WO2016056488A1 - Chemical heat storage apparatus - Google Patents

Chemical heat storage apparatus Download PDF

Info

Publication number
WO2016056488A1
WO2016056488A1 PCT/JP2015/078104 JP2015078104W WO2016056488A1 WO 2016056488 A1 WO2016056488 A1 WO 2016056488A1 JP 2015078104 W JP2015078104 W JP 2015078104W WO 2016056488 A1 WO2016056488 A1 WO 2016056488A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
temperature
electric heater
reservoir
reaction medium
Prior art date
Application number
PCT/JP2015/078104
Other languages
French (fr)
Japanese (ja)
Inventor
康 佐竹
野口 幸宏
浩康 河内
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2016553084A priority Critical patent/JPWO2016056488A1/en
Publication of WO2016056488A1 publication Critical patent/WO2016056488A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a chemical heat storage device.
  • a device described in Patent Document 1 As a conventional chemical heat storage device, for example, a device described in Patent Document 1 is known.
  • the chemical heat storage device described in Patent Document 1 is disposed on the entire outer surface of the diesel oxidation catalyst, and includes a reactor having a reaction material that chemically reacts with ammonia (NH 3 ), and an adsorbent that physically adsorbs NH 3.
  • An adsorber and a connection line for moving NH 3 between the reactor and the adsorber are provided.
  • NH 3 When the temperature of the exhaust gas discharged from the engine is lower than a predetermined temperature, NH 3 is moved from the adsorber to the reactor. Thereby, NH 3 and the reaction material chemically react to generate heat, and the heat is transmitted to the diesel oxidation catalyst.
  • the exhaust heat of the exhaust gas is given to the reaction material of the reactor, whereby NH 3 and the reaction material are separated, and the separated NH 3 is separated from the reactor. It is collected in the adsorber.
  • the amount of heat generated from the reaction material in the reactor is determined by the amount of NH 3 stored in the adsorber.
  • the amount of NH 3 stored in the adsorber is determined by the amount of NH 3 stored in the adsorber.
  • the exhaust heat is sufficiently reactive material of the exhaust gases, etc. If it can not be sufficiently recovered NH 3 in adsorber, are limited amount of NH 3 is stored in the adsorber If it is, the desired amount of heat cannot be generated from the reaction material, and as a result, there is a possibility that heating of the heating target becomes insufficient.
  • An object of the present invention is to provide a chemical heat storage device that can prevent insufficient heating of a heating target.
  • a chemical heat storage device includes a storage device that stores a reaction medium, and a reaction material that generates heat by a chemical reaction with the reaction medium and desorbs the reaction medium by heat storage, and cooperates with the storage device.
  • a reactor that heats the object to be heated, a supply pipe that connects the reservoir and the reactor so that the reaction medium can flow between the reservoir and the reactor, and a reactor adjacent to the reactor. And an electric heater for heating an object to be heated.
  • the reaction material when the reaction medium is supplied from the reservoir to the reactor through the supply pipe, the reaction material is caused by a chemical reaction between the reaction material of the reactor and the reaction medium. Generates heat. The heat is transmitted to the heating object, and the heating object is heated. At this time, when the heating target is insufficiently heated, the electric heater arranged adjacent to the reactor heats the heating target. This prevents the heating of the heating target from becoming insufficient.
  • the apparatus further includes a temperature detection unit that detects the temperature of the heating target, and a first heater control unit that controls ON / OFF of the electric heater when the reaction material generates heat.
  • the first heater control unit is controlled by the temperature detection unit. When the detected temperature of the heating target is lower than a predetermined temperature, the electric heater may be controlled to be turned on.
  • the electric heater when the temperature of the heating target is lower than the predetermined temperature, the electric heater is automatically turned on, and the heating target is heated by the electric heater. Thereby, it becomes easy and reliably prevented that the heating target is insufficiently heated.
  • the first heater controller is controlled by the valve controller. After the first predetermined time has elapsed since the control to open the heater, the electric heater may be controlled to be turned on when the temperature of the heating target detected by the temperature detection unit is lower than the predetermined temperature. .
  • the first heater control unit may perform control so that the electric heater is turned off after a second predetermined time longer than the first predetermined time elapses after the valve control unit controls the valve to open.
  • the electric heater is automatically turned off when the second predetermined time has elapsed since the valve was controlled to open. Therefore, the electric heater need not be turned on unnecessarily, and the power consumption can be further reduced.
  • the object to be heated is a fluid
  • the electric heater may be arranged adjacent to the reactor on the upstream side in the direction in which the fluid flows than the reactor.
  • the reaction medium When the heat of the fluid to be heated is applied to the reaction material of the reactor, the reaction medium is detached from the reaction material. The desorbed reaction medium returns to the reservoir through the supply pipe and is collected. At this time, the electric heater is disposed upstream of the reactor in the direction in which the fluid flows. For this reason, when the collection
  • a second heater control further comprising: an estimation unit that estimates an amount of the reaction medium in the reservoir; and a second heater control unit that controls ON / OFF of the electric heater when the reaction medium is detached from the reaction material.
  • the unit controls to turn on the electric heater when the amount of the reaction medium in the reservoir estimated by the estimation unit is smaller than a predetermined amount, and the amount of the reaction medium in the reservoir estimated by the estimation unit When is equal to or greater than a predetermined amount, the electric heater may be controlled to be turned off.
  • the amount of the reaction medium in the reservoir is estimated, and when the amount of the reaction medium in the reservoir is less than a predetermined amount, the electric heater is automatically turned on, and the object to be heated is set by the electric heater. Heated. This easily and reliably prevents the recovery of the reaction medium into the reservoir from becoming insufficient. Further, when the amount of the reaction medium in the reservoir is a predetermined amount or more, the electric heater is automatically turned off. Therefore, the electric heater need not be turned on unnecessarily, and power consumption can be reduced.
  • a chemical heat storage device that can prevent heating of a heating target from becoming insufficient.
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust purification system including an embodiment of a chemical heat storage device.
  • FIG. 2 is a schematic configuration diagram showing a control system of the chemical heat storage device shown in FIG.
  • FIG. 3 is a cross-sectional view of the heat exchanger and reactor shown in FIG.
  • FIG. 4 is a flowchart showing details of a heating assist control processing procedure executed by the controller shown in FIG.
  • FIG. 5 is a flowchart showing details of the forced recovery control processing procedure executed by the controller shown in FIG.
  • FIG. 6 is a graph showing an example of an NH 3 saturated vapor pressure curve and NH 3 adsorption characteristics.
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust purification system including an embodiment of a chemical heat storage device.
  • an exhaust purification system 1 is provided in an exhaust system of a diesel engine 2 (hereinafter simply referred to as “engine 2”) of a vehicle, and purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2. To do.
  • the exhaust purification system 1 includes a heat exchanger 3, a diesel oxidation catalyst (DOC) 4, a diesel exhaust particulate filter (DPF) 5, a selective reduction catalyst (SCR) 6, and ammonia.
  • a slip catalyst (ASC: Ammonia Slip Catalyst) 7 is provided.
  • the heat exchanger 3, DOC 4, DPF 5, SCR 6, and ASC 7 are located downstream of the exhaust gas flowing from the upstream side in the direction in which the exhaust gas flows (hereinafter simply upstream) in the middle of the exhaust passage 8 connected to the engine 2. It arranges in order toward the side (hereinafter, simply downstream).
  • the heat exchanger 3 includes a cylindrical outer tube 9 and a honeycomb-structured heat exchange unit 10 disposed in the outer tube 9.
  • the outer cylinder 9 has a function as an exhaust pipe that forms a part of the exhaust passage 8.
  • the outer cylinder 9 is made of, for example, stainless steel.
  • the heat exchange unit 10 forms an exhaust gas passage 10a through which exhaust gas flows, and performs heat exchange between the exhaust gas and a reaction material 17 (described later).
  • the heat exchanging portion 10 is made of ceramic such as SiSiC (non-oxide ceramic silicon carbide) having high thermal conductivity. Note that the material of the heat exchange unit 10 may be a metal such as stainless steel having high thermal conductivity.
  • the heat exchanger 3 constitutes a flow path forming part through which exhaust gas flows.
  • the DOC 4 oxidizes and purifies HC, CO, and the like contained in the exhaust gas.
  • the DPF 5 collects particulate matter (PM) contained in the exhaust gas and removes PM from the exhaust gas.
  • the SCR 6 reduces and purifies NOx contained in the exhaust gas with urea or ammonia (NH 3 ).
  • ASC7 oxidizes NH 3 passing through the SCR6.
  • the exhaust purification system 1 also includes a chemical heat storage device 11 that uses a reversible chemical reaction to heat (warm up) the exhaust gas to be heated via the heat exchanger 3 without external energy. .
  • the chemical heat storage device 11 stores the heat (exhaust heat) of the exhaust gas inside by separating the reaction material 17 (described later) and the reaction medium.
  • the chemical heat storage device 11 supplies the reaction medium to the reaction material 17 when necessary, and causes the reaction medium and the reaction material 17 to chemically react (chemical adsorption), thereby using the reaction heat during the chemical reaction.
  • ammonia NH 3
  • NH 3 ammonia
  • the chemical heat storage device 11 is configured so that NH 3 can flow between the ring-shaped reactor 12, the adsorber 14, and the reactor 12 and the adsorber 14. And an NH 3 supply pipe 13 for connecting the reactor 12 and the adsorber 14 to each other.
  • the NH 3 supply pipe 13 is provided with a valve 15 that opens and closes a flow path between the reactor 12 and the adsorber 14.
  • the reactor 12 heats the exhaust gas through the heat exchanger 3 in cooperation with the adsorber 14.
  • the reactor 12 is disposed around the outer cylinder 9 of the heat exchanger 3.
  • the reactor 12 includes a container 16 and a reaction material 17 accommodated in the container 16.
  • the reaction material 17 is configured to generate heat by chemical reaction with NH 3, and desorbs NH 3 by storing heat by receiving exhaust heat from the exhaust gas heated to high temperature.
  • the container 16 is made of a metal such as stainless steel.
  • the reaction material 17 is accommodated in the container 16 so as to contact the outer peripheral surface of the outer cylinder 9 of the heat exchanger 3.
  • MXa a halide represented by the composition formula MXa is used.
  • M is an alkaline earth metal such as Mg, Ca or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu or Zn.
  • X is Cl, Br, I or the like.
  • a is a number specified by the valence of M, and is 2 to 3.
  • the reaction material 17 may be in the form of powder or a press-molded body. Further, the reaction material 17 may be mixed with an additive for improving thermal conductivity. As the additive, carbon fiber, carbon bead, SiC bead, metal bead, polymer bead, polymer fiber or the like is used. Examples of the metal material of the metal beads include Cu, Ag, Ni, Ci—Cr, Al, Fe, and stainless steel.
  • a heat insulating material 18 is arranged in a ring shape between the container 16 and the reaction material 17.
  • glass wool or the like is used as the heat insulating material 18.
  • One end of the NH 3 supply pipe 13 is connected to the reaction material 17 through the container 16 and the heat insulating material 18.
  • a porous body (not shown) that forms a NH 3 flow path is interposed between the reaction material 17 and the heat insulating material 18.
  • the adsorber 14 includes an adsorbent 19 capable of leaving the holding and NH 3 by physical adsorption of NH 3.
  • adsorbent 19 capable of leaving the holding and NH 3 by physical adsorption of NH 3.
  • activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used as the adsorbent 19.
  • the adsorber 14 constitutes a reservoir for storing NH 3 by physically adsorbing NH 3 on the adsorbent 19.
  • the adsorbent of the adsorber 14 NH 3 desorbed from 19 is supplied to the reactor 12 through the NH 3 supply pipe 13.
  • the reaction material 17 for example, MgCl 2
  • the reaction material 17 chemically react to generate heat from the reaction material 17. That is, a reaction from the left side to the right side (exothermic reaction) in the following reaction formula (A) occurs.
  • heat generated from the reaction material 17 is transmitted to the heat exchanger 3.
  • the exhaust gas flowing through the heat exchanger 3 is heated as the heat exchanger 3 is heated.
  • the heated exhaust gas raises the DOC 4 to an activation temperature suitable for purification of pollutants.
  • the chemical heat storage device 11 includes an electric heater 20 disposed adjacent to the reactor 12 on the upstream side of the reactor 12.
  • the electric heater 20 is composed of, for example, a heating wire or other heating means.
  • the electric heater 20 is disposed around an exhaust pipe (not shown) that is connected to the outer cylinder 9 of the heat exchanger 3 and forms a part of the exhaust passage 8.
  • the electric heater 20 heats the exhaust gas upstream of the reactor 12.
  • the electric heater 20 is connected to a battery 22 via a heater switch 21.
  • the chemical heat storage device 11 includes temperature sensors 23 to 25, a pressure sensor 26, and a controller 27.
