JP2011162746A - Molded article of chemical heat storage material and method for producing the same - Google Patents

Molded article of chemical heat storage material and method for producing the same Download PDF

Info

Publication number
JP2011162746A
JP2011162746A JP2010030358A JP2010030358A JP2011162746A JP 2011162746 A JP2011162746 A JP 2011162746A JP 2010030358 A JP2010030358 A JP 2010030358A JP 2010030358 A JP2010030358 A JP 2010030358A JP 2011162746 A JP2011162746 A JP 2011162746A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
chemical heat
resin
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010030358A
Other languages
Japanese (ja)
Other versions
JP5586262B2 (en
Inventor
Fujio Watanabe
藤雄 渡邉
Masanobu Katani
昌信 架谷
Niro Shiomi
仁郎 塩見
Naohide Izumida
尚秀 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Nagoya Denki Educational Foundation
Original Assignee
Air Water Inc
Nagoya Denki Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc, Nagoya Denki Educational Foundation filed Critical Air Water Inc
Priority to JP2010030358A priority Critical patent/JP5586262B2/en
Publication of JP2011162746A publication Critical patent/JP2011162746A/en
Application granted granted Critical
Publication of JP5586262B2 publication Critical patent/JP5586262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded article of a chemical heat storage material with hardly reducing reactivity even when repeatedly used. <P>SOLUTION: The molded article 17 of a chemical heat storage material in which particles 15 of the chemical heat storage material are carried in a porous body 14 formed by heating a resin is provided. The particles 15 of the chemical heat storage material preferably have a 0.1-1,000 μm average particle size and the content of the same is 30-85 wt.%. The porous body 14 is the resin and/or a carbide. The particles 15 of the chemical heat storage material are a compound of calcium or magnesium. The molded article 17 of the chemical heat storage material is produced by a method for producing the molded article 17 of the chemical heat storage material comprising a preparation step for preparing a mixed material by mixing the particles 15 of the chemical heat storage material with the resin and a heat processing step for forming the porous material 14 of the resin by heating the mixed material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、化学蓄熱材を含む化学蓄熱材成形体およびその製造方法に関する。   The present invention relates to a chemical heat storage material molded body including a chemical heat storage material and a method for producing the same.

化学蓄熱材は、熱エネルギーの利用を図る上で有効なケミカルヒートポンプに代表される化学蓄熱システムに用いられる。   A chemical heat storage material is used in a chemical heat storage system represented by a chemical heat pump effective in using heat energy.

放熱化学反応と吸熱化学反応とが可逆的に起こる化学蓄熱材は、再生利用が可能であるという利点がある。しかしながら、微粉体蓄熱材を使う従来の方法においては、複数回使用すると蓄熱材自身の固化等が進行しやすく、さらなる再生利用が難しいという問題があった。   A chemical heat storage material in which a heat release chemical reaction and an endothermic chemical reaction occur reversibly has an advantage that it can be recycled. However, the conventional method using a fine powder heat storage material has a problem that if the heat storage material itself is used a plurality of times, the heat storage material itself tends to solidify and the like, and further recycling is difficult.

上記のような問題を解決するための様々な技術が提案されている。例えば、粒径0.3mm〜4mmの範囲の結晶性の石灰石を850℃〜1100℃の範囲で所定時間加熱した後に、該石灰石を500℃〜600℃の範囲で所定時間加熱することで、表面から内部に向かう多数の気孔が形成された生石灰を得る技術が開示されている(例えば、特許文献1参照)。   Various techniques for solving the above problems have been proposed. For example, after heating crystalline limestone having a particle size of 0.3 mm to 4 mm within a range of 850 ° C. to 1100 ° C. for a predetermined time, the limestone is heated within a range of 500 ° C. to 600 ° C. for a predetermined time, A technique for obtaining quicklime in which a large number of pores from the inside toward the inside are formed is disclosed (for example, see Patent Document 1).

また、内部空間の10〜60容量%の割合で粉体化学蓄熱材を収容したカプセルを、反応器または反応塔に充填する技術が知られている(例えば、特許文献2、特許文献3参照)。また、粉体の化学蓄熱材を一次成形して得た一次粒子に粘土鉱物を混合して二次成形した成形体を焼成して、化学蓄熱材間に隙間が形成された化学蓄熱材を得る技術が知られている(例えば、特許文献4参照)。   Moreover, the technique which fills the reactor or reaction tower with the capsule which accommodated the powder chemical thermal storage material in the ratio of 10-60 volume% of internal space is known (for example, refer patent document 2, patent document 3). . In addition, the primary particles obtained by primary molding of the chemical heat storage material in powder form are mixed with clay minerals, and the molded body obtained by secondary molding is fired to obtain a chemical heat storage material in which a gap is formed between the chemical heat storage materials. A technique is known (for example, see Patent Document 4).

さらに、車両のエンジン熱を反応熱とする化学蓄熱により、大きなスペース・重量を必要とせず、顕熱蓄熱による蓄熱量に比べてはるかに高い蓄熱量を得ることで、車両熱エネルギーの高度利用を図ることができる車両用化学蓄熱システムの技術が知られている(例えば、特許文献5参照)。   Furthermore, by using chemical heat storage that uses the engine heat of the vehicle as a reaction heat, a large amount of heat storage is obtained compared to the amount of heat stored by sensible heat storage without requiring a large space and weight, so that advanced use of vehicle heat energy can be achieved. A technology of a chemical heat storage system for vehicles that can be achieved is known (for example, see Patent Document 5).

特許第2539480号Japanese Patent No. 2539480 特公平6−80394号公報Japanese Patent Publication No. 6-80394 特公平6−80395号公報Japanese Patent Publication No. 6-80395 特開2009−132844号公報JP 2009-132844 A 特開2009−57933号公報JP 2009-57933 A

しかしながら、特許文献1に記載のように、水和反応と脱水反応が繰り返されることにより体積の膨張と収縮を繰り返す化学蓄熱材そのものに気孔が形成されていると、微粉化しやすく、蓄熱システムとして反応性が低下しやすいという問題があった。   However, as described in Patent Document 1, if pores are formed in the chemical heat storage material itself that repeats expansion and contraction of the volume by repeating the hydration reaction and dehydration reaction, it is easy to pulverize and react as a heat storage system. There was a problem that the property was easily lowered.

また、特許文献2、3の構成では、カプセルの採用による熱伝導抵抗の増加や伝熱経路の複雑化によって、化学蓄熱材の放熱反応による熱を効率良く取り出すことができず、さらに蓄熱反応における熱を効率良く供給することができない問題があった。また、特許文献4の構成では、粘土鉱物が水和反応と脱水反応とが繰り返されるうちにセメント化し、固化してしまい、蓄熱システムとしての反応性が低下する原因となる。   In addition, in the configurations of Patent Documents 2 and 3, due to the increase in heat conduction resistance due to the use of capsules and the complexity of the heat transfer path, heat due to the heat dissipation reaction of the chemical heat storage material cannot be taken out efficiently, and further in the heat storage reaction There was a problem that heat could not be supplied efficiently. Further, in the configuration of Patent Document 4, the clay mineral is cemented and solidified while the hydration reaction and the dehydration reaction are repeated, which causes a decrease in reactivity as a heat storage system.

