WO2016031669A1 - Chemical heat storage device - Google Patents

Chemical heat storage device Download PDF

Info

Publication number
WO2016031669A1
WO2016031669A1 PCT/JP2015/073377 JP2015073377W WO2016031669A1 WO 2016031669 A1 WO2016031669 A1 WO 2016031669A1 JP 2015073377 W JP2015073377 W JP 2015073377W WO 2016031669 A1 WO2016031669 A1 WO 2016031669A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
reaction
insulating material
reactor
heat insulating
Prior art date
Application number
PCT/JP2015/073377
Other languages
French (fr)
Japanese (ja)
Inventor
聡 針生
貴文 山▲崎▼
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2016031669A1 publication Critical patent/WO2016031669A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a chemical heat storage device.
  • a device described in Patent Document 1 heats an oxidation catalyst provided in an exhaust pipe of an internal combustion engine, and supplies a reactor provided around the oxidation catalyst and a reaction medium to the reactor. And a reservoir connected to the reaction medium and storing the reaction medium.
  • the reactor has a casing disposed around the oxidation catalyst and a reaction material filled in the casing. Heat is generated in the reactor due to a chemical reaction between the reaction material of the reactor and the reaction medium supplied from the reservoir. Then, the heat generated in the reactor is transferred to the oxidation catalyst through the casing, so that the temperature of the oxidation catalyst rises to an activation temperature suitable for purification of environmental pollutants.
  • An object of the present invention is to provide a chemical heat storage device that can suppress heat dissipation from the reactor to the outside.
  • a chemical heat storage device includes a reactor, and a reservoir that is connected to the reactor so that the reaction medium can flow between the reactor and stores the reaction medium.
  • a container a reaction material that is contained in the container and generates heat by a chemical reaction with the reaction medium and desorbs the reaction medium by heat storage, and a hard heat insulating material disposed between the container and the reaction material.
  • the hard heat insulating material is formed so that the compressive stress required when the compressive strain is 0.5% is 0.5 MPa or more, and the compressive stress required when the compressive strain is 1% is 2 MPa or more. Has been.
  • the hard heat insulating material has a compressive stress of 0.5 MPa or more and a compressive strain of 1% when the compressive strain is 0.5%. It is formed so that the compressive stress necessary for this is 2 MPa or more.
  • the hard heat insulating material may be formed so that the thermal conductivity is 1 W / m / K or less. In this case, since heat generated from the reaction material is difficult to be transmitted through the hard heat insulating material, heat dissipation from the reactor to the outside is further suppressed.
  • the hard heat insulating material may be formed including calcium silicate.
  • the hard heat insulating material containing calcium silicate has a sufficient strength and has a small specific heat and an excellent heat insulating property, heat dissipation from the reactor to the outside is further suppressed.
  • a groove-like flow path for circulating the reaction medium is formed inside the hard heat insulating material so as to be positioned along the periphery of the reaction material. In this case, since the reaction medium easily reaches the entire reaction material through the flow path, the object to be heated is effectively heated by the heat generated in the reactor.
  • FIG. 1 is a schematic configuration diagram showing an exhaust purification system including an embodiment of a chemical heat storage device according to the present invention.
  • FIG. 2 is a cross-sectional view showing a main part of the chemical heat storage device shown in FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a graph showing the relationship between compressive stress and compressive strain in a hard heat insulating material.
  • FIG. 5 is a cross-sectional view showing a main part of an example of a chemical heat storage device as a comparative example.
  • 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a cross-sectional view showing the main parts in a modification of the chemical heat storage device shown in FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • FIG. 1 is a schematic configuration diagram showing an exhaust purification system provided with an embodiment of a chemical heat storage device according to the present invention.
  • an exhaust purification system 1 is provided in an exhaust system of a diesel engine 2 (hereinafter simply referred to as an engine 2) of a vehicle, and removes harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2. It is a purification system.
  • the exhaust purification system 1 includes an exhaust pipe 3 connected to an engine 2, a heat exchanger 4 disposed in the middle of the exhaust pipe 3, a diesel oxidation catalyst (DOC) 5, a diesel exhaust particulate removal filter ( DPF: Diesel Particulate Filter 6, selective reduction catalyst (SCR: Selective Catalytic Reduction) 7, and ammonia slip catalyst (ASC: Ammonia Slip Catalyst) 8.
  • DOC diesel oxidation catalyst
  • DPF Diesel Particulate Filter 6
  • SCR Selective Catalytic Reduction
  • ASC Ammonia Slip Catalyst
  • the heat exchanger 4 exchanges heat between the exhaust gas flowing in the exhaust pipe 3 and a reactor 11 described later.
  • the heat exchanger 4 has a cylindrical tube member 4a and a heat exchange member 4b disposed inside the tube member 4a.
  • the cylindrical member 4a is made of stainless steel, for example.
  • the heat exchange member 4b is formed of a ceramic such as SiSiC, for example, and has a honeycomb structure having a plurality of through holes (cells).
  • the heat exchange member 4b is disposed inside the tubular member 4a such that the through direction of each through hole is parallel to the axial direction of the tubular member 4a. Both ends of the cylindrical member 4a in the axial direction protrude from the heat exchange member 4b.
  • the axial direction of the tubular member 4 a is arranged in a direction parallel to the axial direction of the exhaust pipe 3. Moreover, the heat exchanger 4 is arrange
  • the heat exchanger 4 is fixed by, for example, welding each end of the cylindrical member 4 a to the end of each exhaust pipe 3.
  • the heat exchanger 4 is not particularly limited to a honeycomb structure, and a well-known heat exchange structure can be used.
  • the DOC 5 is a catalyst that oxidizes and purifies HC, CO, and the like contained in the exhaust gas.
  • the DPF 6 is a filter that collects and removes particulate matter (PM) contained in the exhaust gas.
  • the SCR 7 is a catalyst that reduces and purifies NOx contained in the exhaust gas with urea or ammonia (NH 3 ).
  • the ASC 8 is a catalyst that oxidizes NH 3 that has passed through the SCR 7 and has flowed downstream of the SCR 7.
  • the exhaust purification system 1 includes a chemical heat storage device 10 that uses a reversible chemical reaction to heat (warm up) a heating object such as exhaust gas without external energy.
  • the chemical heat storage device 10 stores the heat (exhaust heat) of the exhaust gas in the chemical heat storage device 10 by separating a reaction material 14 and a reaction medium described later from each other.
  • the chemical heat storage device 10 supplies the reaction medium to the reaction material 14 when necessary, causes the reaction material 14 and the reaction medium to chemically react (chemical adsorption), and uses the reaction heat at the time of the chemical reaction to generate heat.
  • the exhaust gas is heated via the exchanger 4.
  • NH 3 (ammonia) is used as the reaction medium.
  • the chemical heat storage device 10 includes a reactor 11 disposed around the heat exchanger 4 and an adsorber (reservoir) 12 connected to the reactor 11.
  • the reactor 11 has the container 13, the reaction material 14, and the hard heat insulating material 15, as shown in FIG.2 and FIG.3.
  • the container 13 has an outer cylinder 13a and a pair of lid members 13b.
  • the outer cylinder 13a is formed of stainless steel, for example, and has a cylindrical shape.
  • the outer cylinder 13 a is formed so that the inner diameter is larger than the outer diameter of the cylinder member 4 a of the heat exchanger 4.
  • a through hole 13c penetrating the outer peripheral surface and the inner peripheral surface is formed at the center in the axial direction of the outer cylinder 13a.
  • Each lid member 13b is an annular plate member formed of the same material as that of the outer cylinder 13a.
  • Each lid member 13b is arranged at both ends in the axial direction of the outer cylinder 13a so as to face each other.
  • Each lid member 13b is fixed to each end of the outer cylinder 13a, for example, by welding.
  • Such a container 13 is arranged around the heat exchanger 4. More specifically, the container 13 is arranged so that the axial direction of the outer cylinder 13a is parallel to the axial direction of the cylindrical member 4a, and the inner peripheral surface of the outer cylinder 13a is opposed to and spaced apart from the outer peripheral surface of the cylindrical member 4a. Has been placed.
  • the container 13 is fixed to each end portion of the tubular member 4a and the outer peripheral surface of the exhaust pipe 3 by welding, for example, by an inner edge portion of each lid member 13b.
  • region enclosed by the inner peripheral surface of the outer cylinder 13a, each cover member 13b, and the outer peripheral surface of the cylinder member 4a becomes the closed space isolated from the exterior.
  • the reaction material 14 has a plurality (three in the present embodiment) of round pellet shaped pellets, and is formed in a cylindrical shape by joining the molded pellets together.
  • a halide represented by the composition formula MXa is used as the reaction material 14.
  • M is an alkaline earth metal such as Mg, Ca, or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu, or Zn.
  • X is Cl, Br, I or the like.
  • a is a number specified by the valence of M, and is 2 to 3.
  • the reaction material 14 may include a high thermal conductor such as stainless steel, metal beads, SiC beads, Si beads, carbon beads, and alumina beads.
  • the reaction material 14 generates heat by chemically reacting with NH 3 which is a gaseous reaction medium, and desorbs NH 3 by storing the heat of the exhaust gas.
  • reaction material 14 is accommodated in the container 13.
