WO2018061990A1 - Heat storage device and heat exchange device - Google Patents
Heat storage device and heat exchange device Download PDFInfo
- Publication number
- WO2018061990A1 WO2018061990A1 PCT/JP2017/034166 JP2017034166W WO2018061990A1 WO 2018061990 A1 WO2018061990 A1 WO 2018061990A1 JP 2017034166 W JP2017034166 W JP 2017034166W WO 2018061990 A1 WO2018061990 A1 WO 2018061990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat storage
- chemical heat
- chemical
- storage material
- fluid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/16—Materials undergoing chemical reactions when used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Definitions
- the present invention relates to a heat storage device and a heat exchange device.
- a technique that stores heat accompanied by a phase transition of a substance, such as a change from water to ice, is known.
- latent heat storage In latent heat storage, the time during which heat can be stored generally tends to be short.
- the latent heat storage tends to have a low amount of heat (heat storage density) that can be stored per unit volume. Therefore, it is difficult to store heat or transport heat for a long time in latent heat storage.
- heat storage density heat storage density
- chemical heat storage materials that can store heat for a long time and have a high heat storage density have attracted attention.
- the chemical heat storage material is filled in, for example, a heat exchanger and recovered.
- a heat exchanger that uses inorganic powder such as calcium oxide as a chemical heat storage material (hereinafter also referred to as a heat exchange type reactor)
- the chemical heat storage material is in powder form and has low thermal conductivity. Heat recovery from a place away from the exchange surface is difficult, and heat recovery efficiency tends to be low.
- the powdered chemical heat storage material may form a gap during filling, and is difficult to handle.
- Patent Document 1 a technique using a pellet-shaped chemical heat storage material that has higher thermal conductivity than powder and is easy to handle has been disclosed (for example, see Patent Document 1).
- Patent Document 2 a technique of forming a layer made of a chemical heat storage material on the heat exchange surface is also known (for example, see Patent Document 2).
- inorganic powders such as calcium oxide used for chemical heat storage materials increase in volume when hydrated, and conversely decrease in volume when dehydrated.
- the technique disclosed in Patent Document 1 aims to improve the strength of the pellet-shaped chemical heat storage material by containing clay mineral and prevent pulverization due to the increase or decrease in the volume of the chemical heat storage material.
- the technique disclosed in Patent Document 1 is not sufficiently satisfactory as a technique for improving the strength of a chemical heat storage material formed into a pellet.
- strength of the chemical heat storage material formed in the heat exchange surface is not considered.
- the chemical heat storage material molded into pellets since the chemical heat storage material molded into pellets does not easily allow water to penetrate inside, it has sufficient heat generation performance (increasing the temperature of water into which the chemical heat storage material is charged) compared to the content of the inorganic powder. May not have the ability).
- the present situation is that no chemical heat storage material having high strength and high thermal conductivity in a state of being processed into a pellet or the like has been found.
- This invention is made
- a heat storage device includes a chemical heat storage body, and a heat storage chamber containing the chemical heat storage body, wherein the chemical heat storage body includes a Group 2 element compound, a boron compound, and a silicone polymer. It consists of the chemical heat storage material to contain,
- the said thermal storage body chamber has a 1st port which can introduce
- the Group 2 element compound is calcium oxide, and the chemical heat storage material has a calcium atom content of 13 to 59% by mass and a boron atom content of 0.4 to 11.3% by mass.
- the silicon atom content is preferably 4.8 to 33.2% by mass.
- the Group 2 element compound is magnesium oxide, and the chemical heat storage material has a magnesium atom content of 8.3 to 46.5% by mass, and a boron atom content of 0.5 to 11%.
- the content of silicon atoms is preferably 6.2 to 35.1% by mass.
- the heat storage chamber may be a flow-through chamber having a second port that can discharge the fluid.
- the heat storage chamber may be a sealed chamber that forms a closed space that communicates with the first port.
- a heat exchange device includes the above heat storage device, and the chemical heat storage body is a heat source body.
- symbol 1 is the thermal storage apparatus based on 1st Embodiment of this invention.
- the heat storage device 1 can also function as the heat exchange device 100 according to the first embodiment of the present invention.
- Reference numeral 10 denotes a chemical heat storage body.
- the chemical heat accumulator 10 reacts with water molecules H 2 O to generate heat, and after the reaction is completed, the heat generation performance is restored by separating the water molecules H 2 O by heating or decompression, allowing reversible operation. It consists of a simple chemical heat storage material. As will be described later, the chemical heat storage material contains a Group 2 element compound, a boron compound, and a silicone polymer.
- Reference numeral 20 denotes a heat storage chamber containing the chemical heat storage body 10.
- the heat accumulator chamber 20 is disposed in the tubular member 21 having an internal passage and the internal passage of the tubular member 21 and is spaced from each other in the axial direction of the tubular member 21. It consists of two partition walls 22. Each of the two partition walls 22 is made of a member having air permeability such as a metal mesh.
- a plurality of chemical heat storage bodies 10 are filled in a heat storage body chamber 20 constituted by a cylindrical member 21 and two partition walls 22.
- the heat accumulator chamber 20 has a first port 20a through which a fluid can be introduced.
- the first port 20a is configured as a part of the cylindrical member 21 (one end portion of the cylindrical member 21).
- a first fluid a gas containing water molecules H 2 O, for example, water vapor
- the chemical heat storage body 10 the chemical heat storage material
- the second fluid for example, indoor or outdoor air or dry air
- Switching of introduction (supply) of the first fluid G1 or the second fluid G2 to the heat accumulator chamber 20 can be performed by, for example, a switching valve.
- the thermal storage chamber 20 is a flow-through chamber having a second port 20b that can discharge the fluid.
- the second port 20b is configured as a part of the cylindrical member 21 (the other end of the cylindrical member 21).
- the 2nd port 20b can discharge
- the first fluid G1 is supplied to the heat storage chamber 20 from the first port 20a.
- the first fluid G1 is a gas containing water molecules H 2 O.
- the temperature of the first fluid G1 may be high or low.
- Examples of the first fluid G1 include water vapor such as factory steam.
- the first fluid G1 has, for example, water molecules H 2 0 necessary for the reaction in the chemical heat storage body 10 to reach a criticality (here, “when the heat release in the chemical heat storage body 10 is maximized”). Until the chemical heat storage body 10 is supplied.
- the first fluid G1 is supplied from the start of supply of the first fluid G1 until a predetermined time t1.
- the predetermined time t1 is a time required for supplying the first fluid G1 required until the reaction in the chemical heat storage body 10 reaches the criticality.
- the predetermined time t1 can be obtained in advance according to the type and amount of the chemical heat storage body 10 and the first fluid G1.
- the supply time of the first fluid G1 can be longer than the predetermined time t1, or can be shorter than the predetermined time t1.
- the supply of the first fluid G1 is stopped and the reaction in the chemical heat storage body 10 is continued.
- the supply of new fluid from the first port 20a is stopped, for example, until the reaction in the chemical heat storage body 10 reaches a critical value.
- the supply of new fluid from the first port 20a is performed by, for example, detecting the temperature of the chemical heat storage body 10, specifically the temperature in the heat storage body chamber 20, by a temperature detector such as a thermometer or a temperature sensor. And the temperature is stopped until the temperature reaches a predetermined temperature, for example, the temperature when the temperature in the heat storage chamber 20 reaches a critical point.
- the timing for supplying a new fluid from the first port 20a is not limited to this. In the present embodiment, the supply of new fluid from the first port 20a can be performed regardless of the predetermined time t1.
- the heat storage device 1 After reaching the predetermined temperature, the heat storage device 1 according to the present embodiment supplies the second fluid G2 from the first port 20a to the heat storage body chamber 20. Switching between the first fluid G1 and the second fluid G2 can be performed by, for example, a switching valve. Thereby, the 2nd fluid G2 is discharged
- the heat storage device 1 starts the reaction in the chemical heat storage body 10 by the first fluid G1 supplied from the first port 20a, so that the chemical heat storage body 10 becomes a heat source. It generates heat as a body. For this reason, in the heat storage device 1, if the first fluid G1 supplied from the first port 20a is switched to the second fluid G2, the second fluid G2 discharged from the second port 20b is heated by the chemical heat storage body 10. It can be used as the exchanged fluid G3. That is, the chemical heat storage device 1 also functions as a heat exchange device 100 using the chemical heat storage body 10 as a heat source.
- the heat storage device 1 it is possible to continue supplying the first fluid G1 to the first port 20a without changing the first fluid G1 supplied from the first port 20a to the second fluid G2. It is.
- the first fluid G1 discharged from the second port 20b can be used as the fluid G3 exchanged by the chemical heat storage body 10.
- the heat generation performance of the chemical heat storage body 10 is restored by heating or depressurizing and dehydrating the chemical heat storage body 10 after completion of the reaction.
- the chemical heat storage body 10 is heated by, for example, heating the chemical heat storage body 10 using a heating wire or an electric furnace in which electric energy is converted into heat energy, or a high temperature gas is supplied to the heat storage body chamber 20. It introduce
- the decompression of the chemical heat storage body 10 is performed, for example, by sealing one of the first port 20a and the second port 20b of the heat storage body chamber 20 and in the heat storage body chamber 20 from the other first port 20a or second port 20b. This is done by sucking air. Thereby, the heat generation performance of the chemical heat storage body 10 is restored.
- the heat storage device 1 is a heat storage device capable of reversible operation of heat dissipation and heat storage, and gives heat to the fluid (G1 and / or G2) from the first port 20a.
- the fluid (G1 and / or G2) can be made to function as the heat exchange device 100 that discharges the fluid G3 that has undergone heat exchange.
- reference numeral 200 denotes a heat exchange device according to the second embodiment of the present invention.
- the heat exchange device 200 has the same heat storage device 1 as in FIG. 1, and the chemical heat storage body 10 is a heat source body.
- parts substantially the same as those of the heat storage device 1 in FIG. 1 have the same reference numerals and description thereof is omitted.
- the heat exchange device 200 includes an inlet port P1 that can introduce the first fluid G1, an outlet port P2 that can discharge the fluid G3, and another inlet port P3 that can introduce the second fluid G2.
- a chemical heat storage body 10 a heat storage body chamber 20 having a first port 20a and a second port 20b and containing the chemical heat storage body 10, an on-off valve V1 for opening and closing the second port 20b, and an inlet 30a.
- a heating chamber 30 having a built-in heat storage chamber 20 and a distribution mechanism D for introducing the fluid (G1) into at least one of the inlet 30a of the heating chamber 30 and the first port 20a of the heat storage chamber 20. It is equipped with.
- the heating chamber 30 is a space formed between the heat storage body chamber 20 and a preheating fluid can be supplied to the space through the introduction port 30a.
- the distribution mechanism D includes an inlet port P1 into which the first fluid G1 is introduced, a heating chamber side path R1 in which the inlet port P1 and the inlet 30a of the heating chamber 30 communicate with each other, an inlet port P1 and the heat storage chamber 20
- a heat storage chamber side path R2 communicating with the first port 20a and at least one switching valve (V2, V3) for opening and closing the heating chamber side path R1 and the heat storage body chamber side path R2 are provided.
- At least one of the switching valves in the distribution mechanism D is two switching valves, that is, an opening / closing valve V2 provided in the heating chamber side path R1 and an opening / closing valve V3 provided in the heat storage body chamber side path R2. .
- the on-off valve V2 opens and closes the heating chamber side path R1, and the on-off valve V3 opens and closes the heat accumulator chamber side path R2.
- At least one of the switching valves in the distribution mechanism D may be a single electric control valve.
- an electric control valve for example, a valve provided with one input port, two output ports, and one plunger that can be electrically controlled by an electromagnetic solenoid or the like can be cited.
- the electric control valve can switch a path from the input port to the two output ports and close a path from the input port to the two output ports by operating a plunger.
- Reference sign V4 is an open / close valve that opens and closes the inlet port P1.
- the on-off valve V4 is an arbitrary switching valve provided as an auxiliary to the distribution mechanism D. In the present embodiment, the on-off valve V4 can be arbitrarily provided with respect to the distribution mechanism D, and functions as a fail-safe switching valve in the present embodiment.
- the heat exchange device 200 includes a scavenging medium path R3 connected to the first port 20a of the heat storage chamber 20 having another inlet port P3 into which the scavenging medium is introduced.
- the scavenging medium is the second fluid G2.
- the scavenging medium path R3 includes a decarboxylation device 40.
- a decarboxylation process using a chemical adsorption method, lithium silicate, or the like is performed, and carbon dioxide CO2 is removed from the scavenging medium.
- the carbon dioxide CO2 contained in the scavenging medium is removed, for example, the carbon dioxide CO2 is combined with calcium oxide CaO contained in the chemical heat storage material, thereby changing to calcium carbonate CaCO3 and heating the chemical heat storage body 10.
- the phenomenon that the heat generation performance cannot be completely restored is suppressed.
- the scavenging medium path R3 has an on-off valve V5 between the decarboxylation device 40 and the first port 20a of the heat storage chamber 20.
- the on-off valve V5 opens and closes the scavenging medium path R3 between the decarboxylation device 40 and the first port 20a.
- the heating chamber 30 is a chamber for preheating the heat accumulator chamber 20.
- the steam in the factory is used as the first fluid G1
- the heating chamber 30 is heated by being introduced from the inlet port P1 into the heating chamber 30 via the inlet 30a.
- Preheat chamber 20 is used as the first fluid G1
- the water molecule H 2 O contained in the first fluid G1 also supplied to the heat storage chamber 20 is liquefied in the heat storage chamber 20 due to the low temperature of the heat storage chamber 20. A decrease in the heat generation performance of the heat storage body 10 can be suppressed.
- the heating chamber 30 has a drain port P4.
- the drain port P4 communicates with the heating chamber 30 and discharges the excessive first fluid G1 accumulated in the heating chamber 30 to the outside.
- the drain port P ⁇ b> 4 communicates with the drain chamber 50.
- the drain port P4 has an on-off valve V6.
- the on-off valve V6 by closing the on-off valve V6, the discharge of the first fluid from the heating chamber 30 can be stopped and the temperature in the heating chamber 30 can be maintained.
- the steam in the factory opens the on-off valves V4 and V2, and is supplied to the heating chamber 30 as the first fluid G1.
- the on-off valves V1, V3 and V5 other than the on-off valve V6 of the drain port P4 are in a closed state.
- the heating chamber 30 is heated by the 1st fluid G1, and the thermal storage body chamber 20 of the thermal storage apparatus 1 is pre-heated.
- the first fluid G1 is supplied into the heat accumulator chamber 20 by opening the on-off valves V1 and V3, and the reaction in the chemical heat accumulator 10 is started.
- the timing for opening the on-off valves V1 and V3 is controlled based on, for example, temperature detection means in the heat storage body chamber 20.
- the on-off valve V3 is opened until, for example, water molecules H 2 0 necessary for the reaction in the chemical heat storage body 10 to reach the criticality are supplied to the chemical heat storage body 10.
- the on-off valve V3 is supplied until a predetermined time t1 after the on-off valve V3 is opened and the supply of the first fluid G1 to the heat storage chamber 20 is started.
- the second fluid G2 is supplied from the first port 20a to the heat storage chamber 20 by closing the on-off valve V3 and opening the on-off valve V5.
- the 2nd fluid G2 passes through the exit port P2 of the heat exchange apparatus 200 from the 2nd port 20b, passes through the chemical heat storage body 10, and is discharged
- the chemical heat storage body 10 is started by the reaction of the chemical heat storage body 10 by the first fluid G1 supplied from the first port 20a. It generates heat as a heat source.
- the first fluid G1 supplied from the first port 20a is switched to the second fluid G2, so that the second fluid G2 discharged from the second port 20b is supplied by the chemical heat storage body 10. It can be used as the heat exchanged fluid G3.
- the first fluid G1 may be continuously supplied to the first port 20a without changing the first fluid G1 supplied from the first port 20a to the second fluid G2. Is possible.
- the first fluid G1 discharged from the second port 20b can be used as the fluid G3 exchanged by the chemical heat storage body 10.
- the heat generation performance of the chemical heat storage body 10 is restored by heating or depressurizing the chemical heat storage body 10 after completion of the reaction.
- the chemical heat storage body 10 is heated by, for example, opening at least the on-off valves V1, V3, and V4 or the on-off valves V1 and V5 and starting from the outlet port P2 of the heat exchange device 200. This can be done by introducing a high-temperature gas into the 2-port 20b and heating the chemical heat storage body 10.
- the chemical heat storage body 10 can be depressurized by, for example, opening the on-off valve V1 and closing the on-off valve V3 or on-off valve V5, or opening the on-off valve V3 or on-off valve V5 and closing the on-off valve V1.
- Either one of the first port 20a and the second port 20b of the chamber 20 is sealed, and the air in the heat accumulator chamber 20 is removed from the other first port 20a or the second port 20b via any of the ports P1 to P3. This can be done by aspiration.
- the heat generating performance of the chemical heat storage body 10 is restored by heating or depressurizing and dehydrating the chemical heat storage body 10 after completion of the reaction.
- the heat exchange device 200 applies heat to the fluid (G1 and / or G2) from the first port 20a, and the fluid (G1 and / or G2) is heat-exchanged.
- the fluid G3 can be discharged.
- symbol 300 is the heat exchange apparatus based on 3rd Embodiment of this invention.
- the heat source body is the heat storage device 2 according to the second embodiment of the present invention.
- reference numeral 60 denotes a heat accumulator chamber that houses the chemical heat accumulator 10.
- the heat accumulator chamber 60 has a first port 60a through which a fluid can be introduced.
- the first port 60a has an on-off valve V7 and communicates with the steam tank 70 through the on-off valve V7. Thereby, the steam from the steam tank 70 is supplied to the heat accumulator chamber 60 as the first fluid G1 by opening the on-off valve V7.
- the thermal storage chamber 60 is a sealed chamber that forms a closed space that communicates with the first port 60a.
- the heat storage device 2 according to the present embodiment includes a chemical heat storage body 10 and a heat storage body chamber 60 having a first port 60a.
- the heat exchange device 300 includes an on-off valve V7, a steam tank 70, the heat storage device 2, and a heat exchange circuit 80.
- the heat exchange circuit 80 is disposed in the heat accumulator chamber 60.
- the heat exchanging circuit 80 has a first port 80a into which a second fluid G2 that requires heat exchange is introduced, and a second port 80b through which the fluid is discharged as a fluid G3 heat exchanged by the chemical heat storage body 10. is doing.
- the heat exchange circuit 80 does not communicate with the space in the heat storage chamber 60.
- gas or liquid can be used as the second fluid G2 supplied to the heat exchange circuit 80.
- the on-off valve V7 is opened, and the first fluid G1 is supplied from the first port 60a of the heat storage device 2 to the heat storage chamber 60.
- the reaction in the chemical heat storage body 10 is started by the first fluid G1.
- the on-off valve V7 may be closed when the reaction in the chemical heat storage body 10 reaches a critical value, or may be left open as it is.
- the second fluid G2 is caused to flow through the heat exchanging circuit 80, the second fluid G2 is discharged as the fluid G3 that has undergone heat exchange via the heat exchanging circuit 80.
- the heat generation performance of the chemical heat storage body 10 is restored by heating and dehydrating the chemical heat storage body 10 housed in the heat storage apparatus 2 after completion of the reaction.
- the chemical heat storage body 10 is heated using, for example, a heating wire or an electric furnace provided in the heat storage chamber 60.
- the chemical heat storage body 10 is heated by introducing a high temperature gas or a high temperature liquid into one of the first port 80a and the second port 80b of the heat exchange circuit 80 and heating the chemical heat storage body 10. It can also be done.
- the heat generation performance can be restored by, for example, reducing the pressure of the heat storage chamber 60 from the first port 60a. Thereby, the heat generation performance of the chemical heat storage body 10 is restored.
- the chemical heat storage material that can be used in each embodiment described above contains a Group 2 element compound, a boron compound, and a silicone polymer.
- the group 2 element compound contained in the chemical heat storage material is not particularly limited as long as it can perform a reversible chemical reaction.
- the group 2 element compound is a compound containing any metal selected from beryllium, magnesium, calcium, strontium, barium and radium which are group 2 elements.
- the Group 2 element compound preferably generates heat when hydrated, and stores heat by dehydration after hydration. Examples of the Group 2 element compound that generates heat by hydration and stores heat by dehydration after hydration can include the compounds listed in Table 1.
- “Heat storage operation temperature” in Table 1 is the temperature at which the indicated compound undergoes an exothermic reaction
- heat storage density is the amount of heat energy released per unit volume of the indicated compound.
- At least one of calcium oxide and magnesium oxide is contained in the chemical heat storage material because the heat storage operation temperature and the heat storage density are high. Further, calcium oxide and magnesium oxide can be obtained at low cost. Strontium oxide and barium oxide can also be preferably used as the Group 2 element compound.
- the boron compound contained in the chemical heat storage material is boron oxide derived from the boron-containing compound contained in the chemical heat storage material forming composition described later.
- the chemical heat storage material contains a boron compound, whereby the strength in a state of being formed into a pellet is improved.
- the reason why the chemical heat storage material contains the boron compound is not necessarily clear, but the inclusion of boron atoms in the silicone polymer described later makes the silicone polymer melting point lower and makes it easier to expand and contract ( This is thought to be due to increased flexibility.
- the silicone polymer contained in the chemical heat storage material is at least one selected from the group consisting of an alkoxysilane, a hydrolyzate thereof, and a condensate thereof contained in a composition for forming a chemical heat storage material described later (hereinafter referred to as alkoxysilane and the like).
- alkoxysilane and the like a condensed silicone polymer.
- the silicone polymer condensed with alkoxysilane or the like preferably has a structure in which all alkoxy groups bonded to silicon are eliminated in the baking step described later.
- the silicone polymer forms a dense three-dimensional structure and prevents the chemical heat storage material from collapsing. Further, the silicone polymer can hold the Group 2 element compound inside a dense three-dimensional structure.
- the silicone polymer a silicone polymer in which at least one selected from the group consisting of at least one of triethoxysilane and tetraethoxysilane, a hydrolyzate thereof, and a condensate thereof is condensed to form a denser three-dimensional structure.
- the content of the silicone polymer in the chemical heat storage material is preferably 12 to 83% by mass. If the content of the silicone polymer in the chemical heat storage material is less than 12% by mass, the chemical heat storage material tends to be easily collapsed. If the content is more than 83% by mass, the amount of heat that can be released from the chemical heat storage material is small. It tends to become.
- the chemical heat storage material When the Group 2 element compound is calcium oxide, the chemical heat storage material has a calcium atom content of 13 to 59% by mass and a boron atom content of 0.4 to 11.3% by mass, The silicon atom content is preferably 4.8 to 33.2% by mass.
- the chemical heat storage material contains calcium atoms derived from calcium oxide, boron atoms derived from boron compounds, and silicon atoms derived from silicone polymers.
- the content of calcium atoms in the chemical heat storage material is less than 13% by mass, the amount of heat that can be released from the chemical heat storage material tends to decrease due to the small amount of calcium oxide.
- the content of calcium atoms in the chemical heat storage material is more than 59% by mass, the chemical heat storage material tends to collapse because the silicone polymer decreases.
- the strength of the chemical heat storage material tends to decrease.
- the content of boron atoms in the chemical heat storage material is more than 11.3% by mass, the chemical heat storage material tends to be easily collapsed due to the decrease in the silicone polymer.
- the content of silicon atoms in the chemical heat storage material is less than 4.8% by mass, the chemical heat storage material tends to collapse because the silicone polymer is small.
- the content of silicon atoms in the chemical heat storage material is more than 33.2% by mass, the amount of heat that can be released from the chemical heat storage material tends to decrease due to a decrease in calcium oxide.
- the content of beryllium atoms in the chemical heat storage material is 3.2 to 24.4 mass%.
- the boron atom content is preferably 0.7 to 12.6% by mass
- the silicon atom content is preferably 8.7 to 37.1% by mass.
- the content of magnesium atoms in the chemical heat storage material is 8.3 to 46.5% by mass, and the content of boron atoms is 0.
- the silicon atom content is preferably 6.2 to 35.1% by mass.
- the content of strontium atoms in the chemical heat storage material is 24.5 to 75.8% by mass, and the content of boron atoms is 0.
- the silicon atom content is preferably 2.8 to 28.6% by mass.
- the content of barium atoms in the chemical heat storage material is 33.7 to 83.1% by mass, and the content of boron atoms is 0.
- the silicon atom content is preferably 2.0 to 25.0% by mass.