さらに、特許文献5に記載のように、車両廃熱の高度利用のシステム化には、繰り返し使用に耐えうる化学蓄熱反応する反応材が必要であるが、化学蓄熱材単体では、体積膨張・収縮を繰り返し、化学蓄熱材が崩壊・凝集し反応機能が低下する問題があった。   Furthermore, as described in Patent Document 5, a system for highly utilized vehicle waste heat requires a reaction material that can withstand chemical heat storage that can withstand repeated use. However, with a chemical heat storage material alone, volume expansion / contraction Repeatedly, there was a problem that the chemical heat storage material collapsed / aggregated and the reaction function was lowered.

本発明は、繰り返し使用しても反応性が低下しにくい化学蓄熱材成形体およびその製造方法を提供することを目的とする。   An object of this invention is to provide the chemical heat storage material molded object which a reactivity is hard to fall even if it uses repeatedly, and its manufacturing method.

本発明は、樹脂を加熱して形成された多孔質体に化学蓄熱材粒子が担持されている、化学蓄熱材成形体である。上記化学蓄熱材粒子は、平均粒子径が0.1〜1000μmであることが好ましい。本発明の化学蓄熱材成形体は、上記化学蓄熱材粒子の含有量が30〜85重量%であることが好ましい。   The present invention is a chemical heat storage material molded body in which chemical heat storage material particles are supported on a porous body formed by heating a resin. The chemical heat storage material particles preferably have an average particle size of 0.1 to 1000 μm. In the chemical heat storage material molded body of the present invention, the content of the chemical heat storage material particles is preferably 30 to 85% by weight.

また、本発明において、上記多孔質体は樹脂および/または炭化物である。上記多孔質体は三次元にランダムに貫通する貫通孔を多数有し、上記化学蓄熱材粒子は前記貫通孔に露出している構成が好ましい。上記化学蓄熱材粒子は、好ましくはカルシウムまたはマグネシウムの化合物である。   In the present invention, the porous body is a resin and / or a carbide. It is preferable that the porous body has a large number of through holes that randomly penetrate in three dimensions, and the chemical heat storage material particles are exposed in the through holes. The chemical heat storage material particles are preferably a calcium or magnesium compound.

さらに本発明は、上記化学蓄熱材成形体の製造方法であって、化学蓄熱材粒子と樹脂とを混合して混合材料を調製する調製工程と、当該混合材料を加熱して前記樹脂の多孔質体を形成する熱処理工程と、を有する。   Furthermore, the present invention is a method for producing the chemical heat storage material molded body, wherein a preparation step of preparing a mixed material by mixing chemical heat storage material particles and a resin, and heating the mixed material to make the porous resin A heat treatment step for forming a body.

上記調製工程において、好ましくはさらに気孔形成材を混合して上記混合材料を調製する。   In the preparation step, the mixed material is preferably prepared by further mixing a pore-forming material.

本発明の化学蓄熱材成形体は、反応媒体ガスである水蒸気の水和・脱水を繰り返しても、化学蓄熱材粒子の崩壊・凝集を防ぐことができる。また、繰り返し使用しても蓄熱放熱機能の維持が可能である。   The chemical heat storage material molded body of the present invention can prevent the chemical heat storage material particles from collapsing and agglomerating even if the reaction medium gas, water vapor, is repeatedly hydrated and dehydrated. In addition, the heat storage and release function can be maintained even after repeated use.

本実施形態の化学蓄熱材成形体の模式的な断面図である。It is typical sectional drawing of the chemical heat storage material molded object of this embodiment. 蓄熱放熱実験装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a thermal storage thermal radiation experiment apparatus. 蓄熱放熱実験における温度測定結果を示す図である。It is a figure which shows the temperature measurement result in a thermal storage thermal radiation experiment. 蓄熱放熱実験における最高到達温度の結果を示す図である。It is a figure which shows the result of the highest attained temperature in a thermal storage heat radiation experiment. 蓄熱発熱反応前の水酸化カルシウム単体のSEM写真を示す図である。It is a figure which shows the SEM photograph of the calcium hydroxide simple substance before a heat storage exothermic reaction. 放熱工程を5回経た後の水酸化カルシウム単体のSEM写真を示す図である。It is a figure which shows the SEM photograph of the calcium hydroxide simple substance after passing through the thermal radiation process 5 times. 蓄熱放熱反応前の本発明に係る試料2のSEM写真を示す図である。It is a figure which shows the SEM photograph of the sample 2 which concerns on this invention before heat storage thermal radiation reaction. 放熱工程を5回経た後の本発明に係る試料2のSEM写真を示す図である。It is a figure which shows the SEM photograph of the sample 2 which concerns on this invention after passing through a thermal radiation process 5 times.

以下、本発明の好ましい実施形態に関し、図面を用いてより詳細に説明する。
(化学蓄熱材成形体)
図1は、本実施形態の化学蓄熱材成形体の模式的な断面図である。図1に示されるように、化学蓄熱材成形体17は、多数の化学蓄熱材粒子15が、樹脂を加熱して形成された多孔質体14に担持されている。多孔質体14には、多数の細孔16が形成されている。
Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.
(Chemical heat storage material molding)
FIG. 1 is a schematic cross-sectional view of a chemical heat storage material molded body of the present embodiment. As shown in FIG. 1, the chemical heat storage material molded body 17 has a large number of chemical heat storage material particles 15 supported on a porous body 14 formed by heating a resin. A large number of pores 16 are formed in the porous body 14.

化学蓄熱材粒子15としては、例えば水酸化カルシウム(Ca(OH))が用いられる。水酸化カルシウムは、脱水に伴って蓄熱(吸熱)し、水和(水酸化カルシウムへの復元)に伴って放熱する。すなわち、化学蓄熱材粒子15である水酸化カルシウムは、式(1)に示す反応で蓄熱、放熱を可逆的に繰り返しうる。 As the chemical heat storage material particles 15, for example, calcium hydroxide (Ca (OH) 2 ) is used. Calcium hydroxide stores heat (absorbs heat) with dehydration and dissipates heat with hydration (restoration to calcium hydroxide). That is, the calcium hydroxide which is the chemical heat storage material particle 15 can reversibly repeat heat storage and heat release by the reaction shown in the formula (1).

Ca(OH) ⇔ CaO+HO 式(1)
式(1)に蓄熱量Qまたは放熱量Qを併せて示すと、式(2)、(3)に示す反応となる。
Ca (OH) 2 Ca CaO + H 2 O Formula (1)
When the heat storage amount Q or the heat release amount Q is shown together with the equation (1), the reactions shown in the equations (2) and (3) are obtained.

Ca(OH)+Q → CaO+HO 式(2)
CaO+HO → Ca(OH)+Q 式(3)
化学蓄熱材粒子15は多孔質体14に担持されているので、蓄熱放熱反応を繰り返しても化学蓄熱材粒子15の崩壊・凝集を防ぐことができ、繰り返し蓄熱放熱反応に使用することができる。
Ca (OH) 2 + Q → CaO + H 2 O Formula (2)
CaO + H 2 O → Ca (OH) 2 + Q Formula (3)
Since the chemical heat storage material particles 15 are supported on the porous body 14, even if the heat storage heat release reaction is repeated, the chemical heat storage material particles 15 can be prevented from collapsing / aggregating and can be used repeatedly for the heat storage heat release reaction.