  • the reaction material 14 is accommodated in said closed space, and is located so that the said outer peripheral surface may be contacted along the outer peripheral surface of the cylinder member 4a.
  • a porous sheet (not shown) for guiding NH 3 is arranged around the entire circumference of the reaction material 14 around the reaction material 14.
  • the hard heat insulating material 15 is composed of a pair of semi-cylindrical members formed using zonolite-based calcium silicate as a main raw material.
  • the hard heat insulating material 15 has a cylindrical shape by connecting the pair of members.
  • a through hole 15 a that penetrates the outer peripheral surface and the inner peripheral surface is formed at the center in the axial direction of the hard heat insulating material 15.
  • the thermal conductivity of the hard heat insulating material 15 is 1 W / m / K or less.
  • the specific heat of the hard heat insulating material 15 is, for example, 800 J / Kg / K at 200 ° C., 886 J / Kg / K at 300 ° C., 880 J / Kg / K at 500 ° C., and 920 J / Kg / K at 700 ° C. .
  • the specific heat of the hard heat insulating material 15 is relatively small, the heat capacity of the hard heat insulating material 15 is small.
  • FIG. 4 is a graph showing the relationship between compressive stress and compressive strain in the hard heat insulating material 15.
  • the vertical axis indicates compressive stress
  • the horizontal axis indicates compressive strain.
  • FIG. 4 has shown the result at the time of using a rectangular parallelepiped hard heat insulating material (test piece).
  • the compressive stress indicates a force generated inside the test piece when a compressive force is applied to both end faces of the test piece.
  • the compression strain indicates a relative change in the compression direction of the test piece when the compression force is applied.
  • the hard heat insulating material 15 is formed so that the compressive stress required when the compressive strain is 0.5% is 0.5 MPa or more, and the compressive stress required when the compressive strain is 1% is 2 MPa or more.
  • the hard heat insulating material 15 corresponds to the hard region P (including the approximate straight line L) located on the vertical axis side (the side where the compressive stress increases) with the approximate straight line L as a reference. Is formed.
  • the approximate line L is derived from data A and data B.
  • Data A is data in which the compressive stress required when the compressive strain is 0.5% is 0.5 MPa.
  • Data B is data in which the compressive stress required when the compressive strain is 1% is 2 MPa.
  • Such a hard heat insulating material 15 is disposed between the container 13 and the reaction material 14. More specifically, the hard heat insulating material 15 is accommodated in the above-described closed space, and is positioned so as to contact the porous sheet and the inner peripheral surface of the container 13 along the periphery of the porous sheet. The hard heat insulating material 15 is positioned so that the through hole 15a overlaps the through hole 13c formed in the outer cylinder 13a.
  • the adsorber 12 includes an adsorbent 12 a that can be held and desorbed by physical adsorption of NH 3 .
  • adsorbent 12a activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used.
  • Adsorber 12 by physically adsorbed NH 3 to the adsorbent 12a, storing NH 3.
  • the adsorbent 12a may be a powder or a molded body.
  • the reactor 11 and the adsorber 12 are connected through an introduction pipe 16 so that NH 3 can flow.
  • One end of the introduction pipe 16 is inserted into a through hole 13 c formed in the outer cylinder 13 a of the container 13 and a through hole 15 a formed in the hard heat insulating material 15.
  • One end of the introduction pipe 16 is fixed to the edge of the through hole 13c by welding, for example.
  • the introduction pipe 16 is provided with an electromagnetic valve 17 that is an on-off valve that opens and closes a flow path between the reactor 11 and the adsorber 12.
  • the electromagnetic valve 17 is controlled by a controller (not shown).
  • FIG. 5 is a cross-sectional view showing a main part of an example of a chemical heat storage device as a comparative example.
  • 6 is a cross-sectional view taken along line VI-VI in FIG.
  • a heat insulating material 115 having the same shape and the same size as the hard heat insulating material 15 is used instead of the hard heat insulating material 15.
  • the heat insulating material 115 is formed so that the compressive stress required when the compressive strain is 0.5% is smaller than 0.5 MPa, and the compressive stress required when the compressive strain is 1% is smaller than 2 MPa. ing.
  • the heat insulating material 115 is softer than the hard heat insulating material 15 used in the present embodiment, the heat insulating material 115 is crushed by the reaction material 14 expanded by a chemical reaction with NH 3 . That is, due to the expansion of the reaction material 14, the boundary surface between the reaction material 14 and the heat insulating material 115 changes from the first position indicated by the two-dot chain line in FIGS. 5 and 6 to the second position outside the first position. Move to the position. Since the reaction material 14 approaches the container 13 when the heat insulating material 115 is crushed in this way, the heat in the reactor 11 is easily dissipated to the outside through the container 13. Further, the reaction material 14 may crack when expanded. Since the cracked portion of the reaction material 14 prevents heat transfer, the heat transfer in the reactor 11 is reduced. Thereby, there exists a possibility that the heat exchanger 4 may not fully be heated.
  • the hard heat insulating material 15 has a compressive stress of 0.5 MPa or more and a compressive strain of 1% when the compressive strain is 0.5%. It is formed so that the compressive stress required for the above becomes 2 MPa or more.
  • the hard heat insulating material 15 is not crushed in the container 13 by the volume expansion of the reaction material 14 when the reaction material 14 and NH 3 chemically react, the desired heat insulating performance in the reactor 11 is maintained. can do. Therefore, heat dissipation from the reactor 11 to the outside is suppressed.
  • the hard heat insulating material 15 is hard to be crushed by the reaction material 14, cracking of the reaction material 14 due to the expansion of the reaction material 14 is suppressed. Accordingly, a decrease in heat transfer in the reactor 11 is suppressed.
  • the hard heat insulating material 15 is formed so that the thermal conductivity is 1 W / m / K or less. For this reason, since the heat generated from the reaction material 14 becomes difficult to be transmitted through the hard heat insulating material 15, the diffusion of heat from the reactor 11 to the outside is effectively suppressed.
  • the hard heat insulating material 15 is formed to contain zonotlite-based calcium silicate.
  • the hard heat insulating material 15 containing zonolite-based calcium silicate has a sufficient strength, a small specific heat, and an excellent heat insulating property. Therefore, heat dissipation from the reactor 11 to the outside and a decrease in heat transfer in the reactor 11 are effectively suppressed.
  • a groove-like flow path 15 b for circulating NH 3 may be formed inside the hard heat insulating material 15.
  • the flow path 15 b communicates with the through hole 15 a of the hard heat insulating material 15 and is formed in an annular shape along the periphery of the reaction material 14.
  • NH 3 easily reaches the entire reaction material 14 through the flow path 15 b, so that the heat exchanger 4 is effectively heated by the heat generated in the reactor 11.
  • the hard heat insulating material 15 has the hardness more than predetermined, the process of such a flow path 15b becomes easy.
  • the hard heat insulating material 15 containing a zonolite-type calcium silicate is applied, instead of the hard heat insulating material 15, the heat insulating material which uses tobermorite-type calcium silicate as a main raw material is applied. Good. Further, a heat insulating material mainly made of cement may be applied. Further, a heat insulating material in which minute mica pieces are accumulated and bonded with a silicone resin may be applied.
  • the hard heat insulating material 15 is comprised from a pair of semi-cylindrical member, the hard heat insulating material 15 is comprised by the cylindrical shape by connecting the 3 or more round roof type
  • region P to which the hard heat insulating material 15 corresponds was prescribed
  • region P shows the approximated curve derived
  • FIG. It may be defined as a standard.
  • reaction medium a composition formula MXa by chemical reaction.
  • the reaction medium is not particularly limited to NH 3 , and for example, CO 2 or H 2 O may be used.
  • the reaction material that chemically reacts with CO 2 includes MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , and Fe (OH) 3.
  • FeO, Fe 2 O 3 , Fe 3 O 4 and the like can be used.
  • H 2 O is used as a reaction medium
  • CaO, MnO, CuO, Al 2 O 3 or the like can be used as a reaction material that chemically reacts with H 2 O.
  • the reactor 11 is arrange
  • the reactor 11 may be indirectly arranged with the exhaust pipe 3 interposed therebetween.
  • the reactor 11 is a device that heats the exhaust gas via the heat exchanger 4.
  • the present invention can also be applied to a component that heats a heating object provided in the exhaust system or a component that heats a heating object other than the exhaust system of the engine.
  • the present invention can be applied to other than an engine exhaust system, for example, one that heats piping or the like provided in an oil circulation system.
  • the present invention may heat various heat media in vehicles such as engine oil, transmission oil, cooling water, or air.
  • the reactor of the chemical heat storage device may be disposed on the outer periphery (a part of the outer periphery or the entire periphery of the outer periphery) of the heat medium channel through which the heat medium flows to heat the heat medium channel itself.
  • a heat exchanger may be disposed in the heat medium flow path through which the heat medium flows, and the heat exchanger may be heated.
  • a heat exchange unit integrated reactor in which a plurality of heaters having heat storage materials and heat exchange units such as heat exchange fins are alternately arranged is configured, and the heat medium stores the heat exchange unit integrated reactor. You may arrange

