WO2015025666A1 - Chemical heat storage device - Google Patents

Chemical heat storage device Download PDF

Info

Publication number
WO2015025666A1
WO2015025666A1 PCT/JP2014/069352 JP2014069352W WO2015025666A1 WO 2015025666 A1 WO2015025666 A1 WO 2015025666A1 JP 2014069352 W JP2014069352 W JP 2014069352W WO 2015025666 A1 WO2015025666 A1 WO 2015025666A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
heat
storage material
reaction
heat transfer
Prior art date
Application number
PCT/JP2014/069352
Other languages
French (fr)
Japanese (ja)
Inventor
研二 森
鈴木 秀明
峻史 水野
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2015025666A1 publication Critical patent/WO2015025666A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/10Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/12Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a thermal reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a chemical heat storage device.
  • a chemical heat storage device described in Patent Document 1 is known.
  • the chemical heat storage device described in Patent Document 1 is disposed around the catalyst ceramic portion, and includes a reaction portion including a heat storage material (heat storage material), a water conduit for supplying water (reaction medium) for generating heat from the heat storage material, and It has. Heat is generated from the reaction part by the exothermic reaction between water and the heat storage material. The heat generated in the reaction part is transferred to the catalyst ceramic part, and the catalyst ceramic part is heated.
  • a heat storage material heat storage material
  • reaction medium water
  • the heat storage material that generates heat by a chemical reaction with the reaction medium has high thermal resistance and low thermal conductivity, the heat generated in the heat storage material is difficult to be transmitted to the reaction part. For this reason, heating objects, such as a catalyst ceramic part, cannot fully be heated.
  • An object of the present invention is to provide a chemical heat storage device capable of improving the thermal conductivity of the reaction section.
  • the present invention relates to a chemical heat storage device for heating an object to be heated, a reactor having a reaction part that is disposed around or inside the object to be heated and includes a heat storage material that chemically reacts with a gaseous reaction medium to generate heat.
  • the reaction part is a non-metallic heat transfer material having a higher thermal conductivity than the heat storage material and capable of passing the reaction medium.
  • the particle surface is coated.
  • the surface of the particles of the heat storage material is coated with a heat transfer material having a higher thermal conductivity than the heat storage material, and the reaction unit is configured, thereby providing a plurality of heat transfer inside the reaction unit.
  • the materials are connected. Therefore, the heat generated in the heat storage material due to the chemical reaction between the reaction medium and the heat storage material is effectively transmitted in the reaction section through the heat transfer material.
  • a non-metallic material capable of passing a gaseous reaction medium as the heat transfer material, it is not necessary to form a gap (space) for securing a flow path for the reaction medium in the reaction section. For this reason, it is prevented that the heat generated in the heat storage material is hardly transmitted by the gap.
  • the thermal conductivity of the reaction part is improved.
  • the reaction part may be formed by compacting the heat storage material in a state where the surfaces of the particles of the heat storage material are coated with the heat transfer material.
  • the reaction part since the reaction part is sufficiently dense, a plurality of heat transfer materials are reliably connected to each other inside the reaction part, and a gap that inhibits heat transfer is formed inside the reaction part. There is no. Thereby, the thermal conductivity of the reaction part is further improved.
  • the heat transfer material may be a carbon-based material.
  • the carbon-based material has a sufficiently high thermal conductivity and easily passes through a gaseous reaction medium.
  • a chemical heat storage device capable of improving the thermal conductivity of the reaction section.
  • FIG. 1 is a schematic configuration diagram showing an exhaust purification system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the chemical heat storage device shown in FIG.
  • FIG. 3 is an enlarged view of the reaction unit shown in FIG.
  • FIG. 1 is a schematic configuration diagram showing an exhaust purification system according to the present embodiment.
  • the exhaust purification system 1 is provided in an exhaust system of a diesel engine (hereinafter simply referred to as “engine”) 2 of a vehicle.
  • engine a diesel engine
  • the exhaust purification system 1 purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2.
  • the exhaust purification system 1 includes an oxidation catalyst (DOC) 4, a diesel exhaust particulate removal filter (DPF) 5, a selective reduction catalyst (SCR) 6, and an oxidation catalyst (ASC) 7.
  • DOC4 oxidation catalyst
  • DPF5 SCR6, and ASC7 are arranged in the order of DOC4, DPF5, SCR6, ASC7 from the upstream side toward the downstream side in the exhaust passage 3 connected to the engine 2.
  • the oxidation catalyst 4 oxidizes and purifies HC, CO, etc. contained in the exhaust gas.
  • the DPF 5 collects PM contained in the exhaust gas and removes PM from the exhaust gas.
  • the SCR 6 reduces and purifies NOx contained in the exhaust gas with NH 3 (ammonia).
  • NH 3 is produced by the hydrolysis of the urea water supplied from the addition valve 8.
  • the oxidation catalyst 7 oxidizes NH 3 that has passed through the SCR 6 and has flowed downstream from the SCR 6.
  • the oxidation catalyst 4 is arranged inside a cylindrical exhaust pipe 9 that forms a part of the exhaust passage 3.
  • the oxidation catalyst 4 has a temperature range (activation temperature) that exhibits the ability to purify environmental pollutants. Therefore, it is necessary to heat the oxidation catalyst 4 in order to bring the temperature of the oxidation catalyst 4 to the activation temperature.
  • the exhaust purification system 1 includes a chemical heat storage device 10 that heats the oxidation catalyst 4 without requiring external energy such as electric power.
  • the chemical heat storage device 10 normally stores the heat of the exhaust gas and warms up the oxidation catalyst 4 using the heat stored when necessary.
  • the chemical heat storage device 10 has a reactor 11 and a reservoir 13 as shown in FIGS. 1 and 2.
  • the reactor 11 is arranged so that the exhaust pipe 9 is sandwiched between the reactor 11 and the oxidation catalyst 4.
  • the reactor 11 is located around the oxidation catalyst 4 and has a ring shape.
  • the reservoir 13 stores NH 3 as a gaseous reaction medium.
  • the reservoir 13 contains activated carbon that physically adsorbs NH 3 . That is, the storage device 13 stores NH 3 by the activated carbon physically adsorbing NH 3 .
  • the reactor 11 and the reservoir 13 are connected by a medium supply passage 12.
  • An opening / closing valve 14 is disposed in the medium supply passage 12.
  • the reactor 11 has a ring case 15 made of metal (for example, stainless steel).
  • a plurality of pellet-shaped reaction portions 16 are arranged so as to contact the exhaust pipe 9.
  • a heat insulating material may be disposed between the reaction unit 16 and the ring case 15.
  • the reaction unit 16 has, for example, a curved shape with a circular section.
  • the reaction unit 16 includes a heat storage material 17 that chemically reacts with NH 3 to generate heat, and a heat transfer material 18 that has a higher thermal conductivity than the heat storage material 17.
  • a halide represented by the composition formula MXa is used as the heat storage material 17.
  • M is an alkaline earth metal such as Mg, Ca, or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu, or Zn.
  • X is Cl, Br, I or the like.
  • a is a number specified by the valence of M, and is 2 to 3.
  • the thermal conductivity of the heat storage material 17 is, for example, about 0.1 to 3.0 W / (m ⁇ K).
  • the heat transfer material 18 a non-metallic material that allows NH 3 gas to pass is used.
  • the non-metallic material through which NH 3 gas passes include a carbon-based material (for example, carbon fiber) or a ceramic (for example, aluminum nitride, boron nitride, or silicon carbide).
  • the heat transfer material 18 is a carbon-based material.
  • the carbon-based material has a high thermal conductivity and is easy to pass NH 3 gas.
  • the heat conductivity of the heat transfer material 18 is, for example, about 5.0 to 900 W / (m ⁇ K).
  • the reaction section 16 is formed by coating the surface of secondary particles (polycrystalline particles) of the heat storage material 17 with the heat transfer material 18, and putting the heat storage material 17 into a mold and compacting. Thereby, as shown in FIG. 3, the secondary particles of the heat storage material 17 coated with the heat transfer material 18 are crushed, and the shape of the secondary particles of the heat storage material 17 becomes random. For this reason, there is no gap (space) inside the reaction section 16. Further, the heat transfer materials 18 coated on the surfaces of the secondary particles of the heat storage material 17 are connected to each other. The heat transfer material 18 serves as a heat transfer path through which heat generated in the heat storage material 17 passes.