- the Group 2 element compound is calcium oxide, magnesium oxide, strontium oxide, and barium oxide
- the preferable content in terms of mass of each component is different. However, if these are the contents in terms of substance amount, they are equivalent.
- two or more kinds selected from calcium oxide, magnesium oxide, strontium oxide and barium oxide may be used in combination.
- the chemical heat storage material may contain components other than the Group 2 element compound, the boron compound, and the silicone polymer as necessary.
- the chemical heat storage material becomes a porous material by being formed using a chemical heat storage material forming composition described later as a raw material.
- the chemical heat storage material can be processed into an arbitrary shape using a chemical heat storage material forming composition described later as a raw material.
- the heat released from the chemical heat storage material can be used by being transferred to the outside by the heat exchanged fluid G3 or the heat exchange device, for example.
- the chemical heat storage material can repeat heat generation and heat storage.
- water vapor is brought into contact with the chemical heat storage material.
- the water that has come into contact with the chemical heat storage material penetrates into the pores formed in the chemical heat storage material, and heat is generated well inside the chemical heat storage material. If too much water is brought into contact with the chemical heat storage material, the water itself consumes heat and reduces the total calorific value.
- the heat generated from the chemical heat storage material is recovered by the heat medium of the heat exchange device.
- the method of bringing water vapor into contact with the chemical heat storage material is not limited, and any of ventilation of water vapor to the chemical heat storage material, immersion of the chemical heat storage material in liquid water, addition of liquid water to the chemical heat storage material (dropping, spraying, etc.) It may be. Especially, since it is easy to make it contact with a chemical heat storage material uniformly, it is preferable to make water vapor contact a chemical heat storage material by ventilation
- the chemical heat storage material containing a Group 2 element compound such as calcium hydroxide generated by hydration of calcium oxide or the like is heated.
- the hydroxide of the Group 2 element compound in the chemical heat storage material is dehydrated and returns to the state before the exothermic process (for example, calcium oxide). Water vapor generated in the heat storage process is recovered as necessary.
- the volume of the chemical heat storage material increases. More specifically, the volume of the Group 2 element compound in the chemical heat storage material increases by about 20% as the chemical heat storage material hydrates and generates heat. Conversely, in the heat storage process, the volume of the Group 2 element compound in the chemical heat storage material decreases as it dehydrates and stores heat.
- the repeated increase and decrease in the volume of the chemical heat storage material causes the chemical heat storage material formed in a desired shape to collapse and become fine powder. Since the chemical heat storage material that can be used in each of the embodiments described above is porous, the chemical heat storage material itself can absorb the shape distortion caused by the increase and decrease in volume. Moreover, the chemical heat storage material according to the present embodiment is considered to increase flexibility by containing a boron compound. Therefore, the chemical heat storage material that can be used in each of the above-described embodiments is difficult to collapse even when heat generation and heat storage are repeated, and has high strength.
- the chemical heat storage material forming composition for forming the chemical heat storage material that can be used in each embodiment described above includes a Group 2 element compound, a boron-containing compound, alkoxysilane, a hydrolyzate thereof, and It contains at least one selected from the group consisting of the condensate and a resin. Said chemical heat storage material is formed using the composition for chemical heat storage material formation which can be used for each embodiment mentioned above.
- the Group 2 element compound contained in the chemical heat storage material forming composition is the same as the Group 2 element compound contained in the chemical heat storage material. However, it is preferable to use a hydrated Group 2 element compound as the Group 2 element compound contained in the chemical heat storage material forming composition. If the hydrated Group 2 element compound is contained in the chemical heat storage material forming composition, the Group 2 element compound is dehydrated and the volume is reduced in the firing step in the formation of the chemical heat storage material described later. Therefore, if the chemical heat storage material is formed by using the chemical composition for forming a chemical heat storage material containing the hydrated Group 2 element compound in this way, even if the volume is expanded, it is difficult for distortion to occur. It tends to be difficult. Examples of the Group 2 element compound contained in the chemical heat storage material forming composition include calcium hydroxide, magnesium hydroxide, strontium hydroxide, and barium hydroxide.
- the chemical heat storage material forming composition contains at least one of calcium hydroxide and magnesium hydroxide as the Group 2 element compound. As shown in Table 1, calcium hydroxide and magnesium hydroxide have high heat storage operation temperature and heat storage density.
- the chemical heat storage material forming composition preferably contains at least one selected from the group consisting of boric acid, trialkyl borates and triaryl borates as the boron-containing compound.
- the chemical heat storage material forming composition contains these boron-containing compounds, the flexibility of the silicone polymer in the chemical heat storage material is improved.
- the chemical heat storage material forming composition contains a trialkyl borate as the boron-containing compound. Examples of the trialkyl borate include trimethyl borate and triethyl borate. Trialkyl borate has high reactivity with alkoxysilane and the like described later, and improves the flexibility of the silicone polymer in the chemical heat storage material. It is considered that the strength of the chemical heat storage material in the processed state is improved by improving the flexibility of the silicone polymer in the chemical heat storage material.
- At least one selected from the group consisting of an alkoxysilane, a hydrolyzate thereof, and a condensate thereof contained in the chemical heat storage material forming composition becomes a silicone polymer in the chemical heat storage material to form a dense three-dimensional structure.
- the alkoxysilane include tetraalkoxysilane, alkyltrialkoxysilane, dialkylalkoxysilane, and partial condensates thereof.
- MKC silicate MS51 condensate of tetraalkoxysilane manufactured by Mitsubishi Chemical Corporation
- ethyl silicate 40 condensate of tetraethoxysilane manufactured by Colcoat Co., Ltd.
- the silicone polymer can form a dense three-dimensional structure, at least one of triethoxysilane and tetraethoxysilane, its hydrolyzate and its condensation It is preferably at least one selected from the group consisting of products.
- the resin contained in the chemical heat storage material forming composition serves as a thickener and is necessary for maintaining the shape of the chemical heat storage material.
- the resin contained in the composition for forming a chemical heat storage material is not limited as long as it plays the above-described role, and may be any of natural resins and synthetic resins. Polysaccharides such as cellulose, proteins, polyphenols, One type can be selected from a polyester resin, a polyether resin, an acrylic resin, a polyurethane resin, a fluororesin, an epoxy resin, or a plurality of types can be used in combination.
- the composition for forming a chemical heat storage material preferably contains, as a resin, at least one selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyethylene glycol, polyethylene oxide, a hydroxyl group-containing acrylic resin, and a butyral resin. Since these resins are hydroxyl group-containing resins, they have a high affinity with Group 2 element compounds and alkoxysilanes.
- the chemical heat storage material forming composition preferably contains a hydroxyl group-containing acrylic resin or butyral resin.
- the resin contained in the chemical heat storage material forming composition preferably has a volume average molecular weight of 100 to 5,000,000. The volume average molecular weight of the resin contained in the chemical heat storage material forming composition can be measured by gel permeation chromatography (GPC) using a polystyrene standard sample standard.
- examples of the butyral resin include ESREC B series and K series (both manufactured by Sekisui Chemical Co., Ltd.).
- a secondary hydroxyl monomer such as 2-hydroxybutyl (meth) acrylate, a tertiary hydroxyl monomer such as 2-hydroxy-2-methylpropyl (meth) acrylate
- polymerizing the monomer liquid mixture containing another monomer by a conventional method can be mentioned.
- resin which the composition for chemical heat storage material formation contains is removed in the baking process of the formation method of the chemical heat storage material mentioned later.
- the chemical heat storage material forming composition preferably contains glass fiber.
- the strength of the chemical heat storage material in the processed state is improved.
- the chemical heat storage material forming composition may contain at least one of a substance made of carbon and a hydrocarbon.
- the chemical heat storage material forming composition contains at least one of a carbon substance and a hydrocarbon, so that more pores are formed inside and on the surface of the chemical heat storage material, thereby stabilizing the shape of the chemical heat storage material.
- Examples of the carbon material include carbon black, graphite, and carbon nanofiber.
- Examples of the hydrocarbon include paraffin, olefin, and cycloalkane.
- the composition for forming a chemical heat storage material includes carbon black and hydrocarbon. It is preferable to contain.
- the substance and hydrocarbon which consist of carbon which the composition for chemical heat storage material formation contains are removed in the baking process of the formation method of the chemical heat storage material mentioned later.
- the chemical heat storage material forming composition preferably contains a solvent in order to disperse the above components.
- a solvent at least one of an organic solvent and water can be used.
- the organic solvent include hydrocarbons such as toluene and xylene, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, cellosolve acetate and butylcellosolve, alcohols and the like.
- composition for forming a chemical heat storage material may contain components other than the above components as necessary.
- the chemical heat storage body 10 for example, powder, pulverized material, molded product, heat storage device 1 or heat storage chambers 20 of the heat exchange devices 100 and 200, partition walls 22, and heat of the heat exchange device 300 are used.
- a chemical heat storage material forming composition is applied to the exchange surface (for example, the heat exchange circuit 80) and then baked.
- a chemical heat storage body 10 for example, a granular body having a particle size larger than a powdery material having a particle size larger than 0 mm and not larger than 0.05 mm, the size of which is one chemical heat storage body 10.
- the maximum diagonal length DLmax which is the distance between the farthest vertices, is a size exceeding 0.05 mm.
- the maximum diagonal length DLmax of one chemical heat storage element 10 is smaller than 0.05 mm, the pressure loss in ventilation becomes too large, and the ventilation function tends to be greatly impaired. In addition, since dusting starts to occur, the handling tends to be impaired.
- “powdering” refers to a state in which the powder rises and the suspension in the air can be visually confirmed.
- the chemical heat storage body as the molded product can be classified according to the difference in the manufacturing method of the molding process (hereinafter referred to as “molding process” widely refers to a “process to form a certain shape”).
- molding process widely refers to a “process to form a certain shape”.
- “granule” formed by granulation or “pellet” formed by molding herein, “molding” refers to “molding using a mold”
- “Pellets” also include those obtained by further molding powders and granules.
- the manufacturing method of the chemical heat storage body 10 is not limited to these two types.
- the chemical heat storage body that can be used in each embodiment described above has high strength in a processed state by containing a Group 2 element compound, a boron compound, and a silicone polymer.
- the chemical heat storage body is a granule or a pellet, pulverization due to an increase or decrease in the volume of the chemical heat storage material is prevented, and it can withstand repeated heat generation
- the chemical heat storage body forming method according to the present embodiment includes, for example, a processing method including a forming step and a firing step.
- the molding step is a step of molding a chemical heat storage material forming composition in which the above components are mixed by an arbitrary method. For example, if the chemical heat storage material is a “granule”, it is a manufacturing method by granulation. If it is “pellet”, it is a production method by molding using a mold.
- the granule type production method examples include the following granulation methods, such as rolling granulation, fluidized bed granulation, stirring granulation, compression granulation, extrusion granulation, crush granulation, and the like.
- the granule type production method may be a granulation method other than these, or may be processed by combining two or more granulation methods.
- rolling granulation or crushing granulation is suitably used as the granulation method.
- the molded chemical heat storage material forming composition is fired after the molding step.
- the firing step can be performed with an electric furnace or the like, but the firing apparatus is not particularly limited.
- the chemical heat storage material forming composition is fired in the firing step, the resin, the substance made of carbon, and the hydrocarbon are vaporized and removed from the chemical heat storage material.
- the chemical heat storage material has pores formed by removing a resin, a substance made of carbon, hydrocarbons, and the like.
- the molded chemical heat storage material forming composition is preferably fired at 200 to 1200 ° C., more preferably 300 to 1000 ° C.
- the chemical heat storage material tends to collapse due to insufficient firing, and the temperature is higher than 1200 ° C.
- the Group 2 element compound cannot maintain the oxide state, and the heat storage performance of the chemical heat storage material tends to be lowered.
- the formed chemical heat storage material forming composition is preferably fired for 30 to 120 minutes.
- the resin, the substance made of carbon, and the hydrocarbon may remain in the chemical heat storage material after the firing step.
- the firing time is less than 30 minutes, the chemical heat storage material tends to collapse due to insufficient firing, and when longer than 120 minutes, bubbles are generated inside the chemical heat storage material. After all, chemical heat storage materials tend to collapse easily.
- the chemical heat storage body 10 used in each embodiment of the present invention can be manufactured through a granulation step and a firing step.
- the “particle size” of the chemical heat storage element 10 is less than 3 mm by using a laser diffraction type particle size distribution measuring device (for example, SALD-3100 manufactured by Shimadzu Corporation), etc. Can be measured.
- a granule type chemical heat storage body 10 having a particle size exceeding 3 mm can be measured by arbitrarily extracting 100 chemical heat storage bodies 10 and measuring the maximum diagonal length with a micro gauge.
- the particle size of the granule-type chemical heat storage element 10 is the median diameter.
- the chemical heat storage body 10 accommodated in the heat storage body chamber is not limited to the granules obtained by the same granulation, but may be a mixture of two or more kinds of granules obtained by different granulations.
- the minimum diameter (particle diameter) of the chemical heat storage body 10 measured in the particle size measurement method is preferably, It is 0.05 mm or more, desirably 0.1 mm or more, and more desirably 0.5 mm or more.
- the maximum diameter (particle size) of the granule type chemical heat storage element 10 is preferably 100 mm or less, desirably 10 mm or less, and more desirably 8 mm or less. However, the maximum diameter (particle diameter) of the granule-type chemical heat storage element 10 may be larger than 100 mm. However, if productivity is considered, the pellet type chemical heat storage body 10 mentioned later is preferable.
- the pellet-type molding process uses the plasticity of the chemical heat storage material according to the present invention to perform extrusion molding, compression molding with a mold or tableting, injection molding, sheet molding and subsequent die-cutting process, etc. (hereinafter referred to as “extrusion molding”). It is also preferable to use extrusion molding. In the case of extrusion molding, compared with other moldings, the penetration rate as equipment is high, and it is excellent in both economical efficiency and productivity.
- the same baking process as that for producing the granule type is performed, and the pellet type chemical heat storage body 10 is obtained through this baking process.
- the shape of the chemical heat storage body 10 is not limited as long as the shape of the pellet type chemical heat storage body 10 is a solid obtained by the above-described extrusion molding or the like.
- the shape of the chemical heat storage element 10 is desirably a hollow shape, for example, a cylindrical shape as shown in FIG. 4 from the viewpoint of air permeability.
- the term “hollow” as used herein means that “thickening” is provided inside.
- “Meat removal” includes not only a cylindrical shape shown in FIG. 4 but also a hollow in which one of them is opened, a space in which the periphery is closed, or the like.
- the dimensions of the pellet-type chemical heat storage element 10 are shown using symbols attached to FIG.
- the specific surface area of the pellet type chemical heat storage body 10 shown in FIG. 4 is obtained after determining the volume and surface area of the cylinder from the cylinder height L, the inner peripheral radius r1 and the outer peripheral radius r2 as the volume V and the surface area S of the chemical heat storage body 10. Furthermore, the ratio of the volume V and the surface area S can be obtained. From this calculation result, it can be seen that the pellet-type chemical heat storage body 10 shown in FIG. 4 is more advantageous for ventilation because k becomes closer to 1 and L becomes smaller as L becomes smaller.
- the range of desirable dimensions is shown using the cylinder height L, the outer radius r2, and the ratio k.
- desirable dimensions described later do not limit the shape of the pellet type chemical heat storage body 10 shown in FIG.
- the pellet type chemical heat storage element 10 shown in FIG. 4 can be molded without any trouble.
- it is preferable to use a dimension close to L 2 ⁇ r2 as the cylinder height L.
- the outer radius r2 is 3 mm to 300 mm.
- the pellet type chemical heat storage body 10 shown in FIG. 4 is suitable for production by extrusion molding. If the outer peripheral radius r2 is 3 mm or less, the granular-type chemical heat storage body 10 is preferable in terms of productivity. If the ratio k is 0.1 or less, the air permeability tends to be poor, and if it is 0.95 or more, it tends to be difficult to mold the chemical heat storage element 10 having strength.
- Example 1 Polyethylene glycol resin (manufactured by Meisei Chemical Industry Co., Ltd., trade name “Alcox”), butyral resin (trade name “Mowital B20H”, trade name “Mowital B20H”) and ethyl silicate in the amounts (unit: parts by mass) shown in Table 2 Low condensate (Corcoat Co., Ltd., trade name “ethyl silicate 28”), organic solvent (Nippon Emulsifier Co., Ltd., trade name “MPG-130”, polyethylene glycol methyl ether), and trimethyl borate (Tokyo Chemical Industry) A trade name “Trimethyl Borate” manufactured by Co., Ltd.) was mixed.
- This chemical heat storage material forming composition was formed into a pellet (cylindrical, about 5 mm in diameter, about 10 mm in height).
- the molded chemical heat storage material forming composition was put in an electric furnace and baked at 1000 ° C. for 1 hour to obtain a pellet-shaped chemical heat storage material.
- calcium hydroxide dehydrates by being fired, and becomes calcium oxide.
- Example 2 to 13 and Comparative Examples 1 to 4 A chemical heat storage material forming composition and a chemical heat storage material were obtained by the same process as in Example 1 except that the components of the chemical heat storage material forming composition were changed to the amounts shown in Tables 2 to 4.
- glass fiber manufactured by Central Glass Fiber Co., Ltd., trade name “milled fiber”
- boric acid was used in place of trimethyl borate.
- magnesium hydroxide, strontium hydroxide, and barium hydroxide were used in place of calcium hydroxide.
- Table 2 to Table 2 show the content (mass%) of each atom in the total of calcium atoms, boron atoms, silicon atoms, and oxygen atoms contained in chemical heat storage materials as "Atom content in chemical heat storage materials”. This is shown in FIG.
- the “atom content in the chemical heat storage material” was determined by elemental analysis of the chemical heat storage material with a fluorescent X-ray analyzer (XRF).
- the calorific value was measured according to the following procedure. First, a predetermined amount of water was put into a container covered with a heat insulating material, and a predetermined amount (for example, 5 g) of a chemical heat storage material was put into the water. The water in the container was stirred by a magnetic stirrer, and the temperature rise was followed by a sheathed thermocouple. The temperature measured by the sheath-type thermocouple of the water charged with the chemical heat storage material of the example greatly increased.
- the calorific value Q (unit: J) of the chemical heat storage material can be obtained by the following equation (1).
- ⁇ T in the formula (1) is a value (unit: K) obtained by subtracting the temperature of water immediately before the chemical heat storage material is added from the maximum temperature of the water after the chemical heat storage material is charged.
- W is the mass (unit: g) of water in the cup, and Cp is the specific heat of water (J / g ⁇ K).
- Q ⁇ T ⁇ W ⁇ Cp (1)
- the chemical heat storage materials of Examples 1 to 4 and 6 to 8 are comparative examples 1 for both “after heat generation” and “after firing”. It was found that the strength evaluation result was better than the chemical heat storage material. From this result, the chemical heat storage material formed using the chemical heat storage material forming composition containing the Group 2 element compound, the butyral resin, the boron-containing compound, and the low condensate of ethyl silicate is boron. It was confirmed that the strength in the molded state was higher than that of the chemical heat storage material formed using the chemical heat storage material forming composition not containing the contained compound.
- Examples 7 to 13 are also examples 1 to 4 for both “after heat generation” and “after firing”. It was found to have a strength comparable to that of chemical heat storage materials. From these results, it was confirmed that a compound comprising a Group 2 element other than calcium can also be used for a chemical heat storage material that can be used in the heat storage device and the heat exchange device according to the present invention.
- the temperature of the water in which the chemical heat storage materials of Examples 1 to 13 were added rose greatly. From this result, it was confirmed that the pellet-shaped chemical heat storage materials of Examples 1 to 13 have heat generation performance.
- the calorific value Q of the pellet-shaped chemical heat storage materials of Examples 1 to 13 was equivalent to the theoretical value of the calorific value obtained from the amount of calcium oxide contained in each chemical heat storage material.
- the chemical heat storage material formed using the chemical heat storage material formation composition containing a group 2 element compound, a boron containing compound, alkoxysilane etc., and resin particles are as mentioned above. Since it is bound, water (water vapor) is immersed into the inside of the pellet as compared to the pellet-shaped chemical heat storage material containing the clay mineral (for example, the chemical heat storage material described in Patent Document 1 above). It is considered easy.
- the chemical heat storage material of the example in which water (water vapor) is easily immersed to the inside is expected to have high heat generation performance (ability to raise the temperature of water in the above “heat generation performance evaluation”).
- the place mentioned above is considered to be the same also about the chemical heat storage body of a granule other than a pellet.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Heating Systems (AREA)
Abstract
The present invention provides: a heat storage device which uses a chemical heat storage material that has high strength and heat conductivity in a processed state; and a heat exchange device. This heat storage device (1) is provided with: a chemical heat storage body (10); and a heat storage body chamber (20) in which the chemical heat storage body (10) is contained. The chemical heat storage body (10) is composed of a chemical heat storage material that contains a group 2 element compound, a boron compound and a silicone polymer; and the heat storage body chamber (20) has a first port (20a) through which a fluid (G1, G2) is able to be introduced. A heat exchange device (100) is provided with this heat storage device (1); and the chemical heat storage body (10) functions as a heat source body in this heat exchange device (100).
Description
本発明は、蓄熱装置及び熱交換装置に関する。
The present invention relates to a heat storage device and a heat exchange device.
近年、化石燃料の消費量を減少させて省エネルギ化を達成するために、工場や発電所における排熱を蓄えて利用する、蓄熱技術の開発が進められている。このような蓄熱技術としては、例えば水から氷への変化に代表されるような、物質の相転移を伴って熱を蓄える技術(潜熱蓄熱)が知られている。
Recently, in order to reduce energy consumption by reducing fossil fuel consumption, the development of heat storage technology that stores and uses waste heat in factories and power plants has been promoted. As such a heat storage technique, for example, a technique (latent heat storage) that stores heat accompanied by a phase transition of a substance, such as a change from water to ice, is known.
潜熱蓄熱では、一般的に熱を蓄えておくことが可能な時間が短い傾向にある。また、潜熱蓄熱は、単位体積当たりに蓄熱可能な熱量(蓄熱密度)が低い傾向にある。従って、潜熱蓄熱では、長時間に渡る蓄熱や熱の輸送は難しい。
このような状況に鑑みて、蓄熱技術の中でも、長時間の蓄熱が可能で、且つ、蓄熱密度が高いことから、熱の輸送を容易にすることができる化学蓄熱材に注目が集まっている。 In latent heat storage, the time during which heat can be stored generally tends to be short. The latent heat storage tends to have a low amount of heat (heat storage density) that can be stored per unit volume. Therefore, it is difficult to store heat or transport heat for a long time in latent heat storage.
In view of such a situation, among heat storage technologies, chemical heat storage materials that can store heat for a long time and have a high heat storage density have attracted attention.
このような状況に鑑みて、蓄熱技術の中でも、長時間の蓄熱が可能で、且つ、蓄熱密度が高いことから、熱の輸送を容易にすることができる化学蓄熱材に注目が集まっている。 In latent heat storage, the time during which heat can be stored generally tends to be short. The latent heat storage tends to have a low amount of heat (heat storage density) that can be stored per unit volume. Therefore, it is difficult to store heat or transport heat for a long time in latent heat storage.
In view of such a situation, among heat storage technologies, chemical heat storage materials that can store heat for a long time and have a high heat storage density have attracted attention.
化学蓄熱について、より具体的に説明する。例えば、酸化カルシウム/水系の化学蓄熱であれば、化学蓄熱材中の酸化カルシウムが水和する際に発生する熱を放出することができ、逆に、酸化カルシウムが水和することで生成した水酸化カルシウムを加熱あるいは減圧して脱水することにより化学蓄熱材に蓄熱することができる。このように、化学蓄熱材を用いれば、物質の化学的変化に伴う発熱と吸熱を利用して、放熱と蓄熱を繰り返すことが可能になる。
More specific explanation of chemical heat storage. For example, in the case of calcium oxide / water type chemical heat storage, the heat generated when the calcium oxide in the chemical heat storage material is hydrated can be released, and conversely, the water generated by the hydration of calcium oxide. Heat can be stored in the chemical heat storage material by dehydrating calcium oxide by heating or decompressing. In this way, if a chemical heat storage material is used, it is possible to repeat heat dissipation and heat storage using heat generation and heat absorption associated with chemical changes in substances.