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

This chemical heat storage device is provided with: a reactor 11; and an adsorption device that stores NH3 and is connected to the reactor 11 in such a manner that NH3 can be transferred between the reactor 11 and the adsorption device. The reactor 11 comprises: a container 13 that is arranged around a heat exchanger 4; a reaction material 14 that is contained in the container 13 and generates heat through a chemical reaction with NH3, while releasing NH3 by storing the heat; and a hard heat insulating material 15 that is arranged between the container 13 and the reaction material 14. The hard heat insulating material 15 is configured such that the compressive stress required for a compressive strain of 0.5% is 0.5 MPa or more and the compressive stress required for a compressive strain of 1% is 2 MPa or more.

Description

化学蓄熱装置Chemical heat storage device
 本発明は、化学蓄熱装置に関する。 The present invention relates to a chemical heat storage device.
 従来の化学蓄熱装置としては、例えば特許文献1に記載されている装置が知られている。特許文献1に記載の化学蓄熱装置は、内燃機関の排気管に設けられた酸化触媒を加熱するものであって、酸化触媒の周囲に設けられた反応器と、当該反応器に反応媒体を供給可能に接続されると共に反応媒体を貯蔵する貯蔵器とを備えている。反応器は、酸化触媒の周囲に配置された筐体と、当該筐体内に充填された反応材とを有している。反応器の反応材と貯蔵器から供給された反応媒体とが化学反応することによって反応器内には熱が発生する。そして、この反応器で発生した熱が筐体を介して酸化触媒に伝わることによって、酸化触媒の温度は、環境汚染物質の浄化に適した活性化温度まで上昇する。 As a conventional chemical heat storage device, for example, a device described in Patent Document 1 is known. The chemical heat storage device described in Patent Document 1 heats an oxidation catalyst provided in an exhaust pipe of an internal combustion engine, and supplies a reactor provided around the oxidation catalyst and a reaction medium to the reactor. And a reservoir connected to the reaction medium and storing the reaction medium. The reactor has a casing disposed around the oxidation catalyst and a reaction material filled in the casing. Heat is generated in the reactor due to a chemical reaction between the reaction material of the reactor and the reaction medium supplied from the reservoir. Then, the heat generated in the reactor is transferred to the oxidation catalyst through the casing, so that the temperature of the oxidation catalyst rises to an activation temperature suitable for purification of environmental pollutants.
特開2013-234625号公報JP 2013-234625 A
 上記のような化学蓄熱装置では、反応器内で発生した熱の一部が、筐体の外気と接触する部分を介して外部へ発散されるため、加熱対象物である酸化触媒を効率的に加熱できないという問題がある。筐体から外部への熱の発散を抑制するために、例えば、反応器において反応材と筐体との間にグラスウールなどの断熱材を配置することが考えられる。しかしながら、筐体内に配置する断熱材がグラスウールなどの柔らかい材質のものであると、反応媒体との化学反応による反応材の体積膨張によって断熱材が押し潰されてしまい、所望の断熱効果を発揮することができなくなるという問題が発生する。 In the chemical heat storage device as described above, a part of the heat generated in the reactor is dissipated to the outside through a portion that comes into contact with the outside air of the housing. There is a problem that it cannot be heated. In order to suppress the diffusion of heat from the housing to the outside, for example, it is conceivable to arrange a heat insulating material such as glass wool between the reaction material and the housing in the reactor. However, if the heat insulating material placed in the housing is made of a soft material such as glass wool, the heat insulating material is crushed by the volume expansion of the reaction material due to a chemical reaction with the reaction medium, and the desired heat insulating effect is exhibited. The problem of being unable to do so occurs.
 本発明の目的は、反応器から外部への熱の発散を抑制し得る化学蓄熱装置を提供することである。 An object of the present invention is to provide a chemical heat storage device that can suppress heat dissipation from the reactor to the outside.
 本発明の一側面に係る化学蓄熱装置は、反応器と、反応器との間で反応媒体を流通可能に反応器に接続され、反応媒体を貯蔵する貯蔵器と、を備え、反応器は、容器と、容器内に収容され、反応媒体との化学反応により発熱すると共に蓄熱により反応媒体を脱離させる反応材と、容器と反応材との間に配置された硬質断熱材と、を有し、硬質断熱材は、圧縮歪を0.5%とする場合に必要な圧縮応力が0.5MPa以上で、且つ圧縮歪を1%とする場合に必要な圧縮応力が2MPa以上となるように形成されている。 A chemical heat storage device according to an aspect of the present invention includes a reactor, and a reservoir that is connected to the reactor so that the reaction medium can flow between the reactor and stores the reaction medium. A container, a reaction material that is contained in the container and generates heat by a chemical reaction with the reaction medium and desorbs the reaction medium by heat storage, and a hard heat insulating material disposed between the container and the reaction material. The hard heat insulating material is formed so that the compressive stress required when the compressive strain is 0.5% is 0.5 MPa or more, and the compressive stress required when the compressive strain is 1% is 2 MPa or more. Has been.
 このような本発明の一側面に係る化学蓄熱装置においては、硬質断熱材は、圧縮歪を0.5%とする場合に必要な圧縮応力が0.5MPa以上で、且つ圧縮歪を1%とする場合に必要な圧縮応力が2MPa以上となるように形成されている。これにより、反応材と反応媒体とが化学反応した際の反応材の体積膨張によって容器内で硬質断熱材が押し潰されることがなくなるので、反応器における所望の断熱性能を維持することができる。従って、反応器から外部への熱の発散が抑制される。 In such a chemical heat storage device according to one aspect of the present invention, the hard heat insulating material has a compressive stress of 0.5 MPa or more and a compressive strain of 1% when the compressive strain is 0.5%. It is formed so that the compressive stress necessary for this is 2 MPa or more. Thereby, since the hard heat insulating material is not crushed in the container due to the volume expansion of the reaction material when the reaction material and the reaction medium chemically react, the desired heat insulating performance in the reactor can be maintained. Therefore, heat dissipation from the reactor to the outside is suppressed.
 硬質断熱材は、熱伝導率が1W/m/K以下となるように形成されてもよい。この場合には、反応材から発生した熱が硬質断熱材内を伝達し難くなるので、反応器から外部への熱の発散がより一層抑制される。 The hard heat insulating material may be formed so that the thermal conductivity is 1 W / m / K or less. In this case, since heat generated from the reaction material is difficult to be transmitted through the hard heat insulating material, heat dissipation from the reactor to the outside is further suppressed.
 また、硬質断熱材は、ケイ酸カルシウムを含んで形成されてもよい。この場合、ケイ酸カルシウムを含む硬質断熱材は十分な強度を有すると共に比熱が小さく断熱性に優れているので、反応器から外部への熱の発散がより一層抑制される。 Further, the hard heat insulating material may be formed including calcium silicate. In this case, since the hard heat insulating material containing calcium silicate has a sufficient strength and has a small specific heat and an excellent heat insulating property, heat dissipation from the reactor to the outside is further suppressed.
 また、硬質断熱材の内側には、反応材の周囲に沿って位置するように反応媒体を流通させる溝状の流路が形成されている。この場合には、当該流路を通じて反応媒体が反応材全体に行き渡りやすくなるので、反応器で発生した熱により加熱対象物が効果的に加熱される。 In addition, a groove-like flow path for circulating the reaction medium is formed inside the hard heat insulating material so as to be positioned along the periphery of the reaction material. In this case, since the reaction medium easily reaches the entire reaction material through the flow path, the object to be heated is effectively heated by the heat generated in the reactor.
 本発明によれば、反応器から外部への熱の発散を抑制し得る。 According to the present invention, heat dissipation from the reactor to the outside can be suppressed.
図1は、本発明に係る化学蓄熱装置の一実施形態を備えた排気浄化システムを示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an exhaust purification system including an embodiment of a chemical heat storage device according to the present invention. 図2は、図1に示した化学蓄熱装置の要部を示す断面図である。FIG. 2 is a cross-sectional view showing a main part of the chemical heat storage device shown in FIG. 図3は、図2におけるIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、硬質断熱材における圧縮応力と圧縮歪との関係を示すグラフである。FIG. 4 is a graph showing the relationship between compressive stress and compressive strain in a hard heat insulating material. 図5は、比較例として、化学蓄熱装置の一例の要部を示す断面図である。FIG. 5 is a cross-sectional view showing a main part of an example of a chemical heat storage device as a comparative example. 図6は、図5におけるVI-VI線断面図である。6 is a cross-sectional view taken along line VI-VI in FIG. 図7は、図2に示した化学蓄熱装置の変形例における要部を示す断面図である。FIG. 7 is a cross-sectional view showing the main parts in a modification of the chemical heat storage device shown in FIG. 図8は、図7におけるVIII-VIII線断面図である。8 is a cross-sectional view taken along line VIII-VIII in FIG.
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
 図1は、本発明に係る化学蓄熱装置の一実施形態を備えた排気浄化システムを示す概略構成図である。同図において、排気浄化システム1は、車両のディーゼルエンジン2(以下、単にエンジン2という)の排気系に設けられ、エンジン2から排出される排気ガス中に含まれる有害物質(環境汚染物質)を浄化するシステムである。 FIG. 1 is a schematic configuration diagram showing an exhaust purification system provided with an embodiment of a chemical heat storage device according to the present invention. In the figure, an exhaust purification system 1 is provided in an exhaust system of a diesel engine 2 (hereinafter simply referred to as an engine 2) of a vehicle, and removes harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2. It is a purification system.