  • the temperature sensor 23 detects the temperature of the exhaust gas flowing through the portion of the exhaust passage 8 upstream of the electric heater 20.
  • the temperature sensor 24 detects the temperature of the exhaust gas flowing through the portion of the exhaust passage 8 downstream of the reactor 12.
  • the temperature sensors 23 and 24 constitute a temperature detection unit that detects the temperature of the heating target.
  • the temperature sensor 25 detects the temperature of the adsorber 14.
  • the pressure sensor 26 detects the pressure in the adsorber 14.
  • the controller 27 is connected to an engine ECU 29 that performs start / stop control of the engine 2, fuel injection control, and the like.
  • the engine ECU 29 is connected to an ignition switch (IG switch) 28 for switching between starting and stopping of the engine 2.
  • An output signal (ignition signal) of the IG switch 28 is sent to the engine ECU 29.
  • the controller 27 inputs detection values of the temperature sensors 23 to 25 and the pressure sensor 26, performs a predetermined process, outputs a command to the engine ECU 29, and controls the valve 15 and the heater switch 21.
  • the controller 27 has a heating assist control function for controlling heating of exhaust gas by chemical heat storage and a forced recovery control function for controlling NH 3 to be forcibly recovered by the adsorber 14. .
  • FIG. 4 is a flowchart showing details of the heating assist control processing procedure executed by the controller 27. At the start of execution of this process, the engine 2 is stopped, the valve 15 is closed, and the electric heater 20 is turned off.
  • the controller 27 first determines whether or not the engine 2 has been started by inputting an ignition ON signal of the IG switch 28 to the engine ECU 29 (step S101).
  • the controller 27 determines whether or not the exhaust gas temperature T1 detected by the temperature sensor 23 is equal to or higher than the warm-up start temperature (step S102).
  • the warm-up start temperature is a temperature at which the exhaust gas purification rate can be increased to a predetermined value (for example, 50%) or more by heating the exhaust gas by the chemical heat storage device 11, and is 150 ° C., for example.
  • the controller 27 controls the valve 15 to open (step S103).
  • the controller 27 determines whether or not the first predetermined time has elapsed since the control to open the valve 15 (step S104).
  • the first predetermined time is a time until the temperature of the exhaust gas reaches a temperature corresponding to the heat generation temperature of the reaction material 17 under normal traveling conditions, and is, for example, 100 seconds.
  • the controller 27 determines whether or not the temperature T2 of the exhaust gas detected by the temperature sensor 24 is equal to or higher than the heater operation reference temperature when the first predetermined time has elapsed since the control to open the valve 15 ( Procedure S105).
  • the heater operation reference temperature is a temperature corresponding to the heat generation temperature of the reaction material 17 and is, for example, 230 ° C.
  • the controller 27 controls the heater switch 21 to turn on the electric heater 20 (step S106), and executes step S105 again. Thereby, heating of the exhaust gas by chemical heat storage is assisted by the electric heater 20.
  • the controller 27 determines whether or not the second predetermined time has elapsed since the valve 15 was controlled to open (step S107).
  • the second predetermined time is a time required for heating the exhaust gas by the heat generated in the reactor 12, and is, for example, 400 seconds. That is, the second predetermined time is longer than the first predetermined time.
  • the controller 27 executes the step S105 again, and the second predetermined time has elapsed after controlling to open the valve 15. If so, the heater switch 21 is controlled to turn off the electric heater 20 (step S108).
  • step S102 the exhaust gas temperature T1 detected by the temperature sensor 23 is compared with the warm-up start temperature.
  • the exhaust gas temperature T2 detected by the temperature sensor 24 is warmed up. You may compare with temperature. In this case, the warm-up start temperature is set lower than the above numerical value.
  • the controller 27 includes a first heater control unit that controls ON / OFF of the electric heater 20 and a valve control unit that controls opening and closing of the valve 15 when the reaction material 17 generates heat.
  • the above steps S104 to S108 function as a first heater control unit.
  • the procedures S102 and 103 function as a valve control unit.
  • FIG. 5 is a flowchart showing details of the forced recovery control processing procedure executed by the controller 27. At the start of execution of this process, the engine 2 is operating, the valve 15 is open, and the electric heater 20 is OFF.
  • the controller 27 first determines whether or not the ignition OFF signal of the IG switch 28 is input from the engine ECU 29 (step S111). When the ignition OFF signal is input, the NH 3 adsorption amount of the adsorber 14 is determined. Is estimated (step S112).
  • the NH 3 adsorption amount is estimated using the NH 3 saturated vapor pressure curve shown in FIG. 6A and the NH 3 adsorption characteristic shown in FIG.
  • the NH 3 saturated vapor pressure curve shown in FIG. 6A is a graph showing the relationship between the temperature of the adsorber 14 and the NH 3 saturated vapor pressure. As the temperature of the adsorber 14 increases, the NH 3 saturated vapor pressure increases in a curve.
  • the NH 3 adsorption characteristic shown in FIG. 6B is a graph showing the relationship between the relative pressure and the NH 3 adsorption amount of the adsorber 14. As the relative pressure increases, the NH 3 adsorption amount of the adsorber 14 increases in a curve.
  • the relative pressure is a ratio (P / Psat) between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 14.
  • the controller 27 first NH 3 from the saturated vapor pressure curve, determine the NH 3 saturated vapor pressure Psat corresponding to the temperature T of the adsorbent 14 which is detected by the temperature sensor 25. Then, the controller 27 calculates a relative pressure that is a ratio between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 14 detected by the pressure sensor 26. Then, the controller 27 obtains the NH 3 adsorption amount Anh3 corresponding to the relative pressure from the NH 3 adsorption characteristics.
  • the controller 27 determines whether the NH 3 adsorption amount of the adsorber 14 is a predetermined amount or more (step S113).
  • the predetermined amount is a minimum amount necessary for carrying out the exothermic reaction, and is, for example, 100 g.
  • the controller 27 controls the heater switch 21 to turn on the electric heater 20 when the NH 3 adsorption amount of the adsorber 14 is smaller than a predetermined amount (step S114). Thereby, the exhaust gas is heated by the electric heater 20.
  • the controller 27 determines whether or not the exhaust gas temperature T2 detected by the temperature sensor 24 is equal to or higher than the recovery temperature (procedure S115), and when the exhaust gas temperature T2 is equal to or higher than the recovery temperature, the procedure is again performed. S112 is executed.
  • the recovery temperature is a temperature at which NH 3 can be recovered in the adsorber 14 by the heat of the exhaust gas, and is 300 ° C., for example.
  • the controller 27 controls the heater switch 21 to turn off the electric heater 20 when the NH 3 adsorption amount of the adsorber 14 is equal to or larger than a predetermined amount (step S116). Then, the controller 27 performs control so as to close the valve 15 (procedure S117), and further outputs a command to the engine ECU 29 so as to stop the engine 2 (procedure S118).
  • the controller 27 estimates the amount of the reaction medium in the adsorber 14 and the second heater control that controls ON / OFF of the electric heater 20 when the reaction medium is desorbed from the reaction material 17. And a valve control unit that controls opening and closing of the valve 15.
  • the procedure S112 functions as an estimation unit.
  • the above steps S113 to S116 function as a second heater control unit.
  • the procedure S117 functions as a valve control unit.
  • the electric heater 20 for heating the exhaust gas is disposed adjacent to the reactor 12. Therefore, when heating of the exhaust gas is insufficient only by heating the exhaust gas through the heat exchanger 3 by the heat generated by the chemical reaction between the reactant 17 of the reactor 12 and NH 3 , the electric heater 20 can assist in heating the exhaust gas. Thereby, exhaust gas can be heated to desired temperature and it can prevent that heating of exhaust gas becomes inadequate. As a result, it is possible to construct the exhaust purification system 1 having a high purification rate.
  • the electric heater 20 when the exhaust gas temperature T2 detected by the temperature sensor 24 is lower than the heater operation reference temperature, the electric heater 20 is automatically turned on, and the electric heater 20 assists in heating the exhaust gas. As a result, the exhaust gas can be easily and reliably heated to a desired temperature.
  • the controller 27 determines whether or not the exhaust gas temperature T2 is higher than the heater operation reference temperature. Thus, since the controller 27 determines whether or not to turn on the electric heater 20, it is not necessary to turn the electric heater 20 on unnecessarily, and power consumption can be reduced.
  • the electric heater 20 is automatically turned off, so that it is not necessary to turn the electric heater 20 on unnecessarily. Can be further reduced.
  • the electric heater 20 is disposed upstream of the reactor 12, when the recovery of NH 3 to the adsorber 14 due to the heat of the exhaust gas is insufficient, the electric heater 20 is operated to Heat of the exhaust gas heated by the heater 20 can be applied to the reaction material 17. Thereby, the regeneration reaction in which NH 3 is desorbed from the reaction material 17 can be promoted, and the recovery of NH 3 to the adsorber 14 can be prevented from becoming insufficient.
  • the electric heater 20 is automatically turned ON, the exhaust gas is heated by the electric heater 20 Is done. Thereby, reproduction
  • the electric heater 20 is automatically turned off, so that the electric heater 20 does not need to be turned on unnecessarily, and power consumption is reduced. Can do.
  • the present invention is not limited to the above embodiment.
  • the electric heater 20 is disposed adjacent to the reactor 12 on the upstream side of the reactor 12, but the arrangement location of the electric heater 20 is not particularly limited thereto. You may arrange
  • the reaction medium is not particularly limited to NH 3 , for example, CO 2.
  • H 2 O or the like may be used.
  • the reactant 17 that chemically reacts with CO 2 includes MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , and Fe (OH). 3 , FeO, Fe 2 O 3 or Fe 3 O 4 can be used.
  • H 2 O is used as the reaction medium
  • CaO, MnO, CuO, Al 2 O 3 or the like can be used as the reaction material 17 that chemically reacts with H 2 O.
  • the reactor 12 is arrange
  • this invention has multiple reactors and heat exchangers which have a reaction material inside an exhaust pipe.
  • the present invention is also applicable to chemical heat storage devices that are alternately stacked one by one.
  • the electric heater may be disposed adjacent to all the reactors, or the electric heater may be disposed adjacent to only an arbitrary reactor.
  • the said embodiment is the chemical thermal storage apparatus 11 which heats exhaust gas via the heat exchanger 3
  • this invention is applicable also to the chemical thermal storage apparatus which heats exhaust gas via an exhaust pipe.
  • the present invention is also applicable to a chemical heat storage device that heats exhaust gas discharged from a gasoline engine.
  • the present invention can be applied to a chemical heat storage device that heats oil, for example, in addition to exhaust gas.
  • the present invention is not limited to a chemical heat storage device that heats a fluid such as exhaust gas, and can also be applied to a chemical heat storage device that heats a catalyst such as DOC4. In this case, the catalyst is heated by the electric heater 20.
  • the present invention can be applied to an apparatus other than the engine exhaust system, for example, heating pipes provided in an oil circulation system.
  • the present invention may heat various heat media in vehicles such as engine oil, transmission oil, cooling water, or air.
  • the reactor of the chemical heat storage device may be disposed on the outer periphery (a part of the outer periphery or the entire periphery of the outer periphery) of the heat medium channel through which the heat medium flows to heat the heat medium channel itself.
  • the electric heater is disposed inside the heat medium flow channel or on the outer periphery of the heat medium flow channel on the upstream side or the downstream side of the portion of the heat medium flow channel where the reactor is provided.
  • a heat exchanger may be disposed in the heat medium flow path through which the heat medium flows, and the heat medium may be heated via the heat exchanger in a reactor disposed on the outer periphery of the heat medium flow path.
  • the electric heater is disposed inside the heat medium flow channel or on the outer periphery of the heat medium flow channel on the upstream side or the downstream side of the portion of the heat medium flow channel where the reactor is provided.
  • a heat exchange unit integrated reactor is configured in which a plurality of reaction units including heat storage materials and heat exchange units such as heat exchange fins are alternately stacked, and the heat exchange unit integrated reactor is heated. You may arrange
  • the electric heater is disposed inside the heat medium flow channel or on the outer periphery of the heat medium flow channel on the upstream side or the downstream side of the portion of the heat medium flow channel where the reactor is provided.
  • the present invention is also applicable to a chemical heat storage device arranged other than the engine.
  • 11 chemical heat storage device, 12 ... reactor, 13 ... NH 3 supply pipe, 14 ... adsorber (reservoir), 15 ... valve, 17 ... reaction member, 20 ... electric heater, 23, 24 ... temperature sensor (temperature detection Part), 27... Controller (first heater control unit, valve control unit, estimation unit, second heater control unit).