化学蓄熱材は、例えば熱交換器に充填され、熱回収される。酸化カルシウム等の無機粉体を化学蓄熱材とする熱交換器(以下、熱交換型反応器とも言う)で熱回収を行う場合、化学蓄熱材は粉末状では熱伝導率が低いことから、熱交換面から離れている場所からの熱の回収が難しく、熱の回収効率が低くなってしまう傾向にある。また、粉末状の化学蓄熱材では、充填時に隙間ができてしまうこともあり、取り扱いが難しい。
The chemical heat storage material is filled in, for example, a heat exchanger and recovered. When heat recovery is performed with a heat exchanger that uses inorganic powder such as calcium oxide as a chemical heat storage material (hereinafter also referred to as a heat exchange type reactor), the chemical heat storage material is in powder form and has low thermal conductivity. Heat recovery from a place away from the exchange surface is difficult, and heat recovery efficiency tends to be low. In addition, the powdered chemical heat storage material may form a gap during filling, and is difficult to handle.
このような問題に対して、粉末状に比べて熱伝導性が高く、取り扱いが容易なペレット状の化学蓄熱材を用いる技術が開示されている(例えば、特許文献1参照)。また、熱交換型反応器の熱交換効率を向上させるために、熱交換面に化学蓄熱材からなる層を形成する技術も知られている(例えば、特許文献2参照)。
To solve such a problem, a technique using a pellet-shaped chemical heat storage material that has higher thermal conductivity than powder and is easy to handle has been disclosed (for example, see Patent Document 1). In addition, in order to improve the heat exchange efficiency of the heat exchange type reactor, a technique of forming a layer made of a chemical heat storage material on the heat exchange surface is also known (for example, see Patent Document 2).
ところで、化学蓄熱材に用いられる、酸化カルシウム等の無機粉体は、水和することで体積が増大し、逆に脱水されることにより体積が減少する。特許文献1で開示された技術では、粘土鉱物を含有させることでペレット状の化学蓄熱材の強度を向上させ、化学蓄熱材の体積の増大や減少による微粉化を防ぐことを目的としている。しかし、特許文献1で開示された技術は、ペレット状に成形した化学蓄熱材の強度を向上させる技術としては十分満足できるものではない。また、特許文献2で開示された技術では、熱交換面に形成された化学蓄熱材の強度については考慮されていない。
By the way, inorganic powders such as calcium oxide used for chemical heat storage materials increase in volume when hydrated, and conversely decrease in volume when dehydrated. The technique disclosed in Patent Document 1 aims to improve the strength of the pellet-shaped chemical heat storage material by containing clay mineral and prevent pulverization due to the increase or decrease in the volume of the chemical heat storage material. However, the technique disclosed in Patent Document 1 is not sufficiently satisfactory as a technique for improving the strength of a chemical heat storage material formed into a pellet. Moreover, in the technique disclosed by patent document 2, the intensity | strength of the chemical heat storage material formed in the heat exchange surface is not considered.
また、ペレット状に成形した化学蓄熱材は、その内部に水が浸透し難いことから、無機粉体の含有量と比べて十分な発熱性能(化学蓄熱材が投入される水の温度を上昇させる能力)を有さない場合がある。
In addition, since the chemical heat storage material molded into pellets does not easily allow water to penetrate inside, it has sufficient heat generation performance (increasing the temperature of water into which the chemical heat storage material is charged) compared to the content of the inorganic powder. May not have the ability).
このように、未だに、ペレット状等に成形等の加工された状態における、強度及び熱伝導率が高い化学蓄熱材については見出されていないのが現状である。
Thus, the present situation is that no chemical heat storage material having high strength and high thermal conductivity in a state of being processed into a pellet or the like has been found.
本発明は、上記課題を鑑みてなされたものであり、加工された状態における強度及び熱伝導率が高い化学蓄熱材を有した蓄熱装置及び熱交換装置を提供することを目的とする。
This invention is made | formed in view of the said subject, and it aims at providing the thermal storage apparatus and heat exchange apparatus which have a chemical thermal storage material with the high intensity | strength and heat conductivity in the processed state.
本発明に係る蓄熱装置は、化学蓄熱体と、前記化学蓄熱体を収容した蓄熱体チャンバと、を備え、前記化学蓄熱体は、第2族元素化合物と、ホウ素化合物と、シリコーンポリマーと、を含有する化学蓄熱材からなり、前記蓄熱体チャンバは、流体を導入可能な第1ポートを有する。
A heat storage device according to the present invention includes a chemical heat storage body, and a heat storage chamber containing the chemical heat storage body, wherein the chemical heat storage body includes a Group 2 element compound, a boron compound, and a silicone polymer. It consists of the chemical heat storage material to contain, The said thermal storage body chamber has a 1st port which can introduce | transduce a fluid.
また、前記第2族元素化合物は、酸化カルシウムであり、前記化学蓄熱材における、カルシウム原子の含有量は13~59質量%であり、ホウ素原子の含有量は0.4~11.3質量%であり、ケイ素原子の含有量は4.8~33.2質量%であることが好ましい。
The Group 2 element compound is calcium oxide, and the chemical heat storage material has a calcium atom content of 13 to 59% by mass and a boron atom content of 0.4 to 11.3% by mass. The silicon atom content is preferably 4.8 to 33.2% by mass.
また、前記第2族元素化合物は、酸化マグネシウムであり、前記化学蓄熱材における、マグネシウム原子の含有量は8.3~46.5質量%であり、ホウ素原子の含有量は0.5~11.9質量%であり、ケイ素原子の含有量は6.2~35.1質量%であることが好ましい。
The Group 2 element compound is magnesium oxide, and the chemical heat storage material has a magnesium atom content of 8.3 to 46.5% by mass, and a boron atom content of 0.5 to 11%. The content of silicon atoms is preferably 6.2 to 35.1% by mass.
前記蓄熱体チャンバは、前記流体を排出可能な第2ポートを有する流通式チャンバとすることができる。
The heat storage chamber may be a flow-through chamber having a second port that can discharge the fluid.
前記蓄熱体チャンバは、前記第1ポートに通じる閉鎖空間を形成している密閉式チャンバとすることができる。
The heat storage chamber may be a sealed chamber that forms a closed space that communicates with the first port.
本発明に係る熱交換装置は、上記の蓄熱装置を備え、前記化学蓄熱体が熱源体である。
A heat exchange device according to the present invention includes the above heat storage device, and the chemical heat storage body is a heat source body.
本発明によれば、加工された状態における強度及び熱伝導率が高い化学蓄熱材を有した蓄熱装置及び熱交換装置を提供することができる。
According to the present invention, it is possible to provide a heat storage device and a heat exchange device having a chemical heat storage material having high strength and thermal conductivity in a processed state.
以下、図面を参照して、本発明の様々な実施形態について説明する。
Hereinafter, various embodiments of the present invention will be described with reference to the drawings.
<蓄熱装置及び熱交換装置>
図1中、符号1は、本発明の第1実施形態に係る、蓄熱装置である。蓄熱装置1は、後述するように、本発明の第1実施形態に係る、熱交換装置100としても、機能させることができる。 <Heat storage device and heat exchange device>
In FIG. 1, the code |symbol 1 is the thermal storage apparatus based on 1st Embodiment of this invention. As will be described later, the heat storage device 1 can also function as the heat exchange device 100 according to the first embodiment of the present invention.
図1中、符号1は、本発明の第1実施形態に係る、蓄熱装置である。蓄熱装置1は、後述するように、本発明の第1実施形態に係る、熱交換装置100としても、機能させることができる。 <Heat storage device and heat exchange device>
In FIG. 1, the code |
符号10は、化学蓄熱体である。化学蓄熱体10は、水分子H2Oと反応して発熱し、反応終了後は、加熱あるいは減圧により水分子H2Oを分離することで発熱性能が復元される、可逆的な操作が可能な化学蓄熱材からなる。前記化学蓄熱材は、後述するように、第2族元素化合物と、ホウ素化合物と、シリコーンポリマーと、を含有する。
Reference numeral 10 denotes a chemical heat storage body. The chemical heat accumulator 10 reacts with water molecules H 2 O to generate heat, and after the reaction is completed, the heat generation performance is restored by separating the water molecules H 2 O by heating or decompression, allowing reversible operation. It consists of a simple chemical heat storage material. As will be described later, the chemical heat storage material contains a Group 2 element compound, a boron compound, and a silicone polymer.
符号20は、化学蓄熱体10を収容した蓄熱体チャンバである。本実施形態では、蓄熱体チャンバ20は、内部通路を有する筒状部材21と、筒状部材21の内部通路内に配置されて互いに筒状部材21の軸方向に間隔を置いて配置される、2つの隔壁22とで構成されている。2つの隔壁22はそれぞれ、金属メッシュ等の通気性を有する部材で構成されている。本実施形態では、筒状部材21及び2つの隔壁22で構成された蓄熱体チャンバ20に、複数の化学蓄熱体10が充填されている。
Reference numeral 20 denotes a heat storage chamber containing the chemical heat storage body 10. In the present embodiment, the heat accumulator chamber 20 is disposed in the tubular member 21 having an internal passage and the internal passage of the tubular member 21 and is spaced from each other in the axial direction of the tubular member 21. It consists of two partition walls 22. Each of the two partition walls 22 is made of a member having air permeability such as a metal mesh. In the present embodiment, a plurality of chemical heat storage bodies 10 are filled in a heat storage body chamber 20 constituted by a cylindrical member 21 and two partition walls 22.
蓄熱体チャンバ20は、流体を導入可能な第1ポート20aを有している。本実施形態では、第1ポート20aは、筒状部材21の一部(筒状部材21の一方の端部)として構成されている。前記流体としては、化学蓄熱体10(前記化学蓄熱材)を熱反応させる第1流体(水分子H2Oを含む気体、例えば、水蒸気)G1の他、化学蓄熱体10(前記化学蓄熱材)からの熱量(反応熱)によって、実際に熱交換(加熱)が行われる第2流体(例えば、室内や室外等の空気やドライエア)G2が挙げられる。蓄熱体チャンバ20への第1流体G1又は第2流体G2の導入(供給)の切換えは、例えば、切換弁によって行うことができる。
The heat accumulator chamber 20 has a first port 20a through which a fluid can be introduced. In the present embodiment, the first port 20a is configured as a part of the cylindrical member 21 (one end portion of the cylindrical member 21). As the fluid, in addition to a first fluid (a gas containing water molecules H 2 O, for example, water vapor) G1 that causes a chemical reaction of the chemical heat storage body 10 (the chemical heat storage material), the chemical heat storage body 10 (the chemical heat storage material). The second fluid (for example, indoor or outdoor air or dry air) G2 in which heat exchange (heating) is actually performed according to the amount of heat (reaction heat) from is included. Switching of introduction (supply) of the first fluid G1 or the second fluid G2 to the heat accumulator chamber 20 can be performed by, for example, a switching valve.
更に、本実施形態では、蓄熱体チャンバ20は、前記流体を排出可能な第2ポート20bを有する流通式チャンバである。本実施形態では、第2ポート20bは、筒状部材21の一部(筒状部材21の他方の端部)として構成されている。第2ポート20bは、化学蓄熱体10を通過して熱交換が行われた第1流体G1又は第2流体G2を、熱交換された流体G3として排出することができる。
Furthermore, in this embodiment, the thermal storage chamber 20 is a flow-through chamber having a second port 20b that can discharge the fluid. In the present embodiment, the second port 20b is configured as a part of the cylindrical member 21 (the other end of the cylindrical member 21). The 2nd port 20b can discharge | emit the 1st fluid G1 or the 2nd fluid G2 which passed the chemical thermal storage body 10 and heat-exchanged as the fluid G3 by which heat exchange was carried out.
次に、本実施形態に係る蓄熱装置1及び熱交換装置100の動作について説明する。
Next, operations of the heat storage device 1 and the heat exchange device 100 according to the present embodiment will be described.
[放熱モード]
本実施形態に係る蓄熱装置1では先ず、第1ポート20aから蓄熱体チャンバ20に第1流体G1を供給する。第1流体G1は、水分子H2Oを含む気体である。第1流体G1の温度は、高温でも低温でもよい。第1流体G1には、例えば、工場のスチーム等の水蒸気が挙げられる。第1流体G1が第1ポート20aから蓄熱体チャンバ20に導入されると、化学蓄熱体10を構成する化学蓄熱材が第1流体G1によって反応を開始する。 [Heat dissipation mode]
In theheat storage device 1 according to this embodiment, first, the first fluid G1 is supplied to the heat storage chamber 20 from the first port 20a. The first fluid G1 is a gas containing water molecules H 2 O. The temperature of the first fluid G1 may be high or low. Examples of the first fluid G1 include water vapor such as factory steam. When the first fluid G1 is introduced from the first port 20a into the heat storage chamber 20, the chemical heat storage material constituting the chemical heat storage body 10 starts to react with the first fluid G1.
本実施形態に係る蓄熱装置1では先ず、第1ポート20aから蓄熱体チャンバ20に第1流体G1を供給する。第1流体G1は、水分子H2Oを含む気体である。第1流体G1の温度は、高温でも低温でもよい。第1流体G1には、例えば、工場のスチーム等の水蒸気が挙げられる。第1流体G1が第1ポート20aから蓄熱体チャンバ20に導入されると、化学蓄熱体10を構成する化学蓄熱材が第1流体G1によって反応を開始する。 [Heat dissipation mode]
In the
第1流体G1は、例えば、化学蓄熱体10での反応が臨界(ここでは、「化学蓄熱体10での放熱が最大となるとき」をいう。)に達するのに必要な水分子H20が化学蓄熱体10に供給されるまで、供給する。本実施形態では、第1流体G1は、第1流体G1の供給開始から所定時間t1まで供給される。本実施形態では、所定時間t1は、化学蓄熱体10での反応が臨界に達するまでに必要な第1流体G1の供給に要する時間である。所定時間t1は、化学蓄熱体10及び第1流体G1の種類や量等によって、予め求めることができる。なお、第1流体G1の供給時間は、所定時間t1より長くすることができ、或いは、所定時間t1よりも短くすることもできる。
The first fluid G1 has, for example, water molecules H 2 0 necessary for the reaction in the chemical heat storage body 10 to reach a criticality (here, “when the heat release in the chemical heat storage body 10 is maximized”). Until the chemical heat storage body 10 is supplied. In the present embodiment, the first fluid G1 is supplied from the start of supply of the first fluid G1 until a predetermined time t1. In the present embodiment, the predetermined time t1 is a time required for supplying the first fluid G1 required until the reaction in the chemical heat storage body 10 reaches the criticality. The predetermined time t1 can be obtained in advance according to the type and amount of the chemical heat storage body 10 and the first fluid G1. The supply time of the first fluid G1 can be longer than the predetermined time t1, or can be shorter than the predetermined time t1.
所定時間t1が経過した後は、第1流体G1の供給を停止し、化学蓄熱体10での反応を継続させる。第1ポート20aからの新たな流体の供給は、例えば、化学蓄熱体10での反応が臨界に達するまで、停止される。本実施形態では、第1ポート20aからの新たな流体の供給は、例えば、化学蓄熱体10の温度、具体的には、蓄熱体チャンバ20内の温度を温度計や温度センサ等の温度検出手段を用いて検出し、当該温度が所定温度、例えば、蓄熱体チャンバ20内の温度が臨界点に達したときの温度となるまで、停止される。但し、第1ポート20aから新たな流体を供給するタイミングは、これに限定されるものではない。また、本実施形態では、第1ポート20aからの新たな流体の供給は、所定時間t1と無関係に行うことができる。
After the predetermined time t1 has elapsed, the supply of the first fluid G1 is stopped and the reaction in the chemical heat storage body 10 is continued. The supply of new fluid from the first port 20a is stopped, for example, until the reaction in the chemical heat storage body 10 reaches a critical value. In the present embodiment, the supply of new fluid from the first port 20a is performed by, for example, detecting the temperature of the chemical heat storage body 10, specifically the temperature in the heat storage body chamber 20, by a temperature detector such as a thermometer or a temperature sensor. And the temperature is stopped until the temperature reaches a predetermined temperature, for example, the temperature when the temperature in the heat storage chamber 20 reaches a critical point. However, the timing for supplying a new fluid from the first port 20a is not limited to this. In the present embodiment, the supply of new fluid from the first port 20a can be performed regardless of the predetermined time t1.
前記所定温度に達した後、本実施形態に係る蓄熱装置1では、第1ポート20aから蓄熱体チャンバ20に第2流体G2を供給する。第1流体G1及び第2流体G2の切換は、例えば、切換弁によって行うことができる。これにより、第2流体G2は、化学蓄熱体10を通過して熱交換された、流体G3として排出される。
After reaching the predetermined temperature, the heat storage device 1 according to the present embodiment supplies the second fluid G2 from the first port 20a to the heat storage body chamber 20. Switching between the first fluid G1 and the second fluid G2 can be performed by, for example, a switching valve. Thereby, the 2nd fluid G2 is discharged | emitted as the fluid G3 which passed the chemical heat storage body 10, and was heat-exchanged.
このように、本実施形態に係る蓄熱装置1は、第1ポート20aから供給される第1流体G1により、化学蓄熱体10での反応が開始されることで、当該化学蓄熱体10が、熱源体として発熱する。このため、蓄熱装置1では、第1ポート20aから供給される第1流体G1を第2流体G2に切り換えれば、第2ポート20bから排出される第2流体G2を、化学蓄熱体10によって熱交換された流体G3として使用することができる。即ち、化学蓄熱装置1は、化学蓄熱体10を熱源体とする熱交換装置100としても機能する。更に、本実施形態に係る蓄熱装置1では、第1ポート20aから供給される第1流体G1を第2流体G2に換えることなく、第1流体G1を第1ポート20aに供給し続けることも可能である。この場合、第2ポート20bから排出される第1流体G1を、化学蓄熱体10によって熱交換された流体G3として使用することができる。
Thus, the heat storage device 1 according to the present embodiment starts the reaction in the chemical heat storage body 10 by the first fluid G1 supplied from the first port 20a, so that the chemical heat storage body 10 becomes a heat source. It generates heat as a body. For this reason, in the heat storage device 1, if the first fluid G1 supplied from the first port 20a is switched to the second fluid G2, the second fluid G2 discharged from the second port 20b is heated by the chemical heat storage body 10. It can be used as the exchanged fluid G3. That is, the chemical heat storage device 1 also functions as a heat exchange device 100 using the chemical heat storage body 10 as a heat source. Furthermore, in the heat storage device 1 according to the present embodiment, it is possible to continue supplying the first fluid G1 to the first port 20a without changing the first fluid G1 supplied from the first port 20a to the second fluid G2. It is. In this case, the first fluid G1 discharged from the second port 20b can be used as the fluid G3 exchanged by the chemical heat storage body 10.
[蓄熱モード]
本実施形態に係る蓄熱装置1では、反応終了後の化学蓄熱体10を加熱あるいは減圧し、脱水することで、化学蓄熱体10の発熱性能が復元される。化学蓄熱体10の加熱は、例えば、電気エネルギが熱エネルギに変換される電熱線や電気炉等を利用して化学蓄熱体10を加熱することにより行い、或いは、高温ガスを蓄熱体チャンバ20の第1ポート20a及び第2ポート20bのいずれか一方に導入して化学蓄熱体10を加熱することにより行う。化学蓄熱体10の減圧は、例えば、蓄熱体チャンバ20の第1ポート20a及び第2ポート20bのいずれか一方を密封し、他方の第1ポート20a又は第2ポート20bから蓄熱体チャンバ20内の空気を吸引することにより行う。これにより、化学蓄熱体10の発熱性能が復元される。 [Heat storage mode]
In theheat storage device 1 according to the present embodiment, the heat generation performance of the chemical heat storage body 10 is restored by heating or depressurizing and dehydrating the chemical heat storage body 10 after completion of the reaction. The chemical heat storage body 10 is heated by, for example, heating the chemical heat storage body 10 using a heating wire or an electric furnace in which electric energy is converted into heat energy, or a high temperature gas is supplied to the heat storage body chamber 20. It introduce | transduces into any one of the 1st port 20a and the 2nd port 20b, and is performed by heating the chemical thermal storage body 10. FIG. The decompression of the chemical heat storage body 10 is performed, for example, by sealing one of the first port 20a and the second port 20b of the heat storage body chamber 20 and in the heat storage body chamber 20 from the other first port 20a or second port 20b. This is done by sucking air. Thereby, the heat generation performance of the chemical heat storage body 10 is restored.
本実施形態に係る蓄熱装置1では、反応終了後の化学蓄熱体10を加熱あるいは減圧し、脱水することで、化学蓄熱体10の発熱性能が復元される。化学蓄熱体10の加熱は、例えば、電気エネルギが熱エネルギに変換される電熱線や電気炉等を利用して化学蓄熱体10を加熱することにより行い、或いは、高温ガスを蓄熱体チャンバ20の第1ポート20a及び第2ポート20bのいずれか一方に導入して化学蓄熱体10を加熱することにより行う。化学蓄熱体10の減圧は、例えば、蓄熱体チャンバ20の第1ポート20a及び第2ポート20bのいずれか一方を密封し、他方の第1ポート20a又は第2ポート20bから蓄熱体チャンバ20内の空気を吸引することにより行う。これにより、化学蓄熱体10の発熱性能が復元される。 [Heat storage mode]
In the
上述のように、本実施形態に係る蓄熱装置1は、放熱及び蓄熱の可逆的な操作が可能な蓄熱装置となると共に、第1ポート20aからの流体(G1及び/又はG2)に熱を与えて、当該流体(G1及び/又はG2)を熱交換された流体G3として排出する熱交換装置100としても機能させることができる。
As described above, the heat storage device 1 according to the present embodiment is a heat storage device capable of reversible operation of heat dissipation and heat storage, and gives heat to the fluid (G1 and / or G2) from the first port 20a. Thus, the fluid (G1 and / or G2) can be made to function as the heat exchange device 100 that discharges the fluid G3 that has undergone heat exchange.
次いで、図2中、符号200は、本発明の第2実施形態に係る、熱交換装置である。熱交換装置200は、図1と同じ蓄熱装置1を有し、化学蓄熱体10が熱源体である。以下の説明において、図1の蓄熱装置1と実質的に同一の部分は、同一の符号を持ってその説明を省略する。
Next, in FIG. 2, reference numeral 200 denotes a heat exchange device according to the second embodiment of the present invention. The heat exchange device 200 has the same heat storage device 1 as in FIG. 1, and the chemical heat storage body 10 is a heat source body. In the following description, parts substantially the same as those of the heat storage device 1 in FIG. 1 have the same reference numerals and description thereof is omitted.
本実施形態に係る、熱交換装置200は、第1流体G1を導入可能な入口ポートP1と、流体G3を排出可能な出口ポートP2と、第2流体G2を導入可能な他の入口ポートP3と、化学蓄熱体10と、第1ポート20aと第2ポート20bとを有して化学蓄熱体10を収容した蓄熱体チャンバ20と、第2ポート20bを開閉する開閉弁V1と、導入口30aを有して蓄熱体チャンバ20を内蔵した加熱チャンバ30と、前記流体(G1)を加熱チャンバ30の導入口30a及び蓄熱体チャンバ20の第1ポート20aの少なくともいずれか一方に導入する分配機構Dと、を備えている。
The heat exchange device 200 according to the present embodiment includes an inlet port P1 that can introduce the first fluid G1, an outlet port P2 that can discharge the fluid G3, and another inlet port P3 that can introduce the second fluid G2. A chemical heat storage body 10, a heat storage body chamber 20 having a first port 20a and a second port 20b and containing the chemical heat storage body 10, an on-off valve V1 for opening and closing the second port 20b, and an inlet 30a. A heating chamber 30 having a built-in heat storage chamber 20 and a distribution mechanism D for introducing the fluid (G1) into at least one of the inlet 30a of the heating chamber 30 and the first port 20a of the heat storage chamber 20. It is equipped with.
本実施形態では、加熱チャンバ30は、蓄熱体チャンバ20との間に形成された空間となっており、当該空間には、導入口30aを通して予熱用の流体を供給することができる。分配機構Dは、第1流体G1が導入される入口ポートP1と、入口ポートP1と加熱チャンバ30の導入口30aとを連通させた加熱チャンバ側経路R1と、入口ポートP1と蓄熱体チャンバ20の第1ポート20aとを連通させた蓄熱体チャンバ側経路R2と、加熱チャンバ側経路R1及び蓄熱体チャンバ側経路R2を開閉する少なくとも1つの切替弁(V2,V3)と、を備えている。
In this embodiment, the heating chamber 30 is a space formed between the heat storage body chamber 20 and a preheating fluid can be supplied to the space through the introduction port 30a. The distribution mechanism D includes an inlet port P1 into which the first fluid G1 is introduced, a heating chamber side path R1 in which the inlet port P1 and the inlet 30a of the heating chamber 30 communicate with each other, an inlet port P1 and the heat storage chamber 20 A heat storage chamber side path R2 communicating with the first port 20a and at least one switching valve (V2, V3) for opening and closing the heating chamber side path R1 and the heat storage body chamber side path R2 are provided.