 排気浄化システム1は、エンジン2と接続された排気管3と、排気管3の途中に配設された熱交換器4、ディーゼル酸化触媒(DOC:Diesel Oxidation Catalyst)5、ディーゼル排気微粒子除去フィルタ(DPF:Diesel Particulate Filter)6、選択還元触媒(SCR:Selective Catalytic Reduction)7、及びアンモニアスリップ触媒(ASC:Ammonia Slip Catalyst)8とを備えている。これらの熱交換器4、DOC5、DPF6、SCR7、及びASC8は、排気上流側から排気下流側に向けて順に配置されている。 The exhaust purification system 1 includes an exhaust pipe 3 connected to an engine 2, a heat exchanger 4 disposed in the middle of the exhaust pipe 3, a diesel oxidation catalyst (DOC) 5, a diesel exhaust particulate removal filter ( DPF: Diesel Particulate Filter 6, selective reduction catalyst (SCR: Selective Catalytic Reduction) 7, and ammonia slip catalyst (ASC: Ammonia Slip Catalyst) 8. These heat exchangers 4, DOC5, DPF6, SCR7, and ASC8 are arranged in order from the exhaust upstream side to the exhaust downstream side.
 熱交換器4は、排気管3内を流れる排気ガスと後述する反応器11との間で熱交換を行う。熱交換器4は、図2及び図3に示すように、円筒状の筒部材4aと、この筒部材4aの内部に配置された熱交換部材4bとを有している。筒部材4aは、例えばステンレス鋼で形成されている。熱交換部材4bは、例えばSiSiC等のセラミックで形成され、複数の貫通孔(セル)を有するハニカム構造となっている。熱交換部材4bは、各貫通孔の貫通方向が筒部材4aの軸方向と平行な向きで、筒部材4aの内部に配置されている。筒部材4aの軸方向での両端部は、熱交換部材4bよりも突出している。この熱交換器4は、筒部材4aの軸方向が排気管3の軸方向と平行な向きで配置されている。また、熱交換器4は、排気上流側及び排気下流側にそれぞれ位置する各排気管3の端部に筒部材4aの各端部が重なるように配置されている。熱交換器4は、筒部材4aの各端部が各排気管3の端部に例えば溶接されることで固定されている。なお、熱交換器4としては、特にハニカム構造には限られず、周知の熱交換構造が利用可能である。 The heat exchanger 4 exchanges heat between the exhaust gas flowing in the exhaust pipe 3 and a reactor 11 described later. As shown in FIGS. 2 and 3, the heat exchanger 4 has a cylindrical tube member 4a and a heat exchange member 4b disposed inside the tube member 4a. The cylindrical member 4a is made of stainless steel, for example. The heat exchange member 4b is formed of a ceramic such as SiSiC, for example, and has a honeycomb structure having a plurality of through holes (cells). The heat exchange member 4b is disposed inside the tubular member 4a such that the through direction of each through hole is parallel to the axial direction of the tubular member 4a. Both ends of the cylindrical member 4a in the axial direction protrude from the heat exchange member 4b. In the heat exchanger 4, the axial direction of the tubular member 4 a is arranged in a direction parallel to the axial direction of the exhaust pipe 3. Moreover, the heat exchanger 4 is arrange | positioned so that each edge part of the cylinder member 4a may overlap with the edge part of each exhaust pipe 3 located in an exhaust upstream side and an exhaust downstream side, respectively. The heat exchanger 4 is fixed by, for example, welding each end of the cylindrical member 4 a to the end of each exhaust pipe 3. The heat exchanger 4 is not particularly limited to a honeycomb structure, and a well-known heat exchange structure can be used.
 再び図1を参照し、DOC5は、排気ガス中に含まれるHC及びCO等を酸化して浄化する触媒である。DPF6は、排気ガス中に含まれる粒子状物質(PM:Particulate Matter)を捕集して取り除くフィルタである。SCR7は、尿素またはアンモニア(NH)によって、排気ガス中に含まれるNOxを還元して浄化する触媒である。ASC8は、SCR7をすり抜けてSCR7の下流側に流れたNHを酸化する触媒である。 Referring again to FIG. 1, the DOC 5 is a catalyst that oxidizes and purifies HC, CO, and the like contained in the exhaust gas. The DPF 6 is a filter that collects and removes particulate matter (PM) contained in the exhaust gas. The SCR 7 is a catalyst that reduces and purifies NOx contained in the exhaust gas with urea or ammonia (NH 3 ). The ASC 8 is a catalyst that oxidizes NH 3 that has passed through the SCR 7 and has flowed downstream of the SCR 7.
 また、排気浄化システム1は、可逆的な化学反応を利用して、外部エネルギレスで排気ガスなどの加熱対象物を加熱(暖機)する化学蓄熱装置10を備えている。具体的には、化学蓄熱装置10は、後述する反応材14と反応媒体とを分離した状態にすることにより、排気ガスの熱(排熱)を化学蓄熱装置10の内部に蓄えておく。そして、化学蓄熱装置10は、反応媒体を必要なときに反応材14に供給して、反応材14と反応媒体とを化学反応(化学吸着)させ、化学反応時の反応熱を利用して熱交換器4を介して排気ガスを加熱する。この実施形態では、反応媒体としてNH(アンモニア)を用いている。化学蓄熱装置10は、熱交換器4の周囲に配置された反応器11と、この反応器11に接続された吸着器(貯蔵器)12とを備えている。 Further, the exhaust purification system 1 includes a chemical heat storage device 10 that uses a reversible chemical reaction to heat (warm up) a heating object such as exhaust gas without external energy. Specifically, the chemical heat storage device 10 stores the heat (exhaust heat) of the exhaust gas in the chemical heat storage device 10 by separating a reaction material 14 and a reaction medium described later from each other. The chemical heat storage device 10 supplies the reaction medium to the reaction material 14 when necessary, causes the reaction material 14 and the reaction medium to chemically react (chemical adsorption), and uses the reaction heat at the time of the chemical reaction to generate heat. The exhaust gas is heated via the exchanger 4. In this embodiment, NH 3 (ammonia) is used as the reaction medium. The chemical heat storage device 10 includes a reactor 11 disposed around the heat exchanger 4 and an adsorber (reservoir) 12 connected to the reactor 11.
 反応器11は、図2及び図3に示すように、容器13と、反応材14と、硬質断熱材15とを有している。容器13は、外筒13aと、一対の蓋部材13bとを有している。外筒13aは、例えばステンレス鋼で形成され、円筒状をなしている。外筒13aは、熱交換器4の筒部材4aの外径よりも内径が大きくなるように形成されている。外筒13aの軸方向における中央には、外周面と内周面とを貫通する貫通孔13cが形成されている。各蓋部材13bは、外筒13aと同一の材料で形成された円環状の板部材である。各蓋部材13bは、互いに対向するように外筒13aの軸方向での両端部にそれぞれ配置されている。各蓋部材13bは、外筒13aの各端部に例えば溶接によってそれぞれ固定されている。 The reactor 11 has the container 13, the reaction material 14, and the hard heat insulating material 15, as shown in FIG.2 and FIG.3. The container 13 has an outer cylinder 13a and a pair of lid members 13b. The outer cylinder 13a is formed of stainless steel, for example, and has a cylindrical shape. The outer cylinder 13 a is formed so that the inner diameter is larger than the outer diameter of the cylinder member 4 a of the heat exchanger 4. A through hole 13c penetrating the outer peripheral surface and the inner peripheral surface is formed at the center in the axial direction of the outer cylinder 13a. Each lid member 13b is an annular plate member formed of the same material as that of the outer cylinder 13a. Each lid member 13b is arranged at both ends in the axial direction of the outer cylinder 13a so as to face each other. Each lid member 13b is fixed to each end of the outer cylinder 13a, for example, by welding.
 このような容器13は、熱交換器4の周囲に配置されている。より詳細には、容器13は、外筒13aの軸方向が筒部材4aの軸方向と平行な向きで、外筒13aの内周面が筒部材4aの外周面と対向し且つ離間するように配置されている。容器13は、各蓋部材13bの内側の縁部によって、筒部材4aの各端部及び排気管3の外周面に例えば溶接で固定されている。なお、外筒13aの内周面、各蓋部材13b、及び筒部材4aの外周面とで囲まれた領域は、外部から隔離された閉空間となっている。 Such a container 13 is arranged around the heat exchanger 4. More specifically, the container 13 is arranged so that the axial direction of the outer cylinder 13a is parallel to the axial direction of the cylindrical member 4a, and the inner peripheral surface of the outer cylinder 13a is opposed to and spaced apart from the outer peripheral surface of the cylindrical member 4a. Has been placed. The container 13 is fixed to each end portion of the tubular member 4a and the outer peripheral surface of the exhaust pipe 3 by welding, for example, by an inner edge portion of each lid member 13b. In addition, the area | region enclosed by the inner peripheral surface of the outer cylinder 13a, each cover member 13b, and the outer peripheral surface of the cylinder member 4a becomes the closed space isolated from the exterior.
 反応材14は、複数(本実施形態では3つ)の丸瓦型の成形ペレットを有し、各成形ペレットを繋ぎ合わせることで円筒状に形成されている。反応材14としては、組成式MXaで表されるハロゲン化物が用いられる。ここで、Mは、Mg、Ca、Sr等のアルカリ土類金属、Cr、Mn、Fe、Co、Ni、Cu、Zn等の遷移金属である。Xは、Cl、Br、I等である。aは、Mの価数により特定される数であり、2~3である。なお、反応材14は、ステンレス鋼、金属ビーズ、SiCビーズ、Siビーズ、カーボンビーズ、アルミナビーズ等の高熱伝導体を含んでいてもよい。反応材14は、気体の反応媒体であるNHと化学反応して発熱すると共に、排気ガスの熱を蓄熱することによりNHを脱離させる。 The reaction material 14 has a plurality (three in the present embodiment) of round pellet shaped pellets, and is formed in a cylindrical shape by joining the molded pellets together. As the reaction material 14, a halide represented by the composition formula MXa is used. Here, M is an alkaline earth metal such as Mg, Ca, or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu, or Zn. X is Cl, Br, I or the like. a is a number specified by the valence of M, and is 2 to 3. The reaction material 14 may include a high thermal conductor such as stainless steel, metal beads, SiC beads, Si beads, carbon beads, and alumina beads. The reaction material 14 generates heat by chemically reacting with NH 3 which is a gaseous reaction medium, and desorbs NH 3 by storing the heat of the exhaust gas.
 このような反応材14は、容器13内に収容されている。より詳細には、反応材14は、上記の閉空間内に収容され、筒部材4aの外周面に沿って当該外周面と接触するように位置している。なお、反応材14の周囲には、反応材14の全周に渡ってNHを導くための多孔体シート(不図示)が配置されている。 Such a reaction material 14 is accommodated in the container 13. In more detail, the reaction material 14 is accommodated in said closed space, and is located so that the said outer peripheral surface may be contacted along the outer peripheral surface of the cylinder member 4a. A porous sheet (not shown) for guiding NH 3 is arranged around the entire circumference of the reaction material 14 around the reaction material 14.