  • the heat transfer material 18 is in a random direction from the outer peripheral surface (surface on the opposite side of the oxidation catalyst 4) of the structure constituted by the plurality of reaction parts 16 to the inner peripheral surface (surface on the oxidation catalyst 4 side) of the structure. It extends continuously.
  • the plurality of reaction portions 16 constitute a structure that exhibits a shape corresponding to the shape of the space formed in the ring case 15.
  • the heat storage material 17 is in the form of particles.
  • the heat storage material 17 has a form of secondary particles in which a plurality of primary particles are aggregated.
  • the heat transfer material 18 is coated on the surface of the secondary particles of the heat storage material 17.
  • the heat transfer material 18 constitutes a coating layer that covers the secondary particles of the heat storage material 17.
  • the reaction unit 16 is formed by coating the surface of the secondary particles of the heat storage material 17 with the heat transfer material 18 and compacting the secondary particles coated with the heat transfer material 18.
  • the reaction unit 16 is an aggregate of secondary particles of the heat storage material 17 coated with the heat transfer material 18. In the compacting, a mold is used.
  • the secondary particles coated with the heat transfer material 18 are placed in a molding die, and the molding die is pressurized, whereby the pellet-shaped reaction section 16 is obtained.
  • Examples of the technique for coating the surface of the secondary particles of the heat storage material 17 with the heat transfer material 18 include hybridization, tight contact, and surface film formation.
  • Hybridization combines the fine particles of the heat transfer material 18 on the surface of the secondary particles of the heat storage material 17 using a force mainly composed of impact force while dispersing the secondary particles of the heat storage material 17 in a high-speed air stream.
  • the tight contact is a technique for forcibly physically mixing the secondary particles of the heat storage material 17 and the powder of the heat transfer material 18 using a mortar or a ball mill.
  • the surface film formation is a technique for forming a film of the heat transfer material 18 on the particle surface of the heat storage material 17 using CVD or PVD. By employing these techniques, the coating layer of the heat transfer material 18 can be formed on the surface of the secondary particles of the heat storage material 17.
  • the heat generated in the heat storage material 17 is transmitted from the reactor 11 to the oxidation catalyst 4 through the exhaust pipe 9. Due to the heat transferred from the reactor 11, the oxidation catalyst 4 is heated to an activation temperature suitable for the purification of contaminants. At this time, the heat generated in the heat storage material 17 is transmitted to the heat transfer material 18. That is, the heat generated in the heat storage material 17 is transmitted to the oxidation catalyst 4 through the heat transfer material 18.
  • the surface of the secondary particles of the heat storage material 17 is coated with the heat transfer material 18, and the heat storage material 17 is compacted in this state, whereby the pellet-shaped reaction unit 16. To form. For this reason, the secondary particles of the heat storage material 17 coated with the heat transfer material 18 are arranged in a sufficiently dense state.
  • a non-metallic material capable of passing NH 3 gas as the heat transfer material 18, it is not necessary to form a gap (space) for securing the NH 3 gas flow path in the reaction section 16. .
  • the heat transfer materials 18 coated on the surfaces of the secondary particles of the heat storage material 17 are easily connected to each other, and a gap that hinders heat transfer is not formed inside the reaction portion 16. Therefore, heat is efficiently transmitted through the heat transfer material 18 in the reaction section 16.
  • heat generated by a chemical reaction between the heat storage material 17 and NH 3 is transmitted to the oxidation catalyst 4 through the heat transfer material 18, so that heat generated in the heat storage material 17 existing at a position away from the oxidation catalyst 4. Is also reliably transmitted to the oxidation catalyst 4.
  • the heat of the exhaust gas is transmitted to the heat storage material 17 through the heat transfer material 18, so that the heat of the exhaust gas is reliably transmitted also to the heat storage material 17 present at a position away from the oxidation catalyst 4.
  • the thermal conductivity of the reaction section 16 including the heat storage material 17 can be sufficiently increased.
  • the thermal conductivity ⁇ of the reaction part 16 when the reaction part 16 is composed only of the heat storage material 17 is 1 or less, whereas the heat storage material 17 is coded by the heat transfer material 18 as in this embodiment.
  • the thermal conductivity ⁇ of the reaction section 16 is 5-20.
  • the present embodiment is a chemical heat storage device 10, which includes a reactor 11 having a reaction section 16 including particles of a heat storage material 17 that chemically reacts with a gaseous reaction medium to generate heat, and a reactor. 11 and a reservoir 13 for storing the reaction medium, and the surface of the particles of the heat storage material 17 has a higher thermal conductivity than the heat storage material 17 and passes through the reaction medium. Material 18 is coated.
  • the surface of the particles of the heat storage material 17 is coated with a nonmetallic heat transfer material 18 having a higher thermal conductivity than the heat storage material 17.
  • a nonmetallic heat transfer material 18 having a higher thermal conductivity than the heat storage material 17.
  • several heat-transfer materials 18 which respectively cover the surface of an adjacent particle
  • the reaction part 16 may be formed by compacting particles having a surface coated with the heat transfer material 18. If a gap is formed inside the reaction unit 16, the gap may be a factor that hinders transmission of heat generated in the heat storage material 17.
  • the reaction part 16 is formed by compacting particles having the surface coated with the heat transfer material 18, the reaction part 16 has sufficient particles coated with the heat transfer material 18. It is arranged in a dense state. For this reason, while the some heat transfer material 18 connects reliably inside the reaction part 16, formation of a clearance gap inside the reaction part 16 is suppressed. Thereby, the thermal conductivity of the reaction part 16 further improves.
  • the reaction part 16 is formed by coating the surface of the secondary particles of the heat storage material 17 with the heat transfer material 18 and compacting the secondary particles coated with the heat transfer material 18.
  • the reaction particles 16 are formed by enclosing the secondary particles coated with the heat transfer material 18 in the ring case 15 in a dense state. May be. In this case, the reaction part 16 exhibits a shape corresponding to the shape of the space formed in the ring case 15.
  • the spatial volume of the secondary particles coated with the heat transfer material 18 and the amount enclosed in the ring case 15 are such that the heat storage material 17 expands due to the coordination bond between the NH 3 and the heat storage material 17. You may determine based on the volume at the time. In this case, when the heat storage material 17 expands, the reaction part 16 can be configured without a gap.
  • the reactor 11 is disposed around the oxidation catalyst 4, but is not limited thereto.
  • the reactor 11 may be disposed in the oxidation catalyst 4.
  • the halide shown by the compositional formula MXa is used as the heat storage material 17 and the heat storage material 17 generates heat by a chemical reaction with NH 3 , but is not limited thereto.
  • the gaseous reaction medium is not limited to NH 3, and may be, for example, H 2 O (water vapor).
  • CaO, MnO, CuO, Al 2 O 3 or the like is used as a heat storage material that chemically reacts with H 2 O.
  • the chemical heat storage device 10 heats the oxidation catalyst 4 disposed in the exhaust system of the diesel engine 2, but is not limited thereto.
  • the chemical heat storage device 10 may heat other catalyst disposed in the exhaust system of the diesel engine 2 or a member such as a place where the exhaust catalyst is not located in the exhaust pipe 9.
  • the present invention can also be applied to a catalyst disposed in an exhaust system of a gasoline engine or a chemical heat storage device that heats a member such as a portion where the catalyst is not located in an exhaust pipe.
  • the present invention is also applicable to a chemical heat storage device that heats an object to be heated other than the engine exhaust system.
  • the present invention can be used for a chemical heat storage device for warming up a catalyst disposed in an exhaust system of an internal combustion engine (for example, a diesel engine).
  • an internal combustion engine for example, a diesel engine.