本実施形態では、分配機構Dにおける、少なくとも1つの前記切替弁は、加熱チャンバ側経路R1に有する開閉弁V2と、蓄熱体チャンバ側経路R2に有する開閉弁V3との、2つの切替弁である。開閉弁V2は、加熱チャンバ側経路R1を開閉し、開閉弁V3は、蓄熱体チャンバ側経路R2を開閉する。加熱チャンバ側経路R1及び蓄熱体チャンバ側経路R2にそれぞれ、開閉弁V2又は開閉弁V3を設けたことにより、加熱チャンバ側経路R1からの第1流体G1の供給と、蓄熱体チャンバ側経路R2からの第1流体G1の供給とを、それぞれ、独立して制御することができる。
In the present embodiment, at least one of the switching valves in the distribution mechanism D is two switching valves, that is, an opening / closing valve V2 provided in the heating chamber side path R1 and an opening / closing valve V3 provided in the heat storage body chamber side path R2. . The on-off valve V2 opens and closes the heating chamber side path R1, and the on-off valve V3 opens and closes the heat accumulator chamber side path R2. By providing the opening / closing valve V2 or the opening / closing valve V3 in the heating chamber side path R1 and the heat storage body chamber side path R2, respectively, the supply of the first fluid G1 from the heating chamber side path R1 and the heat storage body chamber side path R2 The first fluid G1 can be independently controlled.
なお、前記分配機構Dにおける、少なくとも1つの前記切替弁は、1つの電気制御弁とすることも可能である。こうした電気制御弁としては、例えば、1つの入力ポートと、2つの出力ポートと、電磁ソレノイド等により電気制御可能な1つのプランジャとを備えるものが挙げられる。前記電気制御弁は、プランジャを動作させることにより、前記入力ポートから2つの前記出力ポートへの経路を切換可能にすると共に前記入力ポートから2つの前記出力ポートへの経路を閉じることができる。符号V4は、入口ポートP1を開閉する開閉弁である。開閉弁V4は、分配機構Dに補助的に設けられた任意の切換弁である。本実施形態では、開閉弁V4は、分配機構Dに対して任意に設けることができ、本実施形態では、フェールセーフ用の切換弁として機能している。
Note that at least one of the switching valves in the distribution mechanism D may be a single electric control valve. As such an electric control valve, for example, a valve provided with one input port, two output ports, and one plunger that can be electrically controlled by an electromagnetic solenoid or the like can be cited. The electric control valve can switch a path from the input port to the two output ports and close a path from the input port to the two output ports by operating a plunger. Reference sign V4 is an open / close valve that opens and closes the inlet port P1. The on-off valve V4 is an arbitrary switching valve provided as an auxiliary to the distribution mechanism D. In the present embodiment, the on-off valve V4 can be arbitrarily provided with respect to the distribution mechanism D, and functions as a fail-safe switching valve in the present embodiment.
本実施形態に係る、熱交換装置200は、掃気媒体が導入される他の入口ポートP3を有して蓄熱体チャンバ20の第1ポート20aに接続された掃気媒体経路R3を備えている。本実施形態では、前記掃気媒体は、第2流体G2である。
The heat exchange device 200 according to the present embodiment includes a scavenging medium path R3 connected to the first port 20a of the heat storage chamber 20 having another inlet port P3 into which the scavenging medium is introduced. In the present embodiment, the scavenging medium is the second fluid G2.
本実施形態では、掃気媒体経路R3は、脱炭酸装置40を有している。脱炭酸装置40では、化学吸着法やリチウムシリケート等を用いた脱炭酸処理が行われ、二酸化炭素CO2が前記掃気媒体から除去される。前記掃気媒体に含まれる二酸化炭素CO2が除去されると、例えば、二酸化炭素CO2が化学蓄熱材に含まれる酸化カルシウムCaOと結び付くことで、炭酸カルシウムCaCO3に変化し、化学蓄熱体10を加熱しても、発熱性能を完全に復元できなくなるような現象が抑制される。
In the present embodiment, the scavenging medium path R3 includes a decarboxylation device 40. In the decarboxylation device 40, a decarboxylation process using a chemical adsorption method, lithium silicate, or the like is performed, and carbon dioxide CO2 is removed from the scavenging medium. When the carbon dioxide CO2 contained in the scavenging medium is removed, for example, the carbon dioxide CO2 is combined with calcium oxide CaO contained in the chemical heat storage material, thereby changing to calcium carbonate CaCO3 and heating the chemical heat storage body 10. However, the phenomenon that the heat generation performance cannot be completely restored is suppressed.
本実施形態では、掃気媒体経路R3は、脱炭酸装置40と蓄熱体チャンバ20の第1ポート20aとの間に開閉弁V5を有している。開閉弁V5は、脱炭酸装置40と第1ポート20aとの間で掃気媒体経路R3を開閉する。
In the present embodiment, the scavenging medium path R3 has an on-off valve V5 between the decarboxylation device 40 and the first port 20a of the heat storage chamber 20. The on-off valve V5 opens and closes the scavenging medium path R3 between the decarboxylation device 40 and the first port 20a.
加熱チャンバ30は、蓄熱体チャンバ20を予熱するためのチャンバである。本実施形態では、例えば、工場内のスチームを第1流体G1として、入口ポートP1から導入口30aを経て加熱チャンバ30に導入することで加熱チャンバ30を加熱し、当該加熱チャンバ30により、蓄熱体チャンバ20を予熱する。これにより、蓄熱体チャンバ20にも供給された第1流体G1に含まれる水分子H2Oが、蓄熱体チャンバ20の温度が低いことにより当該蓄熱体チャンバ20内で液化することにより生じる、化学蓄熱体10の発熱性能の低下を抑制することができる。
The heating chamber 30 is a chamber for preheating the heat accumulator chamber 20. In the present embodiment, for example, the steam in the factory is used as the first fluid G1, and the heating chamber 30 is heated by being introduced from the inlet port P1 into the heating chamber 30 via the inlet 30a. Preheat chamber 20. Thereby, the water molecule H 2 O contained in the first fluid G1 also supplied to the heat storage chamber 20 is liquefied in the heat storage chamber 20 due to the low temperature of the heat storage chamber 20. A decrease in the heat generation performance of the heat storage body 10 can be suppressed.
更に本実施形態では、加熱チャンバ30は、ドレインポートP4を有している。ドレインポートP4は、加熱チャンバ30に連通し、当該加熱チャンバ30内に溜まった過度の第1流体G1を外部に放出させる。本実施形態では、ドレインポートP4は、ドレイン室50に連通している。これにより、加熱チャンバ30内に溜まった過度の第1流体G1を液化させて廃棄又は回収することができる。
Furthermore, in this embodiment, the heating chamber 30 has a drain port P4. The drain port P4 communicates with the heating chamber 30 and discharges the excessive first fluid G1 accumulated in the heating chamber 30 to the outside. In the present embodiment, the drain port P <b> 4 communicates with the drain chamber 50. As a result, the excessive first fluid G1 accumulated in the heating chamber 30 can be liquefied and discarded or recovered.
更に、本実施形態では、ドレインポートP4は、開閉弁V6を有している。本実施形態では、開閉弁V6を閉じることにより、加熱チャンバ30からの第1流体の放出を停止させると共に、加熱チャンバ30内の温度を維持することができる。
Furthermore, in this embodiment, the drain port P4 has an on-off valve V6. In the present embodiment, by closing the on-off valve V6, the discharge of the first fluid from the heating chamber 30 can be stopped and the temperature in the heating chamber 30 can be maintained.
次に、本実施形態に係る熱交換装置200の動作について説明する。
Next, the operation of the heat exchange device 200 according to this embodiment will be described.
[放熱モード]
本実施形態に係る熱交換装置200では先ず、工場のスチームが、開閉弁V4及びV2を開くことで、第1流体G1として加熱チャンバ30に供給される。このとき、ドレインポートP4の開閉弁V6以外の、開閉弁V1、V3及びV5は閉じられた状態にある。これにより、加熱チャンバ30が第1流体G1によって加熱され、蓄熱装置1の蓄熱体チャンバ20を予熱する。 [Heat dissipation mode]
In theheat exchanging device 200 according to the present embodiment, first, the steam in the factory opens the on-off valves V4 and V2, and is supplied to the heating chamber 30 as the first fluid G1. At this time, the on-off valves V1, V3 and V5 other than the on-off valve V6 of the drain port P4 are in a closed state. Thereby, the heating chamber 30 is heated by the 1st fluid G1, and the thermal storage body chamber 20 of the thermal storage apparatus 1 is pre-heated.
本実施形態に係る熱交換装置200では先ず、工場のスチームが、開閉弁V4及びV2を開くことで、第1流体G1として加熱チャンバ30に供給される。このとき、ドレインポートP4の開閉弁V6以外の、開閉弁V1、V3及びV5は閉じられた状態にある。これにより、加熱チャンバ30が第1流体G1によって加熱され、蓄熱装置1の蓄熱体チャンバ20を予熱する。 [Heat dissipation mode]
In the
次いで、蓄熱体チャンバ20の予熱が完了すると、開閉弁V1及びV3を開くことで、蓄熱体チャンバ20内に第1流体G1を供給し、化学蓄熱体10での反応が開始される。開閉弁V1及びV3を開くタイミングは、例えば、蓄熱体チャンバ20内の温度検出手段を基に制御する。
Next, when the preheating of the heat accumulator chamber 20 is completed, the first fluid G1 is supplied into the heat accumulator chamber 20 by opening the on-off valves V1 and V3, and the reaction in the chemical heat accumulator 10 is started. The timing for opening the on-off valves V1 and V3 is controlled based on, for example, temperature detection means in the heat storage body chamber 20.
開閉弁V3は、例えば、化学蓄熱体10での反応が臨界に達するのに必要な水分子H20が化学蓄熱体10に供給されるまで、開かれる。本実施形態では、開閉弁V3は、当該開閉弁V3を開いて蓄熱体チャンバ20に対して第1流体G1の供給を開始してから所定時間t1まで供給される。
The on-off valve V3 is opened until, for example, water molecules H 2 0 necessary for the reaction in the chemical heat storage body 10 to reach the criticality are supplied to the chemical heat storage body 10. In the present embodiment, the on-off valve V3 is supplied until a predetermined time t1 after the on-off valve V3 is opened and the supply of the first fluid G1 to the heat storage chamber 20 is started.
一方、例えば、蓄熱体チャンバ20の温度が所定温度に達すると、開閉弁V3を閉じる一方、開閉弁V5を開くことで、第1ポート20aから蓄熱体チャンバ20に第2流体G2を供給する。これにより、第2流体G2は、第2ポート20bから熱交換装置200の出口ポートP2を通し、化学蓄熱体10を通過して熱交換された、流体G3として排出される。
On the other hand, for example, when the temperature of the heat storage chamber 20 reaches a predetermined temperature, the second fluid G2 is supplied from the first port 20a to the heat storage chamber 20 by closing the on-off valve V3 and opening the on-off valve V5. Thereby, the 2nd fluid G2 passes through the exit port P2 of the heat exchange apparatus 200 from the 2nd port 20b, passes through the chemical heat storage body 10, and is discharged | emitted as the fluid G3.
このように、本実施形態に係る熱交換装置200では、第1ポート20aから供給される第1流体G1により、化学蓄熱体10での反応が開始されることで、当該化学蓄熱体10が、熱源体として発熱する。このため、熱交換装置200では、第1ポート20aから供給される第1流体G1を第2流体G2に切り換えることにより、第2ポート20bから排出される第2流体G2を、化学蓄熱体10によって熱交換された流体G3として使用することができる。更に、本実施形態に係る熱交換装置200では、第1ポート20aから供給される第1流体G1を第2流体G2に換えることなく、第1流体G1を第1ポート20aに供給し続けることも可能である。この場合、第2ポート20bから排出される第1流体G1を、化学蓄熱体10によって熱交換された流体G3として使用することができる。
Thus, in the heat exchange device 200 according to the present embodiment, the chemical heat storage body 10 is started by the reaction of the chemical heat storage body 10 by the first fluid G1 supplied from the first port 20a. It generates heat as a heat source. For this reason, in the heat exchange device 200, the first fluid G1 supplied from the first port 20a is switched to the second fluid G2, so that the second fluid G2 discharged from the second port 20b is supplied by the chemical heat storage body 10. It can be used as the heat exchanged fluid G3. Furthermore, in the heat exchange device 200 according to the present embodiment, the first fluid G1 may be continuously supplied to the first port 20a without changing the first fluid G1 supplied from the first port 20a to the second fluid G2. Is possible. In this case, the first fluid G1 discharged from the second port 20b can be used as the fluid G3 exchanged by the chemical heat storage body 10.
[蓄熱モード]
本実施形態に係る熱交換装置200では、反応終了後の化学蓄熱体10を加熱あるいは減圧することで、化学蓄熱体10の発熱性能が復元される。本実施形態では、化学蓄熱体10の加熱は、例えば、少なくとも、開閉弁V1、V3及びV4又は開閉弁V1及びV5を開いて、熱交換装置200の出口ポートP2から、蓄熱体チャンバ20の第2ポート20bに高温のガスを導入して化学蓄熱体10を加熱することにより行うことができる。あるいは、化学蓄熱体10の減圧は、例えば、開閉弁V1を開いて開閉弁V3若しくは開閉弁V5を閉じ、又は、開閉弁V3若しくは開閉弁V5を開いて開閉弁V1を閉じることにより、蓄熱体チャンバ20の第1ポート20a及び第2ポート20bのいずれか一方を密封し、ポートP1~P3のいずれかを経て、他方の第1ポート20a又は第2ポート20bから蓄熱体チャンバ20内の空気を吸引することにより行うことができる。これにより、反応終了後の化学蓄熱体10を加熱あるいは減圧し、脱水することで、化学蓄熱体10の発熱性能が復元される。 [Heat storage mode]
In theheat exchange device 200 according to the present embodiment, the heat generation performance of the chemical heat storage body 10 is restored by heating or depressurizing the chemical heat storage body 10 after completion of the reaction. In the present embodiment, the chemical heat storage body 10 is heated by, for example, opening at least the on-off valves V1, V3, and V4 or the on-off valves V1 and V5 and starting from the outlet port P2 of the heat exchange device 200. This can be done by introducing a high-temperature gas into the 2-port 20b and heating the chemical heat storage body 10. Alternatively, the chemical heat storage body 10 can be depressurized by, for example, opening the on-off valve V1 and closing the on-off valve V3 or on-off valve V5, or opening the on-off valve V3 or on-off valve V5 and closing the on-off valve V1. Either one of the first port 20a and the second port 20b of the chamber 20 is sealed, and the air in the heat accumulator chamber 20 is removed from the other first port 20a or the second port 20b via any of the ports P1 to P3. This can be done by aspiration. Thereby, the heat generating performance of the chemical heat storage body 10 is restored by heating or depressurizing and dehydrating the chemical heat storage body 10 after completion of the reaction.
本実施形態に係る熱交換装置200では、反応終了後の化学蓄熱体10を加熱あるいは減圧することで、化学蓄熱体10の発熱性能が復元される。本実施形態では、化学蓄熱体10の加熱は、例えば、少なくとも、開閉弁V1、V3及びV4又は開閉弁V1及びV5を開いて、熱交換装置200の出口ポートP2から、蓄熱体チャンバ20の第2ポート20bに高温のガスを導入して化学蓄熱体10を加熱することにより行うことができる。あるいは、化学蓄熱体10の減圧は、例えば、開閉弁V1を開いて開閉弁V3若しくは開閉弁V5を閉じ、又は、開閉弁V3若しくは開閉弁V5を開いて開閉弁V1を閉じることにより、蓄熱体チャンバ20の第1ポート20a及び第2ポート20bのいずれか一方を密封し、ポートP1~P3のいずれかを経て、他方の第1ポート20a又は第2ポート20bから蓄熱体チャンバ20内の空気を吸引することにより行うことができる。これにより、反応終了後の化学蓄熱体10を加熱あるいは減圧し、脱水することで、化学蓄熱体10の発熱性能が復元される。 [Heat storage mode]
In the
上述のように、本実施形態に係る熱交換装置200は、第1ポート20aからの流体(G1及び/又はG2)に熱を与えて、当該流体(G1及び/又はG2)を熱交換された流体G3として排出することができる。
As described above, the heat exchange device 200 according to the present embodiment applies heat to the fluid (G1 and / or G2) from the first port 20a, and the fluid (G1 and / or G2) is heat-exchanged. The fluid G3 can be discharged.
更に、図3中、符号300は、本発明の第3実施形態に係る、熱交換装置である。熱交換装置300では、熱源体は、本発明の第2実施形態に係る、蓄熱装置2である。以下の説明において、図1の蓄熱装置1と実質的に同一の部分は、同一の符号を以ってその説明を省略する。
Furthermore, in FIG. 3, the code | symbol 300 is the heat exchange apparatus based on 3rd Embodiment of this invention. In the heat exchange device 300, the heat source body is the heat storage device 2 according to the second embodiment of the present invention. In the following description, parts substantially the same as those of the heat storage device 1 in FIG.
図3中、符号60は、化学蓄熱体10を収容した蓄熱体チャンバである。蓄熱体チャンバ60は、流体を導入可能な第1ポート60aを有している。本実施形態では、第1ポート60aは、開閉弁V7を有し、当該開閉弁V7を介してスチームタンク70に連通している。これにより、開閉弁V7を開くことにより、スチームタンク70からのスチームが、第1流体G1として蓄熱体チャンバ60に供給されるようになっている。
In FIG. 3, reference numeral 60 denotes a heat accumulator chamber that houses the chemical heat accumulator 10. The heat accumulator chamber 60 has a first port 60a through which a fluid can be introduced. In the present embodiment, the first port 60a has an on-off valve V7 and communicates with the steam tank 70 through the on-off valve V7. Thereby, the steam from the steam tank 70 is supplied to the heat accumulator chamber 60 as the first fluid G1 by opening the on-off valve V7.
蓄熱体チャンバ60は、第1ポート60aに通じる閉鎖空間を形成している密閉式チャンバである。本実施形態に係る蓄熱装置2は、化学蓄熱体10、第1ポート60aを有する蓄熱体チャンバ60を備えている。
The thermal storage chamber 60 is a sealed chamber that forms a closed space that communicates with the first port 60a. The heat storage device 2 according to the present embodiment includes a chemical heat storage body 10 and a heat storage body chamber 60 having a first port 60a.
一方、熱交換装置300は、開閉弁V7、スチームタンク70、蓄熱装置2及び熱交換用回路80を備えている。本実施形態では、熱交換用回路80は、蓄熱体チャンバ60内に配置されている。熱交換用回路80は、熱交換を要する第2流体G2が導入される第1ポート80aと、当該流体が化学蓄熱体10によって熱交換された流体G3として排出される第2ポート80bとを有している。熱交換用回路80は、蓄熱体チャンバ60内の空間には通じていない。本実施形態では、熱交換用回路80に供給される第2流体G2として、気体や液体を用いることができる。
On the other hand, the heat exchange device 300 includes an on-off valve V7, a steam tank 70, the heat storage device 2, and a heat exchange circuit 80. In the present embodiment, the heat exchange circuit 80 is disposed in the heat accumulator chamber 60. The heat exchanging circuit 80 has a first port 80a into which a second fluid G2 that requires heat exchange is introduced, and a second port 80b through which the fluid is discharged as a fluid G3 heat exchanged by the chemical heat storage body 10. is doing. The heat exchange circuit 80 does not communicate with the space in the heat storage chamber 60. In the present embodiment, gas or liquid can be used as the second fluid G2 supplied to the heat exchange circuit 80.
次に、本実施形態に係る熱交換装置300の動作について、蓄熱装置2の動作と共に説明する。
Next, the operation of the heat exchange device 300 according to the present embodiment will be described together with the operation of the heat storage device 2.
[放熱モード]
本実施形態に係る熱交換装置300では先ず、開閉弁V7を開いて、蓄熱装置2の第1ポート60aから蓄熱体チャンバ60に第1流体G1を供給する。第1流体G1が蓄熱体チャンバ60に導入されると、第1流体G1によって、化学蓄熱体10での反応が開始される。本実施形態では、開閉弁V7は、化学蓄熱体10での反応が臨界に達するあたりで閉じてもよいし、そのまま、開いたままでもよい。 [Heat dissipation mode]
In theheat exchange device 300 according to the present embodiment, first, the on-off valve V7 is opened, and the first fluid G1 is supplied from the first port 60a of the heat storage device 2 to the heat storage chamber 60. When the first fluid G1 is introduced into the heat storage chamber 60, the reaction in the chemical heat storage body 10 is started by the first fluid G1. In the present embodiment, the on-off valve V7 may be closed when the reaction in the chemical heat storage body 10 reaches a critical value, or may be left open as it is.
本実施形態に係る熱交換装置300では先ず、開閉弁V7を開いて、蓄熱装置2の第1ポート60aから蓄熱体チャンバ60に第1流体G1を供給する。第1流体G1が蓄熱体チャンバ60に導入されると、第1流体G1によって、化学蓄熱体10での反応が開始される。本実施形態では、開閉弁V7は、化学蓄熱体10での反応が臨界に達するあたりで閉じてもよいし、そのまま、開いたままでもよい。 [Heat dissipation mode]
In the
次いで、熱交換用回路80に第2流体G2を流通させると、第2流体G2は、熱交換用回路80を介して熱交換された、流体G3として排出される。
Next, when the second fluid G2 is caused to flow through the heat exchanging circuit 80, the second fluid G2 is discharged as the fluid G3 that has undergone heat exchange via the heat exchanging circuit 80.
[蓄熱モード]
本実施形態に係る熱交換装置300では、蓄熱装置2に収容された、反応終了後の化学蓄熱体10を加熱し、脱水することで、化学蓄熱体10の発熱性能が復元される。化学蓄熱体10の加熱は、例えば、蓄熱体チャンバ60に設けられた電熱線や電気炉等を利用して行う。或いは、化学蓄熱体10の加熱は、高温のガスや高温の液体を熱交換用回路80の第1ポート80a及び第2ポート80bのいずれか一方に導入して化学蓄熱体10を加熱することにより行うこともできる。また、前記発熱性能の復元は、例えば、第1ポート60aから蓄熱体チャンバ60を減圧することでも行うことができる。これにより、化学蓄熱体10の発熱性能が復元される。 [Heat storage mode]
In theheat exchange apparatus 300 according to the present embodiment, the heat generation performance of the chemical heat storage body 10 is restored by heating and dehydrating the chemical heat storage body 10 housed in the heat storage apparatus 2 after completion of the reaction. The chemical heat storage body 10 is heated using, for example, a heating wire or an electric furnace provided in the heat storage chamber 60. Alternatively, the chemical heat storage body 10 is heated by introducing a high temperature gas or a high temperature liquid into one of the first port 80a and the second port 80b of the heat exchange circuit 80 and heating the chemical heat storage body 10. It can also be done. The heat generation performance can be restored by, for example, reducing the pressure of the heat storage chamber 60 from the first port 60a. Thereby, the heat generation performance of the chemical heat storage body 10 is restored.
本実施形態に係る熱交換装置300では、蓄熱装置2に収容された、反応終了後の化学蓄熱体10を加熱し、脱水することで、化学蓄熱体10の発熱性能が復元される。化学蓄熱体10の加熱は、例えば、蓄熱体チャンバ60に設けられた電熱線や電気炉等を利用して行う。或いは、化学蓄熱体10の加熱は、高温のガスや高温の液体を熱交換用回路80の第1ポート80a及び第2ポート80bのいずれか一方に導入して化学蓄熱体10を加熱することにより行うこともできる。また、前記発熱性能の復元は、例えば、第1ポート60aから蓄熱体チャンバ60を減圧することでも行うことができる。これにより、化学蓄熱体10の発熱性能が復元される。 [Heat storage mode]
In the
<化学蓄熱材>
上述した、各実施形態に用いることが可能な化学蓄熱材は、第2族元素化合物と、ホウ素化合物と、シリコーンポリマーと、を含有する。 <Chemical heat storage material>
The chemical heat storage material that can be used in each embodiment described above contains aGroup 2 element compound, a boron compound, and a silicone polymer.