 硬質断熱材15は、ゾノライト系ケイ酸カルシウムを主原料として形成された一対の半円筒状の部材から構成されている。硬質断熱材15は、当該一対の部材を繋ぎ合わせることで円筒状をなしている。硬質断熱材15の軸方向における中央には、外周面と内周面とを貫通する貫通孔15aが形成されている。硬質断熱材15の熱伝導率は、1W/m/K以下である。また、硬質断熱材15の比熱は、例えば、200℃において800J/Kg/K、300℃において886J/Kg/K、500℃において880J/Kg/K、及び700℃において920J/Kg/Kである。このように、硬質断熱材15の比熱は比較的小さいため、硬質断熱材15の熱容量は小さい。 The hard heat insulating material 15 is composed of a pair of semi-cylindrical members formed using zonolite-based calcium silicate as a main raw material. The hard heat insulating material 15 has a cylindrical shape by connecting the pair of members. A through hole 15 a that penetrates the outer peripheral surface and the inner peripheral surface is formed at the center in the axial direction of the hard heat insulating material 15. The thermal conductivity of the hard heat insulating material 15 is 1 W / m / K or less. The specific heat of the hard heat insulating material 15 is, for example, 800 J / Kg / K at 200 ° C., 886 J / Kg / K at 300 ° C., 880 J / Kg / K at 500 ° C., and 920 J / Kg / K at 700 ° C. . Thus, since the specific heat of the hard heat insulating material 15 is relatively small, the heat capacity of the hard heat insulating material 15 is small.
 ここで、図4を参照して、硬質断熱材15についてより詳細に説明する。図4は、硬質断熱材15における圧縮応力及び圧縮歪の関係を示すグラフである。図4では、縦軸は圧縮応力を示し、横軸は圧縮歪を示している。なお、図4は、直方体状の硬質断熱材(試験片)を用いた場合の結果を示している。圧縮応力は、試験片の両端面に圧縮力が付与されたときの当該試験片の内部に生じる力を示している。圧縮歪は、当該圧縮力が付与された場合において、試験片の圧縮方向での相対変化を示している。 Here, the hard heat insulating material 15 will be described in more detail with reference to FIG. FIG. 4 is a graph showing the relationship between compressive stress and compressive strain in the hard heat insulating material 15. In FIG. 4, the vertical axis indicates compressive stress, and the horizontal axis indicates compressive strain. In addition, FIG. 4 has shown the result at the time of using a rectangular parallelepiped hard heat insulating material (test piece). The compressive stress indicates a force generated inside the test piece when a compressive force is applied to both end faces of the test piece. The compression strain indicates a relative change in the compression direction of the test piece when the compression force is applied.
 硬質断熱材15は、圧縮歪を0.5%とする場合に必要な圧縮応力が0.5MPa以上で、且つ圧縮歪を1%とする場合に必要な圧縮応力が2MPa以上となるように形成されている。すなわち、図4に示すように、硬質断熱材15は、近似直線Lを基準として、縦軸側(圧縮応力が大きくなる側)に位置する硬質領域P(近似直線Lも含む)に該当するように形成されている。近似直線Lは、データA及びデータBから導かれる。データAは、圧縮歪を0.5%とする場合に必要な圧縮応力が0.5MPaとなるデータである。データBは、圧縮歪を1%とする場合に必要な圧縮応力が2MPaとなるデータである。 The hard heat insulating material 15 is formed so that the compressive stress required when the compressive strain is 0.5% is 0.5 MPa or more, and the compressive stress required when the compressive strain is 1% is 2 MPa or more. Has been. That is, as shown in FIG. 4, the hard heat insulating material 15 corresponds to the hard region P (including the approximate straight line L) located on the vertical axis side (the side where the compressive stress increases) with the approximate straight line L as a reference. Is formed. The approximate line L is derived from data A and data B. Data A is data in which the compressive stress required when the compressive strain is 0.5% is 0.5 MPa. Data B is data in which the compressive stress required when the compressive strain is 1% is 2 MPa.
 このような硬質断熱材15は、容器13と反応材14との間に配置されている。より詳細には、硬質断熱材15は、上述した閉空間内に収容され、且つ多孔体シートの周囲に沿って多孔体シートと容器13の内周面とに接触するように位置している。硬質断熱材15は、外筒13aに形成された貫通孔13cに対して貫通孔15aが重なるように位置している。 Such a hard heat insulating material 15 is disposed between the container 13 and the reaction material 14. More specifically, the hard heat insulating material 15 is accommodated in the above-described closed space, and is positioned so as to contact the porous sheet and the inner peripheral surface of the container 13 along the periphery of the porous sheet. The hard heat insulating material 15 is positioned so that the through hole 15a overlaps the through hole 13c formed in the outer cylinder 13a.
 再び図1を参照し、吸着器12は、NHの物理吸着による保持及び脱離が可能な吸着材12aを内蔵している。吸着材12aとしては、活性炭、カーボンブラック、メソポーラスカーボン、ナノカーボン及びゼオライト等が用いられる。吸着器12は、NHを吸着材12aに物理吸着させることで、NHを貯蔵する。なお、吸着材12aは、粉末状でも成形体でもよい。 Referring again to FIG. 1, the adsorber 12 includes an adsorbent 12 a that can be held and desorbed by physical adsorption of NH 3 . As the adsorbent 12a, activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used. Adsorber 12, by physically adsorbed NH 3 to the adsorbent 12a, storing NH 3. The adsorbent 12a may be a powder or a molded body.
 反応器11及び吸着器12は、導入管16を介してNHを流通可能に接続されている。導入管16の一端部は、容器13の外筒13aに形成された貫通孔13c、及び硬質断熱材15に形成された貫通孔15aに挿入されている。導入管16の一端部は、例えば溶接により貫通孔13cの縁に固定されている。導入管16には、反応器11と吸着器12との間の流路を開閉させる開閉弁である電磁弁17が設けられている。電磁弁17は、コントローラ(不図示)により制御される。 The reactor 11 and the adsorber 12 are connected through an introduction pipe 16 so that NH 3 can flow. One end of the introduction pipe 16 is inserted into a through hole 13 c formed in the outer cylinder 13 a of the container 13 and a through hole 15 a formed in the hard heat insulating material 15. One end of the introduction pipe 16 is fixed to the edge of the through hole 13c by welding, for example. The introduction pipe 16 is provided with an electromagnetic valve 17 that is an on-off valve that opens and closes a flow path between the reactor 11 and the adsorber 12. The electromagnetic valve 17 is controlled by a controller (not shown).
 このような化学蓄熱装置10において、エンジン2から排出される排気ガスの温度が低いときは、電磁弁17が開くことで、吸着器12から反応器11にNHが導入管16を通じて供給される。反応器11の反応材14(例えばMgCl)とNHとが化学反応(化学吸着)し、反応器11内で熱が発生する。つまり、下記の反応式(A)における左辺から右辺への反応(発熱反応)が起こる。そして、反応器11で発生した熱によって熱交換器4が加熱されると共に、熱交換器4を介して排気ガスが加熱される。
   MgCl+xNH ⇔ Mg(NH)xCl+熱   …(A)
In such a chemical heat storage device 10, when the temperature of the exhaust gas discharged from the engine 2 is low, NH 3 is supplied from the adsorber 12 to the reactor 11 through the introduction pipe 16 by opening the electromagnetic valve 17. . The reaction material 14 (for example, MgCl 2 ) in the reactor 11 and NH 3 chemically react (chemical adsorption), and heat is generated in the reactor 11. That is, a reaction from the left side to the right side (exothermic reaction) in the following reaction formula (A) occurs. The heat exchanger 4 is heated by the heat generated in the reactor 11 and the exhaust gas is heated via the heat exchanger 4.
MgCl 2 + xNH 3 MgMg (NH 3 ) xCl 2 + heat (A)
 一方、エンジン2から排出される排気ガスの温度が高くなると、排熱が反応器11の反応材14に与えられることで、反応材14とNHとが分離する。つまり、上記の反応式(A)における右辺から左辺への反応(再生反応)が起こる。そして、反応材14から脱離したNHは、導入管16を通じて吸着器12に戻り、吸着器12の吸着材12aに物理吸着(回収)される。 On the other hand, when the temperature of the exhaust gas discharged from the engine 2 increases, exhaust heat is applied to the reaction material 14 of the reactor 11, whereby the reaction material 14 and NH 3 are separated. That is, a reaction (regeneration reaction) from the right side to the left side in the above reaction formula (A) occurs. Then, NH 3 desorbed from the reaction material 14 returns to the adsorber 12 through the introduction pipe 16 and is physically adsorbed (recovered) by the adsorbent 12 a of the adsorber 12.
 図5及び図6を参照して、比較例における化学蓄熱装置を示す。図5は、比較例として、化学蓄熱装置の一例の要部を示す断面図である。図6は、図5におけるVI-VI線断面図である。図5及び図6に示す化学蓄熱装置では、硬質断熱材15の代わりに、硬質断熱材15と同一形状及び同一サイズの断熱材115が用いられている。断熱材115は、圧縮歪を0.5%とする場合に必要な圧縮応力が0.5MPaより小さく、且つ圧縮歪を1%とする場合に必要な圧縮応力が2MPaより小さくなるように形成されている。この場合、本実施形態で用いた硬質断熱材15よりも断熱材115が柔らかいため、NHとの化学反応で膨張した反応材14によって断熱材115が押し潰されてしまう。すなわち、反応材14の膨張によって、反応材14と断熱材115との境界面が、図5及び図6の二点鎖線で示される第1の位置から当該第1の位置よりも外側の第2の位置に移動する。このように断熱材115が押し潰されることによって反応材14は容器13に接近するため、反応器11内の熱が容器13を介して外部へ発散されやすくなる。また、反応材14は、膨張した際に割れるおそれがある。反応材14の割れた箇所は熱の伝達を妨げるため、反応器11内における伝熱性が低下する。これにより、熱交換器4が十分に加熱されないおそれがある。 With reference to FIG.5 and FIG.6, the chemical thermal storage apparatus in a comparative example is shown. FIG. 5 is a cross-sectional view showing a main part of an example of a chemical heat storage device as a comparative example. 6 is a cross-sectional view taken along line VI-VI in FIG. In the chemical heat storage device shown in FIGS. 5 and 6, a heat insulating material 115 having the same shape and the same size as the hard heat insulating material 15 is used instead of the hard heat insulating material 15. The heat insulating material 115 is formed so that the compressive stress required when the compressive strain is 0.5% is smaller than 0.5 MPa, and the compressive stress required when the compressive strain is 1% is smaller than 2 MPa. ing. In this case, since the heat insulating material 115 is softer than the hard heat insulating material 15 used in the present embodiment, the heat insulating material 115 is crushed by the reaction material 14 expanded by a chemical reaction with NH 3 . That is, due to the expansion of the reaction material 14, the boundary surface between the reaction material 14 and the heat insulating material 115 changes from the first position indicated by the two-dot chain line in FIGS. 5 and 6 to the second position outside the first position. Move to the position. Since the reaction material 14 approaches the container 13 when the heat insulating material 115 is crushed in this way, the heat in the reactor 11 is easily dissipated to the outside through the container 13. Further, the reaction material 14 may crack when expanded. Since the cracked portion of the reaction material 14 prevents heat transfer, the heat transfer in the reactor 11 is reduced. Thereby, there exists a possibility that the heat exchanger 4 may not fully be heated.