Abstract

This chemical heat storage device (10) is provided with a reactor (11) and a storage unit (13). The reactor (11) has a reaction part (16) that contains particles of a heat storage material (17) which chemically reacts with a gaseous reaction medium and generates heat. The storage unit (13) is connected to the reactor (11) and stores the reaction medium. The surfaces of the particles of the heat storage material (17) are coated with a non-metallic heat conductive material (18) that has a higher heat conductivity than the heat storage material (17) and is permeable to the reaction medium.

Description

化学蓄熱装置Chemical heat storage device
 本発明は、化学蓄熱装置に関する。 The present invention relates to a chemical heat storage device.
 特許文献1に記載されている化学蓄熱装置が知られている。特許文献1に記載の化学蓄熱装置は、触媒セラミック部の周囲に配置され、蓄熱物質(蓄熱材)を含む反応部と、蓄熱物質を発熱させるための水(反応媒体)を供給する導水管とを備えている。水と蓄熱物質との発熱反応により、反応部から熱が発生する。反応部にて発生した熱は、触媒セラミック部に伝わり、触媒セラミック部が加熱される。 A chemical heat storage device described in Patent Document 1 is known. The chemical heat storage device described in Patent Document 1 is disposed around the catalyst ceramic portion, and includes a reaction portion including a heat storage material (heat storage material), a water conduit for supplying water (reaction medium) for generating heat from the heat storage material, and It has. Heat is generated from the reaction part by the exothermic reaction between water and the heat storage material. The heat generated in the reaction part is transferred to the catalyst ceramic part, and the catalyst ceramic part is heated.
特開昭59-208118号公報JP 59-208118 A
 しかしながら、上記従来技術においては、以下の問題点が存在する。反応媒体との化学反応により発熱する蓄熱材は、熱抵抗が大きく熱伝導率が低いため、蓄熱材で発生した熱は、反応部を伝わりにくい。このため、触媒セラミック部等の加熱対象物を十分に加熱することができない。 However, the following problems exist in the above-described conventional technology. Since the heat storage material that generates heat by a chemical reaction with the reaction medium has high thermal resistance and low thermal conductivity, the heat generated in the heat storage material is difficult to be transmitted to the reaction part. For this reason, heating objects, such as a catalyst ceramic part, cannot fully be heated.
 本発明の目的は、反応部の熱伝導性を向上することができる化学蓄熱装置を提供することである。 An object of the present invention is to provide a chemical heat storage device capable of improving the thermal conductivity of the reaction section.
 本発明は、加熱対象物を加熱する化学蓄熱装置において、加熱対象物の周囲または内部に配置され、気体の反応媒体と化学反応して熱を発生させる蓄熱材を含む反応部を有する反応器と、反応器と接続され、反応媒体を貯蔵する貯蔵器とを備え、反応部は、蓄熱材よりも熱伝導率が高く且つ反応媒体を通すことが可能な非金属の伝熱材で蓄熱材の粒子の表面をコーティングした状態となるように構成されている。 The present invention relates to a chemical heat storage device for heating an object to be heated, a reactor having a reaction part that is disposed around or inside the object to be heated and includes a heat storage material that chemically reacts with a gaseous reaction medium to generate heat. The reaction part is a non-metallic heat transfer material having a higher thermal conductivity than the heat storage material and capable of passing the reaction medium. The particle surface is coated.
 本発明の化学蓄熱装置においては、蓄熱材よりも熱伝導率が高い伝熱材で蓄熱材の粒子の表面をコーティングして、反応部を構成することにより、反応部の内部において複数の伝熱材同士がつながる。従って、反応媒体と蓄熱材との化学反応により蓄熱材で発生した熱が、伝熱材を通して反応部内を効果的に伝わる。伝熱材として、気体の反応媒体を通すことが可能な非金属の材料を用いることにより、反応媒体の流路を確保するための隙間(空間)を反応部の内部に形成しなくて済む。このため、蓄熱材で発生した熱が隙間によって伝わりにくくなることが防止される。以上により、反応部の熱伝導性が向上する。 In the chemical heat storage device of the present invention, the surface of the particles of the heat storage material is coated with a heat transfer material having a higher thermal conductivity than the heat storage material, and the reaction unit is configured, thereby providing a plurality of heat transfer inside the reaction unit. The materials are connected. Therefore, the heat generated in the heat storage material due to the chemical reaction between the reaction medium and the heat storage material is effectively transmitted in the reaction section through the heat transfer material. By using a non-metallic material capable of passing a gaseous reaction medium as the heat transfer material, it is not necessary to form a gap (space) for securing a flow path for the reaction medium in the reaction section. For this reason, it is prevented that the heat generated in the heat storage material is hardly transmitted by the gap. As described above, the thermal conductivity of the reaction part is improved.
 反応部は、蓄熱材の粒子の表面を伝熱材でコーティングした状態で蓄熱材を圧粉成形することにより形成されていてもよい。この場合には、反応部が十分に密な状態となるため、反応部の内部において複数の伝熱材同士が確実につながると共に、反応部の内部に伝熱を阻害する隙間が形成されることは無い。これにより、反応部の熱伝導性が更に向上する。 The reaction part may be formed by compacting the heat storage material in a state where the surfaces of the particles of the heat storage material are coated with the heat transfer material. In this case, since the reaction part is sufficiently dense, a plurality of heat transfer materials are reliably connected to each other inside the reaction part, and a gap that inhibits heat transfer is formed inside the reaction part. There is no. Thereby, the thermal conductivity of the reaction part is further improved.
 伝熱材がカーボン系の材料であってもよい。カーボン系の材料は、熱伝導率が十分に高く、かつ、気体の反応媒体を通しやすい。 The heat transfer material may be a carbon-based material. The carbon-based material has a sufficiently high thermal conductivity and easily passes through a gaseous reaction medium.
 本発明によれば、反応部の熱伝導性を向上させることができる化学蓄熱装置が提供される。 According to the present invention, a chemical heat storage device capable of improving the thermal conductivity of the reaction section is provided.
図1は、本発明の一実施形態に係る排気浄化システムを示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an exhaust purification system according to an embodiment of the present invention. 図2は、図1に示された化学蓄熱装置を示す断面図である。FIG. 2 is a cross-sectional view showing the chemical heat storage device shown in FIG. 図3は、図2に示された反応部の拡大図である。FIG. 3 is an enlarged view of the reaction unit shown in FIG.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本実施形態に係る排気浄化システムを示す概略構成図である。図1に示されるように、排気浄化システム1は、車両のディーゼルエンジン(以下、単に「エンジン」という)2の排気系に設けられる。排気浄化システム1は、エンジン2から排出される排ガス中に含まれる有害物質(環境汚染物質)を浄化する。 FIG. 1 is a schematic configuration diagram showing an exhaust purification system according to the present embodiment. As shown in FIG. 1, the exhaust purification system 1 is provided in an exhaust system of a diesel engine (hereinafter simply referred to as “engine”) 2 of a vehicle. The exhaust purification system 1 purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2.
 排気浄化システム1は、酸化触媒(DOC)4、ディーゼル排気微粒子除去フィルタ(DPF)5、選択還元触媒(SCR)6及び酸化触媒(ASC)7を備えている。DOC4、DPF5、SCR6、及びASC7は、エンジン2に接続された排気通路3の途中に、上流側から下流側に向けて、DOC4、DPF5、SCR6、ASC7の順で配置されている。 The exhaust purification system 1 includes an oxidation catalyst (DOC) 4, a diesel exhaust particulate removal filter (DPF) 5, a selective reduction catalyst (SCR) 6, and an oxidation catalyst (ASC) 7. DOC4, DPF5, SCR6, and ASC7 are arranged in the order of DOC4, DPF5, SCR6, ASC7 from the upstream side toward the downstream side in the exhaust passage 3 connected to the engine 2.
 酸化触媒4は、排ガス中に含まれるHC及びCO等を酸化して浄化する。DPF5は、排ガス中に含まれるPMを捕集し、排ガスからPMを取り除く。SCR6は、NH(アンモニア)によって、排ガス中に含まれるNOxを還元して浄化する。NHは、添加弁8から供給された尿素水が加水分解されることにより生成される。酸化触媒7は、SCR6を通過してSCR6から下流に流れたNHを酸化する。 The oxidation catalyst 4 oxidizes and purifies HC, CO, etc. contained in the exhaust gas. The DPF 5 collects PM contained in the exhaust gas and removes PM from the exhaust gas. The SCR 6 reduces and purifies NOx contained in the exhaust gas with NH 3 (ammonia). NH 3 is produced by the hydrolysis of the urea water supplied from the addition valve 8. The oxidation catalyst 7 oxidizes NH 3 that has passed through the SCR 6 and has flowed downstream from the SCR 6.