上述した、各実施形態に用いることが可能な化学蓄熱材は、第2族元素化合物と、ホウ素化合物と、シリコーンポリマーと、を含有する。 <Chemical heat storage material>
The chemical heat storage material that can be used in each embodiment described above contains a
上記化学蓄熱材の含有する第2族元素化合物は、可逆的な化学反応を行うことができるものであれば特に限定されない。第2族元素化合物とは、第2族元素である、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムから選択されるいずれかの金属を含む化合物である。第2族元素化合物としては、水和することによって発熱し、水和した後に、逆に脱水することによって蓄熱するものであることが好ましい。
水和することによって発熱し、水和した後に、逆に脱水することによって蓄熱する第2族元素化合物としては、表1に記載した化合物を例示することができる。表1の「蓄熱操作温度」は、示された化合物が発熱反応している際の温度であり、「蓄熱密度」は、示された化合物の単位体積当たりの放出される熱エネルギ量である。 Thegroup 2 element compound contained in the chemical heat storage material is not particularly limited as long as it can perform a reversible chemical reaction. The group 2 element compound is a compound containing any metal selected from beryllium, magnesium, calcium, strontium, barium and radium which are group 2 elements. The Group 2 element compound preferably generates heat when hydrated, and stores heat by dehydration after hydration.
Examples of theGroup 2 element compound that generates heat by hydration and stores heat by dehydration after hydration can include the compounds listed in Table 1. “Heat storage operation temperature” in Table 1 is the temperature at which the indicated compound undergoes an exothermic reaction, and “heat storage density” is the amount of heat energy released per unit volume of the indicated compound.
水和することによって発熱し、水和した後に、逆に脱水することによって蓄熱する第2族元素化合物としては、表1に記載した化合物を例示することができる。表1の「蓄熱操作温度」は、示された化合物が発熱反応している際の温度であり、「蓄熱密度」は、示された化合物の単位体積当たりの放出される熱エネルギ量である。 The
Examples of the
表1に挙げた第2族元素化合物の中でも、蓄熱操作温度及び蓄熱密度が高いことから、酸化カルシウム及び酸化マグネシウムのうち少なくとも一方を化学蓄熱材に含有させることが好ましい。また、酸化カルシウム及び酸化マグネシウムは、安価に入手することが可能である。また、酸化ストロンチウム及び酸化バリウムも、第2族元素化合物として好ましく用いることができる。
Among the Group 2 element compounds listed in Table 1, it is preferable that at least one of calcium oxide and magnesium oxide is contained in the chemical heat storage material because the heat storage operation temperature and the heat storage density are high. Further, calcium oxide and magnesium oxide can be obtained at low cost. Strontium oxide and barium oxide can also be preferably used as the Group 2 element compound.
化学蓄熱材の含有するホウ素化合物は、後述する化学蓄熱材形成用組成物の含有するホウ素含有化合物に由来する酸化ホウ素等である。化学蓄熱材は、ホウ素化合物を含有することによって、ペレット状に成形された状態における強度が向上する。化学蓄熱材がホウ素化合物を含有することによる、強度が向上する理由は必ずしも明らかではないが、後述のシリコーンポリマーにホウ素原子が含有されることによって、シリコーンポリマーの融点が下がって伸縮しやすくなる(柔軟性が増す)ことに因ると考えられる。
The boron compound contained in the chemical heat storage material is boron oxide derived from the boron-containing compound contained in the chemical heat storage material forming composition described later. The chemical heat storage material contains a boron compound, whereby the strength in a state of being formed into a pellet is improved. The reason why the chemical heat storage material contains the boron compound is not necessarily clear, but the inclusion of boron atoms in the silicone polymer described later makes the silicone polymer melting point lower and makes it easier to expand and contract ( This is thought to be due to increased flexibility.
化学蓄熱材の含有するシリコーンポリマーは、後述する化学蓄熱材形成用組成物の含有する、アルコキシシラン、その加水分解物及びその縮合物からなる群より選択される少なくとも一種(以下、アルコキシシラン等と言う場合がある)が縮合したシリコーンポリマーである。アルコキシシラン等が縮合したシリコーンポリマーは、後述する焼成工程で、ケイ素に結合したアルコキシ基が全て脱離した構造になるのが好ましい。シリコーンポリマーは、緻密な三次元構造を形成しており、化学蓄熱材が崩壊するのを防ぐ。また、シリコーンポリマーは、緻密な三次元構造の内部に第2族元素化合物を保持することができる。
The silicone polymer contained in the chemical heat storage material is at least one selected from the group consisting of an alkoxysilane, a hydrolyzate thereof, and a condensate thereof contained in a composition for forming a chemical heat storage material described later (hereinafter referred to as alkoxysilane and the like). Is a condensed silicone polymer. The silicone polymer condensed with alkoxysilane or the like preferably has a structure in which all alkoxy groups bonded to silicon are eliminated in the baking step described later. The silicone polymer forms a dense three-dimensional structure and prevents the chemical heat storage material from collapsing. Further, the silicone polymer can hold the Group 2 element compound inside a dense three-dimensional structure.
シリコーンポリマーとしては、トリエトキシシラン及びテトラエトキシシランの少なくとも一方、その加水分解物及びその縮合物からなる群より選択される少なくとも一種が縮合したシリコーンポリマーが、より緻密な三次元構造を形成することができることから好ましい。
また、化学蓄熱材におけるシリコーンポリマーの含有量は、12~83質量%であることが好ましい。化学蓄熱材におけるシリコーンポリマーの含有量が、12質量%未満であると、化学蓄熱材が崩壊しやすくなってしまう傾向にあり、83質量%よりも多いと、化学蓄熱材の放出できる熱量が少なくなってしまう傾向にある。 As the silicone polymer, a silicone polymer in which at least one selected from the group consisting of at least one of triethoxysilane and tetraethoxysilane, a hydrolyzate thereof, and a condensate thereof is condensed to form a denser three-dimensional structure. Is preferable.
Further, the content of the silicone polymer in the chemical heat storage material is preferably 12 to 83% by mass. If the content of the silicone polymer in the chemical heat storage material is less than 12% by mass, the chemical heat storage material tends to be easily collapsed. If the content is more than 83% by mass, the amount of heat that can be released from the chemical heat storage material is small. It tends to become.
また、化学蓄熱材におけるシリコーンポリマーの含有量は、12~83質量%であることが好ましい。化学蓄熱材におけるシリコーンポリマーの含有量が、12質量%未満であると、化学蓄熱材が崩壊しやすくなってしまう傾向にあり、83質量%よりも多いと、化学蓄熱材の放出できる熱量が少なくなってしまう傾向にある。 As the silicone polymer, a silicone polymer in which at least one selected from the group consisting of at least one of triethoxysilane and tetraethoxysilane, a hydrolyzate thereof, and a condensate thereof is condensed to form a denser three-dimensional structure. Is preferable.
Further, the content of the silicone polymer in the chemical heat storage material is preferably 12 to 83% by mass. If the content of the silicone polymer in the chemical heat storage material is less than 12% by mass, the chemical heat storage material tends to be easily collapsed. If the content is more than 83% by mass, the amount of heat that can be released from the chemical heat storage material is small. It tends to become.
第2族元素化合物が酸化カルシウムの場合には、化学蓄熱材における、カルシウム原子の含有量は13~59質量%であり、ホウ素原子の含有量は0.4~11.3質量%であり、ケイ素原子の含有量は4.8~33.2質量%であることが好ましい。化学蓄熱材の含有する、カルシウム原子は酸化カルシウムに、ホウ素原子はホウ素化合物に、ケイ素原子はシリコーンポリマーに、それぞれ由来する。
When the Group 2 element compound is calcium oxide, the chemical heat storage material has a calcium atom content of 13 to 59% by mass and a boron atom content of 0.4 to 11.3% by mass, The silicon atom content is preferably 4.8 to 33.2% by mass. The chemical heat storage material contains calcium atoms derived from calcium oxide, boron atoms derived from boron compounds, and silicon atoms derived from silicone polymers.
化学蓄熱材におけるカルシウム原子の含有量が、13質量%未満である場合には、酸化カルシウムが少ないことから化学蓄熱材の放出できる熱量が少なくなってしまう傾向にある。化学蓄熱材におけるカルシウム原子の含有量が、59質量%よりも多い場合には、シリコーンポリマーが少なくなることから化学蓄熱材が崩壊しやすくなってしまう傾向にある。
When the content of calcium atoms in the chemical heat storage material is less than 13% by mass, the amount of heat that can be released from the chemical heat storage material tends to decrease due to the small amount of calcium oxide. When the content of calcium atoms in the chemical heat storage material is more than 59% by mass, the chemical heat storage material tends to collapse because the silicone polymer decreases.
化学蓄熱材におけるホウ素原子の含有量が、0.4質量%未満である場合には、化学蓄熱材の強度が低下してしまう傾向にある。化学蓄熱材におけるホウ素原子の含有量が、11.3質量%よりも多い場合には、シリコーンポリマーが少なくなることによって化学蓄熱材が崩壊しやすくなってしまう傾向にある。
When the content of boron atoms in the chemical heat storage material is less than 0.4% by mass, the strength of the chemical heat storage material tends to decrease. When the content of boron atoms in the chemical heat storage material is more than 11.3% by mass, the chemical heat storage material tends to be easily collapsed due to the decrease in the silicone polymer.
化学蓄熱材におけるケイ素原子の含有量が、4.8質量%未満である場合には、シリコーンポリマーが少ないことから化学蓄熱材が崩壊しやすくなってしまう傾向にある。化学蓄熱材におけるケイ素原子の含有量が、33.2質量%よりも多い場合には、酸化カルシウムが少なくなってしまうことによって、化学蓄熱材の放出できる熱量が少なくなってしまう傾向にある。
When the content of silicon atoms in the chemical heat storage material is less than 4.8% by mass, the chemical heat storage material tends to collapse because the silicone polymer is small. When the content of silicon atoms in the chemical heat storage material is more than 33.2% by mass, the amount of heat that can be released from the chemical heat storage material tends to decrease due to a decrease in calcium oxide.
第2族元素化合物が酸化カルシウムである場合と同様の理由によって、第2族元素化合物が酸化ベリリウムの場合には、化学蓄熱材における、ベリリウム原子の含有量は3.2~24.4質量%であり、ホウ素原子の含有量は0.7~12.6質量%であり、ケイ素原子の含有量は8.7~37.1質量%であることが好ましい。
For the same reason as when the Group 2 element compound is calcium oxide, when the Group 2 element compound is beryllium oxide, the content of beryllium atoms in the chemical heat storage material is 3.2 to 24.4 mass%. The boron atom content is preferably 0.7 to 12.6% by mass, and the silicon atom content is preferably 8.7 to 37.1% by mass.
また、同様の理由によって、第2族元素化合物が酸化マグネシウムの場合には、化学蓄熱材における、マグネシウム原子の含有量は8.3~46.5質量%であり、ホウ素原子の含有量は0.5~11.9質量%であり、ケイ素原子の含有量は6.2~35.1質量%であることが好ましい。
For the same reason, when the Group 2 element compound is magnesium oxide, the content of magnesium atoms in the chemical heat storage material is 8.3 to 46.5% by mass, and the content of boron atoms is 0. The silicon atom content is preferably 6.2 to 35.1% by mass.
また、同様の理由によって、第2族元素化合物が酸化ストロンチウムの場合には、化学蓄熱材における、ストロンチウム原子の含有量は24.5~75.8質量%であり、ホウ素原子の含有量は0.2~9.8質量%であり、ケイ素原子の含有量は2.8~28.6質量%であることが好ましい。
For the same reason, when the Group 2 element compound is strontium oxide, the content of strontium atoms in the chemical heat storage material is 24.5 to 75.8% by mass, and the content of boron atoms is 0. The silicon atom content is preferably 2.8 to 28.6% by mass.
また、同様の理由によって、第2族元素化合物が酸化バリウムの場合には、化学蓄熱材における、バリウム原子の含有量は33.7~83.1質量%であり、ホウ素原子の含有量は0.2~8.6質量%であり、ケイ素原子の含有量は2.0~25.0質量%であることが好ましい。
For the same reason, when the Group 2 element compound is barium oxide, the content of barium atoms in the chemical heat storage material is 33.7 to 83.1% by mass, and the content of boron atoms is 0. The silicon atom content is preferably 2.0 to 25.0% by mass.
このように、第2族元素化合物がそれぞれ酸化カルシウム、酸化マグネシウム、酸化ストロンチウム及び酸化バリウムである場合における、各成分の好ましい質量換算での含有量は異なる。しかし、これらを物質量換算での含有量とすると、同等の値になる。また、第2元素化合物として、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム及び酸化バリウムから二種類以上を選択して併用してもよい。
Thus, when the Group 2 element compound is calcium oxide, magnesium oxide, strontium oxide, and barium oxide, the preferable content in terms of mass of each component is different. However, if these are the contents in terms of substance amount, they are equivalent. Further, as the second element compound, two or more kinds selected from calcium oxide, magnesium oxide, strontium oxide and barium oxide may be used in combination.
なお、化学蓄熱材における、これらの原子(Ca等、B、Si及びO)の含有量は、蛍光X線分析装置(XRF)等による組成分析により求めることができる。
化学蓄熱材は、必要に応じて第2族元素化合物、ホウ素化合物及びシリコーンポリマー以外の成分を含有してもよい。 In addition, content of these atoms (Ca etc., B, Si, and O) in a chemical heat storage material can be calculated | required by the composition analysis by a fluorescent X ray analyzer (XRF) etc.
The chemical heat storage material may contain components other than theGroup 2 element compound, the boron compound, and the silicone polymer as necessary.
化学蓄熱材は、必要に応じて第2族元素化合物、ホウ素化合物及びシリコーンポリマー以外の成分を含有してもよい。 In addition, content of these atoms (Ca etc., B, Si, and O) in a chemical heat storage material can be calculated | required by the composition analysis by a fluorescent X ray analyzer (XRF) etc.
The chemical heat storage material may contain components other than the
化学蓄熱材は、後述する化学蓄熱材形成用組成物を原料にして形成されることで、多孔質材料となる。
また、化学蓄熱材は、後述する化学蓄熱材形成用組成物を原料にして、任意の形状に加工することが可能である。化学蓄熱材から放出された熱は、例えば、熱交換された流体G3または前記熱交換装置によって外部に移動させて使用することができる。 The chemical heat storage material becomes a porous material by being formed using a chemical heat storage material forming composition described later as a raw material.
The chemical heat storage material can be processed into an arbitrary shape using a chemical heat storage material forming composition described later as a raw material. The heat released from the chemical heat storage material can be used by being transferred to the outside by the heat exchanged fluid G3 or the heat exchange device, for example.
また、化学蓄熱材は、後述する化学蓄熱材形成用組成物を原料にして、任意の形状に加工することが可能である。化学蓄熱材から放出された熱は、例えば、熱交換された流体G3または前記熱交換装置によって外部に移動させて使用することができる。 The chemical heat storage material becomes a porous material by being formed using a chemical heat storage material forming composition described later as a raw material.
The chemical heat storage material can be processed into an arbitrary shape using a chemical heat storage material forming composition described later as a raw material. The heat released from the chemical heat storage material can be used by being transferred to the outside by the heat exchanged fluid G3 or the heat exchange device, for example.
続いて、化学蓄熱材の動作について説明する。化学蓄熱材は、発熱と、蓄熱と、を繰り返すことができる。
まず、化学蓄熱材からの発熱が行われる発熱工程においては、化学蓄熱材に水蒸気を接触させる。この際には、化学蓄熱材の含有する酸化カルシウム等の第2族元素化合物のモル量の1.2倍以下のモル量の水(水蒸気)を接触させるのが好ましい。化学蓄熱材に接触した水は、化学蓄熱材に形成された細孔内に浸透して、化学蓄熱材の内部でも良好に熱が発生する。化学蓄熱材に接触させる水が多すぎる場合、水そのものが熱量を消費し、トータルの発熱量を落としてしまう。化学蓄熱材から発生した熱は、前記熱交換装置の熱媒体等によって回収される。化学蓄熱材に水蒸気を接触させる方法は限定されず、化学蓄熱材への水蒸気の通気、化学蓄熱材の液体水への浸漬、化学蓄熱材への液体水の添加(滴下、散布等)のいずれであってもよい。なかでも、化学蓄熱材へ均一に接触させやすいことから、水蒸気の通気によって化学蓄熱材に水蒸気を接触させることが好ましい。 Subsequently, the operation of the chemical heat storage material will be described. The chemical heat storage material can repeat heat generation and heat storage.
First, in the heat generation process in which heat is generated from the chemical heat storage material, water vapor is brought into contact with the chemical heat storage material. In this case, it is preferable to contact water (water vapor) in a molar amount not more than 1.2 times the molar amount of theGroup 2 element compound such as calcium oxide contained in the chemical heat storage material. The water that has come into contact with the chemical heat storage material penetrates into the pores formed in the chemical heat storage material, and heat is generated well inside the chemical heat storage material. If too much water is brought into contact with the chemical heat storage material, the water itself consumes heat and reduces the total calorific value. The heat generated from the chemical heat storage material is recovered by the heat medium of the heat exchange device. The method of bringing water vapor into contact with the chemical heat storage material is not limited, and any of ventilation of water vapor to the chemical heat storage material, immersion of the chemical heat storage material in liquid water, addition of liquid water to the chemical heat storage material (dropping, spraying, etc.) It may be. Especially, since it is easy to make it contact with a chemical heat storage material uniformly, it is preferable to make water vapor contact a chemical heat storage material by ventilation | gas_flowing of water vapor | steam.
まず、化学蓄熱材からの発熱が行われる発熱工程においては、化学蓄熱材に水蒸気を接触させる。この際には、化学蓄熱材の含有する酸化カルシウム等の第2族元素化合物のモル量の1.2倍以下のモル量の水(水蒸気)を接触させるのが好ましい。化学蓄熱材に接触した水は、化学蓄熱材に形成された細孔内に浸透して、化学蓄熱材の内部でも良好に熱が発生する。化学蓄熱材に接触させる水が多すぎる場合、水そのものが熱量を消費し、トータルの発熱量を落としてしまう。化学蓄熱材から発生した熱は、前記熱交換装置の熱媒体等によって回収される。化学蓄熱材に水蒸気を接触させる方法は限定されず、化学蓄熱材への水蒸気の通気、化学蓄熱材の液体水への浸漬、化学蓄熱材への液体水の添加(滴下、散布等)のいずれであってもよい。なかでも、化学蓄熱材へ均一に接触させやすいことから、水蒸気の通気によって化学蓄熱材に水蒸気を接触させることが好ましい。 Subsequently, the operation of the chemical heat storage material will be described. The chemical heat storage material can repeat heat generation and heat storage.
First, in the heat generation process in which heat is generated from the chemical heat storage material, water vapor is brought into contact with the chemical heat storage material. In this case, it is preferable to contact water (water vapor) in a molar amount not more than 1.2 times the molar amount of the
一方、化学蓄熱材への蓄熱が行われる蓄熱工程においては、酸化カルシウム等が水和することによって生成する水酸化カルシウム等の第2族元素化合物を含有する化学蓄熱材を加熱する。化学蓄熱材が加熱されることで、化学蓄熱材中の第2族元素化合物の水酸化物は脱水されて、発熱工程前の状態(例えば、酸化カルシウム)に戻る。蓄熱工程において発生する水蒸気は、必要に応じて回収される。
On the other hand, in the heat storage process in which heat is stored in the chemical heat storage material, the chemical heat storage material containing a Group 2 element compound such as calcium hydroxide generated by hydration of calcium oxide or the like is heated. By heating the chemical heat storage material, the hydroxide of the Group 2 element compound in the chemical heat storage material is dehydrated and returns to the state before the exothermic process (for example, calcium oxide). Water vapor generated in the heat storage process is recovered as necessary.
発熱工程においては、化学蓄熱材の体積は増大する。より具体的には、化学蓄熱材中の第2族元素化合物の体積は、化学蓄熱材が水和して発熱することで約20%増大する。逆に、蓄熱工程においては、化学蓄熱材中の第2族元素化合物は脱水して蓄熱することに伴って体積が減少する。化学蓄熱材の体積の増大と減少の繰り返しは、所望の形状に形成された化学蓄熱材が崩壊して微粉化してしまう原因になる。
上述した、各実施形態に用いることが可能な化学蓄熱材は、多孔質であるので、それ自体が、体積の増大と減少によって生じる形状の歪を吸収することができる。また、本実施形態に係る化学蓄熱材は、ホウ素化合物を含有することで柔軟性が増すと考えられる。従って、上述した、各実施形態に用いることが可能な化学蓄熱材は、発熱と蓄熱を繰り返しても崩壊し難く、強度が高い。 In the exothermic process, the volume of the chemical heat storage material increases. More specifically, the volume of theGroup 2 element compound in the chemical heat storage material increases by about 20% as the chemical heat storage material hydrates and generates heat. Conversely, in the heat storage process, the volume of the Group 2 element compound in the chemical heat storage material decreases as it dehydrates and stores heat. The repeated increase and decrease in the volume of the chemical heat storage material causes the chemical heat storage material formed in a desired shape to collapse and become fine powder.
Since the chemical heat storage material that can be used in each of the embodiments described above is porous, the chemical heat storage material itself can absorb the shape distortion caused by the increase and decrease in volume. Moreover, the chemical heat storage material according to the present embodiment is considered to increase flexibility by containing a boron compound. Therefore, the chemical heat storage material that can be used in each of the above-described embodiments is difficult to collapse even when heat generation and heat storage are repeated, and has high strength.
上述した、各実施形態に用いることが可能な化学蓄熱材は、多孔質であるので、それ自体が、体積の増大と減少によって生じる形状の歪を吸収することができる。また、本実施形態に係る化学蓄熱材は、ホウ素化合物を含有することで柔軟性が増すと考えられる。従って、上述した、各実施形態に用いることが可能な化学蓄熱材は、発熱と蓄熱を繰り返しても崩壊し難く、強度が高い。 In the exothermic process, the volume of the chemical heat storage material increases. More specifically, the volume of the
Since the chemical heat storage material that can be used in each of the embodiments described above is porous, the chemical heat storage material itself can absorb the shape distortion caused by the increase and decrease in volume. Moreover, the chemical heat storage material according to the present embodiment is considered to increase flexibility by containing a boron compound. Therefore, the chemical heat storage material that can be used in each of the above-described embodiments is difficult to collapse even when heat generation and heat storage are repeated, and has high strength.
<化学蓄熱材形成用組成物>
上述した、各実施形態に用いることが可能な化学蓄熱材を形成するための、化学蓄熱材形成用組成物は、第2族元素化合物と、ホウ素含有化合物と、アルコキシシラン、その加水分解物及びその縮合物からなる群より選択される少なくとも一種と、樹脂と、を含有する。上述した、各実施形態に用いることが可能な化学蓄熱材形成用組成物を用いて、上記の化学蓄熱材が形成される。 <Composition for forming chemical heat storage material>
The chemical heat storage material forming composition for forming the chemical heat storage material that can be used in each embodiment described above includes aGroup 2 element compound, a boron-containing compound, alkoxysilane, a hydrolyzate thereof, and It contains at least one selected from the group consisting of the condensate and a resin. Said chemical heat storage material is formed using the composition for chemical heat storage material formation which can be used for each embodiment mentioned above.
上述した、各実施形態に用いることが可能な化学蓄熱材を形成するための、化学蓄熱材形成用組成物は、第2族元素化合物と、ホウ素含有化合物と、アルコキシシラン、その加水分解物及びその縮合物からなる群より選択される少なくとも一種と、樹脂と、を含有する。上述した、各実施形態に用いることが可能な化学蓄熱材形成用組成物を用いて、上記の化学蓄熱材が形成される。 <Composition for forming chemical heat storage material>
The chemical heat storage material forming composition for forming the chemical heat storage material that can be used in each embodiment described above includes a
化学蓄熱材形成用組成物の含有する第2族元素化合物は、上記の化学蓄熱材の含有する第2族元素化合物と同様である。
しかし、化学蓄熱材形成用組成物の含有する第2族元素化合物は、水和した第2族元素化合物を用いることが好ましい。化学蓄熱材形成用組成物に水和した第2族元素化合物を含有させれば、後述する化学蓄熱材の形成における焼成工程において、第2族元素化合物は脱水して体積が減少する。従って、このように、水和した第2族元素化合物を含有させた化学蓄熱材形成用組成物を用いて形成した化学蓄熱材であれば、体積が膨張したとしても歪は生じ難いので、崩壊し難くなる傾向にある。化学蓄熱材形成用組成物の含有する第2族元素化合物としては、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウム及び水酸化バリウム等が挙げられる。 TheGroup 2 element compound contained in the chemical heat storage material forming composition is the same as the Group 2 element compound contained in the chemical heat storage material.