細孔16は、化学蓄熱材粒子15の蓄熱の際に反応生成物としての気体(式(2)においては水蒸気)を排出し、放熱の際に反応物としての気体(式(3)においては水蒸気)を供給するための流路として機能する。したがって、反応効率の点から、化学蓄熱材粒子15は、多孔質体14中にランダムに分散し保持されている構成が好ましく、化学蓄熱材粒子15は細孔16内に表面が露出するように保持されている構成が好ましく、細孔16は化学蓄熱材成形体17中に三次元にランダムに貫通する貫通孔が好ましい。   The pore 16 discharges a gas as a reaction product (water vapor in the formula (2)) during the heat storage of the chemical heat storage material particles 15, and a gas as a reactant during the heat release (in the formula (3)). It functions as a flow path for supplying water vapor. Therefore, from the viewpoint of reaction efficiency, it is preferable that the chemical heat storage material particles 15 are randomly dispersed and held in the porous body 14 so that the surface of the chemical heat storage material particles 15 is exposed in the pores 16. The structure by which it hold | maintains is preferable, and the through-hole which the pore 16 penetrates the chemical heat storage material molded object 17 at random in three dimensions is preferable.

多孔質体14は、樹脂を加熱して形成されたものである。たとえば、樹脂を加熱して一部または全部を熱分解して炭素化することにより形成された多孔質体14が例示される。この場合、樹脂材料または加熱条件を調整することにより、あるいは樹脂材料を気孔形成材とともに加熱することにより、多孔質体14を形成することができる。または、多数の樹脂粒子からなる樹脂を加熱して各粒子同士を融着することにより形成された多孔質体14が例示される。樹脂を加熱して炭素化して形成された多孔質体14は、蓄熱反応における加熱により変化することがなく、化学蓄熱材成形体17を繰り返し利用するのに好適である。   The porous body 14 is formed by heating a resin. For example, the porous body 14 formed by heating resin and thermally decomposing part or all is carbonized. In this case, the porous body 14 can be formed by adjusting the resin material or heating conditions, or by heating the resin material together with the pore forming material. Or the porous body 14 formed by heating resin which consists of many resin particles and fuse | melting each particle | grains is illustrated. The porous body 14 formed by heating and carbonizing the resin does not change due to heating in the heat storage reaction, and is suitable for repeatedly using the chemical heat storage material molded body 17.

化学蓄熱材粒子15は、平均粒子径が好ましくは0.1〜1000μm、さらに好ましくは0.5〜500μm、最も好ましくは1〜100μmである。化学蓄熱材粒子15の平均粒子径が0.1μm未満の場合、粉砕分級コストが大きくなり経済的でないとともに、多孔質体14中への分散が困難になる。また、化学蓄熱材粒子15の平均粒子径が1000μmを超えると、蓄熱放熱反応時に粒子の崩壊・凝集が顕著となり、蓄熱放熱機能が低下するとともに繰り返し使用が困難となる場合がある。なお、本明細書中における化学蓄熱材粒子の平均粒子径は、レーザー回折・散乱式測定装置を用いた測定方法、すなわちレーザー回折・散乱法(マイクロトラック法)によって得られた頻度分布の累積頻度50%値を意味する。レーザー回折・散乱式粒子径測定装置としては、例えば、日機装株式会社製マイクロトラックMT3000を用いることができる。   The chemical heat storage material particles 15 preferably have an average particle diameter of 0.1 to 1000 μm, more preferably 0.5 to 500 μm, and most preferably 1 to 100 μm. When the average particle diameter of the chemical heat storage material particles 15 is less than 0.1 μm, the pulverization classification cost becomes large and it is not economical, and it becomes difficult to disperse the porous heat in the porous body 14. Moreover, when the average particle diameter of the chemical heat storage material particles 15 exceeds 1000 μm, particle collapse / aggregation becomes prominent during the heat storage and heat release reaction, and the heat storage and heat release function may be lowered and repeated use may be difficult. The average particle diameter of the chemical heat storage material particles in this specification is the cumulative frequency of the frequency distribution obtained by the measurement method using a laser diffraction / scattering type measuring device, that is, the laser diffraction / scattering method (microtrack method). It means 50% value. As a laser diffraction / scattering type particle size measuring device, for example, Microtrack MT3000 manufactured by Nikkiso Co., Ltd. can be used.

化学蓄熱材粒子15は、化学蓄熱材成形体17の全体に対する含有量が30〜85重量%が好ましい。30重量%未満であると、十分な蓄熱放熱能力が得られないとともに多孔質体14内に埋没している割合が多くなり蓄熱放熱効率が低下し好ましくない。85重量%を超えると、多孔質体14の割合が少なくなり、蓄熱放熱反応に伴って化学蓄熱材粒子15が崩壊・凝集を生じやすく蓄熱放熱反応を繰り返すと反応効率が低下することがあり好ましくない。なお、本明細書中における化学蓄熱材粒子の含有量は、蛍光X線分析法により定量分析を行なって測定した値とする。蛍光X線分析測定装置としては、例えば、株式会社リガク製ZSX100eを用いることができる。   The chemical heat storage material particles 15 preferably have a content of 30 to 85% by weight based on the entire chemical heat storage material molded body 17. If it is less than 30% by weight, a sufficient heat storage and heat dissipation capability cannot be obtained, and the ratio of being buried in the porous body 14 increases, resulting in a decrease in heat storage and heat dissipation efficiency. If it exceeds 85% by weight, the proportion of the porous body 14 is decreased, and the chemical heat storage material particles 15 are likely to collapse / aggregate in association with the heat storage heat release reaction. Absent. In addition, the content of the chemical heat storage material particles in the present specification is a value measured by performing a quantitative analysis by a fluorescent X-ray analysis method. As a fluorescent X-ray analysis measurement device, for example, ZSX100e manufactured by Rigaku Corporation can be used.

化学蓄熱材粒子15は、放熱後蓄熱前の状態(例えば、式(1)のCa(OH))と蓄熱後放熱前の状態(例えば、式(1)のCaO)が異なるが、本明細書における化学蓄熱材粒子15の平均粒子径および含有量は、放熱後蓄熱前の状態での平均粒子径および含有量をいう。 The chemical heat storage material particles 15 are different in a state before heat storage after heat dissipation (for example, Ca (OH) 2 in formula (1)) and a state before heat dissipation after heat storage (for example, CaO in formula (1)). The average particle size and content of the chemical heat storage material particles 15 in the book refer to the average particle size and content in the state after heat dissipation and before heat storage.