 酸化触媒4は、図2に示されるように、排気通路3の一部を形成する円筒状の排気管9の内部に配置されている。酸化触媒4には、環境汚染物質の浄化能力を発揮させる温度領域(活性温度)が存在する。従って、酸化触媒4の温度を活性温度にするために、酸化触媒4を加熱する必要がある。 As shown in FIG. 2, the oxidation catalyst 4 is arranged inside a cylindrical exhaust pipe 9 that forms a part of the exhaust passage 3. The oxidation catalyst 4 has a temperature range (activation temperature) that exhibits the ability to purify environmental pollutants. Therefore, it is necessary to heat the oxidation catalyst 4 in order to bring the temperature of the oxidation catalyst 4 to the activation temperature.
 排気浄化システム1は、電力などの外部エネルギーを必要とすることなく、酸化触媒4を加熱する化学蓄熱装置10を備えている。化学蓄熱装置10は、通常は排ガスの熱を蓄えておき、必要なときに蓄えた熱を使用して酸化触媒4を暖機する。 The exhaust purification system 1 includes a chemical heat storage device 10 that heats the oxidation catalyst 4 without requiring external energy such as electric power. The chemical heat storage device 10 normally stores the heat of the exhaust gas and warms up the oxidation catalyst 4 using the heat stored when necessary.
 化学蓄熱装置10は、図1及び図2に示されるように、反応器11と貯蔵器13とを有している。反応器11は、酸化触媒4との間に排気管9を挟むように配置されている。反応器11は、酸化触媒4の周囲に位置し、リング形状を呈している。貯蔵器13は、気体の反応媒体としてのNHを貯蔵する。貯蔵器13には、NHを物理吸着する活性炭が内蔵されている。すなわち、貯蔵器13は、活性炭がNHを物理吸着することにより、NHを貯蔵する。反応器11と貯蔵器13とは、媒体供給通路12により接続されている。媒体供給通路12には、開閉弁14が配置されている。 The chemical heat storage device 10 has a reactor 11 and a reservoir 13 as shown in FIGS. 1 and 2. The reactor 11 is arranged so that the exhaust pipe 9 is sandwiched between the reactor 11 and the oxidation catalyst 4. The reactor 11 is located around the oxidation catalyst 4 and has a ring shape. The reservoir 13 stores NH 3 as a gaseous reaction medium. The reservoir 13 contains activated carbon that physically adsorbs NH 3 . That is, the storage device 13 stores NH 3 by the activated carbon physically adsorbing NH 3 . The reactor 11 and the reservoir 13 are connected by a medium supply passage 12. An opening / closing valve 14 is disposed in the medium supply passage 12.
 反応器11は、金属(例えばステンレス鋼など)で形成されたリングケース15を有している。リングケース15内には、ペレット状の複数の反応部16が排気管9に接触するように配置されている。反応部16とリングケース15との間には、断熱材が配置されていてもよい。反応部16は、たとえば、断面が円弧状の湾曲した形状を呈している。 The reactor 11 has a ring case 15 made of metal (for example, stainless steel). In the ring case 15, a plurality of pellet-shaped reaction portions 16 are arranged so as to contact the exhaust pipe 9. A heat insulating material may be disposed between the reaction unit 16 and the ring case 15. The reaction unit 16 has, for example, a curved shape with a circular section.
 反応部16は、図3に示されるように、NHと化学反応して熱を発生させる蓄熱材17と、蓄熱材17よりも熱伝導率が高い伝熱材18とを含んでいる。 As shown in FIG. 3, the reaction unit 16 includes a heat storage material 17 that chemically reacts with NH 3 to generate heat, and a heat transfer material 18 that has a higher thermal conductivity than the heat storage material 17.
 蓄熱材17としては、組成式MXaで示されるハロゲン化物が用いられる。Mは、Mg、Ca、若しくはSr等のアルカリ土類金属、又は、Cr、Mn、Fe、Co、Ni、Cu、若しくはZn等の遷移金属である。Xは、Cl、Br、又はI等である。aは、Mの価数により特定される数であり、2~3である。蓄熱材17の熱伝導率は、たとえば、0.1~3.0W/(m・K)程度である。 As the heat storage material 17, a halide represented by the composition formula MXa is used. M is an alkaline earth metal such as Mg, Ca, or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu, or Zn. X is Cl, Br, I or the like. a is a number specified by the valence of M, and is 2 to 3. The thermal conductivity of the heat storage material 17 is, for example, about 0.1 to 3.0 W / (m · K).
 伝熱材18としては、NHガスを通す非金属材料が用いられる。NHガスを通す非金属材料として、カーボン系の材料(たとえば、カーボンファイバ等)、又は、セラミック(たとえば、窒化アルミ、窒化ホウ素、又は炭化ケイ素等)が挙げられる。本実施形態では、伝熱材18は、カーボン系の材料である。カーボン系の材料は、高熱伝導率を有し、かつ、NHガスを通しやすい。伝熱材18の熱伝導率は、たとえば、5.0~900W/(m・K)程度である。 As the heat transfer material 18, a non-metallic material that allows NH 3 gas to pass is used. Examples of the non-metallic material through which NH 3 gas passes include a carbon-based material (for example, carbon fiber) or a ceramic (for example, aluminum nitride, boron nitride, or silicon carbide). In the present embodiment, the heat transfer material 18 is a carbon-based material. The carbon-based material has a high thermal conductivity and is easy to pass NH 3 gas. The heat conductivity of the heat transfer material 18 is, for example, about 5.0 to 900 W / (m · K).
 反応部16は、蓄熱材17の2次粒子(多結晶粒子)の表面を伝熱材18でコーティングし、その蓄熱材17を型に入れて圧粉成形することによって形成されている。これにより、図3に示されるように、伝熱材18がコーティングされた蓄熱材17の2次粒子が押し潰されて、当該蓄熱材17の2次粒子の形状がランダムになる。このため、反応部16の内部には、隙間(空間)が無い状態となる。また、蓄熱材17の各2次粒子の表面にコーティングされた伝熱材18同士がつながる。伝熱材18は、蓄熱材17で発生した熱が通る伝熱パスとなる。伝熱材18は、複数の反応部16により構成される構造体の外周面(酸化触媒4の反対側の面)から当該構造体の内周面(酸化触媒4側の面)までランダムな方向に連続的に延びている。本実施形態では、複数の反応部16は、リングケース15内に形成される空間の形状に対応した形状を呈する構造体を構成する。 The reaction section 16 is formed by coating the surface of secondary particles (polycrystalline particles) of the heat storage material 17 with the heat transfer material 18, and putting the heat storage material 17 into a mold and compacting. Thereby, as shown in FIG. 3, the secondary particles of the heat storage material 17 coated with the heat transfer material 18 are crushed, and the shape of the secondary particles of the heat storage material 17 becomes random. For this reason, there is no gap (space) inside the reaction section 16. Further, the heat transfer materials 18 coated on the surfaces of the secondary particles of the heat storage material 17 are connected to each other. The heat transfer material 18 serves as a heat transfer path through which heat generated in the heat storage material 17 passes. The heat transfer material 18 is in a random direction from the outer peripheral surface (surface on the opposite side of the oxidation catalyst 4) of the structure constituted by the plurality of reaction parts 16 to the inner peripheral surface (surface on the oxidation catalyst 4 side) of the structure. It extends continuously. In the present embodiment, the plurality of reaction portions 16 constitute a structure that exhibits a shape corresponding to the shape of the space formed in the ring case 15.
 すなわち、本実施形態では、蓄熱材17は、粒子の形態を呈している。詳しくは、蓄熱材17は、1次粒子が複数集合した2次粒子の形態を呈している。伝熱材18は、蓄熱材17の2次粒子の表面にコーティングされている。伝熱材18は、蓄熱材17の2次粒子を覆う被覆層を構成している。反応部16は、蓄熱材17の2次粒子の表面を伝熱材18でコーティングし、伝熱材18がコーティングされた2次粒子を圧粉成形することにより、形成されている。反応部16は、伝熱材18がコーティングされた蓄熱材17の2次粒子の集合体である。圧粉成形では、成形型が用いられる。伝熱材18がコーティングされた2次粒子を成形型に入れ、成形型を加圧することにより、ペレット状の反応部16が得られる。 That is, in this embodiment, the heat storage material 17 is in the form of particles. Specifically, the heat storage material 17 has a form of secondary particles in which a plurality of primary particles are aggregated. The heat transfer material 18 is coated on the surface of the secondary particles of the heat storage material 17. The heat transfer material 18 constitutes a coating layer that covers the secondary particles of the heat storage material 17. The reaction unit 16 is formed by coating the surface of the secondary particles of the heat storage material 17 with the heat transfer material 18 and compacting the secondary particles coated with the heat transfer material 18. The reaction unit 16 is an aggregate of secondary particles of the heat storage material 17 coated with the heat transfer material 18. In the compacting, a mold is used. The secondary particles coated with the heat transfer material 18 are placed in a molding die, and the molding die is pressurized, whereby the pellet-shaped reaction section 16 is obtained.