However, it is preferable to use ahydrated Group 2 element compound as the Group 2 element compound contained in the chemical heat storage material forming composition. If the hydrated Group 2 element compound is contained in the chemical heat storage material forming composition, the Group 2 element compound is dehydrated and the volume is reduced in the firing step in the formation of the chemical heat storage material described later. Therefore, if the chemical heat storage material is formed by using the chemical composition for forming a chemical heat storage material containing the hydrated Group 2 element compound in this way, even if the volume is expanded, it is difficult for distortion to occur. It tends to be difficult. Examples of the Group 2 element compound contained in the chemical heat storage material forming composition include calcium hydroxide, magnesium hydroxide, strontium hydroxide, and barium hydroxide.
しかし、化学蓄熱材形成用組成物の含有する第2族元素化合物は、水和した第2族元素化合物を用いることが好ましい。化学蓄熱材形成用組成物に水和した第2族元素化合物を含有させれば、後述する化学蓄熱材の形成における焼成工程において、第2族元素化合物は脱水して体積が減少する。従って、このように、水和した第2族元素化合物を含有させた化学蓄熱材形成用組成物を用いて形成した化学蓄熱材であれば、体積が膨張したとしても歪は生じ難いので、崩壊し難くなる傾向にある。化学蓄熱材形成用組成物の含有する第2族元素化合物としては、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウム及び水酸化バリウム等が挙げられる。 The
However, it is preferable to use a
特に、化学蓄熱材形成用組成物は、第2族元素化合物として、水酸化カルシウム及び水酸化マグネシウムのうち少なくとも一方を含有することがより好ましい。水酸化カルシウム及び水酸化マグネシウムは、表1に示すように、蓄熱操作温度及び蓄熱密度が高い。
In particular, it is more preferable that the chemical heat storage material forming composition contains at least one of calcium hydroxide and magnesium hydroxide as the Group 2 element compound. As shown in Table 1, calcium hydroxide and magnesium hydroxide have high heat storage operation temperature and heat storage density.
また、化学蓄熱材形成用組成物は、ホウ素含有化合物として、ホウ酸、トリアルキルボレート及びトリアリールボレートからなる群より選択される少なくとも一種を含有することが好ましい。化学蓄熱材形成用組成物がこれらのホウ素含有化合物を含有することで、化学蓄熱材におけるシリコーンポリマーの柔軟性が向上する。化学蓄熱材形成用組成物は、ホウ素含有化合物として、トリアルキルボレートを含有することがより好ましい。トリアルキルボレートとしては、トリメチルボレートやトリエチルボレートが挙げられる。トリアルキルボレートは、後述のアルコキシシラン等との反応性が高く、化学蓄熱材においてシリコーンポリマーの柔軟性を向上させる。化学蓄熱材においてシリコーンポリマーの柔軟性を向上することで、加工された状態における化学蓄熱材の強度が向上すると考えられる。
Further, the chemical heat storage material forming composition preferably contains at least one selected from the group consisting of boric acid, trialkyl borates and triaryl borates as the boron-containing compound. When the chemical heat storage material forming composition contains these boron-containing compounds, the flexibility of the silicone polymer in the chemical heat storage material is improved. More preferably, the chemical heat storage material forming composition contains a trialkyl borate as the boron-containing compound. Examples of the trialkyl borate include trimethyl borate and triethyl borate. Trialkyl borate has high reactivity with alkoxysilane and the like described later, and improves the flexibility of the silicone polymer in the chemical heat storage material. It is considered that the strength of the chemical heat storage material in the processed state is improved by improving the flexibility of the silicone polymer in the chemical heat storage material.
化学蓄熱材形成用組成物の含有するアルコキシシラン、その加水分解物及びその縮合物からなる群より選択される少なくとも一種は、化学蓄熱材においてシリコーンポリマーとなり、緻密な三次元構造を形成する。
アルコキシシラン等としては、例えば、テトラアルコキシシラン、アルキルトリアルコキシシラン、ジアルキルアルコキシシラン、及びこれらの部分縮合物等を挙げることができる。より具体的には、テトラアルキルシランの部分縮合物としては、MKCシリケートMS51(三菱化学株式会社製テトラアルコキシシランの縮合物)、エチルシリケート40(コルコート株式会社製テトラエトキシシランの縮合物)等を挙げることができる。 At least one selected from the group consisting of an alkoxysilane, a hydrolyzate thereof, and a condensate thereof contained in the chemical heat storage material forming composition becomes a silicone polymer in the chemical heat storage material to form a dense three-dimensional structure.
Examples of the alkoxysilane include tetraalkoxysilane, alkyltrialkoxysilane, dialkylalkoxysilane, and partial condensates thereof. More specifically, as the partial condensate of tetraalkylsilane, MKC silicate MS51 (condensate of tetraalkoxysilane manufactured by Mitsubishi Chemical Corporation), ethyl silicate 40 (condensate of tetraethoxysilane manufactured by Colcoat Co., Ltd.), etc. Can be mentioned.
アルコキシシラン等としては、例えば、テトラアルコキシシラン、アルキルトリアルコキシシラン、ジアルキルアルコキシシラン、及びこれらの部分縮合物等を挙げることができる。より具体的には、テトラアルキルシランの部分縮合物としては、MKCシリケートMS51(三菱化学株式会社製テトラアルコキシシランの縮合物)、エチルシリケート40(コルコート株式会社製テトラエトキシシランの縮合物)等を挙げることができる。 At least one selected from the group consisting of an alkoxysilane, a hydrolyzate thereof, and a condensate thereof contained in the chemical heat storage material forming composition becomes a silicone polymer in the chemical heat storage material to form a dense three-dimensional structure.
Examples of the alkoxysilane include tetraalkoxysilane, alkyltrialkoxysilane, dialkylalkoxysilane, and partial condensates thereof. More specifically, as the partial condensate of tetraalkylsilane, MKC silicate MS51 (condensate of tetraalkoxysilane manufactured by Mitsubishi Chemical Corporation), ethyl silicate 40 (condensate of tetraethoxysilane manufactured by Colcoat Co., Ltd.), etc. Can be mentioned.
化学蓄熱材形成用組成物の含有するアルコキシシラン等としては、シリコーンポリマーが緻密な三次元構造を形成することができることから、トリエトキシシラン及びテトラエトキシシランの少なくとも一方、その加水分解物及びその縮合物からなる群より選択される少なくとも一種であることが好ましい。
As the alkoxysilane contained in the composition for forming a chemical heat storage material, since the silicone polymer can form a dense three-dimensional structure, at least one of triethoxysilane and tetraethoxysilane, its hydrolyzate and its condensation It is preferably at least one selected from the group consisting of products.
化学蓄熱材形成用組成物の含有する樹脂は、増粘剤としての役割を果たし、化学蓄熱材の形状を維持するために必要である。
化学蓄熱材形成用組成物の含有する樹脂としては、上記の役割を果たすものであれば限定されず、天然樹脂と合成樹脂のいずれであってもよく、セルロース等の多糖類、たんぱく質、ポリフェノール、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、ポリウレタン樹脂、フッ素樹脂、エポキシ樹脂等から一種を選択して、もしくは複数種を組み合わせて用いることができる。化学蓄熱材形成用組成物は、樹脂として、ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレングリコール、ポリエチレンオキサイド、水酸基含有アクリル樹脂及びブチラール樹脂からなる群より選択される少なくとも一種を含有することが好ましい。これらの樹脂は、水酸基含有樹脂であることから、第2族元素化合物及びアルコキシシラン等との親和性が高い。また、化学蓄熱材の形状を安定させる観点から、化学蓄熱材形成用組成物は、水酸基含有アクリル樹脂又はブチラール樹脂を含有するのが好ましい。
化学蓄熱材形成用組成物の含有する樹脂としては、体積平均分子量が100~5,000,000であることが好ましい。化学蓄熱材形成用組成物の含有する樹脂の体積平均分子量は、ポリスチレン標準サンプル基準を用いたゲルパーミエーションクロマトグラフィ(GPC)で測定することができる。 The resin contained in the chemical heat storage material forming composition serves as a thickener and is necessary for maintaining the shape of the chemical heat storage material.
The resin contained in the composition for forming a chemical heat storage material is not limited as long as it plays the above-described role, and may be any of natural resins and synthetic resins. Polysaccharides such as cellulose, proteins, polyphenols, One type can be selected from a polyester resin, a polyether resin, an acrylic resin, a polyurethane resin, a fluororesin, an epoxy resin, or a plurality of types can be used in combination. The composition for forming a chemical heat storage material preferably contains, as a resin, at least one selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyethylene glycol, polyethylene oxide, a hydroxyl group-containing acrylic resin, and a butyral resin. Since these resins are hydroxyl group-containing resins, they have a high affinity withGroup 2 element compounds and alkoxysilanes. In addition, from the viewpoint of stabilizing the shape of the chemical heat storage material, the chemical heat storage material forming composition preferably contains a hydroxyl group-containing acrylic resin or butyral resin.
The resin contained in the chemical heat storage material forming composition preferably has a volume average molecular weight of 100 to 5,000,000. The volume average molecular weight of the resin contained in the chemical heat storage material forming composition can be measured by gel permeation chromatography (GPC) using a polystyrene standard sample standard.
化学蓄熱材形成用組成物の含有する樹脂としては、上記の役割を果たすものであれば限定されず、天然樹脂と合成樹脂のいずれであってもよく、セルロース等の多糖類、たんぱく質、ポリフェノール、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、ポリウレタン樹脂、フッ素樹脂、エポキシ樹脂等から一種を選択して、もしくは複数種を組み合わせて用いることができる。化学蓄熱材形成用組成物は、樹脂として、ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレングリコール、ポリエチレンオキサイド、水酸基含有アクリル樹脂及びブチラール樹脂からなる群より選択される少なくとも一種を含有することが好ましい。これらの樹脂は、水酸基含有樹脂であることから、第2族元素化合物及びアルコキシシラン等との親和性が高い。また、化学蓄熱材の形状を安定させる観点から、化学蓄熱材形成用組成物は、水酸基含有アクリル樹脂又はブチラール樹脂を含有するのが好ましい。
化学蓄熱材形成用組成物の含有する樹脂としては、体積平均分子量が100~5,000,000であることが好ましい。化学蓄熱材形成用組成物の含有する樹脂の体積平均分子量は、ポリスチレン標準サンプル基準を用いたゲルパーミエーションクロマトグラフィ(GPC)で測定することができる。 The resin contained in the chemical heat storage material forming composition serves as a thickener and is necessary for maintaining the shape of the chemical heat storage material.
The resin contained in the composition for forming a chemical heat storage material is not limited as long as it plays the above-described role, and may be any of natural resins and synthetic resins. Polysaccharides such as cellulose, proteins, polyphenols, One type can be selected from a polyester resin, a polyether resin, an acrylic resin, a polyurethane resin, a fluororesin, an epoxy resin, or a plurality of types can be used in combination. The composition for forming a chemical heat storage material preferably contains, as a resin, at least one selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyethylene glycol, polyethylene oxide, a hydroxyl group-containing acrylic resin, and a butyral resin. Since these resins are hydroxyl group-containing resins, they have a high affinity with
The resin contained in the chemical heat storage material forming composition preferably has a volume average molecular weight of 100 to 5,000,000. The volume average molecular weight of the resin contained in the chemical heat storage material forming composition can be measured by gel permeation chromatography (GPC) using a polystyrene standard sample standard.
ブチラール樹脂として、より具体的には、エスレックBシリーズ及びKシリーズ(いずれも積水化学工業株式会社製)等を挙げることができる。また、水酸基含有アクリル樹脂として、より具体的には、2-ヒドロキシブチル(メタ)アクリレート等の2級水酸基モノマーや、2-ヒドロキシ-2-メチルプロピル(メタ)アクリレート等の3級水酸基モノマーと、その他のモノマーとを含んだモノマー混合液を常法によって重合して得ることができる重合体を挙げることができる。
なお、化学蓄熱材形成用組成物の含有する樹脂は、後述する化学蓄熱材の形成方法の焼成工程において除去される。 More specifically, examples of the butyral resin include ESREC B series and K series (both manufactured by Sekisui Chemical Co., Ltd.). Further, as the hydroxyl group-containing acrylic resin, more specifically, a secondary hydroxyl monomer such as 2-hydroxybutyl (meth) acrylate, a tertiary hydroxyl monomer such as 2-hydroxy-2-methylpropyl (meth) acrylate, The polymer which can be obtained by superposing | polymerizing the monomer liquid mixture containing another monomer by a conventional method can be mentioned.
In addition, resin which the composition for chemical heat storage material formation contains is removed in the baking process of the formation method of the chemical heat storage material mentioned later.
なお、化学蓄熱材形成用組成物の含有する樹脂は、後述する化学蓄熱材の形成方法の焼成工程において除去される。 More specifically, examples of the butyral resin include ESREC B series and K series (both manufactured by Sekisui Chemical Co., Ltd.). Further, as the hydroxyl group-containing acrylic resin, more specifically, a secondary hydroxyl monomer such as 2-hydroxybutyl (meth) acrylate, a tertiary hydroxyl monomer such as 2-hydroxy-2-methylpropyl (meth) acrylate, The polymer which can be obtained by superposing | polymerizing the monomer liquid mixture containing another monomer by a conventional method can be mentioned.
In addition, resin which the composition for chemical heat storage material formation contains is removed in the baking process of the formation method of the chemical heat storage material mentioned later.
また、化学蓄熱材形成用組成物は、ガラスファイバーを含有することが好ましい。化学蓄熱材形成用組成物がガラスファイバーを含有することで、加工された状態における化学蓄熱材の強度が向上する。
Also, the chemical heat storage material forming composition preferably contains glass fiber. When the chemical heat storage material forming composition contains glass fiber, the strength of the chemical heat storage material in the processed state is improved.
更に、化学蓄熱材形成用組成物は、炭素からなる物質及び炭化水素のうち少なくとも一方を含有してもよい。化学蓄熱材形成用組成物が、炭素からなる物質及び炭化水素のうち少なくとも一方を含有することで、化学蓄熱材の内部や表面により多くの細孔が形成され、化学蓄熱材の形状を安定させることができる。
炭素からなる物質としては、カーボンブラック、グラファイト、カーボンナノファイバー等を挙げることができ、炭化水素としては、パラフィン、オレフィン、シクロアルカン等を挙げることができる。 Furthermore, the chemical heat storage material forming composition may contain at least one of a substance made of carbon and a hydrocarbon. The chemical heat storage material forming composition contains at least one of a carbon substance and a hydrocarbon, so that more pores are formed inside and on the surface of the chemical heat storage material, thereby stabilizing the shape of the chemical heat storage material. be able to.
Examples of the carbon material include carbon black, graphite, and carbon nanofiber. Examples of the hydrocarbon include paraffin, olefin, and cycloalkane.
炭素からなる物質としては、カーボンブラック、グラファイト、カーボンナノファイバー等を挙げることができ、炭化水素としては、パラフィン、オレフィン、シクロアルカン等を挙げることができる。 Furthermore, the chemical heat storage material forming composition may contain at least one of a substance made of carbon and a hydrocarbon. The chemical heat storage material forming composition contains at least one of a carbon substance and a hydrocarbon, so that more pores are formed inside and on the surface of the chemical heat storage material, thereby stabilizing the shape of the chemical heat storage material. be able to.
Examples of the carbon material include carbon black, graphite, and carbon nanofiber. Examples of the hydrocarbon include paraffin, olefin, and cycloalkane.
より好ましくは、化学蓄熱材の内部や表面に、より細かい孔が形成され、化学蓄熱材の形状をより安定化させることができることから、化学蓄熱材形成用組成物には、カーボンブラック及び炭化水素を含有させることが好ましい。
なお、化学蓄熱材形成用組成物の含有する炭素からなる物質や炭化水素は、後述する化学蓄熱材の形成方法の焼成工程において除去される。 More preferably, finer pores are formed in the surface or inside of the chemical heat storage material, and the shape of the chemical heat storage material can be further stabilized. Therefore, the composition for forming a chemical heat storage material includes carbon black and hydrocarbon. It is preferable to contain.
In addition, the substance and hydrocarbon which consist of carbon which the composition for chemical heat storage material formation contains are removed in the baking process of the formation method of the chemical heat storage material mentioned later.
なお、化学蓄熱材形成用組成物の含有する炭素からなる物質や炭化水素は、後述する化学蓄熱材の形成方法の焼成工程において除去される。 More preferably, finer pores are formed in the surface or inside of the chemical heat storage material, and the shape of the chemical heat storage material can be further stabilized. Therefore, the composition for forming a chemical heat storage material includes carbon black and hydrocarbon. It is preferable to contain.
In addition, the substance and hydrocarbon which consist of carbon which the composition for chemical heat storage material formation contains are removed in the baking process of the formation method of the chemical heat storage material mentioned later.
化学蓄熱材形成用組成物は、上記成分を分散させるために溶剤を含有することが好ましい。溶剤としては、有機溶剤及び水の少なくとも一方を用いることができる。有機溶剤としては、トルエン、キシレン等の炭化水素類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、セロソルブアセテート、ブチルセロソルブ等のエステル類、アルコール類等が挙げられる。
The chemical heat storage material forming composition preferably contains a solvent in order to disperse the above components. As the solvent, at least one of an organic solvent and water can be used. Examples of the organic solvent include hydrocarbons such as toluene and xylene, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, cellosolve acetate and butylcellosolve, alcohols and the like.
化学蓄熱材形成用組成物は、必要に応じて上記成分以外の成分を含有してもよい。
The composition for forming a chemical heat storage material may contain components other than the above components as necessary.
<化学蓄熱体>
本発明において、化学蓄熱体10としては、例えば、粉状物、粉砕物、成形物、又は、蓄熱装置1又は熱交換装置100及び200の蓄熱体チャンバ20及び隔壁22や熱交換装置300の熱交換面(例えば、熱交換用回路80)に化学蓄熱材形成用組成物を塗布した後、焼成を行ったもの等が挙げられる。特に、こうした化学蓄熱体10としては、例えば、粒径が0mmよりも大きく0.05mm以下の粉状物よりも粒径の大きい粒状体であって、そのサイズは、1つの化学蓄熱体10の最も離れた頂点間の距離である最大対角線長さDLmaxが0.05mmを超えるサイズであるものが好ましい。1つの化学蓄熱体10の最大対角線長さDLmaxが0.05mmより小さい場合、通気における圧損が大きくなりすぎるため、通気機能を大きく損なう傾向にある。加えて、粉立ちが生じ始めるため、ハンドリングを損なう傾向にある。ここでいう「粉立ち」は、粉体が舞い上がり、空気中への懸濁が目視により確認できる状態を指す。 <Chemical heat storage>
In the present invention, as the chemicalheat storage body 10, for example, powder, pulverized material, molded product, heat storage device 1 or heat storage chambers 20 of the heat exchange devices 100 and 200, partition walls 22, and heat of the heat exchange device 300 are used. For example, a chemical heat storage material forming composition is applied to the exchange surface (for example, the heat exchange circuit 80) and then baked. In particular, as such a chemical heat storage body 10, for example, a granular body having a particle size larger than a powdery material having a particle size larger than 0 mm and not larger than 0.05 mm, the size of which is one chemical heat storage body 10. It is preferable that the maximum diagonal length DLmax, which is the distance between the farthest vertices, is a size exceeding 0.05 mm. When the maximum diagonal length DLmax of one chemical heat storage element 10 is smaller than 0.05 mm, the pressure loss in ventilation becomes too large, and the ventilation function tends to be greatly impaired. In addition, since dusting starts to occur, the handling tends to be impaired. Here, “powdering” refers to a state in which the powder rises and the suspension in the air can be visually confirmed.
本発明において、化学蓄熱体10としては、例えば、粉状物、粉砕物、成形物、又は、蓄熱装置1又は熱交換装置100及び200の蓄熱体チャンバ20及び隔壁22や熱交換装置300の熱交換面(例えば、熱交換用回路80)に化学蓄熱材形成用組成物を塗布した後、焼成を行ったもの等が挙げられる。特に、こうした化学蓄熱体10としては、例えば、粒径が0mmよりも大きく0.05mm以下の粉状物よりも粒径の大きい粒状体であって、そのサイズは、1つの化学蓄熱体10の最も離れた頂点間の距離である最大対角線長さDLmaxが0.05mmを超えるサイズであるものが好ましい。1つの化学蓄熱体10の最大対角線長さDLmaxが0.05mmより小さい場合、通気における圧損が大きくなりすぎるため、通気機能を大きく損なう傾向にある。加えて、粉立ちが生じ始めるため、ハンドリングを損なう傾向にある。ここでいう「粉立ち」は、粉体が舞い上がり、空気中への懸濁が目視により確認できる状態を指す。 <Chemical heat storage>
In the present invention, as the chemical
前記成形物としての、化学蓄熱体としては、後述する成形工程(ここで、「成形工程」とは、広く、「ある形に作る工程」を言う。)の製造方法の違いにより分類することができ、例えば、造粒によって形成された「顆粒」、あるいは、成型(ここで、「成型」とは、「型を用いた成形」を言う。)によって形成された「ペレット」が挙げられる。粉末や顆粒をさらに成型したものも「ペレット」に含まれる。また、化学蓄熱体10の製造方法は、この2種類に限定されるものではない。特に、上述した、各実施形態に用いることが可能な前記化学蓄熱体は、第2族元素化合物と、ホウ素化合物と、シリコーンポリマーと、を含有することにより、加工された状態における強度が高いことから、当該化学蓄熱体が顆粒又はペレットである場合、化学蓄熱材の体積の増大や減少による微粉化が防止され、発熱と蓄熱の繰り返しにも耐えることができる。
The chemical heat storage body as the molded product can be classified according to the difference in the manufacturing method of the molding process (hereinafter referred to as “molding process” widely refers to a “process to form a certain shape”). For example, “granule” formed by granulation or “pellet” formed by molding (herein, “molding” refers to “molding using a mold”) can be mentioned. “Pellets” also include those obtained by further molding powders and granules. Moreover, the manufacturing method of the chemical heat storage body 10 is not limited to these two types. In particular, the chemical heat storage body that can be used in each embodiment described above has high strength in a processed state by containing a Group 2 element compound, a boron compound, and a silicone polymer. Thus, when the chemical heat storage body is a granule or a pellet, pulverization due to an increase or decrease in the volume of the chemical heat storage material is prevented, and it can withstand repeated heat generation and heat storage.
本実施形態に係る化学蓄熱体の形成方法の一例について説明する。本実施形態に係る化学蓄熱体の形成方法には、例えば、成形工程と、焼成工程と、を含む、加工方法がある。前記成形工程は、上記の各成分を任意の方法で混合した化学蓄熱材形成用組成物を成形する工程であり、例えば、化学蓄熱体が、「顆粒」であれば造粒による製造方法であり、「ペレット」であれば、型を用いた成型による製造方法である。
An example of a method for forming a chemical heat storage body according to the present embodiment will be described. The chemical heat storage body forming method according to the present embodiment includes, for example, a processing method including a forming step and a firing step. The molding step is a step of molding a chemical heat storage material forming composition in which the above components are mixed by an arbitrary method. For example, if the chemical heat storage material is a “granule”, it is a manufacturing method by granulation. If it is “pellet”, it is a production method by molding using a mold.
ここで、顆粒タイプの化学蓄熱体10の製造方法について説明する。
Here, the manufacturing method of the granule type chemical heat storage body 10 will be described.
顆粒タイプの製造方法には、以下に示す造粒法、例えば、転動造粒、流動層造粒、撹拌造粒、圧縮造粒、押出造粒、破砕造粒、等が挙げられる。但し、顆粒タイプの製造方法は、これら以外の造粒法であっても良く、また、二つ以上の造粒法を組み合わせて処理しても良い。顆粒タイプの化学蓄熱体10の粒径が5mm以上となる場合は、造粒法として、転動造粒や破砕造粒が好適に用いられる。
Examples of the granule type production method include the following granulation methods, such as rolling granulation, fluidized bed granulation, stirring granulation, compression granulation, extrusion granulation, crush granulation, and the like. However, the granule type production method may be a granulation method other than these, or may be processed by combining two or more granulation methods. When the particle size of the granule-type chemical heat storage element 10 is 5 mm or more, rolling granulation or crushing granulation is suitably used as the granulation method.