化学蓄熱材粒子15として、水酸化カルシウムが好ましく用いられる。水酸化カルシウムは可逆性が高く、長期間にわたって安定した蓄熱効果を得ることができる。また、水酸化カルシウムは、不純物に対する感度が低いので、この点でも長期安定的に使用することができる。その他に、水酸化マグネシウムが好ましく用いられる。これら、カルシウムやマグネシウムの化合物は、アルカリ土類金属の化合物であるため、環境負荷の小さい材料であり、化学蓄熱材成形体17の製造、使用、リサイクルを含めた安全性の確保が容易になる。また、平均粒子径を比較的容易にそろえることが可能であり所望の粒子径の粒子を得るためには好適である。水酸化カルシウム、水酸化マグネシウムを化学蓄熱材とする化学蓄熱材成形体17は、100〜400℃の蓄熱材として使用することができる。なお、上記においては化学蓄熱材粒子15と反応する反応物として水蒸気を示したが、エタノールを用いても同じように、蓄熱放熱反応を生じさせることができる。   As the chemical heat storage material particles 15, calcium hydroxide is preferably used. Calcium hydroxide is highly reversible and can provide a stable heat storage effect over a long period of time. Further, since calcium hydroxide has low sensitivity to impurities, it can be stably used for a long time in this respect. In addition, magnesium hydroxide is preferably used. Since these calcium and magnesium compounds are alkaline earth metal compounds, they are materials with a small environmental load, and it is easy to ensure safety including manufacture, use, and recycling of the chemical heat storage material molded body 17. . In addition, the average particle diameter can be made relatively easy, which is suitable for obtaining particles having a desired particle diameter. The chemical heat storage material molded body 17 using calcium hydroxide and magnesium hydroxide as a chemical heat storage material can be used as a heat storage material at 100 to 400 ° C. In addition, although water vapor | steam was shown as a reaction material which reacts with the chemical thermal storage material particle | grains 15 in the above, even if it uses ethanol, a thermal storage thermal radiation reaction can be produced similarly.

多孔質体14の形成に用いられる樹脂としては、例えば、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、フラン樹脂などの熱硬化性樹脂、あるいは、ポリアミド樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂などの熱可塑性樹脂のうちの1種類または2種類以上を混合して用いることができる。   Examples of the resin used for forming the porous body 14 include thermosetting resins such as phenol resin, melamine resin, urea resin, epoxy resin, furan resin, polyamide resin, polyester resin, polyethylene resin, polypropylene resin, One kind or two or more kinds of thermoplastic resins such as polystyrene resin, acrylic resin, vinyl chloride resin, fluorine resin, polyacetal resin, polycarbonate resin, polyurethane resin, and polyvinyl alcohol resin can be mixed and used.

化学蓄熱材成形体17の形状は、特に制限されることなく、例えば、円柱、円筒、ブロック、べレット、顆粒状等が例示される。ペレット状、顆粒状の形状は、反応器への充填が容易となり、ハンドリングの点から至便性が高い。   The shape of the chemical heat storage material molded body 17 is not particularly limited, and examples thereof include a cylinder, a cylinder, a block, a beret, and a granule. The pellet and granule shapes can be easily filled into the reactor, and are highly convenient from the viewpoint of handling.

(化学蓄熱材成形体の製造方法)
本発明に係る化学蓄熱材成形体の製造方法は、化学蓄熱材粒子と樹脂とを混合して混合材料を調製する混合工程と、当該混合材料を加熱して樹脂の多孔質体を形成する熱処理工程とを有する。混合工程においては、例えば、樹脂を水または溶媒で溶かして液状とした後、化学蓄熱材粒子を混合する。好ましくは、気孔形成材も混合する。熱処理工程においては、所定の形状に成形した混合材料を加熱し、例えば樹脂を熱分解させることにより、炭素からなる多孔質体に化学蓄熱材粒子が担持されている化学蓄熱材成形体を製造する。熱処理工程における加熱温度は、使用する樹脂および気孔形成材に応じて適宜選択すればよく、例えば500〜1000℃の温度で加熱することができる。熱処理工程においては、樹脂を炭化させることに限定されることはなく、樹脂からなる、または樹脂と一部が炭化した材料からなる多孔質体を形成してもよい。
(Method for producing chemical heat storage material molding)
The method for producing a chemical heat storage material molded body according to the present invention includes a mixing step in which chemical heat storage material particles and a resin are mixed to prepare a mixed material, and a heat treatment in which the mixed material is heated to form a porous resin body. Process. In the mixing step, for example, the resin is dissolved in water or a solvent to form a liquid, and then the chemical heat storage material particles are mixed. Preferably, a pore forming material is also mixed. In the heat treatment process, the mixed material molded into a predetermined shape is heated, and, for example, by thermally decomposing the resin, a chemical heat storage material molded body in which the chemical heat storage material particles are supported on the porous body made of carbon is manufactured. . What is necessary is just to select the heating temperature in a heat processing process suitably according to resin to be used and a pore formation material, for example, it can heat at the temperature of 500-1000 degreeC. In the heat treatment step, the resin is not limited to carbonization, and a porous body made of a resin or a material partially carbonized with the resin may be formed.

気孔形成材としては、樹脂中の細孔の形成を促進する材料が用いられる。混合材料の加熱に伴って分解し、混合材料中で気孔形成材が占めていた空間が化学蓄熱材成形体中の細孔となるような材料が好ましく用いられる。気孔形成材は、特に制限されるものではないが、馬鈴薯、とうもろこし由来のでん粉が好適に用いられる。なお、気孔形成材としてでん粉を用いた場合、化学蓄熱材成形体を温水に浸漬してでん粉を溶出除去する方法でも細孔を形成することができる。   As the pore forming material, a material that promotes the formation of pores in the resin is used. A material that decomposes with the heating of the mixed material and in which the space occupied by the pore-forming material in the mixed material becomes pores in the chemical heat storage material molded body is preferably used. The pore-forming material is not particularly limited, but starch derived from potato and corn is preferably used. When starch is used as the pore-forming material, the pores can also be formed by a method in which the chemical heat storage material molded body is immersed in warm water to elute and remove the starch.

樹脂としては、上述の通り熱硬化性樹脂、熱可塑性樹脂いずれであっても使用することができる。例えば、熱硬化性樹脂の粉末状初期縮合物を用い、所定量の気孔形成材と化学蓄熱材粒子とを混合して混合材料を調整し、混合材料を加熱して樹脂を硬化させることにより化学蓄熱材粒子が多孔質体に担持された化学蓄熱材成形体を製造することができる。   As the resin, any of a thermosetting resin and a thermoplastic resin can be used as described above. For example, using a powdery initial condensate of a thermosetting resin, a predetermined amount of pore-forming material and chemical heat storage material particles are mixed to prepare a mixed material, and then the mixed material is heated to cure the resin. A chemical heat storage material molded body in which the heat storage material particles are supported on the porous body can be manufactured.

また、例えば、粉末状あるいは、ペレット状の熱可塑性樹脂を用い、所定量の気孔形成材と化学蓄熱材粒子とを混合して混合材料を調製し、熱可塑性樹脂の軟化点以上の温度に加熱することすることにより化学蓄熱材粒子が多孔質体に担持された化学蓄熱材成形体を製造することができる。   In addition, for example, using a powdered or pelleted thermoplastic resin, a predetermined amount of pore forming material and chemical heat storage material particles are mixed to prepare a mixed material, and heated to a temperature above the softening point of the thermoplastic resin. By doing so, a chemical heat storage material molded body in which the chemical heat storage material particles are supported on the porous body can be manufactured.