 蓄熱材17の2次粒子の表面を伝熱材18でコーティングする技術としては、ハイブリダイゼーション、タイトコンタクト及び表面成膜等が挙げられる。ハイブリダイゼーションは、蓄熱材17の2次粒子を高速気流中で分散させながら、衝撃力を主体とした力を用いて蓄熱材17の2次粒子の表面に伝熱材18の微粒子を複合化させる技術である。タイトコンタクトは、乳鉢又はボールミル等を用いて、蓄熱材17の2次粒子と伝熱材18の粉末とを強制的に物理混合する技術である。表面成膜は、CVD又はPVDを用いて、蓄熱材17の粒子表面に伝熱材18の膜を形成する技術である。これらの技術を採用することで、蓄熱材17の2次粒子の表面に伝熱材18の被覆層を形成することができる。 Examples of the technique for coating the surface of the secondary particles of the heat storage material 17 with the heat transfer material 18 include hybridization, tight contact, and surface film formation. Hybridization combines the fine particles of the heat transfer material 18 on the surface of the secondary particles of the heat storage material 17 using a force mainly composed of impact force while dispersing the secondary particles of the heat storage material 17 in a high-speed air stream. Technology. The tight contact is a technique for forcibly physically mixing the secondary particles of the heat storage material 17 and the powder of the heat transfer material 18 using a mortar or a ball mill. The surface film formation is a technique for forming a film of the heat transfer material 18 on the particle surface of the heat storage material 17 using CVD or PVD. By employing these techniques, the coating layer of the heat transfer material 18 can be formed on the surface of the secondary particles of the heat storage material 17.
 化学蓄熱装置10では、エンジン2からの排ガスの温度が低いとき、貯蔵器13に貯蔵されたNHガスが媒体供給通路12を通して反応器11に供給される。反応器11に供給されたNHガスが各反応部16に至ると、反応部16内の蓄熱材17とNHとが化学反応する。当該化学反応では、NHが蓄熱材17に化学吸着され、すなわち、NHと蓄熱材17とが配位結合し、蓄熱材17から熱が発生する。つまり、下記の反応式の反応、すなわち、発熱反応が起こる。
    MX+NH → MX(NH+熱
In the chemical heat storage device 10, when the temperature of the exhaust gas from the engine 2 is low, NH 3 gas stored in the storage 13 is supplied to the reactor 11 through the medium supply passage 12. When NH 3 gas supplied to the reactor 11 reaches each reaction section 16, the heat storage material 17 in the reaction section 16 and NH 3 chemically react. In the chemical reaction, NH 3 is chemisorbed on the heat storage material 17, that is, NH 3 and the heat storage material 17 are coordinated and heat is generated from the heat storage material 17. That is, a reaction of the following reaction formula, that is, an exothermic reaction occurs.
MX + n NH 3 → MX (NH 3 ) n + heat
 蓄熱材17で発生した熱は、反応器11から排気管9を通して酸化触媒4に伝えられる。反応器11から伝えられた熱によって、酸化触媒4は、汚染物質の浄化に適した活性温度まで加熱される。このとき、蓄熱材17で発生した熱は、伝熱材18に伝わる。すなわち、蓄熱材17で発生した熱は、伝熱材18を通って酸化触媒4に伝わる。 The heat generated in the heat storage material 17 is transmitted from the reactor 11 to the oxidation catalyst 4 through the exhaust pipe 9. Due to the heat transferred from the reactor 11, the oxidation catalyst 4 is heated to an activation temperature suitable for the purification of contaminants. At this time, the heat generated in the heat storage material 17 is transmitted to the heat transfer material 18. That is, the heat generated in the heat storage material 17 is transmitted to the oxidation catalyst 4 through the heat transfer material 18.
 エンジン2からの排ガスの温度が高くなると、排ガスの熱が排気管9を通して蓄熱材17に与えられる。これにより、蓄熱材17とNHとが分離する。つまり、下記の反応式の反応、すなわち、再生反応が起こる。
    MX(NH+熱 → MX+NH
When the temperature of the exhaust gas from the engine 2 increases, the heat of the exhaust gas is given to the heat storage material 17 through the exhaust pipe 9. Thereby, the heat storage material 17 and NH 3 are separated. That is, a reaction of the following reaction formula, that is, a regeneration reaction occurs.
MX (NH 3 ) n + heat → MX + n NH 3
 このとき、排ガスの熱は、排気管9を通して伝熱材18に伝わる。すなわち、排ガスの熱は、伝熱材18を通って蓄熱材17に伝わる。蓄熱材17から分離したNHは、NHガスとして、媒体供給通路12を通して貯蔵器13に戻る。これにより、NHガスは、貯蔵器13に回収される。 At this time, the heat of the exhaust gas is transmitted to the heat transfer material 18 through the exhaust pipe 9. That is, the heat of the exhaust gas is transmitted to the heat storage material 17 through the heat transfer material 18. NH 3 separated from the heat storage material 17 returns to the reservoir 13 through the medium supply passage 12 as NH 3 gas. As a result, the NH 3 gas is recovered in the reservoir 13.
 以上のように本実施形態にあっては、蓄熱材17の2次粒子の表面を伝熱材18でコーティングし、その状態で蓄熱材17を圧粉成形することで、ペレット状の反応部16を形成するようにしている。このため、伝熱材18がコーティングされた蓄熱材17の各2次粒子は、十分に密な状態で配置される。伝熱材18として、NHガスを通すことが可能な非金属材料を用いることにより、NHガスの流路を確保するための隙間(空間)を反応部16の内部に形成しなくて済む。このため、蓄熱材17の各2次粒子が十分に密な状態となっても全く支障は無い。これらにより、蓄熱材17の各2次粒子の表面にコーティングされた伝熱材18同士がつながりやすくなると共に、反応部16の内部に伝熱の阻害となる隙間が形成されることが無い。従って、反応部16において熱が伝熱材18を介して効率良く伝わる。 As described above, in the present embodiment, the surface of the secondary particles of the heat storage material 17 is coated with the heat transfer material 18, and the heat storage material 17 is compacted in this state, whereby the pellet-shaped reaction unit 16. To form. For this reason, the secondary particles of the heat storage material 17 coated with the heat transfer material 18 are arranged in a sufficiently dense state. By using a non-metallic material capable of passing NH 3 gas as the heat transfer material 18, it is not necessary to form a gap (space) for securing the NH 3 gas flow path in the reaction section 16. . For this reason, there is no problem at all even if the secondary particles of the heat storage material 17 are in a sufficiently dense state. Accordingly, the heat transfer materials 18 coated on the surfaces of the secondary particles of the heat storage material 17 are easily connected to each other, and a gap that hinders heat transfer is not formed inside the reaction portion 16. Therefore, heat is efficiently transmitted through the heat transfer material 18 in the reaction section 16.
 発熱反応時には、蓄熱材17とNHとの化学反応により発生した熱が伝熱材18を通って酸化触媒4に伝わるため、酸化触媒4から離れた位置に存在する蓄熱材17で発生した熱も確実に酸化触媒4に伝わる。再生反応時には、排ガスの熱が伝熱材18を通って蓄熱材17に伝わるため、排ガスの熱が酸化触媒4から離れた位置に存在する蓄熱材17にも確実に伝わる。 At the time of the exothermic reaction, heat generated by a chemical reaction between the heat storage material 17 and NH 3 is transmitted to the oxidation catalyst 4 through the heat transfer material 18, so that heat generated in the heat storage material 17 existing at a position away from the oxidation catalyst 4. Is also reliably transmitted to the oxidation catalyst 4. At the time of the regeneration reaction, the heat of the exhaust gas is transmitted to the heat storage material 17 through the heat transfer material 18, so that the heat of the exhaust gas is reliably transmitted also to the heat storage material 17 present at a position away from the oxidation catalyst 4.
 このように本実施形態によれば、蓄熱材17を含む反応部16の熱伝導性を十分に高めることができる。具体的には、反応部16が蓄熱材17のみからなる場合の反応部16の熱伝導率λが1以下であるのに対し、本実施形態のように蓄熱材17が伝熱材18でコーディングされている場合には、反応部16の熱伝導率λは5~20である。 Thus, according to the present embodiment, the thermal conductivity of the reaction section 16 including the heat storage material 17 can be sufficiently increased. Specifically, the thermal conductivity λ of the reaction part 16 when the reaction part 16 is composed only of the heat storage material 17 is 1 or less, whereas the heat storage material 17 is coded by the heat transfer material 18 as in this embodiment. In this case, the thermal conductivity λ of the reaction section 16 is 5-20.
