09-30 2018-04-05 日本ペイントホールディングス株式会社 Heat storage device and heat exchange device
JP2019100653A (en) * 2017-12-05 2019-06-24 株式会社豊田中央研究所 Chemical heat storage reactor
KR20220011027A (en) * 2020-07-20 2022-01-27 글로벌라이트 주식회사 Cooling-heating apparatus of semi-conductor liquid

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128379A1 (en) * 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
WO2012128380A1 (en) * 2011-03-18 2012-09-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical heat accumulator and method for producing the same
JP2013113565A (en) * 2011-11-30 2013-06-10 Toyota Central R&D Labs Inc Chemical heat pump
JP2013137125A (en) * 2011-12-28 2013-07-11 Aisin Seiki Co Ltd Chemical heat storage device
CN103542752B (en) * 2012-07-12 2017-12-01 爱信精机株式会社 Chemical heat storage device
EP2685197A3 (en) * 2012-07-12 2014-10-22 Aisin Seiki Kabushiki Kaisha Chemical heat storage device
CN103542752A (en) * 2012-07-12 2014-01-29 爱信精机株式会社 Chemical heat storage device
EP2685197A2 (en) 2012-07-12 2014-01-15 Aisin Seiki Kabushiki Kaisha Chemical heat storage device
US9714793B2 (en) 2012-07-12 2017-07-25 Aisin Seiki Kabushiki Kaisha Chemical heat storage device including rotatable heat storage material accommodation unit
JPWO2014021262A1 (en) * 2012-08-03 2016-07-21 株式会社村田製作所 Electronics
WO2014021262A1 (en) * 2012-08-03 2014-02-06 株式会社村田製作所 Electronic apparatus
JP2014105925A (en) * 2012-11-27 2014-06-09 Tokyo Gas Co Ltd Heat storage method, heat storage apparatus, and heat storage system
JP2014206363A (en) * 2013-03-21 2014-10-30 株式会社デンソー Chemical heat storage device
JP2015017780A (en) * 2013-07-12 2015-01-29 アイシン精機株式会社 Chemical heat storage device
WO2015005085A1 (en) * 2013-07-12 2015-01-15 アイシン精機株式会社 Chemical thermal energy storage device
US9869518B2 (en) 2013-07-12 2018-01-16 Aisin Seiki Kabushiki Kaisha Chemical heat storage device
JP2016070542A (en) * 2014-09-29 2016-05-09 古河電気工業株式会社 Heat storage container and heat storage device with the same
WO2018061990A1 (en) * 2016-09-30 2018-04-05 日本ペイントホールディングス株式会社 Heat storage device and heat exchange device
JP2019100653A (en) * 2017-12-05 2019-06-24 株式会社豊田中央研究所 Chemical heat storage reactor
KR20220011027A (en) * 2020-07-20 2022-01-27 글로벌라이트 주식회사 Cooling-heating apparatus of semi-conductor liquid
KR102367230B1 (en) * 2020-07-20 2022-02-24 글로벌라이트 주식회사 Cooling-heating apparatus of semi-conductor liquid

Similar Documents

Publication Publication Date Title
JP2010216772A (en) Chemical heat storage reactor and chemical heat storage system
JP5077419B2 (en) Chemical heat storage device
JP5482681B2 (en) Heat storage device
JP4567996B2 (en) Thermal storage heat pump system
JP5381861B2 (en) Chemical heat storage device
JP5959152B2 (en) Heat transport equipment
JP5724302B2 (en) Chemical heat storage device and chemical heat storage device
JP5217595B2 (en) Chemical heat storage system for vehicles
JP2009262748A (en) Vehicular chemical heat storage system
JP2005315459A (en) Heat exchanger
JP2012211713A (en) Chemical heat storage reactor, and chemical heat storage system
JP2005024231A5 (en)
JP6337675B2 (en) Heat storage system
JP2009076365A (en) Fuel cell device
JP5917811B2 (en) Heat transport device and heat exchange reactor
JPH02500589A (en) Equipment for dehydrogenation of liquid hydrides
JP6003606B2 (en) Chemical heat storage reactor, chemical heat storage system
JP6400925B2 (en) Heat storage system
JP3873849B2 (en) Polymer electrolyte fuel cell device
JP4889528B2 (en) Chemical heat pump and heat utilization system using the same
JP6364198B2 (en) Thermal storage reactor and thermal storage system
JP2012145252A (en) Chemical heat pump
JP6838475B2 (en) Chemical heat storage reactor and chemical heat storage reactor system
JP5936526B2 (en) Thermal output method and thermal output system
JP2004014444A (en) Fuel cell power generation system