Abstract

Provided is a chemical heat storage apparatus with which insufficient heating of an object intended to be heated can be prevented. This chemical heat storage apparatus 11 is provided with: a reservoir 14 for storing a reaction medium; a reactor 12 that has a reactant 17 for evolving heat through a chemical reaction with the reaction medium, and desorbing the reaction medium by heat storage, and that in cooperation with the reservoir 14 heats an object intended to be heated; a supply tube 13 connected to the reservoir 14 and the reactor 12 such that it is possible for the reaction medium to flow between the reservoir 14 and the reactor 12; and an electric heater 20 arranged neighboring the reactor, for heating an object intended to be heated.

Description

化学蓄熱装置Chemical heat storage device
 本発明は、化学蓄熱装置に関する。 The present invention relates to a chemical heat storage device.
 従来の化学蓄熱装置としては、例えば特許文献1に記載されている装置が知られている。特許文献1に記載の化学蓄熱装置は、ディーゼル酸化触媒の外周部の全面に配置され、アンモニア(NH)と化学反応する反応材を有する反応器と、NHを物理吸着する吸着材を有する吸着器と、反応器と吸着器との間でNHを移動させる接続ラインとを備えている。エンジンから排出された排気ガスの温度が所定温度より低いときは、吸着器から反応器にNHを移動させる。これにより、NHと反応材とが化学反応して熱が発生し、その熱がディーゼル酸化触媒に伝わる。エンジンから排出された排気ガスの温度が所定温度より高くなると、排気ガスの排熱が反応器の反応材に与えられることでNHと反応材とが分離し、分離したNHが反応器から吸着器へ回収される。 As a conventional chemical heat storage device, for example, a device described in Patent Document 1 is known. The chemical heat storage device described in Patent Document 1 is disposed on the entire outer surface of the diesel oxidation catalyst, and includes a reactor having a reaction material that chemically reacts with ammonia (NH 3 ), and an adsorbent that physically adsorbs NH 3. An adsorber and a connection line for moving NH 3 between the reactor and the adsorber are provided. When the temperature of the exhaust gas discharged from the engine is lower than a predetermined temperature, NH 3 is moved from the adsorber to the reactor. Thereby, NH 3 and the reaction material chemically react to generate heat, and the heat is transmitted to the diesel oxidation catalyst. When the temperature of the exhaust gas exhausted from the engine becomes higher than a predetermined temperature, the exhaust heat of the exhaust gas is given to the reaction material of the reactor, whereby NH 3 and the reaction material are separated, and the separated NH 3 is separated from the reactor. It is collected in the adsorber.
特開2014-85093号公報JP 2014-85093 A
 しかしながら、上記従来技術においては、以下の問題点が存在する。即ち、反応器の反応材から発生する熱量は、吸着器に貯蔵されるNH量によって決まる。このため、例えば排気ガスの排熱が十分に反応材に与えられず、吸着器にNHを十分に回収することができなかった場合など、吸着器に貯蔵されるNH量が制限されている場合には、反応材から所望の熱量を発生させることができず、結果的に加熱対象の加熱が不十分になる可能性がある。 However, the following problems exist in the prior art. That is, the amount of heat generated from the reaction material in the reactor is determined by the amount of NH 3 stored in the adsorber. Thus, for example, not given to the exhaust heat is sufficiently reactive material of the exhaust gases, etc. If it can not be sufficiently recovered NH 3 in adsorber, are limited amount of NH 3 is stored in the adsorber If it is, the desired amount of heat cannot be generated from the reaction material, and as a result, there is a possibility that heating of the heating target becomes insufficient.
 本発明の目的は、加熱対象の加熱が不十分になることを防止できる化学蓄熱装置を提供することである。 An object of the present invention is to provide a chemical heat storage device that can prevent insufficient heating of a heating target.
 本発明の一側面に係る化学蓄熱装置は、反応媒体を貯蔵する貯蔵器と、反応媒体との化学反応により発熱すると共に蓄熱により反応媒体を脱離する反応材を有し、貯蔵器と協働して加熱対象を加熱する反応器と、貯蔵器と反応器との間で反応媒体が流通可能となるように貯蔵器と反応器とを接続する供給管と、反応器に隣り合って配置され、加熱対象を加熱する電気ヒータとを備えることを特徴とする。 A chemical heat storage device according to one aspect of the present invention includes a storage device that stores a reaction medium, and a reaction material that generates heat by a chemical reaction with the reaction medium and desorbs the reaction medium by heat storage, and cooperates with the storage device. A reactor that heats the object to be heated, a supply pipe that connects the reservoir and the reactor so that the reaction medium can flow between the reservoir and the reactor, and a reactor adjacent to the reactor. And an electric heater for heating an object to be heated.
 このような本発明の一側面に係る化学蓄熱装置においては、反応媒体が貯蔵器から反応器に供給管を通って供給されると、反応器の反応材と反応媒体との化学反応により反応材から熱が発生する。その熱が加熱対象に伝えられて加熱対象が加熱される。このとき、加熱対象の加熱が不十分であるときは、反応器に隣り合って配置された電気ヒータが、加熱対象を加熱する。これにより、加熱対象の加熱が不十分になることが防止される。 In such a chemical heat storage device according to one aspect of the present invention, when the reaction medium is supplied from the reservoir to the reactor through the supply pipe, the reaction material is caused by a chemical reaction between the reaction material of the reactor and the reaction medium. Generates heat. The heat is transmitted to the heating object, and the heating object is heated. At this time, when the heating target is insufficiently heated, the electric heater arranged adjacent to the reactor heats the heating target. This prevents the heating of the heating target from becoming insufficient.
 加熱対象の温度を検出する温度検出部と、反応材を発熱させるときに、電気ヒータのON/OFFを制御する第1ヒータ制御部とを更に備え、第1ヒータ制御部は、温度検出部により検出された加熱対象の温度が所定温度よりも低いときに、電気ヒータをONにするように制御してもよい。 The apparatus further includes a temperature detection unit that detects the temperature of the heating target, and a first heater control unit that controls ON / OFF of the electric heater when the reaction material generates heat. The first heater control unit is controlled by the temperature detection unit. When the detected temperature of the heating target is lower than a predetermined temperature, the electric heater may be controlled to be turned on.
 この場合には、加熱対象の温度が所定温度よりも低いときは、電気ヒータが自動的にONになり、電気ヒータにより加熱対象が加熱される。これにより、加熱対象の加熱が不十分になることが容易に且つ確実に防止される。 In this case, when the temperature of the heating target is lower than the predetermined temperature, the electric heater is automatically turned on, and the heating target is heated by the electric heater. Thereby, it becomes easy and reliably prevented that the heating target is insufficiently heated.
 供給管に配設され、貯蔵器と反応器との間の流路を開閉させるバルブと、バルブの開閉を制御するバルブ制御部とを更に備え、第1ヒータ制御部は、バルブ制御部によりバルブを開くように制御してから第1所定時間を経過した後に、温度検出部により検出された加熱対象の温度が所定温度よりも低いときに、電気ヒータをONにするように制御してもよい。 A valve disposed in the supply pipe for opening and closing a flow path between the reservoir and the reactor; and a valve controller for controlling opening and closing of the valve. The first heater controller is controlled by the valve controller. After the first predetermined time has elapsed since the control to open the heater, the electric heater may be controlled to be turned on when the temperature of the heating target detected by the temperature detection unit is lower than the predetermined temperature. .
 バルブを開くことで貯蔵器から反応器に反応媒体が供給され始めてから、加熱対象の温度が所定温度の近傍まで上昇するまでには、時間がかかる。そこで、バルブを開くように制御してから第1所定時間が経過した後に、電気ヒータをONにするかどうかを判断することにより、電気ヒータを無駄にON状態にしなくて済み、消費電力を低減することができる。 It takes time from when the reaction medium starts to be supplied from the reservoir to the reactor by opening the valve until the temperature of the heating target rises to the vicinity of the predetermined temperature. Therefore, it is not necessary to turn the electric heater on unnecessarily by determining whether or not the electric heater is turned on after the first predetermined time has elapsed since the valve is opened. can do.
 第1ヒータ制御部は、バルブ制御部によりバルブを開くように制御してから第1所定時間よりも長い第2所定時間を経過した後に、電気ヒータをOFFにするように制御してもよい。 The first heater control unit may perform control so that the electric heater is turned off after a second predetermined time longer than the first predetermined time elapses after the valve control unit controls the valve to open.
 この場合には、バルブを開くように制御してから第2所定時間が経過すると、電気ヒータが自動的にOFFになる。従って、電気ヒータを無駄にON状態にしなくて済み、消費電力を一層低減することができる。 In this case, the electric heater is automatically turned off when the second predetermined time has elapsed since the valve was controlled to open. Therefore, the electric heater need not be turned on unnecessarily, and the power consumption can be further reduced.
 加熱対象は流体であり、電気ヒータは、反応器よりも流体が流れる方向の上流側において反応器に隣り合って配置されていてもよい。 The object to be heated is a fluid, and the electric heater may be arranged adjacent to the reactor on the upstream side in the direction in which the fluid flows than the reactor.
 加熱対象である流体の熱が反応器の反応材に与えられると、反応材から反応媒体が脱離する。そして、脱離した反応媒体は、供給管を通って貯蔵器に戻り回収される。このとき、電気ヒータは、反応器よりも流体が流れる方向の上流側に配置されている。このため、貯蔵器への反応媒体の回収が不十分であるときは、電気ヒータを作動させることで、電気ヒータにより加熱された流体の熱が反応材に与えられる。これにより、貯蔵器への反応媒体の回収が不十分になることが防止される。 When the heat of the fluid to be heated is applied to the reaction material of the reactor, the reaction medium is detached from the reaction material. The desorbed reaction medium returns to the reservoir through the supply pipe and is collected. At this time, the electric heater is disposed upstream of the reactor in the direction in which the fluid flows. For this reason, when the collection | recovery of the reaction medium to a storage device is inadequate, the heat | fever of the fluid heated with the electric heater is given to a reaction material by operating an electric heater. This prevents insufficient recovery of the reaction medium into the reservoir.
 貯蔵器内の反応媒体の量を推定する推定部と、反応材から反応媒体を脱離させるときに、電気ヒータのON/OFFを制御する第2ヒータ制御部とを更に備え、第2ヒータ制御部は、推定部により推定された貯蔵器内の反応媒体の量が所定量よりも少ないときには、電気ヒータをONにするように制御し、推定部により推定された貯蔵器内の反応媒体の量が所定量以上であるときには、電気ヒータをOFFにするように制御してもよい。 A second heater control further comprising: an estimation unit that estimates an amount of the reaction medium in the reservoir; and a second heater control unit that controls ON / OFF of the electric heater when the reaction medium is detached from the reaction material. The unit controls to turn on the electric heater when the amount of the reaction medium in the reservoir estimated by the estimation unit is smaller than a predetermined amount, and the amount of the reaction medium in the reservoir estimated by the estimation unit When is equal to or greater than a predetermined amount, the electric heater may be controlled to be turned off.
 この場合には、貯蔵器内の反応媒体の量を推定し、貯蔵器内の反応媒体の量が所定量よりも少ないときは、電気ヒータが自動的にONになり、電気ヒータにより加熱対象が加熱される。これにより、貯蔵器への反応媒体の回収が不十分になることが容易に且つ確実に防止される。また、貯蔵器内の反応媒体の量が所定量以上であるときは、電気ヒータが自動的にOFFになる。従って、電気ヒータを無駄にON状態にしなくて済み、消費電力を低減することができる。 In this case, the amount of the reaction medium in the reservoir is estimated, and when the amount of the reaction medium in the reservoir is less than a predetermined amount, the electric heater is automatically turned on, and the object to be heated is set by the electric heater. Heated. This easily and reliably prevents the recovery of the reaction medium into the reservoir from becoming insufficient. Further, when the amount of the reaction medium in the reservoir is a predetermined amount or more, the electric heater is automatically turned off. Therefore, the electric heater need not be turned on unnecessarily, and power consumption can be reduced.
 本発明によれば、加熱対象の加熱が不十分になることを防止できる化学蓄熱装置が提供される。 According to the present invention, there is provided a chemical heat storage device that can prevent heating of a heating target from becoming insufficient.