 以上、本実施形態に係る化学蓄熱装置10では、硬質断熱材15は、圧縮歪を0.5%とする場合に必要な圧縮応力が0.5MPa以上で、且つ圧縮歪を1%とする場合に必要な圧縮応力が2MPa以上となるように形成されている。これにより、反応材14とNHとが化学反応した際の反応材14の体積膨張によって容器13内で硬質断熱材15が押し潰されることがなくなるので、反応器11における所望の断熱性能を維持することができる。従って、反応器11から外部への熱の発散が抑制される。また、硬質断熱材15が反応材14によって押し潰され難いので、反応材14の膨張による反応材14の割れが抑制される。従って、反応器11内における伝熱性の低下が抑制される。 As described above, in the chemical heat storage device 10 according to the present embodiment, the hard heat insulating material 15 has a compressive stress of 0.5 MPa or more and a compressive strain of 1% when the compressive strain is 0.5%. It is formed so that the compressive stress required for the above becomes 2 MPa or more. Thereby, since the hard heat insulating material 15 is not crushed in the container 13 by the volume expansion of the reaction material 14 when the reaction material 14 and NH 3 chemically react, the desired heat insulating performance in the reactor 11 is maintained. can do. Therefore, heat dissipation from the reactor 11 to the outside is suppressed. Moreover, since the hard heat insulating material 15 is hard to be crushed by the reaction material 14, cracking of the reaction material 14 due to the expansion of the reaction material 14 is suppressed. Accordingly, a decrease in heat transfer in the reactor 11 is suppressed.
 また、硬質断熱材15は、熱伝導率が1W/m/K以下となるように形成されている。このため、反応材14から発生した熱が硬質断熱材15内を伝達し難くなるので、反応器11から外部への熱の発散が効果的に抑制される。 Further, the hard heat insulating material 15 is formed so that the thermal conductivity is 1 W / m / K or less. For this reason, since the heat generated from the reaction material 14 becomes difficult to be transmitted through the hard heat insulating material 15, the diffusion of heat from the reactor 11 to the outside is effectively suppressed.
 また、硬質断熱材15は、ゾノトライト系ケイ酸カルシウムを含んで形成されている。ゾノライト系ケイ酸カルシウムを含む硬質断熱材15は十分な強度を有すると共に比熱が小さく断熱性に優れている。従って、反応器11から外部への熱の発散及び反応器11内における伝熱性の低下が効果的に抑制される。 Further, the hard heat insulating material 15 is formed to contain zonotlite-based calcium silicate. The hard heat insulating material 15 containing zonolite-based calcium silicate has a sufficient strength, a small specific heat, and an excellent heat insulating property. Therefore, heat dissipation from the reactor 11 to the outside and a decrease in heat transfer in the reactor 11 are effectively suppressed.
 なお、本発明は、上記実施形態に限定されるものではない。例えば、図7及び図8に示すように、硬質断熱材15の内側には、NHを流通させる溝状の流路15bが形成されてもよい。流路15bは、硬質断熱材15の貫通孔15aと連通されていると共に、反応材14の周囲に沿って円環状に形成されている。これにより、流路15bを通じてNHが反応材14全体に行き渡りやすくなるので、反応器11で発生した熱により熱交換器4が効果的に加熱される。なお、硬質断熱材15が所定以上の硬さを有していることにより、このような流路15bの加工が容易となっている。 The present invention is not limited to the above embodiment. For example, as shown in FIG. 7 and FIG. 8, a groove-like flow path 15 b for circulating NH 3 may be formed inside the hard heat insulating material 15. The flow path 15 b communicates with the through hole 15 a of the hard heat insulating material 15 and is formed in an annular shape along the periphery of the reaction material 14. As a result, NH 3 easily reaches the entire reaction material 14 through the flow path 15 b, so that the heat exchanger 4 is effectively heated by the heat generated in the reactor 11. In addition, since the hard heat insulating material 15 has the hardness more than predetermined, the process of such a flow path 15b becomes easy.
 また、上記実施形態では、ゾノライト系ケイ酸カルシウムを含む硬質断熱材15が適用されているが、硬質断熱材15の代わりに、トバモライト系ケイ酸カルシウムを主原料とした断熱材が適用されてもよい。また、セメントを主原料とした断熱材が適用されてもよい。また、微小マイカ片を集積し、シリコーン樹脂で結合した断熱材が適用されてもよい。 Moreover, in the said embodiment, although the hard heat insulating material 15 containing a zonolite-type calcium silicate is applied, instead of the hard heat insulating material 15, the heat insulating material which uses tobermorite-type calcium silicate as a main raw material is applied. Good. Further, a heat insulating material mainly made of cement may be applied. Further, a heat insulating material in which minute mica pieces are accumulated and bonded with a silicone resin may be applied.
 また、上記実施形態では、硬質断熱材15は一対の半円筒状の部材から構成されているが、硬質断熱材15は、3つ以上の丸瓦型の部材を繋ぎ合わせることで円筒状に構成されてもよい。 Moreover, in the said embodiment, although the hard heat insulating material 15 is comprised from a pair of semi-cylindrical member, the hard heat insulating material 15 is comprised by the cylindrical shape by connecting the 3 or more round roof type | mold members. May be.
 また、上記実施形態では、硬質断熱材15が該当する硬質領域Pは、近似直線Lを基準として規定されていたが、硬質領域Pは、データA,Bを含むデータ群から導かれる近似曲線を基準として規定されてもよい。 Moreover, in the said embodiment, although the hard area | region P to which the hard heat insulating material 15 corresponds was prescribed | regulated on the basis of the approximate straight line L, the hard area | region P shows the approximated curve derived | led-out from the data group containing data A and B. FIG. It may be defined as a standard.
 また、上記実施形態では、反応媒体であるNHと組成式MXaで表されるハロゲン化物からなる反応材14とを化学反応させて発熱させるようにした。しかし、反応媒体としては、特にNHには限られず、例えばCOまたはHO等を使用してもよい。反応媒体としてCOを使用する場合、COと化学反応する反応材としては、MgO、CaO、BaO、Ca(OH)、Mg(OH)、Fe(OH)、Fe(OH)、FeO、Fe、Fe等を使用することができる。反応媒体としてHOを使用する場合、HOと化学反応する反応材としては、CaO、MnO、CuO、Al等を使用することができる。 Further, in the above embodiment, so as to generate heat and reaction member 14 consisting of a halide represented as NH 3 is a reaction medium a composition formula MXa by chemical reaction. However, the reaction medium is not particularly limited to NH 3 , and for example, CO 2 or H 2 O may be used. When CO 2 is used as the reaction medium, the reaction material that chemically reacts with CO 2 includes MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , and Fe (OH) 3. FeO, Fe 2 O 3 , Fe 3 O 4 and the like can be used. When H 2 O is used as a reaction medium, CaO, MnO, CuO, Al 2 O 3 or the like can be used as a reaction material that chemically reacts with H 2 O.
 また、上記実施形態では、熱交換器4の周囲に反応器11が直接的に配置されているが、排気管3内に熱交換器4が配置されることによって、熱交換器4の周囲に排気管3を挟んで反応器11が間接的に配置されてもよい。さらに、反応器11は、熱交換器4を介して排気ガスを加熱する装置であるが、例えばDOC5等、ディーゼルエンジン2の排気系に設けられた他の部分を加熱する構成要素、ガソリンエンジンの排気系に設けられた加熱対象物を加熱する構成要素、或いはエンジンの排気系以外の加熱対象物を加熱する構成要素にも適用可能である。さらに、本発明は、エンジンの排気系以外、例えばオイルの流通系に設けられた配管等を加熱するものにも適用可能である。更に、本発明は、エンジンの排気系以外、例えばエンジンオイル、変速機オイル、冷却水、又は空気等の車両における種々の熱媒体を加熱するものであってもよい。このとき、化学蓄熱装置の反応器を熱媒体が流れる熱媒体流路の外周部(外周部の一部又は外周部の全周)に配置して、熱媒体流路そのものを加熱してもよい。また、熱媒体が流れる熱媒体流路内に熱交換器を配置して、その熱交換器を加熱してもよい。また、蓄熱材を備えるヒータと熱交換フィンなどの熱交換部とを交互に複数個配置した熱交換部一体型の反応器を構成し、その熱交換部一体型の反応器を熱媒体が貯蔵されている熱媒体貯蔵部内や熱媒体が流れる熱媒体流路上に配置してもよい。 Moreover, in the said embodiment, although the reactor 11 is arrange | positioned directly around the heat exchanger 4, when the heat exchanger 4 is arrange | positioned in the exhaust pipe 3, it surrounds the heat exchanger 4 around. The reactor 11 may be indirectly arranged with the exhaust pipe 3 interposed therebetween. Further, the reactor 11 is a device that heats the exhaust gas via the heat exchanger 4. For example, a component that heats other parts provided in the exhaust system of the diesel engine 2, such as the DOC 5, a gasoline engine The present invention can also be applied to a component that heats a heating object provided in the exhaust system or a component that heats a heating object other than the exhaust system of the engine. Furthermore, the present invention can be applied to other than an engine exhaust system, for example, one that heats piping or the like provided in an oil circulation system. In addition to the engine exhaust system, the present invention may heat various heat media in vehicles such as engine oil, transmission oil, cooling water, or air. At this time, the reactor of the chemical heat storage device may be disposed on the outer periphery (a part of the outer periphery or the entire periphery of the outer periphery) of the heat medium channel through which the heat medium flows to heat the heat medium channel itself. . Further, a heat exchanger may be disposed in the heat medium flow path through which the heat medium flows, and the heat exchanger may be heated. In addition, a heat exchange unit integrated reactor in which a plurality of heaters having heat storage materials and heat exchange units such as heat exchange fins are alternately arranged is configured, and the heat medium stores the heat exchange unit integrated reactor. You may arrange | position in the heat-medium flow path through which the heat-medium storage part currently performed or the heat-medium flows.
 4…熱交換器、10…化学蓄熱装置、11…反応器、12…吸着器(貯蔵器)、13…容器、14…反応材、15…硬質断熱材、15b…流路。 4 ... Heat exchanger, 10 ... Chemical heat storage device, 11 ... Reactor, 12 ... Adsorber (storage), 13 ... Container, 14 ... Reactant, 15 ... Hard heat insulating material, 15b ... Flow path.