 これにより、発熱反応時には、反応部16からの熱出力が高く、酸化触媒4を十分に加熱することが可能となる。再生反応時には、NHの再生に要する時間を短縮することが可能となる。 Thereby, at the time of exothermic reaction, the heat output from the reaction part 16 is high, and it becomes possible to fully heat the oxidation catalyst 4. During the regeneration reaction, it is possible to reduce the time required for regeneration of NH 3 .
 別の観点では、本実施形態は、化学蓄熱装置10であって、気体の反応媒体と化学反応して熱を発生させる蓄熱材17の粒子を含む反応部16を有する反応器11と、反応器11と接続され、反応媒体を貯蔵する貯蔵器13と、を備え、蓄熱材17の粒子の表面には、蓄熱材17よりも高い熱伝導率を有し且つ反応媒体を通す非金属の伝熱材18がコーティングされている。 In another aspect, the present embodiment is a chemical heat storage device 10, which includes a reactor 11 having a reaction section 16 including particles of a heat storage material 17 that chemically reacts with a gaseous reaction medium to generate heat, and a reactor. 11 and a reservoir 13 for storing the reaction medium, and the surface of the particles of the heat storage material 17 has a higher thermal conductivity than the heat storage material 17 and passes through the reaction medium. Material 18 is coated.
 本観点によれば、蓄熱材17の粒子の表面が、蓄熱材17よりも高い熱伝導率を有する非金属の伝熱材18によりコーティングされている。このため、反応部16では、隣り合う粒子の表面をそれぞれ覆う複数の伝熱材18同士がつながる。従って、反応媒体と蓄熱材17との化学反応により蓄熱材17で発生した熱は、反応部16内で伝熱材18を通して効果的に伝わる。伝熱材18は反応媒体を通すため、伝熱材18が、蓄熱材17と反応媒体との化学反応を阻害することはない。以上により、反応部16での熱伝導性が向上する。 According to this aspect, the surface of the particles of the heat storage material 17 is coated with a nonmetallic heat transfer material 18 having a higher thermal conductivity than the heat storage material 17. For this reason, in the reaction part 16, several heat-transfer materials 18 which respectively cover the surface of an adjacent particle | grain are connected. Therefore, the heat generated in the heat storage material 17 by the chemical reaction between the reaction medium and the heat storage material 17 is effectively transmitted through the heat transfer material 18 in the reaction section 16. Since the heat transfer material 18 passes the reaction medium, the heat transfer material 18 does not inhibit the chemical reaction between the heat storage material 17 and the reaction medium. As a result, the thermal conductivity in the reaction section 16 is improved.
 本観点では、反応部16は、表面に伝熱材18がコーティングされている粒子を圧粉成形することにより形成されていてもよい。反応部16の内部に隙間が形成されていると、当該隙間は、蓄熱材17で発生した熱が伝わるのを阻害する要因となり得る。反応部16が、表面に伝熱材18がコーティングされている粒子を圧粉成形することにより形成されている場合、反応部16には、伝熱材18がコーティングされている粒子が、十分に密な状態で配置される。このため、反応部16の内部において複数の伝熱材18同士が確実につながると共に、反応部16の内部に隙間が形成されることが抑制される。これにより、反応部16の熱伝導性が更に向上する。 In this aspect, the reaction part 16 may be formed by compacting particles having a surface coated with the heat transfer material 18. If a gap is formed inside the reaction unit 16, the gap may be a factor that hinders transmission of heat generated in the heat storage material 17. When the reaction part 16 is formed by compacting particles having the surface coated with the heat transfer material 18, the reaction part 16 has sufficient particles coated with the heat transfer material 18. It is arranged in a dense state. For this reason, while the some heat transfer material 18 connects reliably inside the reaction part 16, formation of a clearance gap inside the reaction part 16 is suppressed. Thereby, the thermal conductivity of the reaction part 16 further improves.
 本発明は、上記実施形態に限定されない。例えば、上記実施形態では、蓄熱材17の2次粒子の表面を伝熱材18でコーティングし、伝熱材18がコーティングされた2次粒子を圧粉成形することにより、反応部16が形成されているが、これに限られない。蓄熱材17の2次粒子の表面を伝熱材18でコーティングした後、伝熱材18がコーティングされた2次粒子をリングケース15内に密な状態で封入することにより、反応部16が形成されていてもよい。この場合、反応部16は、リングケース15内に形成される空間の形状に対応した形状を呈する。伝熱材18がコーティングされた2次粒子の、リングケース15内での空間体積及びリングケース15内への封入量は、NHと蓄熱材17との配位結合によって蓄熱材17が膨張した際の体積に基づいて、決定してもよい。この場合、蓄熱材17が膨張した際に、反応部16を隙間なく構成することができる。 The present invention is not limited to the above embodiment. For example, in the above embodiment, the reaction part 16 is formed by coating the surface of the secondary particles of the heat storage material 17 with the heat transfer material 18 and compacting the secondary particles coated with the heat transfer material 18. However, it is not limited to this. After the surface of the secondary particles of the heat storage material 17 is coated with the heat transfer material 18, the reaction particles 16 are formed by enclosing the secondary particles coated with the heat transfer material 18 in the ring case 15 in a dense state. May be. In this case, the reaction part 16 exhibits a shape corresponding to the shape of the space formed in the ring case 15. The spatial volume of the secondary particles coated with the heat transfer material 18 and the amount enclosed in the ring case 15 are such that the heat storage material 17 expands due to the coordination bond between the NH 3 and the heat storage material 17. You may determine based on the volume at the time. In this case, when the heat storage material 17 expands, the reaction part 16 can be configured without a gap.
 上記実施形態では、酸化触媒4の周囲に反応器11が配置されているが、これに限られない。反応器11は、酸化触媒4内に配置されていてもよい。 In the above embodiment, the reactor 11 is disposed around the oxidation catalyst 4, but is not limited thereto. The reactor 11 may be disposed in the oxidation catalyst 4.
 上記実施形態では、蓄熱材17として組成式MXaで示されるハロゲン化物が用いられ、蓄熱材17は、NHとの化学反応により熱を発生させているが、これに限られない。気体の反応媒体は、NHには限られず、例えばHO(水蒸気)であってもよい。この場合、HOと化学反応させる蓄熱材として、CaO、MnO、CuO、又はAl等が用いられる。 In the said embodiment, the halide shown by the compositional formula MXa is used as the heat storage material 17 and the heat storage material 17 generates heat by a chemical reaction with NH 3 , but is not limited thereto. The gaseous reaction medium is not limited to NH 3, and may be, for example, H 2 O (water vapor). In this case, CaO, MnO, CuO, Al 2 O 3 or the like is used as a heat storage material that chemically reacts with H 2 O.
 上記実施形態では、化学蓄熱装置10は、ディーゼルエンジン2の排気系に配置されている酸化触媒4を加熱するが、これに限られない。化学蓄熱装置10は、ディーゼルエンジン2の排気系に配置されている他の触媒、又は、排気管9において排気触媒が位置していない箇所等の部材を加熱してもよい。本発明は、ディーゼルエンジン2以外に、ガソリンエンジンの排気系に配置されている触媒、又は、排気管において触媒が位置していない箇所等の部材を加熱する化学蓄熱装置にも適用可能である。本発明は、エンジンの排気系以外の加熱対象物を加熱する化学蓄熱装置にも適用可能である。 In the above embodiment, the chemical heat storage device 10 heats the oxidation catalyst 4 disposed in the exhaust system of the diesel engine 2, but is not limited thereto. The chemical heat storage device 10 may heat other catalyst disposed in the exhaust system of the diesel engine 2 or a member such as a place where the exhaust catalyst is not located in the exhaust pipe 9. In addition to the diesel engine 2, the present invention can also be applied to a catalyst disposed in an exhaust system of a gasoline engine or a chemical heat storage device that heats a member such as a portion where the catalyst is not located in an exhaust pipe. The present invention is also applicable to a chemical heat storage device that heats an object to be heated other than the engine exhaust system.
 本発明は、内燃機関(例えば、ディーゼルエンジン等)の排気系に配置されている触媒を暖機する化学蓄熱装置に利用できる。 The present invention can be used for a chemical heat storage device for warming up a catalyst disposed in an exhaust system of an internal combustion engine (for example, a diesel engine).
 4…酸化触媒(加熱対象物)、10…化学蓄熱装置、11…反応器、13…貯蔵器、16…反応部、17…蓄熱材、18…伝熱材。 4 ... oxidation catalyst (object to be heated), 10 ... chemical heat storage device, 11 ... reactor, 13 ... reservoir, 16 ... reaction section, 17 ... heat storage material, 18 ... heat transfer material.