また、ポリビニルアルコール樹脂を用いる場合には、ポリビニルアルコールを温水で溶解し、所定濃度の水溶液とした後、気孔形成材と化学蓄熱材粒子とを混合し、成形して加熱することにより化学蓄熱材粒子が多孔質体に担持された化学蓄熱材成形体を製造することができる。ポリビニルアルコール樹脂を用いる場合は、混合材料を調製する工程において、ポリビニルアルコールの架橋剤となるアルデヒド類および酸触媒を添加することにより、ポリビニルホルマール、ポリビニルベンザール等のポリビニルアセタール樹脂からなる多孔質体を形成することもできる。   Moreover, when using polyvinyl alcohol resin, after melt | dissolving polyvinyl alcohol with warm water and making it aqueous solution of predetermined density | concentration, a pore formation material and a chemical heat storage material particle are mixed, and it shape | molds and heats, and heats it. A chemical heat storage material molded body in which particles are supported on a porous body can be produced. When a polyvinyl alcohol resin is used, a porous body made of a polyvinyl acetal resin such as polyvinyl formal or polyvinyl benzal is added by adding an aldehyde that becomes a crosslinking agent of polyvinyl alcohol and an acid catalyst in the step of preparing the mixed material. Can also be formed.

いずれの樹脂を用いる場合においても、熱処理工程において、樹脂の全部が炭化するように加熱してもよいし、樹脂の一部が炭化するように加熱してもよいし、あるいは樹脂が炭化しないように加熱してもよい。   In the case of using any resin, in the heat treatment step, the resin may be heated so that all of the resin is carbonized, may be heated so that a part of the resin is carbonized, or the resin is not carbonized. You may heat to.

本発明の化学蓄熱材成形体は、ケミカルヒートポンプ用蓄熱材料として排熱利用冷暖房システム、自動車エンジン熱利用の暖房、エンジン保温システムなどに用いることができる。   The chemical heat storage material molded body of the present invention can be used as a heat storage material for a chemical heat pump in a cooling / heating system using exhaust heat, heating using automobile engine heat, an engine heat retention system, and the like.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

(製造例)
<試料1〜5>
重合度1700、けん化度99%のポリビニルアルコールに水を加えて加熱溶解し、20重量%のポリビニルアルコール水溶液(PVA水)とした。平均粒子径100μmの水酸化カルシウムとPVA水を混合し、さらに熱硬化性フェノール樹脂(ベルパール(登録商標)S830 エア・ウォーター社製)、0.1規定硝酸ホルムアルデヒド溶液、コーンスターチでん粉を加え混合し混合材料を調製した。そして、混合材料を押し出し造粒機(ダルトン社製EXDS―60型)投入して、直径2mm、長さ10mmのペレットを得た。各材料の混合比率は表1に記載の通りとした。
(Production example)
<Samples 1-5>
Water was added to polyvinyl alcohol having a polymerization degree of 1700 and a saponification degree of 99% and dissolved by heating to obtain a 20% by weight polyvinyl alcohol aqueous solution (PVA water). Calcium hydroxide with an average particle size of 100 μm and PVA water are mixed, and thermosetting phenol resin (Bellpearl (registered trademark) S830 manufactured by Air Water), 0.1 N formaldehyde nitrate solution and corn starch starch are mixed and mixed. The material was prepared. Then, the mixed material was put into an extrusion granulator (EXDS-60 type manufactured by Dalton Co.) to obtain pellets having a diameter of 2 mm and a length of 10 mm. The mixing ratio of each material was as shown in Table 1.

上記ペレットをマッフル炉に入れ、窒素雰囲気下、昇温速度50℃/時間で700℃まで昇温後、700℃で1時間保持して冷却することにより、試料1〜5の化学蓄熱材成形体を得た。試料1〜5中のCa(OH)の含有量を、蛍光X線分析装置(株式会社リガク製ZSX100e)により定量分析を行なって測定した。表1に測定値を示す。 The pellets were put in a muffle furnace, heated to 700 ° C. at a temperature rising rate of 50 ° C./hour in a nitrogen atmosphere, and then held at 700 ° C. for 1 hour to cool, thereby forming a chemical heat storage material molded body of samples 1 to 5 Got. The content of Ca (OH) 2 in Samples 1 to 5 was measured by quantitative analysis using a fluorescent X-ray analyzer (ZSX100e manufactured by Rigaku Corporation). Table 1 shows the measured values.

<試料6>
平均粒子径2000μmの水酸化カルシウムを使用した点、ペレットの大きさを直径5mm、長さ10mmとした点以外は、試料1〜5と同様の方法で試料6の化学蓄熱材成形体を得た。各材料の混合比率は表1に記載の通りとした。Ca(OH)の含有量を、蛍光X線分析装置(株式会社リガク製ZSX100e)により定量分析を行なって測定した。表1に測定値を示す。
<Sample 6>
A chemical heat storage material molded body of Sample 6 was obtained in the same manner as Samples 1 to 5 except that calcium hydroxide having an average particle diameter of 2000 μm was used and the pellet size was 5 mm in diameter and 10 mm in length. . The mixing ratio of each material was as shown in Table 1. The content of Ca (OH) 2 was measured by quantitative analysis using a fluorescent X-ray analyzer (ZSX100e manufactured by Rigaku Corporation). Table 1 shows the measured values.

<試料7>
平均粒子径0.05μmの水酸化カルシウムを使用した。表1に記載の混合比率で各材料を混合した後、押し出し造粒機(ダルトン社製EXDF―60型)にて直径2mm、長さ10mmのペレットの作製を試みたが、均一に分散混合することができなかった。したがって、粘度状の混合物を粒径2mm程度となるように篩により目通しして顆粒状成形物とした。この顆粒状成形物をマッフル炉に入れ、窒素雰囲気下、昇温速度50℃/時間で700℃まで昇温後、700℃で1時間保持して冷却することにより、試料7の化学蓄熱材成形体を得た。試料7中のCa(OH)の含有量を、蛍光X線分析装置(株式会社リガク製ZSX100e)により定量分析を行なって測定した。表1に測定値を示す。
<Sample 7>
Calcium hydroxide having an average particle size of 0.05 μm was used. After mixing each material with the mixing ratio shown in Table 1, an attempt was made to produce pellets having a diameter of 2 mm and a length of 10 mm using an extrusion granulator (EXDF-60 type manufactured by Dalton). I couldn't. Therefore, the viscous mixture was passed through a sieve so as to have a particle size of about 2 mm to obtain a granular molded product. This granular molded product is put into a muffle furnace, heated to 700 ° C. at a temperature rising rate of 50 ° C./hour in a nitrogen atmosphere, and then cooled by holding at 700 ° C. for 1 hour to form a chemical heat storage material for sample 7. Got the body. The content of Ca (OH) 2 in the sample 7 was measured by quantitative analysis using a fluorescent X-ray analyzer (ZSX100e manufactured by Rigaku Corporation). Table 1 shows the measured values.