Claims (4)

  1.  反応器と、
     前記反応器との間で反応媒体を流通可能に前記反応器に接続され、前記反応媒体を貯蔵する貯蔵器と、を備え、
     前記反応器は、容器と、前記容器内に収容され、前記反応媒体との化学反応により発熱すると共に蓄熱により前記反応媒体を脱離させる反応材と、前記容器と前記反応材との間に配置された硬質断熱材と、を有し、
     前記硬質断熱材は、圧縮歪を0.5%とする場合に必要な圧縮応力が0.5MPa以上で、且つ圧縮歪を1%とする場合に必要な圧縮応力が2MPa以上となるように形成されている、化学蓄熱装置。
    A reactor,
    A reservoir that is connected to the reactor so that the reaction medium can flow between the reactor and stores the reaction medium;
    The reactor is disposed between a container, a reaction material that is contained in the container, generates heat by a chemical reaction with the reaction medium, and desorbs the reaction medium by storing heat, and the container and the reaction material. A hard heat insulating material,
    The hard heat insulating material is formed so that the compressive stress required when the compressive strain is 0.5% is 0.5 MPa or more, and the compressive stress required when the compressive strain is 1% is 2 MPa or more. A chemical heat storage device.
  2.  前記硬質断熱材は、熱伝導率が1W/m/K以下となるように形成されている、請求項1記載の化学蓄熱装置。 The chemical heat storage device according to claim 1, wherein the hard heat insulating material is formed to have a thermal conductivity of 1 W / m / K or less.
  3.  前記硬質断熱材は、ケイ酸カルシウムを含んで形成されている、請求項1又は2記載の化学蓄熱装置。 The chemical heat storage device according to claim 1 or 2, wherein the hard heat insulating material includes calcium silicate.
  4.  前記硬質断熱材の内側には、前記反応材の周囲に沿って位置するように前記反応媒体を流通させる溝状の流路が形成されている、請求項1~3のいずれか一項記載の化学蓄熱装置。 The groove-like flow path through which the reaction medium flows so as to be positioned along the periphery of the reaction material is formed inside the hard heat insulating material. Chemical heat storage device.
PCT/JP2015/073377 2014-08-26 2015-08-20 Chemical heat storage device WO2016031669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-171709 2014-08-26
JP2014171709A JP2016044940A (en) 2014-08-26 2014-08-26 Chemical heat storage device