Claims (3)

  1.  加熱対象物を加熱する化学蓄熱装置であって、
     前記加熱対象物の周囲または内部に配置され、気体の反応媒体と化学反応して熱を発生させる蓄熱材を含む反応部を有する反応器と、
     前記反応器と接続され、前記反応媒体を貯蔵する貯蔵器とを備え、
     前記反応部は、前記蓄熱材よりも熱伝導率が高く且つ前記反応媒体を通すことが可能な非金属の伝熱材で前記蓄熱材の粒子の表面をコーティングした状態となるように構成されている。
    A chemical heat storage device for heating an object to be heated,
    A reactor having a reaction part disposed around or inside the heating object and including a heat storage material that chemically reacts with a gaseous reaction medium to generate heat;
    A reservoir connected to the reactor and storing the reaction medium;
    The reaction part is configured to be in a state in which the surface of particles of the heat storage material is coated with a non-metallic heat transfer material having a higher thermal conductivity than the heat storage material and capable of passing the reaction medium. Yes.
  2.  請求項1に記載の化学蓄熱装置であって、
     前記反応部は、前記蓄熱材の粒子の表面を前記伝熱材でコーティングした状態で前記蓄熱材を圧粉成形することにより形成されている。
    The chemical heat storage device according to claim 1,
    The reaction part is formed by compacting the heat storage material in a state where the surfaces of the particles of the heat storage material are coated with the heat transfer material.
  3.  請求項1又は2に記載の化学蓄熱装置であって、
     前記伝熱材がカーボン系の材料である。
    The chemical heat storage device according to claim 1 or 2,
    The heat transfer material is a carbon-based material.
PCT/JP2014/069352 2013-08-20 2014-07-22 Chemical heat storage device WO2015025666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013170547A JP2015040646A (en) 2013-08-20 2013-08-20 Chemical heat storage device
JP2013-170547 2013-08-20