(蓄熱放熱実験)
図2は、本実験で使用した蓄熱放熱実験装置の概略構成を示す模式図である。蓄熱放熱実験装置18は、蓄熱材3を投入する反応器1、反応物4を投入する蒸発・凝縮器2、反応器1内の蓄熱材3を加熱する電気炉7、蒸発・凝縮器2内の温度を一定に保つ恒温槽8、蒸発・凝縮器2に取り付けられたマントルヒーター12、反応器1内の圧力を測定する圧力ゲージ9、反応器1内の水分を吸引する真空ポンプ10、連結パイプ5、および連結パイプ5に設けられたバルブ6,11,13を備える。連結パイプ5は、反応器1、蒸発・凝縮器2、真空ポンプ10および外部を連結する。
(Heat storage / radiation experiment)
FIG. 2 is a schematic diagram showing a schematic configuration of the heat storage and heat radiation experiment apparatus used in this experiment. The heat storage heat radiation experiment apparatus 18 includes a reactor 1 for charging the heat storage material 3, an evaporator / condenser 2 for charging the reactant 4, an electric furnace 7 for heating the heat storage material 3 in the reactor 1, and an evaporator / condenser 2 A constant temperature bath 8 that keeps the temperature of the reactor constant, a mantle heater 12 attached to the evaporator / condenser 2, a pressure gauge 9 that measures the pressure in the reactor 1, and a vacuum pump 10 that sucks moisture in the reactor 1, The pipe 5 and the valves 6, 11 and 13 provided on the connecting pipe 5 are provided. The connection pipe 5 connects the reactor 1, the evaporator / condenser 2, the vacuum pump 10, and the outside.

図2に示す蓄熱放熱実験装置18を用いて、以下の実験を行なった。まず、蓄熱材3に当初含まれている水分の脱着処理を行なって、蓄熱材3の初期化を行なうため、反応器1に蓄熱材3を充填し、バルブ6、13を閉じ、電気炉7により反応器1内の温度を500℃にし、バルブ11を開け、真空ポンプ10にて真空脱気を4時間行なった。次にバルブ11を閉じ、反応器1内の温度が室温まで戻ったのを確認した後、電気炉7により反応器1内の温度を60℃にし、また被反応材(水)4の入った蒸発・凝縮器2をマントルヒーター12により60℃に加熱しておき、その後バルブ6を開き、蒸発・凝縮器2から水蒸気を連結パイプ5を介して反応器1内に導入し、蓄熱材3を反応させ放熱工程に供した。そして、反応開始直後から1時間が経過するまでの蓄熱材3の温度を測定した。反応開始直後から1時間が経過したら放熱工程を終了とし、バルブ6を閉じて、電気炉7で反応器1を加熱して反応器1内の温度を500℃にして蓄熱工程に供し蓄熱材3を再生した。この蓄熱工程では、バルブ11を開けて蓄熱材3に水和した水分を十分に真空脱着した。蓄熱工程では、蒸発・凝縮器2内の温度を20℃とし、反応時間を4時間とした。蓄熱工程が終了したら再び放熱工程を行なった。   The following experiment was conducted using the heat storage and heat radiation experiment apparatus 18 shown in FIG. First, in order to initialize the heat storage material 3 by performing a desorption process of moisture initially contained in the heat storage material 3, the reactor 1 is filled with the heat storage material 3, the valves 6 and 13 are closed, and the electric furnace 7 The temperature inside the reactor 1 was set to 500 ° C., the valve 11 was opened, and vacuum deaeration was performed with the vacuum pump 10 for 4 hours. Next, after the valve 11 was closed and it was confirmed that the temperature in the reactor 1 had returned to room temperature, the temperature in the reactor 1 was set to 60 ° C. by the electric furnace 7, and the material to be reacted (water) 4 entered. The evaporator / condenser 2 is heated to 60 ° C. by the mantle heater 12, then the valve 6 is opened, water vapor is introduced from the evaporator / condenser 2 into the reactor 1 through the connecting pipe 5, and the heat storage material 3 is It was made to react and used for the heat dissipation process. And the temperature of the thermal storage material 3 until 1 hour passed immediately after reaction start was measured. When 1 hour has passed immediately after the start of the reaction, the heat release process is terminated, the valve 6 is closed, the reactor 1 is heated in the electric furnace 7 to set the temperature in the reactor 1 to 500 ° C., and the heat storage material 3 Played. In this heat storage process, the valve 11 was opened and the water hydrated in the heat storage material 3 was sufficiently desorbed in vacuum. In the heat storage step, the temperature in the evaporator / condenser 2 was 20 ° C., and the reaction time was 4 hours. When the heat storage process was completed, the heat release process was performed again.

蓄熱材3として、本発明の化学蓄熱材成形体である試料1〜7と、水酸化カルシウム単体(平均粒子径500μm)とを用いた。いずれの蓄熱材3を用いる場合にも、反応器1に充填する蓄熱材3の重量は同一とした。図3は、試料2と水酸化カルシウム単体とを用いた場合について放熱工程3回目の温度測定結果と、放熱工程5回目の温度測定結果を示す。温度は、反応開始直後の温度からの上昇温度で表す。   As the heat storage material 3, samples 1 to 7, which are the chemical heat storage material molded bodies of the present invention, and calcium hydroxide alone (average particle diameter: 500 μm) were used. Regardless of which heat storage material 3 is used, the heat storage material 3 charged in the reactor 1 has the same weight. FIG. 3 shows the temperature measurement result of the third heat release step and the temperature measurement result of the fifth heat release step when the sample 2 and calcium hydroxide alone are used. The temperature is expressed as a temperature rise from the temperature immediately after the start of the reaction.

図3に示すように、蓄熱材3として試料2を用いた場合、放熱工程3回目においては反応開始直後、試料2の温度は急上昇して300℃程度まで達した。放熱工程5回目においても、最高到達温度は160℃程度を示した。一方、蓄熱材3として水酸化カルシウム単体を用いた場合の最高到達温度は、放熱工程3回目においては200℃程度、放熱工程5回目においては120℃程度であった。このように、二つの蓄熱材を比較すると、蓄熱放熱反応を繰り返した後の最高到達温度に差が生じている。さらに、試料2はCa(OH)の含有率が40重量%程度であることを考慮すると、Ca(OH)の含有率が100重量%である単体に比べて十分な放熱を生じていることがわかる。 As shown in FIG. 3, when the sample 2 was used as the heat storage material 3, the temperature of the sample 2 rapidly increased to about 300 ° C. immediately after the start of the reaction in the third heat release step. Even in the fifth heat dissipation step, the maximum temperature reached about 160 ° C. On the other hand, the maximum temperature achieved when calcium hydroxide alone was used as the heat storage material 3 was about 200 ° C. in the third heat dissipation step and about 120 ° C. in the fifth heat release step. As described above, when the two heat storage materials are compared, there is a difference in the maximum temperature reached after repeating the heat storage heat release reaction. Furthermore, considering that sample 2 has a Ca (OH) 2 content of about 40% by weight, the sample 2 generates sufficient heat dissipation as compared with a simple substance having a Ca (OH) 2 content of 100% by weight. I understand that.