焼成工程では、成形工程後に、成形された化学蓄熱材形成用組成物を焼成する。焼成工程は、電気炉等により行うことができるが、焼成する装置については特に限定されない。
化学蓄熱材形成用組成物は、焼成工程において焼成されることで、樹脂や、炭素からなる物質、炭化水素は気化されて、化学蓄熱材からは除去される。化学蓄熱材は、樹脂や、炭素からなる物質、炭化水素等が除去されることにより形成される細孔を有する。 In the firing step, the molded chemical heat storage material forming composition is fired after the molding step. The firing step can be performed with an electric furnace or the like, but the firing apparatus is not particularly limited.
When the chemical heat storage material forming composition is fired in the firing step, the resin, the substance made of carbon, and the hydrocarbon are vaporized and removed from the chemical heat storage material. The chemical heat storage material has pores formed by removing a resin, a substance made of carbon, hydrocarbons, and the like.
化学蓄熱材形成用組成物は、焼成工程において焼成されることで、樹脂や、炭素からなる物質、炭化水素は気化されて、化学蓄熱材からは除去される。化学蓄熱材は、樹脂や、炭素からなる物質、炭化水素等が除去されることにより形成される細孔を有する。 In the firing step, the molded chemical heat storage material forming composition is fired after the molding step. The firing step can be performed with an electric furnace or the like, but the firing apparatus is not particularly limited.
When the chemical heat storage material forming composition is fired in the firing step, the resin, the substance made of carbon, and the hydrocarbon are vaporized and removed from the chemical heat storage material. The chemical heat storage material has pores formed by removing a resin, a substance made of carbon, hydrocarbons, and the like.
焼成工程において、成形された化学蓄熱材形成用組成物は、200~1200℃で焼成されることが好ましく、300~1000℃で焼成されることがより好ましい。焼成工程において、成形された化学蓄熱材形成用組成物が、200℃未満の温度で焼成された場合には、焼成不足により化学蓄熱材が崩壊しやすくなる傾向にあり、1200℃よりも高い温度で焼成された場合には、第二族元素化合物が酸化物の状態を維持できず、化学蓄熱材の蓄熱性能が低下する傾向にある。
In the firing step, the molded chemical heat storage material forming composition is preferably fired at 200 to 1200 ° C., more preferably 300 to 1000 ° C. In the firing step, when the molded composition for forming a chemical heat storage material is fired at a temperature of less than 200 ° C., the chemical heat storage material tends to collapse due to insufficient firing, and the temperature is higher than 1200 ° C. When it is fired, the Group 2 element compound cannot maintain the oxide state, and the heat storage performance of the chemical heat storage material tends to be lowered.
焼成工程において、成形された化学蓄熱材形成用組成物は、30~120分間焼成されることが好ましい。化学蓄熱材の機能を阻害しない範囲で、樹脂、炭素からなる物質及び炭化水素が、焼成工程後の化学蓄熱材中に残存していてもよい。焼成工程における、焼成時間が、30分未満の場合には、焼成不足により化学蓄熱材が崩壊しやすくなる傾向にあり、120分よりも長い場合には、化学蓄熱材の内部に気泡が発生して、やはり化学蓄熱材が崩壊しやすくなる傾向にある。
In the firing step, the formed chemical heat storage material forming composition is preferably fired for 30 to 120 minutes. As long as the function of the chemical heat storage material is not hindered, the resin, the substance made of carbon, and the hydrocarbon may remain in the chemical heat storage material after the firing step. In the firing process, when the firing time is less than 30 minutes, the chemical heat storage material tends to collapse due to insufficient firing, and when longer than 120 minutes, bubbles are generated inside the chemical heat storage material. After all, chemical heat storage materials tend to collapse easily.
このように、本発明の各実施形態に用いられる化学蓄熱体10は、造粒工程と焼成工程とを経て製造することができる。化学蓄熱体10の「粒径」は、当該「粒径」が3mmを下回るものは、レーザー光回折式の粒度分布測定装置(例えば、株式会社島津製作所製SALD-3100)等を用いることにより、測定することができる。顆粒タイプの化学蓄熱体10の粒径が3mmを超えるものは、100個の化学蓄熱体10を任意に抽出し、マイクロゲージにより最大対角線長さを測定することで、測定することができる。この明細書中では特に断りがない限り、顆粒タイプの化学蓄熱体10の粒径は、メディアン径とする。なお、蓄熱体チャンバに収容される化学蓄熱体10は、同一の造粒によって得られた顆粒のみとする他、異なる造粒によって得られた顆粒を二種以上混ぜたものを用いても良い。
Thus, the chemical heat storage body 10 used in each embodiment of the present invention can be manufactured through a granulation step and a firing step. The “particle size” of the chemical heat storage element 10 is less than 3 mm by using a laser diffraction type particle size distribution measuring device (for example, SALD-3100 manufactured by Shimadzu Corporation), etc. Can be measured. A granule type chemical heat storage body 10 having a particle size exceeding 3 mm can be measured by arbitrarily extracting 100 chemical heat storage bodies 10 and measuring the maximum diagonal length with a micro gauge. Unless otherwise specified in this specification, the particle size of the granule-type chemical heat storage element 10 is the median diameter. In addition, the chemical heat storage body 10 accommodated in the heat storage body chamber is not limited to the granules obtained by the same granulation, but may be a mixture of two or more kinds of granules obtained by different granulations.
次に、顆粒タイプの化学蓄熱体10の形状について説明する。
Next, the shape of the granule type chemical heat storage body 10 will be described.
上述した、各実施形態に用いることが可能な、顆粒タイプの化学蓄熱体10では、前記粒径測定法において測定された、当該化学蓄熱体10の最小の直径(粒径)は、好ましくは、0.05mm以上、望ましくは0.1mm以上、さらに望ましくは0.5mm以上である。また、顆粒タイプの化学蓄熱体10の最大の直径(粒径)は、好ましくは、100mm以下、望ましくは10mm以下、さらに望ましくは8mm以下である。但し、顆粒タイプの化学蓄熱体10の最大の直径(粒径)は、100mmより大きな径でもよい。しかしながら、生産性を考慮すれば、後述するペレットタイプの化学蓄熱体10が好ましい。
In the granule-type chemical heat storage body 10 that can be used in each embodiment described above, the minimum diameter (particle diameter) of the chemical heat storage body 10 measured in the particle size measurement method is preferably, It is 0.05 mm or more, desirably 0.1 mm or more, and more desirably 0.5 mm or more. The maximum diameter (particle size) of the granule type chemical heat storage element 10 is preferably 100 mm or less, desirably 10 mm or less, and more desirably 8 mm or less. However, the maximum diameter (particle diameter) of the granule-type chemical heat storage element 10 may be larger than 100 mm. However, if productivity is considered, the pellet type chemical heat storage body 10 mentioned later is preferable.
ここで、ペレットタイプの化学蓄熱体10の製造方法について説明する。
Here, the manufacturing method of the pellet type chemical heat storage body 10 will be described.
ペレットタイプの成型工程は、本発明に係る化学蓄熱材の可塑性を利用して、押出成型、型や打錠による圧縮成型、射出成型、シート成型とそれに続く型抜き工程、等(以下、「押出成型等」ともいう。)により製造することができるが、なかでも押出成型を用いることが好ましい。押出成型の場合、他の成型と比較して、設備としての普及率が高く、経済性・生産性の両面でも優れている。
The pellet-type molding process uses the plasticity of the chemical heat storage material according to the present invention to perform extrusion molding, compression molding with a mold or tableting, injection molding, sheet molding and subsequent die-cutting process, etc. (hereinafter referred to as “extrusion molding”). It is also preferable to use extrusion molding. In the case of extrusion molding, compared with other moldings, the penetration rate as equipment is high, and it is excellent in both economical efficiency and productivity.
成型工程が行われた後は、顆粒タイプを製造する場合と同様の焼成工程を行い、この焼成工程を経て、ペレットタイプの化学蓄熱体10が得られる。
After the molding process is performed, the same baking process as that for producing the granule type is performed, and the pellet type chemical heat storage body 10 is obtained through this baking process.
次に、ペレットタイプの化学蓄熱体10の形状について説明する。
Next, the shape of the pellet type chemical heat storage body 10 will be described.
ペレットタイプの化学蓄熱体10の形状は、上述の押出成型等によって得られる立体であれば、化学蓄熱体10の形状について制限はない。但し、化学蓄熱体10の形状は、通気性の観点から、中空状の形状、例えば、図4に示すような円筒状の形状であることが望ましい。なお、ここでいう「中空」とは、内部に「肉抜き」がされていることを指す。「肉抜き」には、図4に示す円筒状の形状のように貫通したものの他、いずれか一方が開放された窪みや、周囲が閉ざされた空間等が含まれる。ペレットタイプの化学蓄熱体10の寸法を、図4に付した記号を用いて示す。
The shape of the chemical heat storage body 10 is not limited as long as the shape of the pellet type chemical heat storage body 10 is a solid obtained by the above-described extrusion molding or the like. However, the shape of the chemical heat storage element 10 is desirably a hollow shape, for example, a cylindrical shape as shown in FIG. 4 from the viewpoint of air permeability. The term “hollow” as used herein means that “thickening” is provided inside. “Meat removal” includes not only a cylindrical shape shown in FIG. 4 but also a hollow in which one of them is opened, a space in which the periphery is closed, or the like. The dimensions of the pellet-type chemical heat storage element 10 are shown using symbols attached to FIG.
図4に示すペレットタイプの化学蓄熱体10では、円筒の高さ(以下、単に「円筒高さ」ともいう。)をL、内周の半径をr1、外周の半径をr2とし、内周半径r1の外周半径r2に対する比率をk(=r1/r2)で示す(0≦k<1)。図4に示すペレットタイプの化学蓄熱体10の比表面積は、化学蓄熱体10の体積V及び表面積Sとして、円筒高さL、内周半径r1及び外周半径r2から円筒の体積及び表面積を求めた後、更に、体積V及び表面積Sの比をとって求めることができる。この計算結果から、図4に示すペレットタイプの化学蓄熱体10は、kが1に近づくほど、Lが小さくなるほど、大きくなるため、通気に有利となることがわかる。
In the pellet type chemical heat storage body 10 shown in FIG. 4, the cylinder height (hereinafter, also simply referred to as “cylindrical height”) is L, the inner radius is r1, the outer radius is r2, and the inner radius r1. Is expressed as k (= r1 / r2) (0 ≦ k <1). The specific surface area of the pellet type chemical heat storage body 10 shown in FIG. 4 is obtained after determining the volume and surface area of the cylinder from the cylinder height L, the inner peripheral radius r1 and the outer peripheral radius r2 as the volume V and the surface area S of the chemical heat storage body 10. Furthermore, the ratio of the volume V and the surface area S can be obtained. From this calculation result, it can be seen that the pellet-type chemical heat storage body 10 shown in FIG. 4 is more advantageous for ventilation because k becomes closer to 1 and L becomes smaller as L becomes smaller.
一方、ペレットタイプの化学蓄熱体10の強度は、k=0、つまり、化学蓄熱体10が中空の形状ではなく、かつ、L=2・r2となるときに最大になる。
On the other hand, the strength of the pellet type chemical heat storage body 10 is maximized when k = 0, that is, when the chemical heat storage body 10 is not in a hollow shape and L = 2 · r2.
ここで、円筒高さL、外周半径r2、比率kを用いて望ましい寸法の範囲を示す。但し、本発明では、後述する望ましい寸法は、図4に示すペレットタイプの化学蓄熱体10の形状に何ら制限を設けるものではない。
Here, the range of desirable dimensions is shown using the cylinder height L, the outer radius r2, and the ratio k. However, in the present invention, desirable dimensions described later do not limit the shape of the pellet type chemical heat storage body 10 shown in FIG.
まず、円筒高さLが0.1mm以上であれば、図4に示すペレットタイプの化学蓄熱体10は、支障なく成形することができる。但し、化学蓄熱体10の強度の面からは、円筒高さLとして、L=2・r2に近い寸法を用いることが好ましい。
First, if the cylinder height L is 0.1 mm or more, the pellet type chemical heat storage element 10 shown in FIG. 4 can be molded without any trouble. However, from the viewpoint of the strength of the chemical heat storage element 10, it is preferable to use a dimension close to L = 2 · r2 as the cylinder height L.
次に、外周半径r2は、3mm~300mmである。この範囲において、図4に示すペレットタイプの化学蓄熱体10は、押出成型による生産に適する。外周半径r2が3mm以下であれば、生産性の面で、顆粒タイプの化学蓄熱体10が好ましい。比率kは0.1以下であれば通気性に乏しい傾向にあり、0.95以上であれば強度を有する化学蓄熱体10を成型することが困難な傾向にある。
Next, the outer radius r2 is 3 mm to 300 mm. In this range, the pellet type chemical heat storage body 10 shown in FIG. 4 is suitable for production by extrusion molding. If the outer peripheral radius r2 is 3 mm or less, the granular-type chemical heat storage body 10 is preferable in terms of productivity. If the ratio k is 0.1 or less, the air permeability tends to be poor, and if it is 0.95 or more, it tends to be difficult to mold the chemical heat storage element 10 having strength.
上述したところは、本発明の一実施形態を開示したにすぎず、特許請求の範囲に従えば、様々な変更が可能となる。例えば、上述した各実施形態に係る蓄熱装置及び熱交換装置の各構成は、互いに適宜に置き換えて、又は、組み合わせて使用することができる。
The above description merely discloses an embodiment of the present invention, and various modifications are possible according to the scope of the claims. For example, the configurations of the heat storage device and the heat exchange device according to each of the above-described embodiments can be appropriately replaced with each other or used in combination.
次に、本発明に係る蓄熱装置及び熱交換装置に用いることが可能な化学蓄熱材の様々な実施例を更に詳細に説明するが、化学蓄熱材の実施例は、以下の実施例に限定されるものではない。
Next, various examples of the chemical heat storage material that can be used in the heat storage device and the heat exchange device according to the present invention will be described in more detail. However, the examples of the chemical heat storage material are limited to the following examples. It is not something.
[実施例1]
表2に示す量(単位:質量部)の、ポリエチレングリコール樹脂(明成化学工業株式会社製、商品名「アルコックス」)、ブチラール樹脂(株式会社クラレ製、商品名「MowitalB20H」)と、エチルシリケートの低縮合物(コルコート株式会社製、商品名「エチルシリケート28」)と、有機溶媒(日本乳化剤株式会社製、商品名「MPG-130」、ポリエチレングリコールメチルエーテル)と、トリメチルボレート(東京化成工業株式会社製、商品名「Trimethyl Borate」)を混合した。この混合物に、更に表2に示す量の水酸化カルシウムを加えて、よく混合し、化学蓄熱材形成用組成物を得た。この化学蓄熱材形成用組成物をペレット状(円筒状、直径約5mm、高さ約10mm)に成形した。この成形した化学蓄熱材形成用組成物を電気炉に入れて1000℃で1時間焼成し、ペレット状の化学蓄熱材を得た。なお、水酸化カルシウムは焼成されることで脱水し、酸化カルシウムとなる。 [Example 1]
Polyethylene glycol resin (manufactured by Meisei Chemical Industry Co., Ltd., trade name “Alcox”), butyral resin (trade name “Mowital B20H”, trade name “Mowital B20H”) and ethyl silicate in the amounts (unit: parts by mass) shown in Table 2 Low condensate (Corcoat Co., Ltd., trade name “ethyl silicate 28”), organic solvent (Nippon Emulsifier Co., Ltd., trade name “MPG-130”, polyethylene glycol methyl ether), and trimethyl borate (Tokyo Chemical Industry) A trade name “Trimethyl Borate” manufactured by Co., Ltd.) was mixed. To this mixture, the amount of calcium hydroxide shown in Table 2 was further added and mixed well to obtain a composition for forming a chemical heat storage material. This chemical heat storage material forming composition was formed into a pellet (cylindrical, about 5 mm in diameter, about 10 mm in height). The molded chemical heat storage material forming composition was put in an electric furnace and baked at 1000 ° C. for 1 hour to obtain a pellet-shaped chemical heat storage material. In addition, calcium hydroxide dehydrates by being fired, and becomes calcium oxide.
表2に示す量(単位:質量部)の、ポリエチレングリコール樹脂(明成化学工業株式会社製、商品名「アルコックス」)、ブチラール樹脂(株式会社クラレ製、商品名「MowitalB20H」)と、エチルシリケートの低縮合物(コルコート株式会社製、商品名「エチルシリケート28」)と、有機溶媒(日本乳化剤株式会社製、商品名「MPG-130」、ポリエチレングリコールメチルエーテル)と、トリメチルボレート(東京化成工業株式会社製、商品名「Trimethyl Borate」)を混合した。この混合物に、更に表2に示す量の水酸化カルシウムを加えて、よく混合し、化学蓄熱材形成用組成物を得た。この化学蓄熱材形成用組成物をペレット状(円筒状、直径約5mm、高さ約10mm)に成形した。この成形した化学蓄熱材形成用組成物を電気炉に入れて1000℃で1時間焼成し、ペレット状の化学蓄熱材を得た。なお、水酸化カルシウムは焼成されることで脱水し、酸化カルシウムとなる。 [Example 1]
Polyethylene glycol resin (manufactured by Meisei Chemical Industry Co., Ltd., trade name “Alcox”), butyral resin (trade name “Mowital B20H”, trade name “Mowital B20H”) and ethyl silicate in the amounts (unit: parts by mass) shown in Table 2 Low condensate (Corcoat Co., Ltd., trade name “ethyl silicate 28”), organic solvent (Nippon Emulsifier Co., Ltd., trade name “MPG-130”, polyethylene glycol methyl ether), and trimethyl borate (Tokyo Chemical Industry) A trade name “Trimethyl Borate” manufactured by Co., Ltd.) was mixed. To this mixture, the amount of calcium hydroxide shown in Table 2 was further added and mixed well to obtain a composition for forming a chemical heat storage material. This chemical heat storage material forming composition was formed into a pellet (cylindrical, about 5 mm in diameter, about 10 mm in height). The molded chemical heat storage material forming composition was put in an electric furnace and baked at 1000 ° C. for 1 hour to obtain a pellet-shaped chemical heat storage material. In addition, calcium hydroxide dehydrates by being fired, and becomes calcium oxide.
[実施例2~13及び比較例1~4]
化学蓄熱材形成用組成物の成分を表2~表4に示した量に変更した以外は実施例1と同様の工程により、化学蓄熱材形成用組成物及び化学蓄熱材を得た。
なお、実施例5においては、ガラスファイバー(セントラルグラスファイバー株式会社製、商品名「ミルドファイバー」)をブチラール樹脂と、エチルシリケートの低縮合物と、有機溶媒と、トリメチルボレートと、の混合物に更に加えた。実施例6においては、トリメチルボレートに代えて、ホウ酸を用いた。実施例7~13においては、水酸化カルシウムに代えて、水酸化マグネシウム、水酸化ストロンチウム、水酸化バリウムをそれぞれ用いた。 [Examples 2 to 13 and Comparative Examples 1 to 4]
A chemical heat storage material forming composition and a chemical heat storage material were obtained by the same process as in Example 1 except that the components of the chemical heat storage material forming composition were changed to the amounts shown in Tables 2 to 4.
In Example 5, glass fiber (manufactured by Central Glass Fiber Co., Ltd., trade name “milled fiber”) was further added to a mixture of butyral resin, ethyl silicate low condensate, organic solvent, and trimethyl borate. added. In Example 6, boric acid was used in place of trimethyl borate. In Examples 7 to 13, magnesium hydroxide, strontium hydroxide, and barium hydroxide were used in place of calcium hydroxide.
化学蓄熱材形成用組成物の成分を表2~表4に示した量に変更した以外は実施例1と同様の工程により、化学蓄熱材形成用組成物及び化学蓄熱材を得た。
なお、実施例5においては、ガラスファイバー(セントラルグラスファイバー株式会社製、商品名「ミルドファイバー」)をブチラール樹脂と、エチルシリケートの低縮合物と、有機溶媒と、トリメチルボレートと、の混合物に更に加えた。実施例6においては、トリメチルボレートに代えて、ホウ酸を用いた。実施例7~13においては、水酸化カルシウムに代えて、水酸化マグネシウム、水酸化ストロンチウム、水酸化バリウムをそれぞれ用いた。 [Examples 2 to 13 and Comparative Examples 1 to 4]
A chemical heat storage material forming composition and a chemical heat storage material were obtained by the same process as in Example 1 except that the components of the chemical heat storage material forming composition were changed to the amounts shown in Tables 2 to 4.
In Example 5, glass fiber (manufactured by Central Glass Fiber Co., Ltd., trade name “milled fiber”) was further added to a mixture of butyral resin, ethyl silicate low condensate, organic solvent, and trimethyl borate. added. In Example 6, boric acid was used in place of trimethyl borate. In Examples 7 to 13, magnesium hydroxide, strontium hydroxide, and barium hydroxide were used in place of calcium hydroxide.
[化学蓄熱材の原子含有量]
化学蓄熱材の含有する、カルシウム原子等、ホウ素原子、ケイ素原子及び酸素原子の合計中における、それぞれの原子の含有量(質量%)を「化学蓄熱材中の原子含有量」として表2~表4に示した。「化学蓄熱材中の原子含有量」は、化学蓄熱材を蛍光X線分析装置(XRF)によって元素分析することで求めた。 [Atom content of chemical heat storage materials]
Table 2 to Table 2 show the content (mass%) of each atom in the total of calcium atoms, boron atoms, silicon atoms, and oxygen atoms contained in chemical heat storage materials as "Atom content in chemical heat storage materials". This is shown in FIG. The “atom content in the chemical heat storage material” was determined by elemental analysis of the chemical heat storage material with a fluorescent X-ray analyzer (XRF).
化学蓄熱材の含有する、カルシウム原子等、ホウ素原子、ケイ素原子及び酸素原子の合計中における、それぞれの原子の含有量(質量%)を「化学蓄熱材中の原子含有量」として表2~表4に示した。「化学蓄熱材中の原子含有量」は、化学蓄熱材を蛍光X線分析装置(XRF)によって元素分析することで求めた。 [Atom content of chemical heat storage materials]
Table 2 to Table 2 show the content (mass%) of each atom in the total of calcium atoms, boron atoms, silicon atoms, and oxygen atoms contained in chemical heat storage materials as "Atom content in chemical heat storage materials". This is shown in FIG. The “atom content in the chemical heat storage material” was determined by elemental analysis of the chemical heat storage material with a fluorescent X-ray analyzer (XRF).
[形状評価]
電気炉における焼成によって形成された直後の化学蓄熱材の形状(表2~表4の「焼成後」)、及び、水に浸透させることで発熱させた後の化学蓄熱材の形状(表2~表4の「発熱後」)について、目視にて評価した。ペレットの形状を保ち、ひび割れも生じない場合には「A」、微細なひび割れが生じるが、ペレットの形状を保っていた場合には「B」、著しい割れが生じた場合や、粉体状になってしまった場合には「C」とした。結果を表2~表4に示す。なお、比較例2~4に係る化学蓄熱材は、発熱後に形状が崩れペレットの形状を維持することができなかった。従って、表4においては、比較例2~4に係る化学蓄熱材の発熱後の形状評価を「評価不可」とした。 [Shape evaluation]
The shape of the chemical heat storage material immediately after being formed by firing in an electric furnace ("after firing" in Tables 2 to 4) and the shape of the chemical heat storage material after being heated by infiltrating into water (Tables 2 to 4) The “after heat generation” in Table 4) was evaluated visually. When the shape of the pellet is maintained and no cracks are generated, “A”, fine cracks are generated, but when the shape of the pellets is maintained, “B”, when significant cracks occur, When it became, it was set as “C”. The results are shown in Tables 2-4. Note that the chemical heat storage materials according to Comparative Examples 2 to 4 failed to maintain the shape of the pellet because the shape collapsed after heat generation. Therefore, in Table 4, the evaluation of the shape of the chemical heat storage material according to Comparative Examples 2 to 4 after heat generation was “not evaluated”.