Publications (1)

Publication Number Publication Date
WO2016031669A1 true WO2016031669A1 (en) 2016-03-03

Family

ID=55399563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073377 WO2016031669A1 (en) 2014-08-26 2015-08-20 Chemical heat storage device

Country Status (2)

Country Link
JP (1) JP2016044940A (en)
WO (1) WO2016031669A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795847A (en) * 1980-12-03 1982-06-14 Asahi Chem Ind Co Ltd Novel glass composition for melt expansion molding
JPH06159953A (en) * 1992-11-20 1994-06-07 Takata Kk Latent-heat storage device
JPH1192208A (en) * 1997-09-11 1999-04-06 Chubu Electric Power Co Inc Production of thermal insulation material
JP2005069549A (en) * 2003-08-22 2005-03-17 Kooki Kk Exhaust stack
WO2011010577A1 (en) * 2009-07-24 2011-01-27 ニチアス株式会社 Mending method for heat insulation structure and heat insulation structure
WO2013137024A1 (en) * 2012-03-12 2013-09-19 株式会社豊田自動織機 Heat storage device
WO2014025024A1 (en) * 2012-08-09 2014-02-13 株式会社豊田自動織機 Catalytic reactor and vehicle equipped with said catalytic reactor
JP2014037791A (en) * 2012-08-13 2014-02-27 Toyota Central R&D Labs Inc Catalytic reaction device and vehicle
JP2014085093A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Heat storage device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795847A (en) * 1980-12-03 1982-06-14 Asahi Chem Ind Co Ltd Novel glass composition for melt expansion molding
JPH06159953A (en) * 1992-11-20 1994-06-07 Takata Kk Latent-heat storage device
JPH1192208A (en) * 1997-09-11 1999-04-06 Chubu Electric Power Co Inc Production of thermal insulation material
JP2005069549A (en) * 2003-08-22 2005-03-17 Kooki Kk Exhaust stack
WO2011010577A1 (en) * 2009-07-24 2011-01-27 ニチアス株式会社 Mending method for heat insulation structure and heat insulation structure
WO2013137024A1 (en) * 2012-03-12 2013-09-19 株式会社豊田自動織機 Heat storage device
WO2014025024A1 (en) * 2012-08-09 2014-02-13 株式会社豊田自動織機 Catalytic reactor and vehicle equipped with said catalytic reactor
JP2014037791A (en) * 2012-08-13 2014-02-27 Toyota Central R&D Labs Inc Catalytic reaction device and vehicle
JP2014085093A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Heat storage device

Also Published As

Publication number Publication date
JP2016044940A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
WO2015060199A1 (en) Chemical heat storage device
JP2015040646A (en) Chemical heat storage device
WO2016017428A1 (en) Chemical heat storage apparatus
WO2016031669A1 (en) Chemical heat storage device
JP6187418B2 (en) Chemical heat storage device
JP6256224B2 (en) Chemical heat storage device
JP2016053439A (en) Chemical heat storage device
WO2016009916A1 (en) Chemical heat storage apparatus
WO2016194682A1 (en) Chemical heat storage device
WO2016059981A1 (en) Chemical heat storage device
WO2015186604A1 (en) Chemical heat storage apparatus
JP2016223761A (en) Chemical heat storage device
JP6520420B2 (en) Chemical heat storage device
JP6187414B2 (en) Chemical heat storage device
JPWO2016059981A6 (en) Chemical heat storage device
WO2016056488A1 (en) Chemical heat storage apparatus
JP2016044906A (en) Chemical heat storage device
JP6320551B2 (en) Chemical heat storage device
JP2016194399A (en) Chemical heat storage device
JP2015087082A (en) Chemical heat storage device
JP2016044860A (en) Gas occlusion device and chemical heat storage device
JP2015230132A (en) Heat medium circulation device
JP2016148482A (en) Chemical heat storage device
JP2016188719A (en) Chemical heat storage device
JP6079557B2 (en) Chemical heat storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836575

Country of ref document: EP

Kind code of ref document: A1