図1は、化学蓄熱装置の一実施形態を備えた排気浄化システムを示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an exhaust purification system including an embodiment of a chemical heat storage device. 図2は、図1に示された化学蓄熱装置の制御系を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a control system of the chemical heat storage device shown in FIG. 図3は、図2に示された熱交換器及び反応器の断面図である。FIG. 3 is a cross-sectional view of the heat exchanger and reactor shown in FIG. 図4は、図2に示されたコントローラにより実行される加熱アシスト制御処理手順の詳細を示すフローチャートである。FIG. 4 is a flowchart showing details of a heating assist control processing procedure executed by the controller shown in FIG. 図5は、図2に示されたコントローラにより実行される強制回収制御処理手順の詳細を示すフローチャートである。FIG. 5 is a flowchart showing details of the forced recovery control processing procedure executed by the controller shown in FIG. 図6は、NH飽和蒸気圧曲線及びNH吸着特性の一例を示すグラフである。FIG. 6 is a graph showing an example of an NH 3 saturated vapor pressure curve and NH 3 adsorption characteristics.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、化学蓄熱装置の一実施形態を備えた排気浄化システムを示す概略構成図である。図1において、排気浄化システム1は、車両のディーゼルエンジン2(以下、単にエンジン2という)の排気系に備えられ、エンジン2から排出される排気ガスに含まれる有害物質(環境汚染物質)を浄化する。 FIG. 1 is a schematic configuration diagram illustrating an exhaust purification system including an embodiment of a chemical heat storage device. In FIG. 1, an exhaust purification system 1 is provided in an exhaust system of a diesel engine 2 (hereinafter simply referred to as “engine 2”) of a vehicle, and purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2. To do.
 排気浄化システム1は、熱交換器3、ディーゼル酸化触媒(DOC:Diesel Oxidation Catalyst)4、ディーゼル排気微粒子除去フィルタ(DPF:Diesel Particulate Filter)5、選択還元触媒(SCR:Selective Catalytic Reduction)6及びアンモニアスリップ触媒(ASC:Ammonia Slip Catalyst)7を備えている。熱交換器3、DOC4、DPF5、SCR6及びASC7は、エンジン2と接続された排気通路8の途中に、排気ガスが流れる方向の上流側(以下、単に上流側)から排気ガスが流れる方向の下流側(以下、単に下流側)に向けて順に配置されている。 The exhaust purification system 1 includes a heat exchanger 3, a diesel oxidation catalyst (DOC) 4, a diesel exhaust particulate filter (DPF) 5, a selective reduction catalyst (SCR) 6, and ammonia. A slip catalyst (ASC: Ammonia Slip Catalyst) 7 is provided. The heat exchanger 3, DOC 4, DPF 5, SCR 6, and ASC 7 are located downstream of the exhaust gas flowing from the upstream side in the direction in which the exhaust gas flows (hereinafter simply upstream) in the middle of the exhaust passage 8 connected to the engine 2. It arranges in order toward the side (hereinafter, simply downstream).
 熱交換器3は、図2及び図3に示されるように、円筒状の外筒9と、この外筒9内に配置されたハニカム構造の熱交換部10とを有している。外筒9は、排気通路8の一部を形成する排気管としての機能を有している。外筒9は、例えばステンレス鋼で形成されている。熱交換部10は、排気ガスが流通する排気ガス流路10aを形成すると共に、排気ガスと反応材17(後述)との間で熱交換を行う。熱交換部10は、熱伝導性が高いSiSiC(非酸化物系セラミック・シリコン・カーバイド)等のセラミックで形成されている。なお、熱交換部10の材料は、熱伝導性が高いステンレス鋼等の金属であってもよい。熱交換器3は、排気ガスが流れる流路形成部を構成している。 2 and 3, the heat exchanger 3 includes a cylindrical outer tube 9 and a honeycomb-structured heat exchange unit 10 disposed in the outer tube 9. The outer cylinder 9 has a function as an exhaust pipe that forms a part of the exhaust passage 8. The outer cylinder 9 is made of, for example, stainless steel. The heat exchange unit 10 forms an exhaust gas passage 10a through which exhaust gas flows, and performs heat exchange between the exhaust gas and a reaction material 17 (described later). The heat exchanging portion 10 is made of ceramic such as SiSiC (non-oxide ceramic silicon carbide) having high thermal conductivity. Note that the material of the heat exchange unit 10 may be a metal such as stainless steel having high thermal conductivity. The heat exchanger 3 constitutes a flow path forming part through which exhaust gas flows.
 図1に戻り、DOC4は、排気ガス中に含まれるHC及びCO等を酸化して浄化する。DPF5は、排気ガス中に含まれる粒子状物質(PM:Particulate Matter)を捕集し、排気ガスからPMを取り除く。SCR6は、尿素またはアンモニア(NH)によって、排気ガス中に含まれるNOxを還元して浄化する。ASC7は、SCR6を通過したNHを酸化する。 Returning to FIG. 1, the DOC 4 oxidizes and purifies HC, CO, and the like contained in the exhaust gas. The DPF 5 collects particulate matter (PM) contained in the exhaust gas and removes PM from the exhaust gas. The SCR 6 reduces and purifies NOx contained in the exhaust gas with urea or ammonia (NH 3 ). ASC7 oxidizes NH 3 passing through the SCR6.
 また、排気浄化システム1は、可逆的な化学反応を利用して、外部エネルギーレスで熱交換器3を介して加熱対象である排気ガスを加熱(暖機)する化学蓄熱装置11を備えている。具体的には、化学蓄熱装置11は、反応材17(後述)と反応媒体とを分離した状態にすることで、排気ガスの熱(排熱)を内部に蓄えておく。そして、化学蓄熱装置11は、必要なときに反応媒体を反応材17に供給して、反応媒体と反応材17とを化学反応(化学吸着)させることで、化学反応時の反応熱を利用して排気ガスを加熱する。なお、本実施形態では、反応媒体としてアンモニア(NH)が用いられる。 The exhaust purification system 1 also includes a chemical heat storage device 11 that uses a reversible chemical reaction to heat (warm up) the exhaust gas to be heated via the heat exchanger 3 without external energy. . Specifically, the chemical heat storage device 11 stores the heat (exhaust heat) of the exhaust gas inside by separating the reaction material 17 (described later) and the reaction medium. The chemical heat storage device 11 supplies the reaction medium to the reaction material 17 when necessary, and causes the reaction medium and the reaction material 17 to chemically react (chemical adsorption), thereby using the reaction heat during the chemical reaction. To heat the exhaust gas. In the present embodiment, ammonia (NH 3 ) is used as the reaction medium.
 化学蓄熱装置11は、図2及び図3にも示されるように、リング状の反応器12と、吸着器14と、反応器12と吸着器14との間でNHが流通可能となるように反応器12と吸着器14とを接続するNH供給管13と、を備えている。NH供給管13には、反応器12と吸着器14との間の流路を開閉させるバルブ15が配設されている。 As shown in FIGS. 2 and 3, the chemical heat storage device 11 is configured so that NH 3 can flow between the ring-shaped reactor 12, the adsorber 14, and the reactor 12 and the adsorber 14. And an NH 3 supply pipe 13 for connecting the reactor 12 and the adsorber 14 to each other. The NH 3 supply pipe 13 is provided with a valve 15 that opens and closes a flow path between the reactor 12 and the adsorber 14.
 反応器12は、吸着器14と協働して熱交換器3を介して排気ガスを加熱する。反応器12は、熱交換器3の外筒9の周囲に配置されている。反応器12は、容器16と、この容器16内に収容される反応材17と、を有している。反応材17は、NHとの化学反応により発熱すると共に、高温となった排ガスから排熱を受けて蓄熱することによりNHを脱離する。容器16は、ステンレス鋼等の金属で形成されている。反応材17は、熱交換器3の外筒9の外周面に接触するように容器16内に収容されている。 The reactor 12 heats the exhaust gas through the heat exchanger 3 in cooperation with the adsorber 14. The reactor 12 is disposed around the outer cylinder 9 of the heat exchanger 3. The reactor 12 includes a container 16 and a reaction material 17 accommodated in the container 16. The reaction material 17 is configured to generate heat by chemical reaction with NH 3, and desorbs NH 3 by storing heat by receiving exhaust heat from the exhaust gas heated to high temperature. The container 16 is made of a metal such as stainless steel. The reaction material 17 is accommodated in the container 16 so as to contact the outer peripheral surface of the outer cylinder 9 of the heat exchanger 3.
 反応材17としては、組成式MXaで表されるハロゲン化物が用いられる。Mは、Mg、CaまたはSr等のアルカリ土類金属、若しくはCr、Mn、Fe、Co、Ni、CuまたはZn等の遷移金属である。Xは、Cl、BrまたはI等である。aは、Mの価数により特定される数であり、2~3である。 As the reaction material 17, a halide represented by the composition formula MXa is used. M is an alkaline earth metal such as Mg, Ca or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu or Zn. X is Cl, Br, I or the like. a is a number specified by the valence of M, and is 2 to 3.
 反応材17は、粉末状であってもよいし、プレス成型体であってもよい。また、反応材17には、熱伝導性を向上させる添加物が混合されていてもよい。添加物としては、カーボンファイバ、カーボンビーズ、SiCビーズ、金属ビーズ、高分子ビーズまたは高分子ファイバ等が用いられる。金属ビーズの金属材料としては、Cu、Ag、Ni、Ci-Cr、Al、Feまたはステンレス鋼等が挙げられる。 The reaction material 17 may be in the form of powder or a press-molded body. Further, the reaction material 17 may be mixed with an additive for improving thermal conductivity. As the additive, carbon fiber, carbon bead, SiC bead, metal bead, polymer bead, polymer fiber or the like is used. Examples of the metal material of the metal beads include Cu, Ag, Ni, Ci—Cr, Al, Fe, and stainless steel.
 容器16と反応材17との間には、断熱材18がリング状に配置されている。断熱材18としては、例えばグラスウール等が用いられる。NH供給管13の一端部は、容器16及び断熱材18を貫通して反応材17と接続されている。反応材17と断熱材18との間には、NHの流路を形成する多孔体(図示せず)が介在されている。 A heat insulating material 18 is arranged in a ring shape between the container 16 and the reaction material 17. For example, glass wool or the like is used as the heat insulating material 18. One end of the NH 3 supply pipe 13 is connected to the reaction material 17 through the container 16 and the heat insulating material 18. A porous body (not shown) that forms a NH 3 flow path is interposed between the reaction material 17 and the heat insulating material 18.
 図1に戻り、吸着器14は、NHの物理吸着による保持及びNHの脱離が可能な吸着材19を含んでいる。吸着材19としては、活性炭、カーボンブラック、メソポーラスカーボン、ナノカーボンまたはゼオライト等が用いられる。吸着器14は、NHを吸着材19に物理吸着させることで、NHを貯蔵する貯蔵器を構成している。 Returning to Figure 1, the adsorber 14 includes an adsorbent 19 capable of leaving the holding and NH 3 by physical adsorption of NH 3. As the adsorbent 19, activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used. The adsorber 14 constitutes a reservoir for storing NH 3 by physically adsorbing NH 3 on the adsorbent 19.
 以上のような化学蓄熱装置11を備えた排気浄化システム1において、エンジン2から排出される排気ガスの温度が所定温度(反応材17の発熱温度)よりも低いときは、吸着器14の吸着材19から脱離したNHがNH供給管13を通って反応器12に供給される。すると、反応器12の反応材17(例えばMgCl2)とNHとが化学反応して、反応材17から熱が発生する。つまり、下記の反応式(A)における左辺から右辺への反応(発熱反応)が起こる。そして、反応材17から発生した熱が熱交換器3に伝えられる。これにより、熱交換器3が加熱されることに伴い、熱交換器3を流れる排気ガスが加熱される。そして、暖められた排気ガスによってDOC4が汚染物質の浄化に適した活性温度まで上昇する。
    MgCl+xNH ⇔ Mg(NH)xCl+熱   …(A)
In the exhaust purification system 1 including the chemical heat storage device 11 as described above, when the temperature of the exhaust gas discharged from the engine 2 is lower than a predetermined temperature (the heat generation temperature of the reaction material 17), the adsorbent of the adsorber 14 NH 3 desorbed from 19 is supplied to the reactor 12 through the NH 3 supply pipe 13. Then, the reaction material 17 (for example, MgCl 2) in the reactor 12 and the NH 3 chemically react to generate heat from the reaction material 17. That is, a reaction from the left side to the right side (exothermic reaction) in the following reaction formula (A) occurs. Then, heat generated from the reaction material 17 is transmitted to the heat exchanger 3. Thus, the exhaust gas flowing through the heat exchanger 3 is heated as the heat exchanger 3 is heated. Then, the heated exhaust gas raises the DOC 4 to an activation temperature suitable for purification of pollutants.
MgCl 2 + xNH 3 MgMg (NH 3 ) xCl 2 + heat (A)
 一方、エンジン2から排出される排気ガスの温度が所定温度(反応材17の発熱温度)以上になると、排気ガスの熱(排熱)が熱交換器3から反応器12の反応材17に与えられることで、反応材17からNHが脱離する。つまり、上記の反応式(A)における右辺から左辺への反応(再生反応)が起こる。そして、反応材17から脱離したNHがNH供給管13を通って吸着器14に戻り、吸着器14の吸着材19にNHが物理吸着される。これにより、NHが吸着器14に回収される。 On the other hand, when the temperature of the exhaust gas discharged from the engine 2 becomes equal to or higher than a predetermined temperature (the heat generation temperature of the reaction material 17), the heat (exhaust heat) of the exhaust gas is given from the heat exchanger 3 to the reaction material 17 of the reactor 12. As a result, NH 3 is desorbed from the reaction material 17. That is, a reaction (regeneration reaction) from the right side to the left side in the above reaction formula (A) occurs. Then, NH 3 desorbed from the reaction material 17 returns to the adsorber 14 through the NH 3 supply pipe 13, and NH 3 is physically adsorbed on the adsorbent 19 of the adsorber 14. Thereby, NH 3 is recovered in the adsorber 14.
 また、化学蓄熱装置11は、図1及び図2に示されるように、反応器12よりも上流側において反応器12に隣り合って配置された電気ヒータ20を備えている。電気ヒータ20は、例えば電熱線、その他の加熱手段等で構成されている。電気ヒータ20は、熱交換器3の外筒9に連結されると共に排気通路8の一部を形成する排気管(図示せず)の周囲に配置される。電気ヒータ20は、反応器12よりも上流側において排気ガスを加熱する。電気ヒータ20は、ヒータスイッチ21を介してバッテリ22と接続されている。 Further, as shown in FIGS. 1 and 2, the chemical heat storage device 11 includes an electric heater 20 disposed adjacent to the reactor 12 on the upstream side of the reactor 12. The electric heater 20 is composed of, for example, a heating wire or other heating means. The electric heater 20 is disposed around an exhaust pipe (not shown) that is connected to the outer cylinder 9 of the heat exchanger 3 and forms a part of the exhaust passage 8. The electric heater 20 heats the exhaust gas upstream of the reactor 12. The electric heater 20 is connected to a battery 22 via a heater switch 21.