電気炉における焼成によって形成された直後の化学蓄熱材の形状(表2~表4の「焼成後」)、及び、水に浸透させることで発熱させた後の化学蓄熱材の形状(表2~表4の「発熱後」)について、目視にて評価した。ペレットの形状を保ち、ひび割れも生じない場合には「A」、微細なひび割れが生じるが、ペレットの形状を保っていた場合には「B」、著しい割れが生じた場合や、粉体状になってしまった場合には「C」とした。結果を表2~表4に示す。なお、比較例2~4に係る化学蓄熱材は、発熱後に形状が崩れペレットの形状を維持することができなかった。従って、表4においては、比較例2~4に係る化学蓄熱材の発熱後の形状評価を「評価不可」とした。 [Shape evaluation]
The shape of the chemical heat storage material immediately after being formed by firing in an electric furnace ("after firing" in Tables 2 to 4) and the shape of the chemical heat storage material after being heated by infiltrating into water (Tables 2 to 4) The “after heat generation” in Table 4) was evaluated visually. When the shape of the pellet is maintained and no cracks are generated, “A”, fine cracks are generated, but when the shape of the pellets is maintained, “B”, when significant cracks occur, When it became, it was set as “C”. The results are shown in Tables 2-4. Note that the chemical heat storage materials according to Comparative Examples 2 to 4 failed to maintain the shape of the pellet because the shape collapsed after heat generation. Therefore, in Table 4, the evaluation of the shape of the chemical heat storage material according to Comparative Examples 2 to 4 after heat generation was “not evaluated”.
[強度評価]
電気炉における焼成によって形成された直後の化学蓄熱材(表2~表4の「焼成後」)、及び、水に浸透させることで発熱させた後の化学蓄熱材(表2~表4の「発熱後」)について、引張圧縮試験機(テクノグラフ、ミネベア株式会社製)を用いて強度を評価した。具体的には、焼成後及び発熱後の、それぞれのペレット状の化学蓄熱材について、上下からの負荷によって押し潰される力(単位:N)を引張圧縮試験機で測定した。焼成後及び発熱後の化学蓄熱材の押し潰される力が、両方とも10N以上であれば、発熱と蓄熱の繰り返しにも耐えることができる強度を有すると判断できる。なお、比較例2~4に係る化学蓄熱材は、形状を安定して保持することができず、引張圧縮試験機による強度の評価ができなかった。従って、表4においては、比較例2~4に係る化学蓄熱材の強度の評価を「評価不可」とした。 [Strength evaluation]
A chemical heat storage material immediately after being formed by firing in an electric furnace ("after firing" in Tables 2 to 4) and a chemical heat storage material after being heated by infiltrating into water ("Table 2 to Table 4" About "after heat generation"), strength was evaluated using a tension compression testing machine (Technograph, manufactured by Minebea Co., Ltd.). Specifically, the force (unit: N) to be crushed by loads from above and below was measured with a tensile and compression tester for each pellet-shaped chemical heat storage material after firing and after heat generation. If the crushing force of the chemical heat storage material after firing and after heat generation is both 10 N or more, it can be determined that the chemical heat storage material has a strength that can withstand repeated heat generation and heat storage. In addition, the chemical heat storage materials according to Comparative Examples 2 to 4 could not stably hold the shape, and the strength could not be evaluated with a tensile and compression tester. Therefore, in Table 4, the evaluation of the strength of the chemical heat storage material according to Comparative Examples 2 to 4 was set as “not evaluated”.
電気炉における焼成によって形成された直後の化学蓄熱材(表2~表4の「焼成後」)、及び、水に浸透させることで発熱させた後の化学蓄熱材(表2~表4の「発熱後」)について、引張圧縮試験機(テクノグラフ、ミネベア株式会社製)を用いて強度を評価した。具体的には、焼成後及び発熱後の、それぞれのペレット状の化学蓄熱材について、上下からの負荷によって押し潰される力(単位:N)を引張圧縮試験機で測定した。焼成後及び発熱後の化学蓄熱材の押し潰される力が、両方とも10N以上であれば、発熱と蓄熱の繰り返しにも耐えることができる強度を有すると判断できる。なお、比較例2~4に係る化学蓄熱材は、形状を安定して保持することができず、引張圧縮試験機による強度の評価ができなかった。従って、表4においては、比較例2~4に係る化学蓄熱材の強度の評価を「評価不可」とした。 [Strength evaluation]
A chemical heat storage material immediately after being formed by firing in an electric furnace ("after firing" in Tables 2 to 4) and a chemical heat storage material after being heated by infiltrating into water ("Table 2 to Table 4" About "after heat generation"), strength was evaluated using a tension compression testing machine (Technograph, manufactured by Minebea Co., Ltd.). Specifically, the force (unit: N) to be crushed by loads from above and below was measured with a tensile and compression tester for each pellet-shaped chemical heat storage material after firing and after heat generation. If the crushing force of the chemical heat storage material after firing and after heat generation is both 10 N or more, it can be determined that the chemical heat storage material has a strength that can withstand repeated heat generation and heat storage. In addition, the chemical heat storage materials according to Comparative Examples 2 to 4 could not stably hold the shape, and the strength could not be evaluated with a tensile and compression tester. Therefore, in Table 4, the evaluation of the strength of the chemical heat storage material according to Comparative Examples 2 to 4 was set as “not evaluated”.
[発熱性能評価]
実施例1~8のペレット状の化学蓄熱材について、発熱量を測定した。発熱量の測定は下記の手順で行った。
まず、断熱材によって覆われた容器に所定量の水を入れ、その水に化学蓄熱材を所定量(例えば5g)投入した。容器中の水はマグネチックスターラーによって攪拌し、その温度の上昇をシース型熱電対によって追跡した。実施例の化学蓄熱材が投入された水の、シース型熱電対によって測定される温度は大きく上昇した。化学蓄熱材の発熱量Q(単位:J)は、下記の式(1)によって求めることができる。式(1)中のΔTは、化学蓄熱材の投入後の水の最高温度から、化学蓄熱材を投入する直前の水の温度を差し引いた値(単位:K)である。また、Wは、カップ内の水の質量(単位:g)であり、Cpは水の比熱(J/g・K)である。
[数1]
Q=ΔT×W×Cp ・・・(1) [Heat generation performance evaluation]
For the pellet-like chemical heat storage materials of Examples 1 to 8, the calorific value was measured. The calorific value was measured according to the following procedure.
First, a predetermined amount of water was put into a container covered with a heat insulating material, and a predetermined amount (for example, 5 g) of a chemical heat storage material was put into the water. The water in the container was stirred by a magnetic stirrer, and the temperature rise was followed by a sheathed thermocouple. The temperature measured by the sheath-type thermocouple of the water charged with the chemical heat storage material of the example greatly increased. The calorific value Q (unit: J) of the chemical heat storage material can be obtained by the following equation (1). ΔT in the formula (1) is a value (unit: K) obtained by subtracting the temperature of water immediately before the chemical heat storage material is added from the maximum temperature of the water after the chemical heat storage material is charged. W is the mass (unit: g) of water in the cup, and Cp is the specific heat of water (J / g · K).
[Equation 1]
Q = ΔT × W × Cp (1)
実施例1~8のペレット状の化学蓄熱材について、発熱量を測定した。発熱量の測定は下記の手順で行った。
まず、断熱材によって覆われた容器に所定量の水を入れ、その水に化学蓄熱材を所定量(例えば5g)投入した。容器中の水はマグネチックスターラーによって攪拌し、その温度の上昇をシース型熱電対によって追跡した。実施例の化学蓄熱材が投入された水の、シース型熱電対によって測定される温度は大きく上昇した。化学蓄熱材の発熱量Q(単位:J)は、下記の式(1)によって求めることができる。式(1)中のΔTは、化学蓄熱材の投入後の水の最高温度から、化学蓄熱材を投入する直前の水の温度を差し引いた値(単位:K)である。また、Wは、カップ内の水の質量(単位:g)であり、Cpは水の比熱(J/g・K)である。
[数1]
Q=ΔT×W×Cp ・・・(1) [Heat generation performance evaluation]
For the pellet-like chemical heat storage materials of Examples 1 to 8, the calorific value was measured. The calorific value was measured according to the following procedure.
First, a predetermined amount of water was put into a container covered with a heat insulating material, and a predetermined amount (for example, 5 g) of a chemical heat storage material was put into the water. The water in the container was stirred by a magnetic stirrer, and the temperature rise was followed by a sheathed thermocouple. The temperature measured by the sheath-type thermocouple of the water charged with the chemical heat storage material of the example greatly increased. The calorific value Q (unit: J) of the chemical heat storage material can be obtained by the following equation (1). ΔT in the formula (1) is a value (unit: K) obtained by subtracting the temperature of water immediately before the chemical heat storage material is added from the maximum temperature of the water after the chemical heat storage material is charged. W is the mass (unit: g) of water in the cup, and Cp is the specific heat of water (J / g · K).
[Equation 1]
Q = ΔT × W × Cp (1)
表2の実施例1~4と表4の比較例1との比較から、「発熱後」及び「焼成後」ともに、実施例1~4、6~8の化学蓄熱材の方が比較例1の化学蓄熱材よりも強度評価の結果が良好であることが分かった。この結果から、第2族元素化合物と、ブチラール樹脂と、ホウ素含有化合物と、エチルシリケートの低縮合物と、を含有する化学蓄熱材形成用組成物を用いて形成された化学蓄熱材は、ホウ素含有化合物を含有しない化学蓄熱材形成用組成物を用いて形成された化学蓄熱材よりも、成形された状態における強度が高いことが確認された。
From the comparison between Examples 1 to 4 in Table 2 and Comparative Example 1 in Table 4, the chemical heat storage materials of Examples 1 to 4 and 6 to 8 are comparative examples 1 for both “after heat generation” and “after firing”. It was found that the strength evaluation result was better than the chemical heat storage material. From this result, the chemical heat storage material formed using the chemical heat storage material forming composition containing the Group 2 element compound, the butyral resin, the boron-containing compound, and the low condensate of ethyl silicate is boron. It was confirmed that the strength in the molded state was higher than that of the chemical heat storage material formed using the chemical heat storage material forming composition not containing the contained compound.
また、表2の実施例1~4と表3の実施例7~13との比較から、「発熱後」及び「焼成後」ともに、実施例7~13の化学蓄熱材も実施例1~4の化学蓄熱材と遜色のない強度を有することが分かった。これらの結果から、カルシウム以外の第二族元素からなる化合物も、本発明に係る蓄熱装置及び熱交換装置に用いることが可能な化学蓄熱材に用いることができることが確認された。
Further, from the comparison between Examples 1 to 4 in Table 2 and Examples 7 to 13 in Table 3, the chemical heat storage materials of Examples 7 to 13 are also examples 1 to 4 for both “after heat generation” and “after firing”. It was found to have a strength comparable to that of chemical heat storage materials. From these results, it was confirmed that a compound comprising a Group 2 element other than calcium can also be used for a chemical heat storage material that can be used in the heat storage device and the heat exchange device according to the present invention.
また、比較例2~4の結果から、比較例2~4の化学蓄熱材形成用組成物を用いて形成された化学蓄熱材は、形状評価の結果が芳しくないことが分かった。これらの結果から、化学蓄熱材形成用組成物が、第2族元素化合物、アルコキシシラン等及び樹脂のいずれかを含有しない場合には、ペレットの形状を維持できないことが確認された。
Also, from the results of Comparative Examples 2 to 4, it was found that the chemical heat storage materials formed using the chemical heat storage material forming compositions of Comparative Examples 2 to 4 had poor shape evaluation results. From these results, it was confirmed that the shape of the pellet cannot be maintained when the composition for forming a chemical heat storage material does not contain any of the Group 2 element compound, alkoxysilane, and the resin.
また、上記のように、実施例1~13の化学蓄熱材が投入された水は温度が大きく上昇した。この結果から、実施例1~13のペレット状の化学蓄熱材は、発熱性能を有することが確認された。なお、実施例1~13のペレット状の化学蓄熱材の発熱量Qは、各化学蓄熱材の含有する酸化カルシウムの量から求められる発熱量の理論値と同等であった。
Further, as described above, the temperature of the water in which the chemical heat storage materials of Examples 1 to 13 were added rose greatly. From this result, it was confirmed that the pellet-shaped chemical heat storage materials of Examples 1 to 13 have heat generation performance. The calorific value Q of the pellet-shaped chemical heat storage materials of Examples 1 to 13 was equivalent to the theoretical value of the calorific value obtained from the amount of calcium oxide contained in each chemical heat storage material.
なお、第2族元素化合物と、ホウ素含有化合物と、アルコキシシラン等と、樹脂と、を含有する化学蓄熱材形成用組成物を用いて形成された化学蓄熱材は、上記のように粒子同士が結着していることから、粘土鉱物を含有するペレット状の化学蓄熱材(例えば、上記の特許文献1に記載された化学蓄熱材)に比べて、ペレットの内部まで水(水蒸気)が浸漬しやすいと考えられる。内部まで水(水蒸気)が浸漬しやすい、実施例の化学蓄熱材は、発熱性能(上記の「発熱性能評価」において、水の温度を上昇させる能力)が高いと予想される。また、上述したところは、ペレット以外の、顆粒の化学蓄熱体等についても同様であると考えられる。
In addition, as for the chemical heat storage material formed using the chemical heat storage material formation composition containing a group 2 element compound, a boron containing compound, alkoxysilane etc., and resin, particles are as mentioned above. Since it is bound, water (water vapor) is immersed into the inside of the pellet as compared to the pellet-shaped chemical heat storage material containing the clay mineral (for example, the chemical heat storage material described in Patent Document 1 above). It is considered easy. The chemical heat storage material of the example in which water (water vapor) is easily immersed to the inside is expected to have high heat generation performance (ability to raise the temperature of water in the above “heat generation performance evaluation”). Moreover, the place mentioned above is considered to be the same also about the chemical heat storage body of a granule other than a pellet.
従って、本発明によれば、加工された状態における、強度及び熱伝導率が高い化学蓄熱材を用いた蓄熱装置及び熱交換装置を提供することができる。
Therefore, according to the present invention, it is possible to provide a heat storage device and a heat exchange device using a chemical heat storage material having high strength and high thermal conductivity in a processed state.
1;蓄熱装置, 2;蓄熱装置, 10;化学蓄熱体, 20;蓄熱体チャンバ(流通式チャンバ), 20a;第1ポート, 20b;第2ポート, 30;加熱チャンバ(流通式チャンバ), 40;脱炭酸装置, 50;ドレイン室, 60;蓄熱体チャンバ(密閉式チャンバ), 60a;第1ポート, 70;スチームタンク, 80;熱交換用回路, 100;熱交換装置, 200;熱交換装置, 300;熱交換装置, D;分配機構, G1;第1流体, G2;第2流体, G3;熱交換された流体, P1;入口ポート, P2;出口ポート, P3;他の入口ポート, P4;ドレインポート, R1;加熱チャンバ側経路, R2;蓄熱体チャンバ側経路, R3;掃気媒体経路, V1~V6;開閉弁
DESCRIPTION OF SYMBOLS 1; Heat storage apparatus, 2; Heat storage apparatus, 10; Chemical heat storage body, 20; Heat storage body chamber (circulation type chamber), 20a; First port, 20b; Second port, 30; Heating chamber (circulation type chamber), 40 Decarbonation device, 50; drain chamber, 60; heat storage chamber (sealed chamber), 60a; first port, 70; steam tank, 80; heat exchange circuit, 100; heat exchange device, 200; heat exchange device , 300; heat exchange device, D; distribution mechanism, G1; first fluid, G2; second fluid, G3; heat exchanged fluid, P1; inlet port, P2; outlet port, P3; other inlet port, P4 ; Drain port, R1; heating chamber side path, R2; heat storage chamber side path, R3; scavenging medium path, V1 to V6; on-off valve
Claims (6)
- 化学蓄熱体と、
前記化学蓄熱体を収容した蓄熱体チャンバと、
を備え、
前記化学蓄熱体は、第2族元素化合物と、ホウ素化合物と、シリコーンポリマーと、を含有する化学蓄熱材からなり、
前記蓄熱体チャンバは、流体を導入可能な第1ポートを有する、蓄熱装置。 A chemical heat storage,
A thermal storage chamber containing the chemical thermal storage;
With
The chemical heat storage body is composed of a chemical heat storage material containing a Group 2 element compound, a boron compound, and a silicone polymer,
The heat storage chamber has a first port through which a fluid can be introduced. - 前記第2族元素化合物は、酸化カルシウムであり、
前記化学蓄熱材における、カルシウム原子の含有量は13~59質量%であり、ホウ素原子の含有量は0.4~11.3質量%であり、ケイ素原子の含有量は4.8~33.2質量%である、請求項1に記載の蓄熱装置。 The Group 2 element compound is calcium oxide,
The chemical heat storage material has a calcium atom content of 13 to 59% by mass, a boron atom content of 0.4 to 11.3% by mass, and a silicon atom content of 4.8 to 33.3%. The heat storage device according to claim 1, which is 2 mass%. - 前記第2族元素化合物は、酸化マグネシウムであり、
前記化学蓄熱材における、マグネシウム原子の含有量は8.3~46.5質量%であり、ホウ素原子の含有量は0.5~11.9質量%であり、ケイ素原子の含有量は6.2~35.1質量%である、請求項1に記載の蓄熱装置。 The Group 2 element compound is magnesium oxide,
In the chemical heat storage material, the magnesium atom content is 8.3 to 46.5 mass%, the boron atom content is 0.5 to 11.9 mass%, and the silicon atom content is 6. The heat storage device according to claim 1, wherein the amount is 2 to 35.1 mass%. - 前記蓄熱体チャンバは、前記流体を排出可能な第2ポートを有する流通式チャンバである、請求項1乃至3のいずれか1項に記載の蓄熱装置。 The heat storage device according to any one of claims 1 to 3, wherein the heat storage body chamber is a flow-through chamber having a second port capable of discharging the fluid.
- 前記蓄熱体チャンバは、前記第1ポートに通じる閉鎖空間を形成している密閉式チャンバである、請求項1乃至3のいずれか1項に記載の蓄熱装置。 The heat storage device according to any one of claims 1 to 3, wherein the heat storage body chamber is a sealed chamber forming a closed space communicating with the first port.
- 請求項1乃至5のいずれか1項に記載の蓄熱装置を備え、前記化学蓄熱体が熱源体である、熱交換装置。 A heat exchange device comprising the heat storage device according to any one of claims 1 to 5, wherein the chemical heat storage body is a heat source body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016194888A JP2018054278A (en) | 2016-09-30 | 2016-09-30 | Thermal storage device and heat exchanging device |
JP2016-194888 | 2016-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018061990A1 true WO2018061990A1 (en) | 2018-04-05 |
Family
ID=61762674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/034166 WO2018061990A1 (en) | 2016-09-30 | 2017-09-21 | Heat storage device and heat exchange device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018054278A (en) |
WO (1) | WO2018061990A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024203472A1 (en) * | 2023-03-31 | 2024-10-03 | 愛知製鋼株式会社 | Chemical heat accumulator and method for manufacturing same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004132690A (en) * | 2002-08-15 | 2004-04-30 | Denso Corp | Adsorbent for thermal storage system, thermal storage system using it, iron aluminophosphate, and its manufacturing method |
JP2010216772A (en) * | 2009-03-18 | 2010-09-30 | Toyota Central R&D Labs Inc | Chemical heat storage reactor and chemical heat storage system |
WO2011118736A1 (en) * | 2010-03-25 | 2011-09-29 | 株式会社豊田中央研究所 | Chemical heat storage material structure, production method therefor, and chemical heat accumulator |
JP2012072930A (en) * | 2010-09-28 | 2012-04-12 | Panasonic Corp | Heat storage device and air conditioner equipped with the same |
JP2012082292A (en) * | 2010-10-08 | 2012-04-26 | Toyota Central R&D Labs Inc | Chemical thermal storage medium and method for manufacturing the same |
JP2015007174A (en) * | 2013-06-25 | 2015-01-15 | 株式会社山陽テクノ | Hydrolytic exothermic agent and exothermic method |
JP2015098582A (en) * | 2013-10-16 | 2015-05-28 | 日本ペイントホールディングス株式会社 | Chemical thermal storage medium and chemical thermal storage medium-forming composition |
JP2015178926A (en) * | 2014-03-19 | 2015-10-08 | 株式会社豊田中央研究所 | Heat storage system |
WO2016158973A1 (en) * | 2015-03-31 | 2016-10-06 | 日本ペイントホールディングス株式会社 | Chemical heat storage material, and composition for forming chemical heat storage material |
-
2016
- 2016-09-30 JP JP2016194888A patent/JP2018054278A/en active Pending
-
2017
- 2017-09-21 WO PCT/JP2017/034166 patent/WO2018061990A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004132690A (en) * | 2002-08-15 | 2004-04-30 | Denso Corp | Adsorbent for thermal storage system, thermal storage system using it, iron aluminophosphate, and its manufacturing method |
JP2010216772A (en) * | 2009-03-18 | 2010-09-30 | Toyota Central R&D Labs Inc | Chemical heat storage reactor and chemical heat storage system |
WO2011118736A1 (en) * | 2010-03-25 | 2011-09-29 | 株式会社豊田中央研究所 | Chemical heat storage material structure, production method therefor, and chemical heat accumulator |
JP2012072930A (en) * | 2010-09-28 | 2012-04-12 | Panasonic Corp | Heat storage device and air conditioner equipped with the same |
JP2012082292A (en) * | 2010-10-08 | 2012-04-26 | Toyota Central R&D Labs Inc | Chemical thermal storage medium and method for manufacturing the same |
JP2015007174A (en) * | 2013-06-25 | 2015-01-15 | 株式会社山陽テクノ | Hydrolytic exothermic agent and exothermic method |
JP2015098582A (en) * | 2013-10-16 | 2015-05-28 | 日本ペイントホールディングス株式会社 | Chemical thermal storage medium and chemical thermal storage medium-forming composition |
JP2015178926A (en) * | 2014-03-19 | 2015-10-08 | 株式会社豊田中央研究所 | Heat storage system |
WO2016158973A1 (en) * | 2015-03-31 | 2016-10-06 | 日本ペイントホールディングス株式会社 | Chemical heat storage material, and composition for forming chemical heat storage material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024203472A1 (en) * | 2023-03-31 | 2024-10-03 | 愛知製鋼株式会社 | Chemical heat accumulator and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP2018054278A (en) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3279288B1 (en) | Chemical heat storage material, and composition for forming chemical heat storage material | |
JP6846616B2 (en) | Manufacture of new materials and their use as storage media in sensible heat energy storage systems in the cold, medium and hot regions | |
Prasad et al. | Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview | |
Thanakkasaranee et al. | Effect of halloysite nanotubes on shape stabilities of polyethylene glycol-based composite phase change materials | |
Zamengo et al. | Magnesium hydroxide–expanded graphite composite pellets for a packed bed reactor chemical heat pump | |
Li et al. | Expanded vermiculite/paraffin composite as a solar thermal energy storage material | |
JP7126277B2 (en) | Production method of fast-grown high-strength geopolymer using coal bottom ash | |
JP5902449B2 (en) | Chemical heat storage material and chemical heat pump | |
Funayama et al. | Performance of thermochemical energy storage of a packed bed of calcium hydroxide pellets | |
WO2004091774A1 (en) | Material and apparatus for adsorbing and desorbing carbon dioxide | |
Pereira et al. | Synthetic aluminosilicates for geopolymer production | |
WO2018061990A1 (en) | Heat storage device and heat exchange device | |
WO2018123590A1 (en) | Heat accumulating and dissipating device | |
JP2011162746A (en) | Molded article of chemical heat storage material and method for producing the same | |
Ren et al. | Preparation and characteristic of the fly ash cenospheres/mullite composite for high-temperature application | |
Jing et al. | Hydrothermal synthesis of mesoporous materials from diatomaceous earth | |
Yang et al. | Salt hydrate adsorption material-based thermochemical energy storage for space heating application: A review | |
Antoni et al. | Compressive strength of geopolymer based on the fly ash variation | |
JP6214510B2 (en) | Chemical heat storage material and chemical heat storage material forming composition | |
Padamurthy et al. | Sustainable and open sorption system for low‐temperature heat storage applications | |
CN110914214B (en) | Production of thermal energy storage systems | |
WO2021161970A1 (en) | METHOD FOR MANUFACTURING SiO2-CONTAINING CURED ARTICLE | |
WO2018130623A1 (en) | An apparatus for generating hydrogen | |
WO2024071055A1 (en) | METHOD FOR PRODUCING SiO2-CONTAINING MATERIAL IN WHICH RAW MATERIALS CONTAINING SiO2 ARE DIRECTLY JOINED | |
Ali et al. | Development and Characterization of Sintered Zeolite and Zeolite-Kaolin Wick Structure for Thermosiphon Heat-Pipe Application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17855944 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17855944 Country of ref document: EP Kind code of ref document: A1 |