図4は、それぞれの蓄熱材3について蓄熱放熱反応を繰り返したときの最高到達温度を示す。試料2、試料3、試料4では放熱工程15回目でも反応性が保持されていることがわかり、一方水酸化カルシウム単体では蓄熱放熱反応の初期から反応性が低下し、放熱工程5回目程度から顕著に反応性が低下していることがわかる。また、水酸化カルシウムの含有比率が16重量%の試料1では、蓄熱放熱反応を繰り返したときの反応性の低下率は低いものの、蓄熱放熱反応に寄与する化学蓄熱材の体積当りの量が少ないため十分な発熱量が得られにくいことがわかる。また、水酸化カルシウムの含有比率が93重量%の試料5では、繰り返し蓄熱放熱反応の初期では反応性が低下せず有効な反応効果が得られているが、繰り返し反応6回目以降からは、反応性が低下していることがわかる。また、水酸化カルシウムの粒子径が2000μmの試料6では、放熱工程6回目程度までは反応性を保持しているが、それ以降は、反応性が低下している。また、化学蓄熱材の粒子径が0.05μmの試料7では、蓄熱放熱反応の繰り返しによる反応性の低下しにくいものの、大きな発熱量が得られにくかった。   FIG. 4 shows the maximum temperature reached when the heat storage heat release reaction is repeated for each heat storage material 3. In Sample 2, Sample 3 and Sample 4, it was found that the reactivity was maintained even after the 15th heat release step, while calcium hydroxide alone decreased the reactivity from the beginning of the heat storage heat release reaction, and was remarkable from the 5th heat release step. It can be seen that the reactivity decreased. In Sample 1 having a calcium hydroxide content ratio of 16% by weight, the rate of decrease in reactivity when the heat storage and heat release reaction is repeated is low, but the amount of the chemical heat storage material that contributes to the heat storage and heat release reaction is small. Therefore, it can be seen that it is difficult to obtain a sufficient calorific value. In Sample 5 having a calcium hydroxide content ratio of 93% by weight, an effective reaction effect is obtained without reducing the reactivity at the initial stage of the repeated heat storage and heat release reaction. It turns out that the property has fallen. Further, in the sample 6 having a calcium hydroxide particle size of 2000 μm, the reactivity is maintained until the sixth heat dissipation step, but the reactivity is lowered thereafter. Moreover, in the sample 7 having a particle size of the chemical heat storage material of 0.05 μm, it is difficult to obtain a large calorific value although it is difficult for the reactivity to decrease due to repeated heat storage and heat release reaction.

図5は蓄熱発熱反応前の水酸化カルシウム単体のSEM写真を示し、図6は放熱工程を5回経た後の水酸化カルシウム単体のSEM写真を示す。図7は蓄熱放熱反応前の試料2のSEM写真を示し、図8は放熱工程を5回経た後の試料2のSEM写真を示す。これらの写真より、単体では繰り返しにより蓄熱材の凝集による粒子径の増大が認められるのに対し、本発明に係る試料2では粒子径の顕著な増大が認められないことが分かる。また、試料2では化学蓄熱材粒子の粒子形状が崩壊せず、維持されていることも認められる。   FIG. 5 shows a SEM photograph of the calcium hydroxide alone before the heat storage exothermic reaction, and FIG. 6 shows a SEM photograph of the calcium hydroxide alone after the heat dissipation process 5 times. FIG. 7 shows an SEM photograph of Sample 2 before the heat storage and heat release reaction, and FIG. 8 shows an SEM photograph of Sample 2 after five heat dissipation steps. From these photographs, it can be seen that the particle size increase due to the aggregation of the heat storage material is recognized repeatedly by itself, whereas the sample 2 according to the present invention does not show a significant increase in particle size. Moreover, in the sample 2, it is recognized that the particle shape of the chemical heat storage material particles is maintained without being collapsed.

以上説明したように、本発明の化学蓄熱材成形体は、反応性と形状安定性を有する蓄熱材として機能し、繰り返し使用しても性能低下の少ない蓄熱材として使用することが出来る。   As described above, the chemical heat storage material molded body of the present invention functions as a heat storage material having reactivity and shape stability, and can be used as a heat storage material with little deterioration in performance even when used repeatedly.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 反応器、2 蒸発・凝縮器、3 反応材、4 被反応材、5 連結パイプ、6 バルブ、7 電気炉、8 恒温槽、9 圧力ゲージ、10 真空ポンプ、11 バルブ、12 マントルヒーター、13 バルブ、14 多孔質体、15 化学蓄熱材粒子、16 細孔、17 化学蓄熱材成形体、18 蓄熱放熱実験装置。   1 Reactor, 2 Evaporator / Condenser, 3 Reactant, 4 Reactant, 5 Connection Pipe, 6 Valve, 7 Electric Furnace, 8 Thermostatic Bath, 9 Pressure Gauge, 10 Vacuum Pump, 11 Valve, 12 Mantle Heater, 13 Valve, 14 Porous body, 15 Chemical heat storage material particles, 16 pores, 17 Chemical heat storage material molded body, 18 Thermal storage heat radiation experiment apparatus.

Claims (8)

樹脂を加熱して形成された多孔質体に化学蓄熱材粒子が担持されている、化学蓄熱材成形体。   A chemical heat storage material molded body in which chemical heat storage material particles are supported on a porous body formed by heating a resin. 前記化学蓄熱材粒子の平均粒子径が0.1〜1000μmである、請求項1に記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 1, wherein the chemical heat storage material particles have an average particle diameter of 0.1 to 1000 μm. 前記化学蓄熱材粒子の含有量が30〜85重量%である、請求項1または2に記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 1 or 2, wherein the content of the chemical heat storage material particles is 30 to 85% by weight. 前記多孔質体は、樹脂および/または炭化物である、請求項1〜3のいずれかに記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to any one of claims 1 to 3, wherein the porous body is a resin and / or a carbide. 前記多孔質体は三次元にランダムに貫通する貫通孔を多数有し、前記化学蓄熱材粒子は前記貫通孔に露出している、請求項1〜4のいずれかに記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to any one of claims 1 to 4, wherein the porous body has a large number of through holes that randomly penetrate in three dimensions, and the chemical heat storage material particles are exposed in the through holes. . 前記化学蓄熱材粒子は、カルシウムまたはマグネシウムの化合物である、請求項1〜5のいずれかに記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to any one of claims 1 to 5, wherein the chemical heat storage material particles are a compound of calcium or magnesium. 請求項1〜6のいずれかに記載の化学蓄熱材成形体の製造方法であって、
化学蓄熱材粒子と樹脂とを混合して混合材料を調製する調製工程と、
前記混合材料を加熱して前記樹脂の多孔質体を形成する熱処理工程と、を有する、化学蓄熱材成形体の製造方法。
It is a manufacturing method of the chemical heat storage material molded object according to any one of claims 1 to 6,
A preparation process for preparing a mixed material by mixing chemical heat storage material particles and a resin,
And a heat treatment step of forming the porous body of the resin by heating the mixed material.
前記調製工程において、さらに気孔形成材を混合して前記混合材料を調製する、請求項7に記載の化学蓄熱材成形体。   The chemical heat storage material molded body according to claim 7, wherein in the preparation step, the pore forming material is further mixed to prepare the mixed material.
JP2010030358A 2010-02-15 2010-02-15 Chemical heat storage material molded body and method for producing the same Expired - Fee Related JP5586262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030358A JP5586262B2 (en) 2010-02-15 2010-02-15 Chemical heat storage material molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030358A JP5586262B2 (en) 2010-02-15 2010-02-15 Chemical heat storage material molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011162746A true JP2011162746A (en) 2011-08-25
JP5586262B2 JP5586262B2 (en) 2014-09-10