 さらに、化学蓄熱装置11は、温度センサ23~25と、圧力センサ26と、コントローラ27とを備えている。温度センサ23は、排気通路8における電気ヒータ20よりも上流側の部分を流れる排気ガスの温度を検出する。温度センサ24は、排気通路8における反応器12よりも下流側の部分を流れる排気ガスの温度を検出する。温度センサ23,24は、加熱対象の温度を検出する温度検出部を構成している。温度センサ25は、吸着器14の温度を検出する。圧力センサ26は、吸着器14内の圧力を検出する。 Furthermore, the chemical heat storage device 11 includes temperature sensors 23 to 25, a pressure sensor 26, and a controller 27. The temperature sensor 23 detects the temperature of the exhaust gas flowing through the portion of the exhaust passage 8 upstream of the electric heater 20. The temperature sensor 24 detects the temperature of the exhaust gas flowing through the portion of the exhaust passage 8 downstream of the reactor 12. The temperature sensors 23 and 24 constitute a temperature detection unit that detects the temperature of the heating target. The temperature sensor 25 detects the temperature of the adsorber 14. The pressure sensor 26 detects the pressure in the adsorber 14.
 コントローラ27には、エンジン2の始動/停止制御、燃料噴射制御などを行うエンジンECU29が接続されている。エンジンECU29には、エンジン2の始動及び停止を切り換えるためのイグニッションスイッチ(IGスイッチ)28が接続されている。IGスイッチ28の出力信号(イグニッション信号)は、エンジンECU29に送られる。 The controller 27 is connected to an engine ECU 29 that performs start / stop control of the engine 2, fuel injection control, and the like. The engine ECU 29 is connected to an ignition switch (IG switch) 28 for switching between starting and stopping of the engine 2. An output signal (ignition signal) of the IG switch 28 is sent to the engine ECU 29.
 コントローラ27は、温度センサ23~25及び圧力センサ26の検出値を入力し、所定の処理を行い、エンジンECU29に対する指令出力を行ったり、バルブ15及びヒータスイッチ21を制御する。 The controller 27 inputs detection values of the temperature sensors 23 to 25 and the pressure sensor 26, performs a predetermined process, outputs a command to the engine ECU 29, and controls the valve 15 and the heater switch 21.
 コントローラ27は、化学蓄熱による排気ガスの加熱をアシストするように制御する加熱アシスト制御機能と、NHを吸着器14に強制的に回収するように制御する強制回収制御機能とを有している。 The controller 27 has a heating assist control function for controlling heating of exhaust gas by chemical heat storage and a forced recovery control function for controlling NH 3 to be forcibly recovered by the adsorber 14. .
 図4は、コントローラ27により実行される加熱アシスト制御処理手順の詳細を示すフローチャートである。なお、本処理の実行開始時には、エンジン2は停止しており、バルブ15は閉じており、電気ヒータ20はOFFになっている。 FIG. 4 is a flowchart showing details of the heating assist control processing procedure executed by the controller 27. At the start of execution of this process, the engine 2 is stopped, the valve 15 is closed, and the electric heater 20 is turned off.
 図4において、コントローラ27は、まずIGスイッチ28のイグニッションON信号がエンジンECU29に入力されることで、エンジン2が始動されたかどうかを判断する(手順S101)。 4, the controller 27 first determines whether or not the engine 2 has been started by inputting an ignition ON signal of the IG switch 28 to the engine ECU 29 (step S101).
 続いて、コントローラ27は、エンジン2が始動されたときは、温度センサ23により検出された排気ガスの温度T1が暖機開始温度以上であるかどうかを判断する(手順S102)。暖機開始温度は、化学蓄熱装置11による排気ガスの加熱によって排気ガスの浄化率を所定値(例えば50%)以上とすることができる温度のことであり、例えば150℃である。コントローラ27は、排気ガスの温度T1が暖機開始温度以上であるときは、バルブ15を開くように制御する(手順S103)。 Subsequently, when the engine 2 is started, the controller 27 determines whether or not the exhaust gas temperature T1 detected by the temperature sensor 23 is equal to or higher than the warm-up start temperature (step S102). The warm-up start temperature is a temperature at which the exhaust gas purification rate can be increased to a predetermined value (for example, 50%) or more by heating the exhaust gas by the chemical heat storage device 11, and is 150 ° C., for example. When the exhaust gas temperature T1 is equal to or higher than the warm-up start temperature, the controller 27 controls the valve 15 to open (step S103).
 バルブ15が開弁すると、吸着器14から反応器12にNHが供給され、反応器12の反応材17とNH3とが化学反応して熱が発生する。その熱により熱交換器3が加熱され、結果的に熱交換器3を流れる排気ガスが加熱される。 When the valve 15 is opened, NH 3 is supplied from the adsorber 14 to the reactor 12, and the reaction material 17 of the reactor 12 and NH 3 chemically react to generate heat. The heat exchanger 3 is heated by the heat, and as a result, the exhaust gas flowing through the heat exchanger 3 is heated.
 続いて、コントローラ27は、バルブ15を開くように制御してから第1所定時間が経過したかどうかを判断する(手順S104)。第1所定時間は、通常の走行条件下において排気ガスの温度が反応材17の発熱温度に対応する温度に達するまでの時間のことであり、例えば100秒である。 Subsequently, the controller 27 determines whether or not the first predetermined time has elapsed since the control to open the valve 15 (step S104). The first predetermined time is a time until the temperature of the exhaust gas reaches a temperature corresponding to the heat generation temperature of the reaction material 17 under normal traveling conditions, and is, for example, 100 seconds.
 コントローラ27は、バルブ15を開くように制御してから第1所定時間が経過したときは、温度センサ24により検出された排気ガスの温度T2がヒータ動作基準温度以上であるかどうかを判断する(手順S105)。ヒータ動作基準温度は、反応材17の発熱温度に対応する温度のことであり、例えば230℃である。 The controller 27 determines whether or not the temperature T2 of the exhaust gas detected by the temperature sensor 24 is equal to or higher than the heater operation reference temperature when the first predetermined time has elapsed since the control to open the valve 15 ( Procedure S105). The heater operation reference temperature is a temperature corresponding to the heat generation temperature of the reaction material 17 and is, for example, 230 ° C.
 コントローラ27は、排気ガスの温度T2がヒータ動作基準温度よりも低いときは、電気ヒータ20をONにするようにヒータスイッチ21を制御し(手順S106)、再び手順S105を実行する。これにより、化学蓄熱による排気ガスの加熱が電気ヒータ20によってアシストされる。 When the exhaust gas temperature T2 is lower than the heater operation reference temperature, the controller 27 controls the heater switch 21 to turn on the electric heater 20 (step S106), and executes step S105 again. Thereby, heating of the exhaust gas by chemical heat storage is assisted by the electric heater 20.
 コントローラ27は、排気ガスの温度T2がヒータ動作基準温度以上であるときは、バルブ15を開くように制御してから第2所定時間が経過したかどうかを判断する(手順S107)。第2所定時間は、反応器12で発生する熱により排気ガスを加熱するのに必要な時間のことであり、例えば400秒である。つまり、第2所定時間は、第1所定時間よりも長い。 When the temperature T2 of the exhaust gas is equal to or higher than the heater operation reference temperature, the controller 27 determines whether or not the second predetermined time has elapsed since the valve 15 was controlled to open (step S107). The second predetermined time is a time required for heating the exhaust gas by the heat generated in the reactor 12, and is, for example, 400 seconds. That is, the second predetermined time is longer than the first predetermined time.
 コントローラ27は、バルブ15を開くように制御してから第2所定時間が経過していないときは、再び手順S105を実行し、バルブ15を開くように制御してから第2所定時間が経過したときは、電気ヒータ20をOFFにするようにヒータスイッチ21を制御する(手順S108)。 When the second predetermined time has not elapsed since the controller 27 controlled to open the valve 15, the controller 27 executes the step S105 again, and the second predetermined time has elapsed after controlling to open the valve 15. If so, the heater switch 21 is controlled to turn off the electric heater 20 (step S108).
 なお、本処理では、手順S102において、温度センサ23により検出された排気ガスの温度T1を暖機開始温度と比較しているが、温度センサ24により検出された排気ガスの温度T2を暖機開始温度と比較してもよい。この場合には、暖機開始温度は、上記の数値よりも低く設定される。 In this process, in step S102, the exhaust gas temperature T1 detected by the temperature sensor 23 is compared with the warm-up start temperature. However, the exhaust gas temperature T2 detected by the temperature sensor 24 is warmed up. You may compare with temperature. In this case, the warm-up start temperature is set lower than the above numerical value.
 以上において、コントローラ27は、反応材17を発熱させるときに、電気ヒータ20のON/OFFを制御する第1ヒータ制御部と、バルブ15の開閉を制御するバルブ制御部とを含んでいる。このとき、上記手順S104~S108は、第1ヒータ制御部として機能する。上記手順S102,103は、バルブ制御部として機能する。 As described above, the controller 27 includes a first heater control unit that controls ON / OFF of the electric heater 20 and a valve control unit that controls opening and closing of the valve 15 when the reaction material 17 generates heat. At this time, the above steps S104 to S108 function as a first heater control unit. The procedures S102 and 103 function as a valve control unit.
 図5は、コントローラ27により実行される強制回収制御処理手順の詳細を示すフローチャートである。なお、本処理の実行開始時には、エンジン2は作動しており、バルブ15は開いており、電気ヒータ20はOFFになっている。 FIG. 5 is a flowchart showing details of the forced recovery control processing procedure executed by the controller 27. At the start of execution of this process, the engine 2 is operating, the valve 15 is open, and the electric heater 20 is OFF.
 図5において、コントローラ27は、まずIGスイッチ28のイグニッションOFF信号がエンジンECU29から入力されたかどうかを判断し(手順S111)、イグニッションOFF信号が入力されたときは、吸着器14のNH吸着量を推定する(手順S112)。 5, the controller 27 first determines whether or not the ignition OFF signal of the IG switch 28 is input from the engine ECU 29 (step S111). When the ignition OFF signal is input, the NH 3 adsorption amount of the adsorber 14 is determined. Is estimated (step S112).
 NH吸着量の推定は、図6(a)に示されるNH飽和蒸気圧曲線及び図6(b)に示されるNH吸着特性を用いて行われる。図6(a)に示されるNH飽和蒸気圧曲線は、吸着器14の温度とNH飽和蒸気圧との関係を表すグラフである。吸着器14の温度が高くなるに従ってNH飽和蒸気圧が曲線的に高くなる。図6(b)に示されるNH吸着特性は、相対圧力と吸着器14のNH吸着量との関係を表すグラフである。相対圧力が高くなるに従って吸着器14のNH吸着量が曲線的に多くなる。相対圧力は、NH飽和蒸気圧Psatと吸着器14内の圧力Pとの比(P/Psat)である。 The NH 3 adsorption amount is estimated using the NH 3 saturated vapor pressure curve shown in FIG. 6A and the NH 3 adsorption characteristic shown in FIG. The NH 3 saturated vapor pressure curve shown in FIG. 6A is a graph showing the relationship between the temperature of the adsorber 14 and the NH 3 saturated vapor pressure. As the temperature of the adsorber 14 increases, the NH 3 saturated vapor pressure increases in a curve. The NH 3 adsorption characteristic shown in FIG. 6B is a graph showing the relationship between the relative pressure and the NH 3 adsorption amount of the adsorber 14. As the relative pressure increases, the NH 3 adsorption amount of the adsorber 14 increases in a curve. The relative pressure is a ratio (P / Psat) between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 14.
 コントローラ27は、まずNH飽和蒸気圧曲線から、温度センサ25により検出された吸着器14の温度Tに対応するNH飽和蒸気圧Psatを求める。そして、コントローラ27は、NH飽和蒸気圧Psatと圧力センサ26により検出された吸着器14内の圧力Pとの比である相対圧力を算出する。そして、コントローラ27は、NH吸着特性から、相対圧力に対応するNH吸着量Anh3を求める。 The controller 27 first NH 3 from the saturated vapor pressure curve, determine the NH 3 saturated vapor pressure Psat corresponding to the temperature T of the adsorbent 14 which is detected by the temperature sensor 25. Then, the controller 27 calculates a relative pressure that is a ratio between the NH 3 saturated vapor pressure Psat and the pressure P in the adsorber 14 detected by the pressure sensor 26. Then, the controller 27 obtains the NH 3 adsorption amount Anh3 corresponding to the relative pressure from the NH 3 adsorption characteristics.
 続いて、コントローラ27は、吸着器14のNH吸着量が所定量以上であるかどうかを判断する(手順S113)。所定量は、発熱反応の実施に必要な最小限の量のことであり、例えば100gである。 Subsequently, the controller 27 determines whether the NH 3 adsorption amount of the adsorber 14 is a predetermined amount or more (step S113). The predetermined amount is a minimum amount necessary for carrying out the exothermic reaction, and is, for example, 100 g.
 コントローラ27は、吸着器14のNH吸着量が所定量よりも少ないときは、電気ヒータ20をONにするようにヒータスイッチ21を制御する(手順S114)。これにより、電気ヒータ20によって排気ガスが加熱される。 The controller 27 controls the heater switch 21 to turn on the electric heater 20 when the NH 3 adsorption amount of the adsorber 14 is smaller than a predetermined amount (step S114). Thereby, the exhaust gas is heated by the electric heater 20.
 そして、コントローラ27は、温度センサ24により検出された排気ガスの温度T2が回収温度以上であるかどうかを判断し(手順S115)、排気ガスの温度T2が回収温度以上であるときは、再び手順S112を実行する。回収温度は、排気ガスの熱によってNHを吸着器14に回収することが可能な温度のことであり、例えば300℃である。 Then, the controller 27 determines whether or not the exhaust gas temperature T2 detected by the temperature sensor 24 is equal to or higher than the recovery temperature (procedure S115), and when the exhaust gas temperature T2 is equal to or higher than the recovery temperature, the procedure is again performed. S112 is executed. The recovery temperature is a temperature at which NH 3 can be recovered in the adsorber 14 by the heat of the exhaust gas, and is 300 ° C., for example.
 コントローラ27は、吸着器14のNH吸着量が所定量以上であるときは、電気ヒータ20をOFFにするようにヒータスイッチ21を制御する(手順S116)。そして、コントローラ27は、バルブ15を閉じるように制御し(手順S117)、更にエンジン2を停止させるようにエンジンECU29に指令出力を行う(手順S118)。 The controller 27 controls the heater switch 21 to turn off the electric heater 20 when the NH 3 adsorption amount of the adsorber 14 is equal to or larger than a predetermined amount (step S116). Then, the controller 27 performs control so as to close the valve 15 (procedure S117), and further outputs a command to the engine ECU 29 so as to stop the engine 2 (procedure S118).
 以上において、コントローラ27は、吸着器14内の反応媒体の量を推定する推定部と、反応材17から反応媒体を脱離させるときに、電気ヒータ20のON/OFFを制御する第2ヒータ制御部と、バルブ15の開閉を制御するバルブ制御部とを含んでいる。このとき、上記手順S112は、推定部として機能する。上記手順S113~S116は、第2ヒータ制御部として機能する。上記手順S117は、バルブ制御部として機能する。 In the above, the controller 27 estimates the amount of the reaction medium in the adsorber 14 and the second heater control that controls ON / OFF of the electric heater 20 when the reaction medium is desorbed from the reaction material 17. And a valve control unit that controls opening and closing of the valve 15. At this time, the procedure S112 functions as an estimation unit. The above steps S113 to S116 function as a second heater control unit. The procedure S117 functions as a valve control unit.
 以上のように本実施形態にあっては、排気ガスを加熱する電気ヒータ20を反応器12に隣り合って配置した。従って、反応器12の反応材17とNHとの化学反応により発生する熱によって熱交換器3を介して排気ガスを加熱するだけでは、排気ガスの加熱が不十分であるときは、電気ヒータ20が排気ガスの加熱をアシストすることができる。これにより、排気ガスを所望の温度まで加熱することができ、排気ガスの加熱が不十分になることを防止できる。その結果、浄化率の高い排気浄化システム1を構築することが可能となる。 As described above, in the present embodiment, the electric heater 20 for heating the exhaust gas is disposed adjacent to the reactor 12. Therefore, when heating of the exhaust gas is insufficient only by heating the exhaust gas through the heat exchanger 3 by the heat generated by the chemical reaction between the reactant 17 of the reactor 12 and NH 3 , the electric heater 20 can assist in heating the exhaust gas. Thereby, exhaust gas can be heated to desired temperature and it can prevent that heating of exhaust gas becomes inadequate. As a result, it is possible to construct the exhaust purification system 1 having a high purification rate.
 また、温度センサ24により検出された排気ガスの温度T2がヒータ動作基準温度よりも低いときは、電気ヒータ20が自動的にONになり、電気ヒータ20により排気ガスの加熱がアシストされる。これにより、排気ガスを容易に且つ確実に所望の温度まで加熱することができる。 Further, when the exhaust gas temperature T2 detected by the temperature sensor 24 is lower than the heater operation reference temperature, the electric heater 20 is automatically turned on, and the electric heater 20 assists in heating the exhaust gas. As a result, the exhaust gas can be easily and reliably heated to a desired temperature.
 また、コントローラ27がバルブ15を開くように制御してから第1所定時間が経過した後に、排気ガスの温度T2がヒータ動作基準温度よりも高いかどうかを判断する。これにより、コントローラ27が電気ヒータ20をONにするかどうかを判断するので、電気ヒータ20を無駄にON状態にしなくて済み、消費電力を低減することができる。 Further, after the first predetermined time has elapsed after the controller 27 controls to open the valve 15, it is determined whether or not the exhaust gas temperature T2 is higher than the heater operation reference temperature. Thus, since the controller 27 determines whether or not to turn on the electric heater 20, it is not necessary to turn the electric heater 20 on unnecessarily, and power consumption can be reduced.
 また、コントローラ27がバルブ15を開くように制御してから第2所定時間が経過すると、電気ヒータ20が自動的にOFFになるため、電気ヒータ20を無駄にON状態にしなくて済み、消費電力を一層低減することができる。 In addition, when the second predetermined time elapses after the controller 27 controls to open the valve 15, the electric heater 20 is automatically turned off, so that it is not necessary to turn the electric heater 20 on unnecessarily. Can be further reduced.
 さらに、電気ヒータ20を反応器12よりも上流側に配置したので、排気ガスの熱による吸着器14へのNHの回収が不十分であるときは、電気ヒータ20を作動させることで、電気ヒータ20により加熱された排気ガスの熱を反応材17に与えることができる。これにより、反応材17からNHが脱離する再生反応を促進させることができ、吸着器14へのNHの回収が不十分になることを防止できる。 Furthermore, since the electric heater 20 is disposed upstream of the reactor 12, when the recovery of NH 3 to the adsorber 14 due to the heat of the exhaust gas is insufficient, the electric heater 20 is operated to Heat of the exhaust gas heated by the heater 20 can be applied to the reaction material 17. Thereby, the regeneration reaction in which NH 3 is desorbed from the reaction material 17 can be promoted, and the recovery of NH 3 to the adsorber 14 can be prevented from becoming insufficient.
 また、吸着器14のNH吸着量を推定し、吸着器14のNH吸着量が所定量よりも少ないときは、電気ヒータ20が自動的にONになり、電気ヒータ20により排気ガスが加熱される。これにより、化学蓄熱の再生を容易に且つ確実に促進させることができる。一方、吸着器14のNH吸着量が所定量以上であるときは、電気ヒータ20が自動的にOFFになるため、電気ヒータ20を無駄にON状態にしなくて済み、消費電力を低減することができる。 Moreover, estimates the adsorbed NH 3 amount of adsorber 14, when adsorbed NH 3 amount of adsorber 14 is smaller than the predetermined amount, the electric heater 20 is automatically turned ON, the exhaust gas is heated by the electric heater 20 Is done. Thereby, reproduction | regeneration of chemical heat storage can be promoted easily and reliably. On the other hand, when the NH 3 adsorption amount of the adsorber 14 is equal to or larger than a predetermined amount, the electric heater 20 is automatically turned off, so that the electric heater 20 does not need to be turned on unnecessarily, and power consumption is reduced. Can do.
 なお、本発明は、上記実施形態には限定されない。例えば、上記実施形態では、電気ヒータ20が反応器12よりも上流側において反応器12に隣り合って配置されているが、電気ヒータ20の配置箇所としては、特にそれに限られず、電気ヒータ20を反応器12よりも下流側において反応器12に隣り合って配置してもよい。この場合にも、化学蓄熱による排気ガスの加熱(暖機)を電気ヒータ20によってアシストすることができる。 Note that the present invention is not limited to the above embodiment. For example, in the above embodiment, the electric heater 20 is disposed adjacent to the reactor 12 on the upstream side of the reactor 12, but the arrangement location of the electric heater 20 is not particularly limited thereto. You may arrange | position adjacent to the reactor 12 in the downstream rather than the reactor 12. FIG. Also in this case, heating of the exhaust gas by chemical heat storage (warming up) can be assisted by the electric heater 20.
 また、上記実施形態では、コントローラ27による加熱アシスト制御処理において、バルブ15を開いてから第1所定時間及び第2所定時間が経過したか否かを判断しているが、そのような判断手順については特に実行しなくてもよい。 In the above embodiment, in the heating assist control process by the controller 27, it is determined whether or not the first predetermined time and the second predetermined time have elapsed since the valve 15 was opened. Does not have to be executed.
 さらに、上記実施形態では、NHと組成式MXaで表される反応材17とを化学反応させて熱を発生させているが、反応媒体としては、特にNHには限られず、例えばCOまたはHO等を使用してもよい。反応媒体としてCOを使用する場合、COと化学反応する反応材17としては、MgO、CaO、BaO、Ca(OH)、Mg(OH)、Fe(OH)、Fe(OH)、FeO、FeまたはFe等を使用することができる。反応媒体としてHOを使用する場合、HOと化学反応する反応材17としては、CaO、MnO、CuOまたはAl等を使用することができる。 Furthermore, in the above embodiment, NH 3 and the reaction material 17 represented by the composition formula MXa are chemically reacted to generate heat. However, the reaction medium is not particularly limited to NH 3 , for example, CO 2. Alternatively, H 2 O or the like may be used. When CO 2 is used as the reaction medium, the reactant 17 that chemically reacts with CO 2 includes MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , and Fe (OH). 3 , FeO, Fe 2 O 3 or Fe 3 O 4 can be used. When H 2 O is used as the reaction medium, CaO, MnO, CuO, Al 2 O 3 or the like can be used as the reaction material 17 that chemically reacts with H 2 O.
 また、上記実施形態では、反応器12が熱交換器3の外筒9の周囲に配置されているが、本発明は、排気管の内部において反応材を有する反応器と熱交換器とが複数ずつ交互に積層されてなる化学蓄熱装置にも適用可能である。この場合、電気ヒータを全ての反応器に隣り合って配置してもよいし、或いは電気ヒータを任意の反応器のみに隣り合って配置してもよい。 Moreover, in the said embodiment, although the reactor 12 is arrange | positioned around the outer cylinder 9 of the heat exchanger 3, this invention has multiple reactors and heat exchangers which have a reaction material inside an exhaust pipe. The present invention is also applicable to chemical heat storage devices that are alternately stacked one by one. In this case, the electric heater may be disposed adjacent to all the reactors, or the electric heater may be disposed adjacent to only an arbitrary reactor.
 また、上記実施形態は、熱交換器3を介して排気ガスを加熱する化学蓄熱装置11であるが、本発明は、排気管を介して排気ガスを加熱する化学蓄熱装置にも適用可能である。また、本発明は、ガソリンエンジンから排出される排気ガスを加熱する化学蓄熱装置にも適用可能である。さらに、本発明は、排気ガス以外にも、例えばオイルを加熱する化学蓄熱装置にも適用可能である。 Moreover, although the said embodiment is the chemical thermal storage apparatus 11 which heats exhaust gas via the heat exchanger 3, this invention is applicable also to the chemical thermal storage apparatus which heats exhaust gas via an exhaust pipe. . The present invention is also applicable to a chemical heat storage device that heats exhaust gas discharged from a gasoline engine. Furthermore, the present invention can be applied to a chemical heat storage device that heats oil, for example, in addition to exhaust gas.
 また、本発明は、排気ガス等の流体を加熱する化学蓄熱装置には限られず、DOC4等の触媒を加熱する化学蓄熱装置にも適用可能である。この場合には、電気ヒータ20により触媒が加熱される。 Further, the present invention is not limited to a chemical heat storage device that heats a fluid such as exhaust gas, and can also be applied to a chemical heat storage device that heats a catalyst such as DOC4. In this case, the catalyst is heated by the electric heater 20.
 さらに、本発明は、エンジンの排気系以外、例えばオイルの流通系に設けられた配管等を加熱するものにも適用可能である。更に、本発明は、エンジンの排気系以外、例えばエンジンオイル、変速機オイル、冷却水、又は空気等の車両における種々の熱媒体を加熱するものであってもよい。このとき、化学蓄熱装置の反応器を熱媒体が流れる熱媒体流路の外周部(外周部の一部又は外周部の全周)に配置して、熱媒体流路そのものを加熱してもよい。このとき、電気ヒータは、熱媒体流路の反応器が設けられた部分よりも上流側または下流側において、熱媒体流路の内部もしくは熱媒体流路の外周部に配置される。 Furthermore, the present invention can be applied to an apparatus other than the engine exhaust system, for example, heating pipes provided in an oil circulation system. In addition to the engine exhaust system, the present invention may heat various heat media in vehicles such as engine oil, transmission oil, cooling water, or air. At this time, the reactor of the chemical heat storage device may be disposed on the outer periphery (a part of the outer periphery or the entire periphery of the outer periphery) of the heat medium channel through which the heat medium flows to heat the heat medium channel itself. . At this time, the electric heater is disposed inside the heat medium flow channel or on the outer periphery of the heat medium flow channel on the upstream side or the downstream side of the portion of the heat medium flow channel where the reactor is provided.
 また、熱媒体が流れる熱媒体流路内に熱交換器を配置して、熱媒体流路の外周部に配置した反応器で、その熱交換器を介して熱媒体を加熱してもよい。このとき、電気ヒータは、熱媒体流路の反応器が設けられた部分よりも上流側または下流側において、熱媒体流路の内部もしくは熱媒体流路の外周部に配置される。 Alternatively, a heat exchanger may be disposed in the heat medium flow path through which the heat medium flows, and the heat medium may be heated via the heat exchanger in a reactor disposed on the outer periphery of the heat medium flow path. At this time, the electric heater is disposed inside the heat medium flow channel or on the outer periphery of the heat medium flow channel on the upstream side or the downstream side of the portion of the heat medium flow channel where the reactor is provided.
 また、蓄熱材を備える反応部と熱交換フィンなどの熱交換部とを交互に複数個重ねて配置した熱交換部一体型の反応器を構成し、その熱交換部一体型の反応器を熱媒体が貯蔵されている熱媒体貯蔵部内や熱媒体が流れる熱媒体流路上に配置してもよい。このとき、電気ヒータは、熱媒体流路の反応器が設けられた部分よりも上流側または下流側において、熱媒体流路の内部もしくは熱媒体流路の外周部に配置される。 In addition, a heat exchange unit integrated reactor is configured in which a plurality of reaction units including heat storage materials and heat exchange units such as heat exchange fins are alternately stacked, and the heat exchange unit integrated reactor is heated. You may arrange | position in the heat-medium storage part in which the medium is stored, and the heat-medium flow path through which a heat-medium flows. At this time, the electric heater is disposed inside the heat medium flow channel or on the outer periphery of the heat medium flow channel on the upstream side or the downstream side of the portion of the heat medium flow channel where the reactor is provided.
 さらに、本発明は、エンジン以外に配置される化学蓄熱装置にも適用可能である。 Furthermore, the present invention is also applicable to a chemical heat storage device arranged other than the engine.
 11…化学蓄熱装置、12…反応器、13…NH供給管、14…吸着器(貯蔵器)、15…バルブ、17…反応材、20…電気ヒータ、23,24…温度センサ(温度検出部)、27…コントローラ(第1ヒータ制御部、バルブ制御部、推定部、第2ヒータ制御部)。 11 ... chemical heat storage device, 12 ... reactor, 13 ... NH 3 supply pipe, 14 ... adsorber (reservoir), 15 ... valve, 17 ... reaction member, 20 ... electric heater, 23, 24 ... temperature sensor (temperature detection Part), 27... Controller (first heater control unit, valve control unit, estimation unit, second heater control unit).

Claims (6)

  1.  反応媒体を貯蔵する貯蔵器と、
     前記反応媒体との化学反応により発熱すると共に蓄熱により前記反応媒体を脱離する反応材を有し、前記貯蔵器と協働して加熱対象を加熱する反応器と、
     前記貯蔵器と前記反応器との間で前記反応媒体が流通可能となるように前記貯蔵器と前記反応器とを接続する供給管と、
     前記反応器に隣り合って配置され、前記加熱対象を加熱する電気ヒータと、を備えることを特徴とする化学蓄熱装置。
    A reservoir for storing the reaction medium;
    A reactor that generates heat by a chemical reaction with the reaction medium and desorbs the reaction medium by storing heat, and that heats the object to be heated in cooperation with the reservoir;
    A supply pipe connecting the reservoir and the reactor so that the reaction medium can flow between the reservoir and the reactor;
    An electrical heater arranged adjacent to the reactor and heating the heating target.
  2.  前記加熱対象の温度を検出する温度検出部と、
     前記反応材を発熱させるときに、前記電気ヒータのON/OFFを制御する第1ヒータ制御部と、を更に備え、
     前記第1ヒータ制御部は、前記温度検出部により検出された前記加熱対象の温度が所定温度よりも低いときに、前記電気ヒータをONにするように制御することを特徴とする請求項1記載の化学蓄熱装置。
    A temperature detector for detecting the temperature of the heating target;
    A first heater control unit that controls ON / OFF of the electric heater when the reaction material generates heat; and
    The first heater control unit controls the electric heater to be turned on when the temperature of the heating target detected by the temperature detection unit is lower than a predetermined temperature. Chemical heat storage device.
  3.  前記供給管に配設され、前記貯蔵器と前記反応器との間の流路を開閉させるバルブと、
     前記バルブの開閉を制御するバルブ制御部と、を更に備え、
     前記第1ヒータ制御部は、前記バルブ制御部により前記バルブを開くように制御してから第1所定時間を経過した後に、前記温度検出部により検出された前記加熱対象の温度が前記所定温度よりも低いときに、前記電気ヒータをONにするように制御することを特徴とする請求項2記載の化学蓄熱装置。
    A valve disposed in the supply pipe for opening and closing a flow path between the reservoir and the reactor;
    A valve control unit for controlling the opening and closing of the valve,
    The first heater control unit controls the temperature of the heating target detected by the temperature detection unit to be higher than the predetermined temperature after a first predetermined time has elapsed since the valve control unit controlled to open the valve. 3. The chemical heat storage device according to claim 2, wherein the electric heater is controlled to be turned on when the temperature is low.
  4.  前記第1ヒータ制御部は、前記バルブ制御部により前記バルブを開くように制御してから前記第1所定時間よりも長い第2所定時間を経過した後に、前記電気ヒータをOFFにするように制御することを特徴とする請求項3記載の化学蓄熱装置。 The first heater control unit controls the electric heater to be turned off after a second predetermined time longer than the first predetermined time has elapsed since the valve control unit controlled to open the valve. The chemical heat storage device according to claim 3.
  5.  前記加熱対象は流体であり、
     前記電気ヒータは、前記反応器よりも前記流体が流れる方向の上流側において前記反応器に隣り合って配置されていることを特徴とする請求項1~4のいずれか一項記載の化学蓄熱装置。
    The heating object is a fluid,
    The chemical heat storage device according to any one of claims 1 to 4, wherein the electric heater is disposed adjacent to the reactor on the upstream side in the direction in which the fluid flows than the reactor. .
  6.  前記貯蔵器内の前記反応媒体の量を推定する推定部と、
     前記反応材から前記反応媒体を脱離させるときに、前記電気ヒータのON/OFFを制御する第2ヒータ制御部とを更に備え、
     前記第2ヒータ制御部は、前記推定部により推定された前記貯蔵器内の前記反応媒体の量が所定量よりも少ないときには、前記電気ヒータをONにするように制御し、前記推定部により推定された前記貯蔵器内の前記反応媒体の量が前記所定量以上であるときには、前記電気ヒータをOFFにするように制御することを特徴とする請求項5記載の化学蓄熱装置。
    An estimation unit for estimating an amount of the reaction medium in the reservoir;
    A second heater control unit that controls ON / OFF of the electric heater when the reaction medium is desorbed from the reaction material;
    The second heater control unit controls to turn on the electric heater when the amount of the reaction medium in the reservoir estimated by the estimation unit is smaller than a predetermined amount, and the estimation unit estimates 6. The chemical heat storage device according to claim 5, wherein when the amount of the reaction medium in the stored reservoir is equal to or greater than the predetermined amount, the electric heater is controlled to be turned off.
PCT/JP2015/078104 2014-10-09 2015-10-02 Chemical heat storage apparatus WO2016056488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016553084A JPWO2016056488A1 (en) 2014-10-09 2015-10-02 Chemical heat storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-207792 2014-10-09
JP2014207792 2014-10-09

Publications (1)

Publication Number Publication Date
WO2016056488A1 true WO2016056488A1 (en) 2016-04-14

Family

ID=55653099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078104 WO2016056488A1 (en) 2014-10-09 2015-10-02 Chemical heat storage apparatus

Country Status (2)

Country Link
JP (1) JPWO2016056488A1 (en)
WO (1) WO2016056488A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025728A (en) * 2015-07-17 2017-02-02 株式会社豊田中央研究所 Exhaust emission control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130405A (en) * 1997-10-28 1999-05-18 Ngk Insulators Ltd Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device
JP2014085093A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Heat storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130405A (en) * 1997-10-28 1999-05-18 Ngk Insulators Ltd Reforming reaction device, catalytic device, exothermic catalytic body used for the same and operation of reforming reaction device
JP2014085093A (en) * 2012-10-26 2014-05-12 Toyota Industries Corp Heat storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025728A (en) * 2015-07-17 2017-02-02 株式会社豊田中央研究所 Exhaust emission control device

Also Published As

Publication number Publication date
JPWO2016056488A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP5954123B2 (en) Exhaust gas purification system
WO2016056488A1 (en) Chemical heat storage apparatus
JP6070402B2 (en) Chemical heat storage device
JP6493338B2 (en) Chemical heat storage device
JP2015121382A (en) Chemical heat storage device
WO2016072331A1 (en) Chemical heat storage apparatus
JP6007859B2 (en) Chemical heat storage device
JP6131777B2 (en) Chemical heat storage device
JP6111905B2 (en) Chemical heat storage device
JP6102527B2 (en) Chemical heat storage device
WO2016084564A1 (en) Engine exhaust purification control method
WO2016163289A1 (en) Chemical heat-storage device
WO2016163167A1 (en) Chemical heat-storage device
WO2015174243A1 (en) Chemical heat storage device
JP2015081519A (en) Exhaust gas purification system
JP2016148482A (en) Chemical heat storage device
WO2017013907A1 (en) Chemical heat storage device
WO2015174291A1 (en) Chemical heat storage apparatus
JP2017072310A (en) Chemical heat storage device
WO2017110405A1 (en) Chemical heat storage apparatus
JP2015183635A (en) chemical heat storage device
JP6424716B2 (en) Chemical heat storage device
JP2015218957A (en) Chemical heat storage device
JP2015052442A (en) Chemical heat storage device
JP2015165178A (en) chemical heat storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848526

Country of ref document: EP

Kind code of ref document: A1