Publications (1)

Publication Number Publication Date
WO2015025666A1 true WO2015025666A1 (en) 2015-02-26

Family

ID=52483448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069352 WO2015025666A1 (en) 2013-08-20 2014-07-22 Chemical heat storage device

Country Status (2)

Country Link
JP (1) JP2015040646A (en)
WO (1) WO2015025666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029919A1 (en) * 2015-08-17 2017-02-23 株式会社豊田自動織機 Chemical heat storage device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678991B2 (en) 2016-03-31 2020-04-15 日本碍子株式会社 Heat storage member
JP6670153B2 (en) 2016-03-31 2020-03-18 日本碍子株式会社 Heat storage material
WO2018163676A1 (en) 2017-03-08 2018-09-13 日本碍子株式会社 Porous honeycomb heat storage structure
CN113091052B (en) * 2021-04-27 2022-05-17 四川大学 Catalytic combustion ignition starting device and method utilizing thermochemical heat storage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134593A (en) * 1984-11-30 1986-06-21 Agency Of Ind Science & Technol Heat exchange device using hydrogen occlusion alloy
JPH03202430A (en) * 1989-12-29 1991-09-04 Fujitsu Ltd Manufacture of magnesium series sintered alloy and magnesium series composite material
JP2007146282A (en) * 2005-11-02 2007-06-14 Sumitomo Electric Ind Ltd Powder molding method in powder metallurgy and method for producing sintered part
US20070251837A1 (en) * 2004-07-09 2007-11-01 Helmut Stach Shaped Bodies Made of Powders or Granulated Metal, Method for the Production Thereof and Their Use
JP2009256517A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat storage material and production method thereof
JP2011162746A (en) * 2010-02-15 2011-08-25 Nagoya Electrical Educational Foundation Molded article of chemical heat storage material and method for producing the same
JP2011196661A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Heat accumulator
WO2013027778A1 (en) * 2011-08-23 2013-02-28 株式会社豊田中央研究所 Chemical heat storage material, manufacturing method therefor and chemical heat storage structure
JP2013112706A (en) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology Chemical thermal storage medium and chemical heat pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134593A (en) * 1984-11-30 1986-06-21 Agency Of Ind Science & Technol Heat exchange device using hydrogen occlusion alloy
JPH03202430A (en) * 1989-12-29 1991-09-04 Fujitsu Ltd Manufacture of magnesium series sintered alloy and magnesium series composite material
US20070251837A1 (en) * 2004-07-09 2007-11-01 Helmut Stach Shaped Bodies Made of Powders or Granulated Metal, Method for the Production Thereof and Their Use
JP2007146282A (en) * 2005-11-02 2007-06-14 Sumitomo Electric Ind Ltd Powder molding method in powder metallurgy and method for producing sintered part
JP2009256517A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat storage material and production method thereof
JP2011162746A (en) * 2010-02-15 2011-08-25 Nagoya Electrical Educational Foundation Molded article of chemical heat storage material and method for producing the same
JP2011196661A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Heat accumulator
WO2013027778A1 (en) * 2011-08-23 2013-02-28 株式会社豊田中央研究所 Chemical heat storage material, manufacturing method therefor and chemical heat storage structure
JP2013112706A (en) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology Chemical thermal storage medium and chemical heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029919A1 (en) * 2015-08-17 2017-02-23 株式会社豊田自動織機 Chemical heat storage device

Also Published As

Publication number Publication date
JP2015040646A (en) 2015-03-02

Similar Documents

Publication Publication Date Title
WO2015025666A1 (en) Chemical heat storage device
CN101126336B (en) Exhaust gas post treatment system
JP2013238219A (en) Exhaust emission control device
JP5494722B2 (en) Heat storage device
WO2015060199A1 (en) Chemical heat storage device
US10287952B2 (en) Emissions control substrate
WO2014203754A1 (en) Chemical heat storage device
EP3161287B1 (en) A heat exchanger system for treatment of a flow of exhaust gases in an exhaust gas aftertreatment system
US10228195B2 (en) Chemical heat storage device
JP2015087082A (en) Chemical heat storage device
JP2014152661A (en) Diesel engine exhaust gas purification device
JP6160257B2 (en) Exhaust purification device
JP2014101869A (en) Exhaust emission control system
JP5188477B2 (en) Exhaust purification device
JP2016053439A (en) Chemical heat storage device
JP6079557B2 (en) Chemical heat storage device
JP2014159776A (en) Exhaust emission control device
JP2016194399A (en) Chemical heat storage device
JP2014088816A (en) Exhaust gas cleaning system
JP6136673B2 (en) Method for producing chemical heat storage molded body and chemical heat storage device
JP2016188719A (en) Chemical heat storage device
WO2017029919A1 (en) Chemical heat storage device
WO2016194682A1 (en) Chemical heat storage device
WO2016031669A1 (en) Chemical heat storage device
JP2015230132A (en) Heat medium circulation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838539

Country of ref document: EP

Kind code of ref document: A1