Family

ID=44593813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030358A Expired - Fee Related JP5586262B2 (en) 2010-02-15 2010-02-15 Chemical heat storage material molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5586262B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145252A (en) * 2011-01-11 2012-08-02 Daihatsu Motor Co Ltd Chemical heat pump
WO2015025666A1 (en) * 2013-08-20 2015-02-26 株式会社豊田自動織機 Chemical heat storage device
WO2017170582A1 (en) * 2016-03-31 2017-10-05 タテホ化学工業株式会社 Chemical heat storage granules and production process therefor
JP2017186538A (en) * 2016-03-31 2017-10-12 タテホ化学工業株式会社 Chemical heat storage granulated body and manufacturing method therefor
WO2018101387A1 (en) * 2016-12-02 2018-06-07 Dic株式会社 Porous chemical heat storage complex and method for producing same, and chemical heat storage device
WO2018159828A1 (en) * 2017-03-03 2018-09-07 日産化学株式会社 Heat storage material comprising metal salt of cyanuric acid
US10393449B2 (en) * 2016-03-31 2019-08-27 Ngk Insulators, Ltd. Heat storage member
JP2020158730A (en) * 2019-03-28 2020-10-01 タテホ化学工業株式会社 Granulated body for chemical heat storage, and method for producing the same
WO2023149361A1 (en) * 2022-02-01 2023-08-10 株式会社白石中央研究所 Calcium hydroxide slurry for chemical heat storage material, method for producing calcium hydroxide slurry for chemical heat storage material, chemical heat storage material, method for producing chemical heat storage material, and method for performing chemical heat storage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212893A (en) * 1988-02-19 1989-08-25 Agency Of Ind Science & Technol Heat storage body
JP2005036121A (en) * 2003-07-16 2005-02-10 Shin Etsu Polymer Co Ltd Hygroscopic foam and its manufacturing method
JP2005300070A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Heat generation system and heat supply method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212893A (en) * 1988-02-19 1989-08-25 Agency Of Ind Science & Technol Heat storage body
JP2005036121A (en) * 2003-07-16 2005-02-10 Shin Etsu Polymer Co Ltd Hygroscopic foam and its manufacturing method
JP2005300070A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Heat generation system and heat supply method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145252A (en) * 2011-01-11 2012-08-02 Daihatsu Motor Co Ltd Chemical heat pump
WO2015025666A1 (en) * 2013-08-20 2015-02-26 株式会社豊田自動織機 Chemical heat storage device
JP2015040646A (en) * 2013-08-20 2015-03-02 株式会社豊田自動織機 Chemical heat storage device
CN108884383A (en) * 2016-03-31 2018-11-23 达泰豪化学工业株式会社 Chemical heat accumulation granule and its manufacturing method
JP7036335B2 (en) 2016-03-31 2022-03-15 タテホ化学工業株式会社 Chemical heat storage granulation and its manufacturing method
KR102380429B1 (en) * 2016-03-31 2022-03-31 다테호 가가쿠 고교 가부시키가이샤 Chemical thermal storage assembly and manufacturing method thereof
JP2017186538A (en) * 2016-03-31 2017-10-12 タテホ化学工業株式会社 Chemical heat storage granulated body and manufacturing method therefor
KR20180123132A (en) * 2016-03-31 2018-11-14 다테호 가가쿠 고교 가부시키가이샤 Chemical heat accumulation assembly and method of manufacturing the same
WO2017170582A1 (en) * 2016-03-31 2017-10-05 タテホ化学工業株式会社 Chemical heat storage granules and production process therefor
US10393449B2 (en) * 2016-03-31 2019-08-27 Ngk Insulators, Ltd. Heat storage member
CN108884383B (en) * 2016-03-31 2022-02-25 达泰豪化学工业株式会社 Chemical heat-storage granules and method for producing same
WO2018101387A1 (en) * 2016-12-02 2018-06-07 Dic株式会社 Porous chemical heat storage complex and method for producing same, and chemical heat storage device
CN110325615A (en) * 2017-03-03 2019-10-11 日产化学株式会社 Heat-storing material comprising cyanuric acid metal salt
WO2018159828A1 (en) * 2017-03-03 2018-09-07 日産化学株式会社 Heat storage material comprising metal salt of cyanuric acid
JP2020158730A (en) * 2019-03-28 2020-10-01 タテホ化学工業株式会社 Granulated body for chemical heat storage, and method for producing the same
JP7332316B2 (en) 2019-03-28 2023-08-23 タテホ化学工業株式会社 Method for producing granules for chemical heat storage
WO2023149361A1 (en) * 2022-02-01 2023-08-10 株式会社白石中央研究所 Calcium hydroxide slurry for chemical heat storage material, method for producing calcium hydroxide slurry for chemical heat storage material, chemical heat storage material, method for producing chemical heat storage material, and method for performing chemical heat storage

Also Published As

Publication number Publication date
JP5586262B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5586262B2 (en) Chemical heat storage material molded body and method for producing the same
Wang et al. Supercooling suppression and thermal behavior improvement of erythritol as phase change material for thermal energy storage
KR101311038B1 (en) Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
Jiang et al. A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials
Demiral et al. Surface properties of activated carbon prepared from wastes
JP4765072B2 (en) Chemical heat pump
JP5902449B2 (en) Chemical heat storage material and chemical heat pump
CN110305635A (en) A kind of forming heat accumulating and preparation method thereof
WO2004091774A1 (en) Material and apparatus for adsorbing and desorbing carbon dioxide
Shkatulov et al. Thermochemical energy storage using LiNO3‐doped Mg (OH) 2: A dehydration study
JP5297669B2 (en) Chemical heat storage material composite and its manufacturing method
JP6359425B2 (en) Porous aluminum nitride particles
CN102712743A (en) Process for production of spherical furfuryl alcohol resin particles, spherical furfuryl alcohol resin particles produced thereby, and spherical carbon particles and spherical active carbon particles obtained using same
Trivedi et al. Micro/nanoencapsulation of dimethyl adipate with melamine formaldehyde shell as phase change material slurries for cool thermal energy storage
JP4526333B2 (en) Canister adsorbent, method for producing the same, and canister for preventing fuel evaporation
JP5661960B1 (en) Chemical heat storage material
JP7036335B2 (en) Chemical heat storage granulation and its manufacturing method
JP6792774B2 (en) Composites for chemical heat pumps and their manufacturing methods
JP2016003156A (en) METHOD FOR MANUFACTURING α-SODIUM FERRITE
WO2021210386A1 (en) Latent heat storage material-integrated active carbon and production method thereof
JP2018104512A (en) Chemical thermal storage material and manufacturing method therefor
JP7332316B2 (en) Method for producing granules for chemical heat storage
CN108884383B (en) Chemical heat-storage granules and method for producing same
Palacios et al. Water sorption-based thermochemical storage materials: A review from material candidates to manufacturing routes
Zhao et al. Facile synthesis of porous AlN@ C supporting material for stabilizing phase change thermal storage material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees