WO2015174243A1 - Chemical heat storage device - Google Patents

Chemical heat storage device Download PDF

Info

Publication number
WO2015174243A1
WO2015174243A1 PCT/JP2015/062409 JP2015062409W WO2015174243A1 WO 2015174243 A1 WO2015174243 A1 WO 2015174243A1 JP 2015062409 W JP2015062409 W JP 2015062409W WO 2015174243 A1 WO2015174243 A1 WO 2015174243A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heater
heat storage
engine
exhaust gas
Prior art date
Application number
PCT/JP2015/062409
Other languages
French (fr)
Japanese (ja)
Inventor
康 佐竹
野口 幸宏
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2015174243A1 publication Critical patent/WO2015174243A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a chemical heat storage device.
  • a catalyst or the like is provided to purify environmental pollutants (HC, CO, NOx, etc.) contained in exhaust gas discharged from the engine.
  • the catalyst has an optimum temperature (activation temperature) for activating the purification capacity.
  • activation temperature When starting the engine, the temperature of the exhaust gas is low, and it takes time to reach the activation temperature of the catalyst. Therefore, there is a case where a heating device for warming up the catalyst is provided in order to raise the temperature in a short time to the activation temperature of the catalyst when the temperature of the exhaust gas is low at the time of starting the engine.
  • this heating device there is a chemical heat storage device using reaction heat of a chemical reaction between a reaction medium and a heat storage material in order to reduce energy loss (fuel consumption loss) and warm up.
  • a chemical heat storage device for example, in Patent Document 1, a heat storage body storage container and a water storage container are provided, and steam is supplied between the heat storage body storage container and the water storage container by a steam supply / discharge device (pipe, valve).
  • a chemical heat storage device is disclosed in which valves are opened and closed according to the temperature of the heat storage body stored in the heat storage body storage container and the temperature of the water stored in the water storage container.
  • the valve In the chemical heat storage device provided in the exhaust system, when the engine is stopped, the valve is closed so that the reaction medium stored in the storage does not move to the heater in which the heat storage material is arranged. Therefore, normally, when the engine stops, the valve is closed. However, when the temperature of the heating target portion where the heater is disposed is high when the engine is stopped, the reaction medium is separated from the heat storage material even after the engine is stopped, and the reaction medium is generated in the heater. At this time, if the reaction medium cannot move from the heater to the reservoir with the valve closed, the pressure in the heater increases and an overpressure state occurs.
  • a chemical heat storage device is a chemical heat storage device that is mounted on an object to be mounted using an engine as a drive source and heats the object to be heated in the object to be mounted, and that chemically reacts with a reaction medium.
  • a heat storage material that generates heat a heater that heats an object to be heated, a reservoir that stores a reaction medium, a heater and a reservoir, and a connection pipe through which the reaction medium flows, and a connection pipe
  • An opening / closing valve provided, a control unit for controlling opening / closing of the opening / closing valve, and a temperature acquisition unit for acquiring the temperature of the heater, the control unit of the heater acquired by the temperature acquisition unit when the engine is stopped
  • the open / close valve remains open until the temperature falls below the threshold.
  • the mounting object on which this chemical heat storage device is mounted has an engine as a drive source and has a heating object that requires heating.
  • the chemical heat storage device includes a heater disposed at a location where the object to be heated can be heated and a reservoir disposed at other locations, and the heater and the reservoir are connected by a connecting pipe.
  • An opening / closing valve is provided in the connecting pipe, and the opening / closing valve is opened when the reaction medium is supplied from the reservoir to the heater or when the reaction medium is recovered from the heater.
  • the control unit performs opening / closing control of the opening / closing valve.
  • the on-off valve When heating (warm-up) of the object to be heated is required, the on-off valve is opened, so in the heater, when the reaction medium is supplied from the reservoir, the heat storage material and the reaction medium react chemically to generate heat. And heat the object to be heated.
  • the heater When the engine is operated and the temperature of the object to be heated increases, the heater is warmed up and the heat storage material and the reaction medium are separated.
  • the on-off valve is opened, the reaction medium moves from the heater to the reservoir. In the reservoir, the reaction medium is recovered and stored.
  • the temperature acquisition unit acquires the temperature of the heater (and thus the heat storage material), and when the engine stops, the opening / closing valve is opened until the acquired temperature of the heater falls below a threshold value.
  • This threshold value is a temperature threshold value for determining whether or not the reaction medium is separated from the heat storage material in the heater and the reaction medium can still be recovered from the heater. Therefore, when the temperature of the heater is higher than the threshold value, the reaction medium may be separated from the heat storage material in the heater and the reaction medium may be recovered. In this case, the open state of the on-off valve is maintained, so that the reaction medium can move from the heater to the reservoir via the connecting pipe. Therefore, even if the reaction medium is separated from the heat storage material in the high-temperature heater after the engine is stopped, the reaction medium can be recovered by the reservoir, and the pressure in the heater does not increase. Thus, when the engine is stopped, the chemical heat storage device can avoid the overpressure state of the heater by maintaining the open state of the on-off valve until the temperature of the heater becomes equal to or lower than the threshold value.
  • the temperature of the heater may be directly detected, or the temperature at a location where the temperature of the heater can be estimated is detected, and the temperature of the location is detected.
  • the temperature of the heater may be estimated and acquired, or the temperature at that point may be used as it is.
  • the mounted object may be anything that uses an engine as a drive source and has a heated object that requires heating, such as a vehicle equipped with an engine, a ship equipped with an engine, and a generator equipped with an engine.
  • the object to be heated varies depending on the object to be mounted. For example, in the case of a vehicle on which an engine is mounted, the object to be heated is a heat exchanger or a catalyst through which exhaust gas from the engine flows.
  • the threshold value is set at a temperature that takes into account a margin on the side lower than the temperature at which the reaction medium separates from the heat storage material.
  • the reaction medium is separated from the heat storage material when the temperature of the heat storage material is higher than the separation temperature determined by the combination of the heat storage material and the reaction medium.
  • the temperature of the heater (heat storage material) acquired by the temperature acquisition unit varies depending on the detection accuracy when detecting the temperature, and when estimating from the temperature detected at other locations There are variations depending on the estimation accuracy. Therefore, if the determination is performed using the separation temperature as a threshold value as it is, the determination may not be performed with high accuracy. Therefore, in order to improve the determination accuracy, the threshold value is a temperature threshold value in which a margin temperature is added to the lower side (safe side) than the above separation temperature.
  • the temperature serving as the margin may be set in consideration of the variation in temperature acquired by the temperature acquisition unit as described above.
  • the temperature acquisition unit detects the temperature of the exhaust gas discharged from the engine, and acquires the temperature of the heater from the detected temperature of the exhaust gas.
  • the temperature acquisition unit acquires the temperature of the heater from the detected temperature of the exhaust gas by using the temperature detection of the exhaust gas.
  • the temperature of the heater may be estimated from the temperature of the exhaust gas, or the temperature of the exhaust gas may be used as it is as the temperature of the heater.
  • a chemical heat storage device is a chemical heat storage device that is mounted on a vehicle and heats an object to be heated in the vehicle, and has a heat storage material that chemically reacts with a reaction medium to generate heat.
  • a heater for heating the object to be heated a reservoir for storing the reaction medium, a connection pipe through which the reaction medium flows, the open / close valve provided in the connection pipe, and the open / close valve.
  • the vehicle on which this chemical heat storage device is mounted has an object to be heated that requires heating.
  • the chemical heat storage device includes a heater disposed at a location where the object to be heated can be heated and a reservoir disposed at other locations, and the heater and the reservoir are connected by a connecting pipe.
  • An opening / closing valve is provided in the connecting pipe, and the opening / closing valve is opened when the reaction medium is supplied from the reservoir to the heater or when the reaction medium is recovered from the heater.
  • the control unit performs opening / closing control of the opening / closing valve.
  • the on-off valve When heating (warm-up) of the object to be heated is required, the on-off valve is opened, so in the heater, when the reaction medium is supplied from the reservoir, the heat storage material and the reaction medium react chemically to generate heat. And heat the object to be heated. When the temperature of the object to be heated increases, the heater is warmed and the heat storage material and the reaction medium are separated. At this time, since the on-off valve is opened, the reaction medium moves from the heater to the reservoir. In the reservoir, the reaction medium is recovered and stored.
  • the temperature acquisition unit acquires the temperature of the heater (and thus the heat storage material), and when the vehicle drive source stops, the temperature of the acquired heater is opened or closed until it falls below a threshold value. Keep the valve open.
  • This threshold value is a temperature threshold value for determining whether or not the reaction medium is separated from the heat storage material in the heater and the reaction medium can still be recovered from the heater. Therefore, when the temperature of the heater is higher than the threshold value, the reaction medium may be separated from the heat storage material in the heater and the reaction medium may be recovered. In this case, the open state of the on-off valve is maintained, so that the reaction medium can move from the heater to the reservoir via the connecting pipe. Therefore, even if the reaction medium is separated from the heat storage material in the high-temperature heater after the driving source of the vehicle is stopped, the reaction medium can be recovered by the storage and the pressure in the heater does not increase. Thus, the chemical heat storage device can avoid an overpressure state of the heater by maintaining the open state of the on-off valve until the temperature of the heater becomes equal to or lower than the threshold when the vehicle drive source is stopped.
  • the threshold value is set at a temperature that takes into account a margin on the side lower than the temperature at which the reaction medium separates from the heat storage material.
  • the reaction medium is separated from the heat storage material when the temperature of the heat storage material is higher than the separation temperature determined by the combination of the heat storage material and the reaction medium.
  • the temperature of the heater (heat storage material) acquired by the temperature acquisition unit varies depending on the detection accuracy when detecting the temperature, and when estimating from the temperature detected at other locations There are variations depending on the estimation accuracy. Therefore, if the determination is performed using the separation temperature as a threshold value as it is, the determination may not be performed with high accuracy. Therefore, in order to improve the determination accuracy, the threshold value is a temperature threshold value in which a margin temperature is added to the lower side (safe side) than the above separation temperature.
  • the temperature serving as the margin may be set in consideration of the variation in temperature acquired by the temperature acquisition unit as described above.
  • the heater is a heater that heats the heating object on the path of the exhaust gas discharged from the engine of the vehicle, and the temperature acquisition unit is the exhaust discharged from the engine.
  • the temperature of the gas is detected, and the temperature of the heater is obtained from the detected temperature of the exhaust gas.
  • the temperature acquisition unit acquires the temperature of the heater from the detected temperature of the exhaust gas by using the temperature detection of the exhaust gas.
  • the temperature of the heater may be estimated from the temperature of the exhaust gas, or the temperature of the exhaust gas may be used as it is as the temperature of the heater.
  • the heater is a heater that heats the heating target on the path of the vehicle heat medium
  • the temperature acquisition unit determines the temperature of the heat medium heated by the heating target. And detecting the temperature of the heater from the detected temperature of the heat medium.
  • the temperature acquisition unit acquires the temperature of the heater from the temperature of the heat medium heated by the object to be heated instead of providing a temperature sensor in the heater.
  • the temperature of the heater may be estimated from the temperature of the heat medium, or the temperature of the heat medium may be used as it is as the temperature of the heater.
  • This chemical heat storage device can avoid an overpressure state of the heater when the engine is stopped.
  • the chemical heat storage device is applied to a chemical heat storage device provided in an exhaust gas purification system provided in an exhaust system of a vehicle engine.
  • An exhaust gas purification system is a system that purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from an engine (particularly a diesel engine), and is a catalyst DOC [Diesel Oxidation Catalyst]. , SCR [Selective Catalytic Reduction], ASC [Ammonia SlipataCatalyst] and DPF [Diesel Particulate Filter] of the filter.
  • the exhaust gas purification system also includes a chemical heat storage device for warming up, and the chemical heat storage device is provided in a heat exchanger disposed between the engine and the DOC.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas purification system 1 according to an embodiment.
  • the exhaust gas purification system 1 includes a heat exchanger 4, a diesel oxidation catalyst (DOC) 5, a diesel exhaust particulate removal filter (DPF) from the upstream side to the downstream side of the exhaust pipe 3 connected to the exhaust side of the engine 2. 6.
  • a selective reduction catalyst (SCR) 7 and an ammonia slip catalyst (ASC) 8 are provided.
  • Each part where these heat exchangers 4, DOC5, DPF6, SCR7, and ASC8 are arranged is larger than the diameter of the exhaust pipe 3 where the parts are not arranged.
  • Exhaust gas discharged from the engine 2 flows inside the exhaust pipe 3 and the heat exchanger 4, DOC5, DPF6, SCR7, and ASC8, and the upstream side and the downstream side are defined by the direction in which the exhaust gas flows.
  • the heat exchanger 4 is a device that exchanges (transmits) heat between exhaust gas discharged from the engine 2 and a heater 11 described later.
  • the heat exchanger 4 is formed of a metal material having high thermal conductivity, and the inside of the outer cylinder has a honeycomb structure.
  • the heat exchanger 4 is not limited to the honeycomb structure, and a known heat exchange structure can be applied.
  • the DOC 5 is a catalyst that oxidizes HC, CO, and the like contained in the exhaust gas.
  • the DPF 6 is a filter that collects and removes PM contained in the exhaust gas.
  • SCR 7 When SCR 7 is supplied with ammonia (NH 3 ) or urea water (hydrolyzed into ammonia) to the upstream side of the exhaust pipe 3 by the injector 7a, it chemically reacts with NOx contained in the exhaust gas. This is a catalyst that reduces and purifies NOx.
  • the ASC 8 is a catalyst that oxidizes ammonia that has passed through the SCR 7 and has flowed downstream.
  • Each of the catalysts 5, 7, 8 has a temperature range (that is, an activation temperature) that can exhibit a purification ability against environmental pollutants.
  • the temperature of the exhaust gas immediately after being discharged from the engine 2 is relatively low and may be lower than its activation temperature.
  • the temperature at each of the catalysts 5, 7, and 8 needs to be quickly brought to the active temperature in order to exert the purification capability at each of the catalysts 5, 7, and 8.
  • the exhaust gas purification system 1 includes a chemical heat storage device 10 that heats the most upstream heat exchanger 4 (exhaust gas flowing inside) and warms up the catalyst.
  • the chemical heat storage device 10 is a chemical heat storage device that warms up a heating target such as a catalyst without external energy. That is, the chemical heat storage device 10 stores the reaction medium separated from the heat storage material by receiving heat from the object to be heated, and supplies the stored reaction medium to the heat storage material when necessary. A chemical reaction is performed, and an object to be heated is heated by using reaction heat at the time of the chemical reaction. That is, it can be said that the chemical heat storage device 10 stores heat from the heating object and supplies it again to the heating object.
  • the chemical heat storage device 10 heats the heat exchanger 4 disposed on the upstream side of the DOC 5 that is the catalyst located on the most upstream side. Exhaust gas flows inside the heat exchanger 4 and is configured to exchange heat with the exhaust gas.
  • the chemical heat storage device 10 on the most upstream side of the pipe through which the exhaust gas flows (the side close to the engine 2), the exhaust gas in a state where the temperature at the time of starting the engine 2 is not so high is converted into a heat exchanger.
  • the temperature can be quickly raised before reaching the catalyst (DOC5, SCR7, ASC8) disposed downstream of the No.4.
  • the heat exchanger 4 corresponds to the heating object described in the claims.
  • the chemical heat storage device 10 includes a heater 11, a storage 12, a connection pipe 13, a valve 14, and the like, and is controlled by a controller 15.
  • the heater 11 corresponds to the heater described in the claims
  • the storage 12 corresponds to the reservoir described in the claims
  • the connecting pipe 13 corresponds to the claims.
  • the valve 14 corresponds to an on-off valve described in the claims
  • the controller 15 corresponds to a control unit described in the claims.
  • the heater 11 is provided on the entire circumference of the outer periphery of the heat exchanger 4, and the cross-sectional shape is an annular shape surrounding the heat exchanger 4.
  • the heater 11 has a heat storage material 11a that generates heat by a chemical reaction with the reaction medium, and the heat storage material 11a is housed in a casing.
  • ammonia is used as the reaction medium.
  • the supplied ammonia and the heat storage material 11a undergo a chemical reaction (chemical adsorption or coordination bond) to generate heat.
  • the heater 11 when the heat storage material 11a is heated to a predetermined temperature or more by receiving exhaust heat of the exhaust gas, the heat storage material 11a and ammonia are separated (desorbed), and ammonia is released, making it possible to recover the ammonia.
  • This predetermined temperature is determined by the combination of the heat storage material 11a used in the heater 11 and the reaction medium.
  • the heat storage material 11 a is disposed so as to be in contact with the entire circumference of the outer peripheral surface of the outer cylinder of the heat exchanger 4.
  • a material that generates heat by chemically reacting with ammonia as a reaction medium and can raise the exhaust gas passing through the heat exchanger 4 to the activation temperature of the catalyst (DOC5 or the like) is used.
  • the additive which improves thermal conductivity with the thermal storage material 11a.
  • the additive include carbon fibers, carbon beads, SiC beads, metal beads such as Cu, Ag, Ni, Ci—Cr, Al, Fe, and stainless steel, polymer beads, and polymer fibers.
  • the casing is disposed so as to cover the entire outer peripheral surface of the heater 11 and the entire upstream end and downstream end of the heater 11, and a sealed space between the outer peripheral surface of the outer cylinder of the heat exchanger 4.
  • the heat storage material 11a is enclosed therein.
  • the storage 12 includes an adsorbent 12a capable of storing ammonia as a reaction medium.
  • adsorbent 12a for example, activated carbon capable of storing ammonia by physical adsorption is used.
  • the ammonia desorbed from the heat storage material 11a in response to exhaust heat of the exhaust gas is stored in a state of being physically adsorbed on the adsorbent 12a, and ammonia is separated from the adsorbent 12a and supplied to the heater 11.
  • the adsorbent 12a is not limited to activated carbon, and for example, mesoporous material having mesopores such as mesoporous silica, mesoporous carbon and mesoporous alumina, or zeolite and silica gel may be used.
  • mesoporous material having mesopores such as mesoporous silica, mesoporous carbon and mesoporous alumina, or zeolite and silica gel may be used.
  • the connecting pipe 13 is a pipe that connects the heater 11 and the storage 12, and serves as a flow path through which a reaction medium (ammonia) flows between the heater 11 and the storage 12.
  • the valve 14 is disposed in the middle of the connection pipe 13 and opens and closes the ammonia flow path between the heater 11 and the storage 12. When the valve 14 is opened, ammonia can be transferred between the heater 11 and the storage 12 via the connecting pipe 13.
  • the controller 15 performs opening / closing control of the valve 14.
  • the valve 14 is an electromagnetic normally closed valve and opens when a current is passed.
  • the valve 14 may be a non-electromagnetic valve.
  • the controller 15 includes a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], and the like, and is a control unit that controls the chemical heat storage device 10.
  • Various sensors such as a temperature sensor 16 and an ignition switch 17 are connected to the controller 15, and information necessary for control is appropriately acquired from the plurality of sensors. Further, the controller 15 is connected to the valve 14, performs each process for controlling the chemical heat storage device 10 based on the acquired information, and performs opening / closing control of the valve 14 as necessary. Before describing specific processing in the controller 15, the temperature sensor 16 and the ignition switch 17 will be described.
  • the controller 15 may be dedicated to the chemical heat storage device 10, or may be incorporated as a function of an ECU such as an engine ECU [Electronic Control Unit].
  • the temperature sensor 16 is a sensor that detects the temperature of the exhaust gas flowing in the exhaust pipe 3 between the engine 2 and the heat exchanger 4.
  • the temperature sensor 16 detects the temperature of the exhaust gas at regular intervals, and transmits the detected temperature information to the controller 15.
  • the temperature of the exhaust gas detected by the temperature sensor 16 is substituted for the temperature of the heater 11 (and thus the heat storage material 11a), and is used in the processing of the controller 15 described below.
  • the temperature of the exhaust gas detected by the temperature sensor 16 may be converted by a predetermined conversion formula to estimate the temperature of the heater 11, and the estimated temperature may be used in the processing of the controller 15 below.
  • the temperature sensor 16 corresponds to the temperature acquisition unit described in the claims.
  • the volume of the heat storage material 11a provided in the heater 11 expands due to a chemical reaction with ammonia. Therefore, for example, when a temperature sensor is provided inside the heater 11, it is necessary to prevent the temperature sensor from being damaged by receiving pressure due to expansion of the heat storage material 11a.
  • the heater 11 forms a sealed space so that the heat storage material 11a enclosed in the casing can repeatedly react with ammonia. Therefore, when a temperature sensor is provided inside the heater 11, it is necessary to sufficiently ensure the airtightness of the sealed space.
  • a heat sensor is provided.
  • a temperature sensor 16 that detects the temperature of the exhaust gas upstream of the exchanger 4 (heater 11) is used instead.
  • the temperature of the exhaust gas necessary for combustion control is acquired by the temperature sensor 16. That is, the temperature sensor 16 that detects the temperature of the exhaust gas is an essential sensor. Therefore, by using this temperature sensor 16 also for controlling the chemical heat storage device 10, it is not necessary to separately provide a temperature sensor for acquiring the temperature of the heater 11, and an increase in cost and the number of parts can be suppressed. .
  • the ignition switch 17 is a switch for starting / stopping the engine 2, and is a switch for the vehicle driver to select any one of OFF, accessory ON, ignition ON, and engine start modes.
  • the ignition switch 17 transmits the selected switch information to the controller 15.
  • the engine ECU stops the engine 2 in response to the ignition switch 17 being turned OFF. Therefore, it can be determined from the switch information of the ignition switch 17 whether the engine 2 has stopped.
  • the controller 15 determines whether the temperature of the exhaust gas upstream of the heat exchanger 4 detected by the temperature sensor 16 during operation of the engine 2 is equal to or lower than the warm-up start temperature. When the controller 15 determines that the temperature of the exhaust gas is equal to or lower than the warm-up start temperature, the controller 15 supplies a current to the valve 14 to open the valve 14.
  • the warm-up start temperature is a temperature that requires warm-up in the exhaust gas purification system 1.
  • the warm-up start temperature is set based on the activation temperature of the catalyst (such as DOC5).
  • the controller 15 determines whether or not the temperature of the exhaust gas detected by the temperature sensor 16 (corresponding to the temperature of the heater 11 (heat storage material 11a)) is higher than the ammonia recoverable temperature. judge. When the controller 15 determines that the temperature of the exhaust gas is higher than the temperature at which ammonia can be recovered, current is supplied to the valve 14 to open the valve 14. When the controller 15 determines that the temperature of the exhaust gas is equal to or lower than the temperature at which ammonia can be recovered, the controller 15 stops supplying current to the valve 14 in order to close the valve 14.
  • the ammonia recoverable temperature is a temperature at which ammonia can be recovered from the heater 11 after warming up.
  • the ammonia recoverable temperature is based on the temperature at which ammonia is separated from the heat storage material 11a determined by the combination of the heat storage material 11a used in the heater 11 and ammonia, and the margin temperature is set to a lower side (safe side) than the reference temperature. It is set at a temperature that takes into account. That is, the ammonia recoverable temperature is set at a temperature that is lower by the margin temperature than the ammonia separation temperature determined by the combination of the heat storage material 11a and ammonia.
  • the margin temperature for lowering the temperature is such that the temperature of the exhaust gas is detected by a temperature sensor 16 provided between the engine 2 and the heat exchanger 4 as a substitute for the temperature of the heater 11.
  • a temperature sensor 16 provided between the engine 2 and the heat exchanger 4 as a substitute for the temperature of the heater 11.
  • the ammonia recoverable temperature may be set in consideration of the outside air temperature. For example, the higher the outside air temperature, the higher the temperature. In this embodiment, the ammonia recoverable temperature corresponds to the threshold value described in the claims.
  • the controller 15 determines whether or not the state of the ignition switch 17 indicated by the switch information from the ignition switch 17 is turned off (whether the engine 2 is stopped). When the controller 15 determines that the ignition switch 17 has been turned OFF, the controller 15 determines whether or not the temperature of the exhaust gas detected by the temperature sensor 16 is equal to or lower than the ammonia recoverable temperature. When the controller 15 determines that the temperature of the exhaust gas is higher than the temperature at which ammonia can be recovered, the controller 15 continues to supply current to the valve 14 in order to maintain the valve 14 in the open state.
  • the controller 15 determines that the temperature of the exhaust gas is equal to or lower than the ammonia recoverable temperature
  • the controller 15 stops supplying current to the valve 14 in order to close the valve 14.
  • the valve 14 can be kept open until the temperature of the exhaust gas (corresponding to the temperature of the heater 11 (heat storage material 11a)) becomes equal to or lower than the temperature at which ammonia can be recovered.
  • FIG. 2 is a flowchart showing the operation of the chemical heat storage device 10 when the engine is stopped.
  • ammonia flowing in the connection pipe 13 is supplied to the heater 11.
  • the supplied ammonia and the heat storage material 11a chemically react to generate heat.
  • This heat is transferred to the outer cylinder of the heat exchanger 4 and is transferred to the inside of the heat exchanger 4 by the heat transfer effect.
  • the entire heat exchanger 4 is heated, and the exhaust gas flowing inside the heat exchanger 4 is quickly heated. Further, the heated exhaust gas flows downstream, and the temperature of each catalyst of DOC5, SCR7, and ASC8 rises. And when the temperature of each catalyst becomes more than the activation temperature, the exhaust gas can be purified.
  • the controller 15 stops the supply of current to the valve 14 when the temperature of the exhaust gas detected by the temperature sensor 16 is determined to be equal to or lower than the ammonia recoverable temperature.
  • the valve 14 is closed when the supply of current is stopped. Thereby, the movement of ammonia in the connection pipe 13 becomes impossible.
  • ammonia and the heat storage material 11a are separated in the heater 11 and ammonia is generated.
  • the controller 15 determines that the temperature of the exhaust gas detected by the temperature sensor 16 is higher than the temperature at which ammonia can be recovered, current is supplied to the valve 14.
  • the valve 14 opens when the supplied current flows.
  • ammonia can be moved in the connecting pipe 13.
  • the pressure in the heater 11 is higher than the pressure in the storage 12, and ammonia moves to the storage 12 side and flows in the connection pipe 13.
  • the ammonia flowing through the connection pipe 13 is collected by the storage 12.
  • ammonia is adsorbed by the adsorbent 12a and stored.
  • the controller 15 determines that the temperature of the exhaust gas detected by the temperature sensor 16 is equal to or lower than the temperature at which ammonia can be recovered, the supply of current to the valve 14 is stopped. The valve 14 is closed when the supply of current is stopped. Thereby, the movement of ammonia in the connection pipe 13 becomes impossible.
  • the chemical heat storage device 10 During the operation of the engine 2, when the temperature of the exhaust gas becomes equal to or lower than the warm-up start temperature, the chemical heat storage device 10 repeatedly performs the warm-up operation similar to the above, and the exhaust gas temperature becomes higher than the ammonia recoverable temperature. The same operation at the time of ammonia recovery as described above is repeated.
  • the controller 15 determines that the ignition switch 17 is turned off (the engine 2 is stopped) (S1)
  • the temperature of the exhaust gas detected by the temperature sensor 16 (corresponding to the temperature of the heater 11 (heat storage material 11a)). Is determined to be equal to or lower than the ammonia recoverable temperature (S2). This determination of S2 is repeatedly performed until the temperature of the exhaust gas detected by the temperature sensor 16 becomes equal to or lower than the temperature at which ammonia can be recovered.
  • the controller 15 supplies current to the valve 14. (S3).
  • the engine 2 is stopped, but since the heater 11 (heat storage material 11a) is still in a high temperature state, ammonia and the heat storage material 11a may be separated in the heater 11 and ammonia may be generated.
  • the valve 14 since the valve 14 is maintained in the open state by being supplied with current (S3), the ammonia can be moved through the connecting pipe 13. Therefore, ammonia generated in the heater 11 can move to the storage 12 side and flows in the connection pipe 13. Then, the ammonia flowing in the connection pipe 13 is collected by the storage 12, and the storage 12 can store the ammonia by adsorbing it with the adsorbent 12a. Therefore, the heater 11 does not increase the pressure.
  • the controller 15 stops supplying current to the valve 14 (S4).
  • the valve 14 is closed (S4), and ammonia cannot be moved through the connecting pipe 13.
  • the valve 14 when the engine 2 is stopped, the valve 14 is kept open until the temperature of the heater 11 (the temperature of the exhaust gas detected by the temperature sensor 16) is equal to or lower than the ammonia recoverable temperature.
  • the temperature of the engine 2 of the engine 2 is set by setting a temperature that takes a margin on the side (safe side) lower than the ammonia separation temperature determined by the combination of the heat storage material 11a and ammonia as the ammonia recoverable temperature. It can be determined with high accuracy whether or not ammonia can still be recovered after stopping.
  • the temperature of the exhaust system is high and the heater 11 is also in a high temperature state. Therefore, in the heater 11, ammonia may be separated from the heat storage material 11a and ammonia may be generated.
  • the chemical heat storage device 10 maintains the valve 14 in the open state until the temperature is below the temperature at which ammonia can be recovered, and the heater 11 does not enter an overpressure state.
  • the present invention is applied to an exhaust gas purification system including DOC, SCR, and ASC as a catalyst and DPF as a filter.
  • the present invention may be applied to an exhaust gas purification system having other configurations, for example, DOC, SCR, ASC.
  • the present invention may be applied to an exhaust gas purification system that does not include any one or two of these catalysts, or an exhaust gas purification system that includes a catalyst other than DOC, SCR, and ASC.
  • the vehicle is a diesel engine vehicle, it can also be applied to a gasoline engine vehicle. Further, the present invention can also be applied to other mounted objects such as ships and generators using an engine as a drive source.
  • any catalyst of DOC, SCR, and ASC is heated. It is good also as a thing.
  • a heater may be provided inside the exhaust gas pipe.
  • a configuration in which a plurality of heaters and heat exchange units are alternately stacked may be employed.
  • reaction medium is ammonia in the above embodiment
  • other reaction medium such as alcohol or water
  • each material of the heat storage material and the adsorbent when the reaction medium is ammonia is exemplified, but depending on the reaction medium used in the chemical heat storage device, other materials may be used as appropriate for the heat storage material and the adsorbent. Used.
  • a temperature sensor that detects the temperature of the exhaust gas is provided between the heat exchanger and the engine, but the temperature sensor that detects the temperature of the exhaust gas is provided in the exhaust gas.
  • a temperature sensor may be provided between the heat exchanger and the DOC, or between the heat exchanger and the engine, and between the heat exchanger and the DOC.
  • a temperature sensor may be provided, and the heater temperature may be acquired from the temperatures detected at the two locations. If the heater can be provided with a temperature sensor, the heater may be provided with a temperature sensor to directly detect the temperature in the heater (particularly the heat storage material).
  • the switch information from the ignition switch is received to determine whether the engine has stopped. However, if the controller and the engine ECU are separate, a signal indicating the engine stop is sent from the engine ECU. It may be configured to receive the information, or the switch information of the ignition switch may be received via the engine ECU. If the controller is incorporated as a function of the engine ECU, the engine is stopped in the engine ECU. Can be obtained.
  • recover ammonia is set, but a heater (heat storage material) Depending on conditions such that the temperature can be obtained with high accuracy, the ammonia recoverable temperature may be set without taking such a margin into consideration.
  • the said chemical heat storage apparatus is mounted in the vehicle, It may be a chemical heat storage device for heating an object to be heated in the vehicle. That is, the chemical heat storage device is not limited to the one that warms the exhaust gas, and may be one that warms various heat media in the vehicle such as engine oil, transmission oil, cooling water, or air.
  • a heater may be disposed on the outer periphery of the heat medium path through which the heat medium flows, and the heat medium flow path may be heated by the heater.
  • the heat medium flow path becomes a heating object.
  • a plurality of heaters on which heat storage materials are arranged and heat exchange parts such as heat exchange fins are alternately arranged to form a heat exchange part integrated heater, and in the heat medium storage part for storing the heat medium or on the heat medium flow path It is good also as a structure which arrange
  • the heat exchanging unit disposed adjacent to each heater is a heating target.
  • route of exhaust gas is acquired.
  • the temperature of the heater that heats the heating object on the path through which the heat medium flows may be acquired based on the temperature of the heat medium (for example, oil).
  • an engine vehicle equipped with an engine as a vehicle drive source it is determined whether the vehicle drive source is stopped based on an ignition switch being turned off or an engine stop signal from the engine ECU. is doing.
  • the vehicle is driven based on the fact that the power switch is turned off or a motor stop signal from the PCU (control ECU). What is necessary is just to determine the stop of a source.
  • SYMBOLS 1 Exhaust gas purification system, 2 ... Engine, 3 ... Exhaust pipe, 4 ... Heat exchanger, 5 ... Diesel oxidation catalyst (DOC), 6 ... Diesel exhaust particulate filter (DPF), 7 ... Selective reduction catalyst (SCR) , 7a ... injector, 8 ... ammonia slip catalyst (ASC), 10 ... chemical heat storage device, 11 ... heater, 11a ... heat storage material, 12 ... storage, 12a ... adsorbent, 13 ... connecting pipe, 14 ... valve, 15 ... controller , 16 ... Temperature sensor, 17 ... Ignition switch.
  • DOC Diesel oxidation catalyst
  • DPF Diesel exhaust particulate filter
  • SCR Selective reduction catalyst
  • ASC ammonia slip catalyst
  • 10 chemical heat storage device, 11 ... heater, 11a ... heat storage material, 12 ... storage, 12a ... adsorbent, 13 ... connecting pipe, 14 ... valve, 15 ... controller , 16 ... Temperature sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 A chemical heat storage device (10) that is mounted on a mounting object in which an engine (2) is a power source, said heat storage device (10) heating a heating object (4) in the mounting object, wherein the chemical heat storage device (10) is provided with: a heater (11) for heating the heating object (4), the heater (11) having a heat storage material (11a) that chemically reacts with a reaction medium to generate heat; a reservoir (12) for storing the reaction medium; a connection tube (13) for connecting the heater (11) and the reservoir (12), and channeling the reaction medium; an open/close valve (14) provided to the connection tube (13); a control unit (15) for controlling the opening/closing of the open/close valve; and a temperature acquisition unit (16) for acquiring the temperature of the heater (11). When the engine (2) stops, the control unit (15) keeps the open/close valve (14) in an open state until the temperature of the heater (11) acquired by the temperature acquisition unit (16) falls to or below a threshold value.

Description

化学蓄熱装置Chemical heat storage device
 本発明は、化学蓄熱装置に関する。 The present invention relates to a chemical heat storage device.
 車両等の排気系には、エンジンから排出される排気ガスに含まれる環境汚染物質(HC、CO、NOx等)を浄化するために、触媒等が設けられている。触媒には、浄化能力を活性化するための最適温度(活性温度)が存在する。エンジン始動時は、排気ガスの温度が低く、触媒の活性温度に達するまでに時間を要する。そこで、エンジン始動時等の排気ガスの温度が低いときに触媒の活性温度まで短時間で温度上昇させるために、触媒を暖機するための加熱装置を設ける場合がある。この加熱装置としては、エネルギロス(燃費ロス)を低減して暖機を行うために、反応媒体と蓄熱材との化学反応の反応熱を利用した化学蓄熱装置がある。化学蓄熱装置としては、例えば、特許文献1には、蓄熱体貯蔵容器と水貯蔵容器を備え、水蒸気供給・排出装置(配管、バルブ)によって蓄熱体貯蔵容器と水貯蔵容器との間で水蒸気の授受が行われ、蓄熱体貯蔵容器に貯蔵されている蓄熱体の温度と水貯蔵容器に貯蔵されている水の温度に応じてバルブが開閉制御される化学蓄熱装置が開示されている。 In an exhaust system of a vehicle or the like, a catalyst or the like is provided to purify environmental pollutants (HC, CO, NOx, etc.) contained in exhaust gas discharged from the engine. The catalyst has an optimum temperature (activation temperature) for activating the purification capacity. When starting the engine, the temperature of the exhaust gas is low, and it takes time to reach the activation temperature of the catalyst. Therefore, there is a case where a heating device for warming up the catalyst is provided in order to raise the temperature in a short time to the activation temperature of the catalyst when the temperature of the exhaust gas is low at the time of starting the engine. As this heating device, there is a chemical heat storage device using reaction heat of a chemical reaction between a reaction medium and a heat storage material in order to reduce energy loss (fuel consumption loss) and warm up. As a chemical heat storage device, for example, in Patent Document 1, a heat storage body storage container and a water storage container are provided, and steam is supplied between the heat storage body storage container and the water storage container by a steam supply / discharge device (pipe, valve). A chemical heat storage device is disclosed in which valves are opened and closed according to the temperature of the heat storage body stored in the heat storage body storage container and the temperature of the water stored in the water storage container.
特開2010-169297号公報JP 2010-169297 A
 排気系に設けられる化学蓄熱装置では、エンジン停止中、貯蔵器に貯蔵されている反応媒体が、蓄熱材が配置されている加熱器に移動しないようにバルブが閉じられている。そのため、通常、エンジンが停止するとバルブを閉制御する。しかし、エンジンの停止時に加熱器が配置された加熱対象部分の温度が高い状態にある場合、エンジン停止後も蓄熱材から反応媒体が分離し、加熱器内に反応媒体が発生する。このとき、バルブが閉状態で加熱器から貯蔵器へ反応媒体が移動できないと、加熱器内の圧力が増大し、過圧状態になる。 In the chemical heat storage device provided in the exhaust system, when the engine is stopped, the valve is closed so that the reaction medium stored in the storage does not move to the heater in which the heat storage material is arranged. Therefore, normally, when the engine stops, the valve is closed. However, when the temperature of the heating target portion where the heater is disposed is high when the engine is stopped, the reaction medium is separated from the heat storage material even after the engine is stopped, and the reaction medium is generated in the heater. At this time, if the reaction medium cannot move from the heater to the reservoir with the valve closed, the pressure in the heater increases and an overpressure state occurs.
 そこで、本技術分野においては、エンジンが停止した場合の加熱器の過圧状態を回避できる化学蓄熱装置が要請されている。 Therefore, in this technical field, there is a demand for a chemical heat storage device that can avoid an overpressure state of the heater when the engine is stopped.
 本発明の一側面に係る化学蓄熱装置は、エンジンを駆動源とする搭載対象物に搭載され、当該搭載対象物における加熱対象物を加熱する化学蓄熱装置であって、反応媒体と化学反応して熱を発生させる蓄熱材を有し、加熱対象物を加熱する加熱器と、反応媒体を貯蔵する貯蔵器と、加熱器と貯蔵器とを接続し、反応媒体が流れる接続管と、接続管に設けられる開閉弁と、開閉弁の開閉を制御する制御部と、加熱器の温度を取得する温度取得部とを備え、制御部は、エンジンが停止した場合に温度取得部で取得した加熱器の温度が閾値以下になるまで開閉弁の開状態を維持する。 A chemical heat storage device according to one aspect of the present invention is a chemical heat storage device that is mounted on an object to be mounted using an engine as a drive source and heats the object to be heated in the object to be mounted, and that chemically reacts with a reaction medium. A heat storage material that generates heat, a heater that heats an object to be heated, a reservoir that stores a reaction medium, a heater and a reservoir, and a connection pipe through which the reaction medium flows, and a connection pipe An opening / closing valve provided, a control unit for controlling opening / closing of the opening / closing valve, and a temperature acquisition unit for acquiring the temperature of the heater, the control unit of the heater acquired by the temperature acquisition unit when the engine is stopped The open / close valve remains open until the temperature falls below the threshold.
 この化学蓄熱装置が搭載される搭載対象物は、駆動源としてエンジンを備え、加熱が必要となる加熱対象物を有している。化学蓄熱装置は、加熱対象物を加熱可能な箇所に配置される加熱器とそれ以外の箇所に配置される貯蔵器を備え、加熱器と貯蔵器とが接続管によって接続されている。接続管には開閉弁が配設されており、反応媒体を貯蔵器から加熱器に供給する場合や加熱器から貯蔵器に回収する場合に開閉弁が開かれる。化学蓄熱装置では、この開閉弁の開閉制御を制御部で行う。加熱対象物に対する加熱(暖機)が必要な場合、開閉弁が開かれるので、加熱器では、貯蔵器から反応媒体が供給されると、蓄熱材と反応媒体とが化学反応して熱を発生させ、加熱対象物を加熱する。エンジンが稼働して加熱対象物の温度が高くなると、今度は加熱器が暖められて蓄熱材と反応媒体とが分離する。この際、開閉弁が開かれているので、加熱器から貯蔵器に反応媒体が移動する。貯蔵器では、この反応媒体を回収し、反応媒体を貯蔵する。特に、化学蓄熱装置では、温度取得部で加熱器(ひいては、蓄熱材)の温度を取得しており、エンジンが停止した場合にその取得した加熱器の温度が閾値以下になるまで開閉弁の開状態を維持する。この閾値は、加熱器において蓄熱材から反応媒体が分離し、反応媒体を加熱器から未だ回収できる状態か否かを判定するための温度閾値である。したがって、加熱器の温度が閾値より高い場合には、加熱器において蓄熱材から反応媒体が分離し、反応媒体を回収できる可能性がある。この場合には開閉弁の開状態が維持されているので、反応媒体が接続管を介して加熱器から貯蔵器に移動できる。そのため、エンジン停止後に高温状態の加熱器において蓄熱材から反応媒体が分離しても、反応媒体を貯蔵器で回収でき、加熱器内の圧力が増大しない。このように、化学蓄熱装置は、エンジンが停止した場合、加熱器の温度が閾値以下になるまで開閉弁の開状態を維持することにより、加熱器の過圧状態を回避できる。 The mounting object on which this chemical heat storage device is mounted has an engine as a drive source and has a heating object that requires heating. The chemical heat storage device includes a heater disposed at a location where the object to be heated can be heated and a reservoir disposed at other locations, and the heater and the reservoir are connected by a connecting pipe. An opening / closing valve is provided in the connecting pipe, and the opening / closing valve is opened when the reaction medium is supplied from the reservoir to the heater or when the reaction medium is recovered from the heater. In the chemical heat storage device, the control unit performs opening / closing control of the opening / closing valve. When heating (warm-up) of the object to be heated is required, the on-off valve is opened, so in the heater, when the reaction medium is supplied from the reservoir, the heat storage material and the reaction medium react chemically to generate heat. And heat the object to be heated. When the engine is operated and the temperature of the object to be heated increases, the heater is warmed up and the heat storage material and the reaction medium are separated. At this time, since the on-off valve is opened, the reaction medium moves from the heater to the reservoir. In the reservoir, the reaction medium is recovered and stored. In particular, in a chemical heat storage device, the temperature acquisition unit acquires the temperature of the heater (and thus the heat storage material), and when the engine stops, the opening / closing valve is opened until the acquired temperature of the heater falls below a threshold value. Maintain state. This threshold value is a temperature threshold value for determining whether or not the reaction medium is separated from the heat storage material in the heater and the reaction medium can still be recovered from the heater. Therefore, when the temperature of the heater is higher than the threshold value, the reaction medium may be separated from the heat storage material in the heater and the reaction medium may be recovered. In this case, the open state of the on-off valve is maintained, so that the reaction medium can move from the heater to the reservoir via the connecting pipe. Therefore, even if the reaction medium is separated from the heat storage material in the high-temperature heater after the engine is stopped, the reaction medium can be recovered by the reservoir, and the pressure in the heater does not increase. Thus, when the engine is stopped, the chemical heat storage device can avoid the overpressure state of the heater by maintaining the open state of the on-off valve until the temperature of the heater becomes equal to or lower than the threshold value.
 なお、温度取得部による加熱器の温度の取得としては、加熱器の温度を直接検出して取得してもよいし、加熱器の温度を推定できる箇所の温度を検出し、その箇所の温度から加熱器の温度を推定して取得してもよいしあるいはその箇所の温度をそのまま代用してもよい。搭載対象物は、エンジンを駆動源とし、加熱が必要となる加熱対象物があるものならよく、例えば、エンジンを搭載した車両、エンジンを搭載した船、エンジンを搭載した発電機である。加熱対象物は、搭載対象物に応じて適宜変わり、例えば、エンジンを搭載した車両の場合にはエンジンの排気ガスが内部に流れる熱交換器や触媒である。 In addition, as acquisition of the temperature of the heater by the temperature acquisition unit, the temperature of the heater may be directly detected, or the temperature at a location where the temperature of the heater can be estimated is detected, and the temperature of the location is detected. The temperature of the heater may be estimated and acquired, or the temperature at that point may be used as it is. The mounted object may be anything that uses an engine as a drive source and has a heated object that requires heating, such as a vehicle equipped with an engine, a ship equipped with an engine, and a generator equipped with an engine. The object to be heated varies depending on the object to be mounted. For example, in the case of a vehicle on which an engine is mounted, the object to be heated is a heat exchanger or a catalyst through which exhaust gas from the engine flows.
 一実施形態に係る化学蓄熱装置では、閾値は、蓄熱材から反応媒体が分離する温度よりも低い側にマージンを加味した温度で設定される。 In the chemical heat storage device according to an embodiment, the threshold value is set at a temperature that takes into account a margin on the side lower than the temperature at which the reaction medium separates from the heat storage material.
 反応媒体は、蓄熱材と反応媒体との組み合わせによって決まる分離温度よりも蓄熱材の温度が高いと、蓄熱材から分離する。また、温度取得部によって取得される加熱器(蓄熱材)の温度には、温度を検出する際の検出精度に応じてばらつきがあり、また、他の箇所で検出した温度から推定する場合には推定精度に応じてばらつきがある。そのため、上記の分離温度をそのまま閾値として用いて判定を行うと、精度良く判定ができない場合がある。そこで、判定精度を向上させるために、閾値として上記の分離温度よりも低い側(安全側)にマージンとなる温度を加味した温度閾値としている。このような閾値を設定することにより、温度取得部で取得された加熱器の温度にばらつきがある場合でも、エンジン停止後に反応媒体を未だ回収できる状態か否かを高精度に判定できる。マージンとなる温度については、上記のような温度取得部で取得される温度のばらつきなどを考慮して設定するとよい。 The reaction medium is separated from the heat storage material when the temperature of the heat storage material is higher than the separation temperature determined by the combination of the heat storage material and the reaction medium. Also, the temperature of the heater (heat storage material) acquired by the temperature acquisition unit varies depending on the detection accuracy when detecting the temperature, and when estimating from the temperature detected at other locations There are variations depending on the estimation accuracy. Therefore, if the determination is performed using the separation temperature as a threshold value as it is, the determination may not be performed with high accuracy. Therefore, in order to improve the determination accuracy, the threshold value is a temperature threshold value in which a margin temperature is added to the lower side (safe side) than the above separation temperature. By setting such a threshold value, it is possible to determine with high accuracy whether or not the reaction medium can still be recovered after the engine is stopped even when the temperature of the heater acquired by the temperature acquisition unit varies. The temperature serving as the margin may be set in consideration of the variation in temperature acquired by the temperature acquisition unit as described above.
 一実施形態に係る化学蓄熱装置では、温度取得部は、エンジンから排出される排気ガスの温度を検出し、当該検出した排気ガスの温度から加熱器の温度を取得する。 In the chemical heat storage device according to the embodiment, the temperature acquisition unit detects the temperature of the exhaust gas discharged from the engine, and acquires the temperature of the heater from the detected temperature of the exhaust gas.
 加熱器には、温度を直接検出する温度センサを設けることが困難な場合がある。また、エンジンの排気系では、通常、エンジンの制御等に利用するために排気ガスの温度を検出している。そこで、温度取得部では、この排気ガスの温度検出を利用して、検出された排気ガスの温度から加熱器の温度を取得する。この際、その排気ガスの温度から加熱器の温度を推定してもよいし、その排気ガスの温度を加熱器の温度としてそのまま代用してもよい。 It may be difficult to provide a temperature sensor that directly detects the temperature in the heater. In the engine exhaust system, the temperature of the exhaust gas is usually detected for use in engine control and the like. Therefore, the temperature acquisition unit acquires the temperature of the heater from the detected temperature of the exhaust gas by using the temperature detection of the exhaust gas. At this time, the temperature of the heater may be estimated from the temperature of the exhaust gas, or the temperature of the exhaust gas may be used as it is as the temperature of the heater.
 また、本発明の一側面に係る化学蓄熱装置は、車両に搭載され、当該車両における加熱対象物を加熱する化学蓄熱装置であって、反応媒体と化学反応して熱を発生させる蓄熱材を有し、加熱対象物を加熱する加熱器と、反応媒体を貯蔵する貯蔵器と、加熱器と貯蔵器とを接続し、反応媒体が流れる接続管と、接続管に設けられる開閉弁と、開閉弁の開閉を制御する制御部と、加熱器の温度を取得する温度取得部と、を備え、制御部は、車両の駆動源が停止した場合に温度取得部で取得した加熱器の温度が閾値以下になるまで開閉弁の開状態を維持する。 A chemical heat storage device according to an aspect of the present invention is a chemical heat storage device that is mounted on a vehicle and heats an object to be heated in the vehicle, and has a heat storage material that chemically reacts with a reaction medium to generate heat. A heater for heating the object to be heated, a reservoir for storing the reaction medium, a connection pipe through which the reaction medium flows, the open / close valve provided in the connection pipe, and the open / close valve. A control unit that controls the opening and closing of the heater, and a temperature acquisition unit that acquires the temperature of the heater, the control unit is less than a threshold temperature of the heater acquired by the temperature acquisition unit when the vehicle drive source is stopped Keep the open / close valve open until.
 この化学蓄熱装置が搭載される車両は、加熱が必要となる加熱対象物を有している。化学蓄熱装置は、加熱対象物を加熱可能な箇所に配置される加熱器とそれ以外の箇所に配置される貯蔵器を備え、加熱器と貯蔵器とが接続管によって接続されている。接続管には開閉弁が配設されており、反応媒体を貯蔵器から加熱器に供給する場合や加熱器から貯蔵器に回収する場合に開閉弁が開かれる。化学蓄熱装置では、この開閉弁の開閉制御を制御部で行う。加熱対象物に対する加熱(暖機)が必要な場合、開閉弁が開かれるので、加熱器では、貯蔵器から反応媒体が供給されると、蓄熱材と反応媒体とが化学反応して熱を発生させ、加熱対象物を加熱する。加熱対象物の温度が高くなると、今度は加熱器が暖められて蓄熱材と反応媒体とが分離する。この際、開閉弁が開かれているので、加熱器から貯蔵器に反応媒体が移動する。貯蔵器では、この反応媒体を回収し、反応媒体を貯蔵する。特に、化学蓄熱装置では、温度取得部で加熱器(ひいては、蓄熱材)の温度を取得しており、車両の駆動源が停止した場合にその取得した加熱器の温度が閾値以下になるまで開閉弁の開状態を維持する。この閾値は、加熱器において蓄熱材から反応媒体が分離し、反応媒体を加熱器から未だ回収できる状態か否かを判定するための温度閾値である。したがって、加熱器の温度が閾値より高い場合には、加熱器において蓄熱材から反応媒体が分離し、反応媒体を回収できる可能性がある。この場合には開閉弁の開状態が維持されているので、反応媒体が接続管を介して加熱器から貯蔵器に移動できる。そのため、車両の駆動源の停止後に高温状態の加熱器において蓄熱材から反応媒体が分離しても、反応媒体を貯蔵器で回収でき、加熱器内の圧力が増大しない。このように、化学蓄熱装置は、車両の駆動源が停止した場合、加熱器の温度が閾値以下になるまで開閉弁の開状態を維持することにより、加熱器の過圧状態を回避できる。 The vehicle on which this chemical heat storage device is mounted has an object to be heated that requires heating. The chemical heat storage device includes a heater disposed at a location where the object to be heated can be heated and a reservoir disposed at other locations, and the heater and the reservoir are connected by a connecting pipe. An opening / closing valve is provided in the connecting pipe, and the opening / closing valve is opened when the reaction medium is supplied from the reservoir to the heater or when the reaction medium is recovered from the heater. In the chemical heat storage device, the control unit performs opening / closing control of the opening / closing valve. When heating (warm-up) of the object to be heated is required, the on-off valve is opened, so in the heater, when the reaction medium is supplied from the reservoir, the heat storage material and the reaction medium react chemically to generate heat. And heat the object to be heated. When the temperature of the object to be heated increases, the heater is warmed and the heat storage material and the reaction medium are separated. At this time, since the on-off valve is opened, the reaction medium moves from the heater to the reservoir. In the reservoir, the reaction medium is recovered and stored. In particular, in a chemical heat storage device, the temperature acquisition unit acquires the temperature of the heater (and thus the heat storage material), and when the vehicle drive source stops, the temperature of the acquired heater is opened or closed until it falls below a threshold value. Keep the valve open. This threshold value is a temperature threshold value for determining whether or not the reaction medium is separated from the heat storage material in the heater and the reaction medium can still be recovered from the heater. Therefore, when the temperature of the heater is higher than the threshold value, the reaction medium may be separated from the heat storage material in the heater and the reaction medium may be recovered. In this case, the open state of the on-off valve is maintained, so that the reaction medium can move from the heater to the reservoir via the connecting pipe. Therefore, even if the reaction medium is separated from the heat storage material in the high-temperature heater after the driving source of the vehicle is stopped, the reaction medium can be recovered by the storage and the pressure in the heater does not increase. Thus, the chemical heat storage device can avoid an overpressure state of the heater by maintaining the open state of the on-off valve until the temperature of the heater becomes equal to or lower than the threshold when the vehicle drive source is stopped.
 一実施形態に係る化学蓄熱装置では、閾値は、蓄熱材から反応媒体が分離する温度よりも低い側にマージンを加味した温度で設定される。 In the chemical heat storage device according to an embodiment, the threshold value is set at a temperature that takes into account a margin on the side lower than the temperature at which the reaction medium separates from the heat storage material.
 反応媒体は、蓄熱材と反応媒体との組み合わせによって決まる分離温度よりも蓄熱材の温度が高いと、蓄熱材から分離する。また、温度取得部によって取得される加熱器(蓄熱材)の温度には、温度を検出する際の検出精度に応じてばらつきがあり、また、他の箇所で検出した温度から推定する場合には推定精度に応じてばらつきがある。そのため、上記の分離温度をそのまま閾値として用いて判定を行うと、精度良く判定ができない場合がある。そこで、判定精度を向上させるために、閾値として上記の分離温度よりも低い側(安全側)にマージンとなる温度を加味した温度閾値としている。このような閾値を設定することにより、温度取得部で取得された加熱器の温度にばらつきがある場合でも、車両の駆動源の停止後に反応媒体を未だ回収できる状態か否かを高精度に判定できる。マージンとなる温度については、上記のような温度取得部で取得される温度のばらつきなどを考慮して設定するとよい。 The reaction medium is separated from the heat storage material when the temperature of the heat storage material is higher than the separation temperature determined by the combination of the heat storage material and the reaction medium. Also, the temperature of the heater (heat storage material) acquired by the temperature acquisition unit varies depending on the detection accuracy when detecting the temperature, and when estimating from the temperature detected at other locations There are variations depending on the estimation accuracy. Therefore, if the determination is performed using the separation temperature as a threshold value as it is, the determination may not be performed with high accuracy. Therefore, in order to improve the determination accuracy, the threshold value is a temperature threshold value in which a margin temperature is added to the lower side (safe side) than the above separation temperature. By setting such a threshold value, even when there is a variation in the temperature of the heater acquired by the temperature acquisition unit, it is determined with high accuracy whether or not the reaction medium can still be recovered after the vehicle drive source is stopped. it can. The temperature serving as the margin may be set in consideration of the variation in temperature acquired by the temperature acquisition unit as described above.
 一実施形態に係る化学蓄熱装置では、加熱器は、車両のエンジンから排出される排気ガスの経路上の前記加熱対象物を加熱する加熱器であり、温度取得部は、エンジンから排出される排気ガスの温度を検出し、当該検出した排気ガスの温度から加熱器の温度を取得する。 In the chemical heat storage device according to the embodiment, the heater is a heater that heats the heating object on the path of the exhaust gas discharged from the engine of the vehicle, and the temperature acquisition unit is the exhaust discharged from the engine. The temperature of the gas is detected, and the temperature of the heater is obtained from the detected temperature of the exhaust gas.
 加熱器には、温度を直接検出する温度センサを設けることが困難な場合がある。また、エンジンの排気系では、通常、エンジンの制御等に利用するために排気ガスの温度を検出している。そこで、温度取得部では、この排気ガスの温度検出を利用して、検出された排気ガスの温度から加熱器の温度を取得する。この際、その排気ガスの温度から加熱器の温度を推定してもよいし、その排気ガスの温度を加熱器の温度としてそのまま代用してもよい。 It may be difficult to provide a temperature sensor that directly detects the temperature in the heater. In the engine exhaust system, the temperature of the exhaust gas is usually detected for use in engine control and the like. Therefore, the temperature acquisition unit acquires the temperature of the heater from the detected temperature of the exhaust gas by using the temperature detection of the exhaust gas. At this time, the temperature of the heater may be estimated from the temperature of the exhaust gas, or the temperature of the exhaust gas may be used as it is as the temperature of the heater.
 一実施形態に係る化学蓄熱装置では、加熱器は、車両の熱媒体の経路上の加熱対象物を加熱する加熱器であり、温度取得部は、加熱対象物により加熱される熱媒体の温度を検出し、当該検出した熱媒体の温度から加熱器の温度を取得する。 In the chemical heat storage device according to the embodiment, the heater is a heater that heats the heating target on the path of the vehicle heat medium, and the temperature acquisition unit determines the temperature of the heat medium heated by the heating target. And detecting the temperature of the heater from the detected temperature of the heat medium.
 加熱器には、温度を直接検出する温度センサを設けることが困難な場合がある。そこで、温度取得部では、加熱器に温度センサを設ける代わりに、加熱対象物により加熱される熱媒体の温度から加熱器の温度を取得する。この際、熱媒体の温度から加熱器の温度を推定してもよいし、熱媒体の温度を加熱器の温度としてそのまま代用してもよい。 It may be difficult to provide a temperature sensor that directly detects the temperature in the heater. Therefore, the temperature acquisition unit acquires the temperature of the heater from the temperature of the heat medium heated by the object to be heated instead of providing a temperature sensor in the heater. At this time, the temperature of the heater may be estimated from the temperature of the heat medium, or the temperature of the heat medium may be used as it is as the temperature of the heater.
 この化学蓄熱装置によれば、エンジンが停止した場合の加熱器の過圧状態を回避できる。 This chemical heat storage device can avoid an overpressure state of the heater when the engine is stopped.
一実施形態に係る化学蓄熱装置を備えた排気ガス浄化システムの概略構成図である。It is a schematic block diagram of the exhaust gas purification system provided with the chemical heat storage apparatus which concerns on one Embodiment. 図1に示す化学蓄熱装置におけるエンジン停止時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the engine stop in the chemical thermal storage apparatus shown in FIG.
 以下、図面を参照して、本発明の実施形態に係る化学蓄熱装置を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。 Hereinafter, a chemical heat storage device according to an embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the element which is the same or it corresponds in each figure, and the overlapping description is abbreviate | omitted.
 一実施形態に係る化学蓄熱装置を、車両のエンジンの排気系に設けられる排気ガス浄化システムに備えられる化学蓄熱装置に適用する。一実施形態に係る排気ガス浄化システムは、エンジン(特に、ディーゼルエンジン)から排出される排気ガス中に含まれる有害物質(環境汚染物質)を浄化するシステムであり、触媒のDOC[Diesel Oxidation Catalyst]、SCR[SelectiveCatalytic Reduction]とASC[Ammonia Slip Catalyst]及びフィルタのDPF[Diesel Particulate Filter]を備えている。また、一実施形態に係る排気ガス浄化システムは、暖機用の化学蓄熱装置も備えており、化学蓄熱装置がエンジンとDOCとの間に配置される熱交換器に設けられる。 The chemical heat storage device according to one embodiment is applied to a chemical heat storage device provided in an exhaust gas purification system provided in an exhaust system of a vehicle engine. An exhaust gas purification system according to an embodiment is a system that purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from an engine (particularly a diesel engine), and is a catalyst DOC [Diesel Oxidation Catalyst]. , SCR [Selective Catalytic Reduction], ASC [Ammonia SlipataCatalyst] and DPF [Diesel Particulate Filter] of the filter. The exhaust gas purification system according to an embodiment also includes a chemical heat storage device for warming up, and the chemical heat storage device is provided in a heat exchanger disposed between the engine and the DOC.
 図1を参照して、一実施形態に係る排気ガス浄化システム1の全体構成について説明する。図1は、一実施形態に係る排気ガス浄化システム1の概略構成図である。 Referring to FIG. 1, an overall configuration of an exhaust gas purification system 1 according to an embodiment will be described. FIG. 1 is a schematic configuration diagram of an exhaust gas purification system 1 according to an embodiment.
 排気ガス浄化システム1は、エンジン2の排気側に接続された排気管3の上流側から下流側に向けて、熱交換器4、ディーゼル酸化触媒(DOC)5、ディーゼル排気微粒子除去フィルタ(DPF)6、選択還元触媒(SCR)7、アンモニアスリップ触媒(ASC)8を備えている。これら熱交換器4、DOC5、DPF6、SCR7、ASC8が配設される各部分は、配設されない部分の排気管3の径よりも大きくなっている。排気管3及び熱交換器4、DOC5、DPF6、SCR7、ASC8の各内部にはエンジン2から排出される排気ガスが流れ、排気ガスの流れる方向によって上流側や下流側が規定される。 The exhaust gas purification system 1 includes a heat exchanger 4, a diesel oxidation catalyst (DOC) 5, a diesel exhaust particulate removal filter (DPF) from the upstream side to the downstream side of the exhaust pipe 3 connected to the exhaust side of the engine 2. 6. A selective reduction catalyst (SCR) 7 and an ammonia slip catalyst (ASC) 8 are provided. Each part where these heat exchangers 4, DOC5, DPF6, SCR7, and ASC8 are arranged is larger than the diameter of the exhaust pipe 3 where the parts are not arranged. Exhaust gas discharged from the engine 2 flows inside the exhaust pipe 3 and the heat exchanger 4, DOC5, DPF6, SCR7, and ASC8, and the upstream side and the downstream side are defined by the direction in which the exhaust gas flows.
 熱交換器4は、エンジン2から排出された排気ガスと後述するヒータ11との間で熱の交換(伝達)を行う機器である。熱交換器4は、高熱伝導性を有する金属材料で形成され、外筒の内部がハニカム構造となっている。なお、熱交換器4はハニカム構造に限らず、周知の熱交換構造を適用可能である。 The heat exchanger 4 is a device that exchanges (transmits) heat between exhaust gas discharged from the engine 2 and a heater 11 described later. The heat exchanger 4 is formed of a metal material having high thermal conductivity, and the inside of the outer cylinder has a honeycomb structure. The heat exchanger 4 is not limited to the honeycomb structure, and a known heat exchange structure can be applied.
 DOC5は、排気ガス中に含まれるHCやCO等を酸化する触媒である。DPF6は、排気ガス中に含まれるPMを捕集して取り除くフィルタである。SCR7は、インジェクタ7aによって排気管3内の上流側にアンモニア(NH)あるいは尿素水(加水分解してアンモニアになる)が供給されると、アンモニアと排気ガス中に含まれるNOxとを化学反応させることによって、NOxを還元して浄化する触媒である。ASC8は、SCR7をすり抜けて下流側に流れたアンモニアを酸化する触媒である。 The DOC 5 is a catalyst that oxidizes HC, CO, and the like contained in the exhaust gas. The DPF 6 is a filter that collects and removes PM contained in the exhaust gas. When SCR 7 is supplied with ammonia (NH 3 ) or urea water (hydrolyzed into ammonia) to the upstream side of the exhaust pipe 3 by the injector 7a, it chemically reacts with NOx contained in the exhaust gas. This is a catalyst that reduces and purifies NOx. The ASC 8 is a catalyst that oxidizes ammonia that has passed through the SCR 7 and has flowed downstream.
 各触媒5,7,8には、環境汚染物質に対する浄化能力を発揮できる温度領域(すなわち、活性温度)が存在する。しかし、エンジン2の始動直後などは、エンジン2から排出された直後の排気ガスの温度は比較的低温であり、その活性温度より低い場合がある。そこで、エンジン2の始動直後などでも、各触媒5,7,8で浄化能力を発揮させるために、各触媒5,7,8での温度を迅速に活性温度にする必要がある。そのために、排気ガス浄化システム1は、最上流の熱交換器4(内部を流れる排気ガス)を加熱し、触媒の暖機を行う化学蓄熱装置10を備えている。 Each of the catalysts 5, 7, 8 has a temperature range (that is, an activation temperature) that can exhibit a purification ability against environmental pollutants. However, immediately after the engine 2 is started, the temperature of the exhaust gas immediately after being discharged from the engine 2 is relatively low and may be lower than its activation temperature. Thus, even immediately after the engine 2 is started, the temperature at each of the catalysts 5, 7, and 8 needs to be quickly brought to the active temperature in order to exert the purification capability at each of the catalysts 5, 7, and 8. For this purpose, the exhaust gas purification system 1 includes a chemical heat storage device 10 that heats the most upstream heat exchanger 4 (exhaust gas flowing inside) and warms up the catalyst.
 化学蓄熱装置10は、外部エネルギレスで触媒などの加熱対象物を暖機する化学蓄熱装置である。つまり、化学蓄熱装置10は、加熱対象物からの熱を受けて蓄熱材から分離した反応媒体を蓄えておき、その蓄えられた反応媒体を必要なときに蓄熱材に供給することで蓄熱材と化学反応させ、化学反応時の反応熱を利用して加熱対象物を暖めるものである。即ち、化学蓄熱装置10は、加熱対象物からの熱を蓄えておき、再び加熱対象物に供給するものであるといえる。この実施形態では、化学蓄熱装置10は、最も上流に位置する触媒であるDOC5より上流側に配置した熱交換器4を加熱する。熱交換器4の内部には排気ガスが流れており、排気ガスとの間で熱交換をする構成となっている。したがって、排気ガスの流れる配管の最も上流側(エンジン2に近い側)に化学蓄熱装置10を配置することによって、エンジン2の始動時等における温度がさほど高くない状態の排気ガスを、熱交換器4の下流に配置された触媒(DOC5,SCR7、ASC8)へ到達する前に迅速に昇温できる。なお、この実施形態では、熱交換器4が特許請求の範囲に記載の加熱対象物に相当する。 The chemical heat storage device 10 is a chemical heat storage device that warms up a heating target such as a catalyst without external energy. That is, the chemical heat storage device 10 stores the reaction medium separated from the heat storage material by receiving heat from the object to be heated, and supplies the stored reaction medium to the heat storage material when necessary. A chemical reaction is performed, and an object to be heated is heated by using reaction heat at the time of the chemical reaction. That is, it can be said that the chemical heat storage device 10 stores heat from the heating object and supplies it again to the heating object. In this embodiment, the chemical heat storage device 10 heats the heat exchanger 4 disposed on the upstream side of the DOC 5 that is the catalyst located on the most upstream side. Exhaust gas flows inside the heat exchanger 4 and is configured to exchange heat with the exhaust gas. Therefore, by disposing the chemical heat storage device 10 on the most upstream side of the pipe through which the exhaust gas flows (the side close to the engine 2), the exhaust gas in a state where the temperature at the time of starting the engine 2 is not so high is converted into a heat exchanger. The temperature can be quickly raised before reaching the catalyst (DOC5, SCR7, ASC8) disposed downstream of the No.4. In this embodiment, the heat exchanger 4 corresponds to the heating object described in the claims.
 化学蓄熱装置10は、ヒータ11、ストレージ12、接続管13、バルブ14等を備えており、コントローラ15によって制御される。なお、この実施形態では、ヒータ11が特許請求の範囲に記載の加熱器に相当し、ストレージ12が特許請求の範囲に記載の貯蔵器に相当し、接続管13が特許請求の範囲に記載の接続管に相当し、バルブ14が特許請求の範囲に記載の開閉弁に相当し、コントローラ15が特許請求の範囲に記載の制御部に相当する。 The chemical heat storage device 10 includes a heater 11, a storage 12, a connection pipe 13, a valve 14, and the like, and is controlled by a controller 15. In this embodiment, the heater 11 corresponds to the heater described in the claims, the storage 12 corresponds to the reservoir described in the claims, and the connecting pipe 13 corresponds to the claims. It corresponds to a connecting pipe, the valve 14 corresponds to an on-off valve described in the claims, and the controller 15 corresponds to a control unit described in the claims.
 ヒータ11は、熱交換器4の外周部の全周に設けられ、断面形状が熱交換器4を囲む環状である。ヒータ11は、反応媒体との化学反応により発熱する蓄熱材11aを有しており、この蓄熱材11aがケーシングに収納されている。ここでは、反応媒体としてアンモニアを用いている。ヒータ11では、供給されたアンモニアと蓄熱材11aとが化学反応(化学吸着または配位結合)し、熱を発生させる。また、ヒータ11では、排気ガスの排熱を受けて蓄熱材11aが所定温度以上になると蓄熱材11aとアンモニアとが分離(脱離)して、アンモニアを放出し、アンモニアの回収が可能となる。この所定温度は、ヒータ11で用いられる蓄熱材11aと反応媒体との組み合わせなどによって決まる。 The heater 11 is provided on the entire circumference of the outer periphery of the heat exchanger 4, and the cross-sectional shape is an annular shape surrounding the heat exchanger 4. The heater 11 has a heat storage material 11a that generates heat by a chemical reaction with the reaction medium, and the heat storage material 11a is housed in a casing. Here, ammonia is used as the reaction medium. In the heater 11, the supplied ammonia and the heat storage material 11a undergo a chemical reaction (chemical adsorption or coordination bond) to generate heat. Further, in the heater 11, when the heat storage material 11a is heated to a predetermined temperature or more by receiving exhaust heat of the exhaust gas, the heat storage material 11a and ammonia are separated (desorbed), and ammonia is released, making it possible to recover the ammonia. . This predetermined temperature is determined by the combination of the heat storage material 11a used in the heater 11 and the reaction medium.
 蓄熱材11aは、熱交換器4の外筒の外周面の全周に接するように配設される。蓄熱材11aとしては、反応媒体であるアンモニアと化学反応して発熱し、熱交換器4を通過する排気ガスを触媒(DOC5等)の活性温度以上に昇温できる材料を用いる。この材料としては、ハロゲン化合物のMXの組成を持つ材料であり、M=Mg、Ca、Srなどのアルカリ土類金属、Cr、Mn、Fe、Co、Ni、Cu、Znなどの遷移金属であり、XがCl、Br、Iなどであり、a=2、3である。なお、蓄熱材11aには、熱伝導性を向上させる添加物を混合してもよい。添加物としては、例えば、カーボンファイバ、カーボンビーズ、SiCビーズ、Cu、Ag、Ni、Ci-Cr、Al、Fe、ステンレスなどの金属ビーズ、高分子ビーズ、高分子ファイバである。ケーシングは、ヒータ11の外周側の全面及びヒータ11の上流端部と下流端部の全面を覆うように配設され、熱交換器4の外筒の外周面との間で密閉された空間を形成し、その中に蓄熱材11aを封入している。このように、蓄熱材11aは密閉空間内に封入されているので、アンモニアと繰り返し化学反応できる。なお、蓄熱材11aとケーシングとの間に断熱材を設けてもよいし、グラファイトシート、アルミニウムなどの金属シートなどで形成された熱伝導シートを設けてもよい。 The heat storage material 11 a is disposed so as to be in contact with the entire circumference of the outer peripheral surface of the outer cylinder of the heat exchanger 4. As the heat storage material 11 a, a material that generates heat by chemically reacting with ammonia as a reaction medium and can raise the exhaust gas passing through the heat exchanger 4 to the activation temperature of the catalyst (DOC5 or the like) is used. This material is a material having a MXa composition of a halogen compound, M = alkaline earth metals such as Mg, Ca, Sr, transition metals such as Cr, Mn, Fe, Co, Ni, Cu, Zn. X is Cl, Br, I, etc., and a = 2 and 3. In addition, you may mix the additive which improves thermal conductivity with the thermal storage material 11a. Examples of the additive include carbon fibers, carbon beads, SiC beads, metal beads such as Cu, Ag, Ni, Ci—Cr, Al, Fe, and stainless steel, polymer beads, and polymer fibers. The casing is disposed so as to cover the entire outer peripheral surface of the heater 11 and the entire upstream end and downstream end of the heater 11, and a sealed space between the outer peripheral surface of the outer cylinder of the heat exchanger 4. The heat storage material 11a is enclosed therein. Thus, since the heat storage material 11a is enclosed in the sealed space, it can repeatedly react with ammonia. In addition, you may provide a heat insulating material between the thermal storage material 11a and a casing, and you may provide the heat conductive sheet formed with metal sheets, such as a graphite sheet and aluminum.
 ストレージ12は、反応媒体であるアンモニアを貯蔵可能な吸着材12aが内蔵されている。吸着材12aとしては、例えば、物理吸着によるアンモニアの貯蔵が可能な活性炭が用いられる。ストレージ12では、排気ガスの排熱を受けて蓄熱材11aより脱離したアンモニアを吸着材12aに物理吸着させた状態で貯蔵するとともに、アンモニアを吸着材12aから分離させてヒータ11に供給する。なお、吸着材12aとしては、活性炭に限られず、例えば、メソポーラスシリカ、メソポーラスカーボンやメソポーラスアルミナ等のメソ孔を有するメソポーラス材、または、ゼオライト、シリカゲルを用いてもよい。 The storage 12 includes an adsorbent 12a capable of storing ammonia as a reaction medium. As the adsorbent 12a, for example, activated carbon capable of storing ammonia by physical adsorption is used. In the storage 12, the ammonia desorbed from the heat storage material 11a in response to exhaust heat of the exhaust gas is stored in a state of being physically adsorbed on the adsorbent 12a, and ammonia is separated from the adsorbent 12a and supplied to the heater 11. The adsorbent 12a is not limited to activated carbon, and for example, mesoporous material having mesopores such as mesoporous silica, mesoporous carbon and mesoporous alumina, or zeolite and silica gel may be used.
 接続管13は、ヒータ11とストレージ12とを接続する管であり、ヒータ11とストレージ12との間で反応媒体(アンモニア)が流れる流路となる。バルブ14は、接続管13の途中に配設され、ヒータ11とストレージ12との間のアンモニアの流路を開閉するバルブである。バルブ14が開かれると、接続管13を介してヒータ11とストレージ12との間でアンモニアの移動が可能となる。バルブ14の開閉制御は、コントローラ15で行われる。バルブ14は、電磁式のノーマリクローズのバルブであり、電流を流したときに開く。なお、バルブ14は、電磁式以外のバルブでもよい。 The connecting pipe 13 is a pipe that connects the heater 11 and the storage 12, and serves as a flow path through which a reaction medium (ammonia) flows between the heater 11 and the storage 12. The valve 14 is disposed in the middle of the connection pipe 13 and opens and closes the ammonia flow path between the heater 11 and the storage 12. When the valve 14 is opened, ammonia can be transferred between the heater 11 and the storage 12 via the connecting pipe 13. The controller 15 performs opening / closing control of the valve 14. The valve 14 is an electromagnetic normally closed valve and opens when a current is passed. The valve 14 may be a non-electromagnetic valve.
 コントローラ15は、CPU[CentralProcessing Unit]、ROM[ReadOnly Memory]、RAM[Random Access Memory]などからなり、化学蓄熱装置10を制御する制御部である。コントローラ15には、温度センサ16、イグニッションスイッチ17などの各種センサが接続されており、これら複数のセンサより、適宜、制御に必要な情報を取得する。また、コントローラ15は、バルブ14が接続されており、取得した情報に基づいて化学蓄熱装置10を制御するための各処理を行い、必要に応じてバルブ14の開閉制御を行う。コントローラ15での具体的な処理について説明する前に、温度センサ16、イグニッションスイッチ17について説明しておく。コントローラ15は化学蓄熱装置10専用のものでもよいし、エンジンECU[Electronic Control Unit]等のECUの一機能として組み込まれるものとしてもよい。 The controller 15 includes a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], and the like, and is a control unit that controls the chemical heat storage device 10. Various sensors such as a temperature sensor 16 and an ignition switch 17 are connected to the controller 15, and information necessary for control is appropriately acquired from the plurality of sensors. Further, the controller 15 is connected to the valve 14, performs each process for controlling the chemical heat storage device 10 based on the acquired information, and performs opening / closing control of the valve 14 as necessary. Before describing specific processing in the controller 15, the temperature sensor 16 and the ignition switch 17 will be described. The controller 15 may be dedicated to the chemical heat storage device 10, or may be incorporated as a function of an ECU such as an engine ECU [Electronic Control Unit].
 温度センサ16は、エンジン2と熱交換器4との間の排気管3内を流れる排気ガスの温度を検出するセンサである。温度センサ16では、一定時間毎に、排気ガスの温度を検出し、その検出した温度情報をコントローラ15に送信する。この温度センサ16で検出される排気ガスの温度は、ヒータ11(ひいては、蓄熱材11a)の温度としても代用され、以下のコントローラ15の処理で用いられる。この温度センサ16で検出される排気ガスの温度を所定の換算式で換算してヒータ11の温度を推定し、その推定温度を以下のコントローラ15の処理で用いてもよい。なお、この実施形態では、温度センサ16が特許請求の範囲の記載の温度取得部に相当する。 The temperature sensor 16 is a sensor that detects the temperature of the exhaust gas flowing in the exhaust pipe 3 between the engine 2 and the heat exchanger 4. The temperature sensor 16 detects the temperature of the exhaust gas at regular intervals, and transmits the detected temperature information to the controller 15. The temperature of the exhaust gas detected by the temperature sensor 16 is substituted for the temperature of the heater 11 (and thus the heat storage material 11a), and is used in the processing of the controller 15 described below. The temperature of the exhaust gas detected by the temperature sensor 16 may be converted by a predetermined conversion formula to estimate the temperature of the heater 11, and the estimated temperature may be used in the processing of the controller 15 below. In this embodiment, the temperature sensor 16 corresponds to the temperature acquisition unit described in the claims.
 なお、ヒータ11内に設けられる蓄熱材11aは、アンモニアとの化学反応によりその体積が膨張する。そのため、例えば、ヒータ11の内部に温度センサを設けた場合には、温度センサが蓄熱材11aの膨張による圧力を受けて壊れることを防止する必要がある。また、ヒータ11では、ケーシング内に封入された蓄熱材11aがアンモニアと繰り返し化学反応できるように、密閉空間を形成している。そのため、ヒータ11の内部に温度センサを設けた場合には、密閉空間の気密性を十分に確保する必要がある。このようにヒータ11に温度センサを設けることがコストや部品点数の増加などの面から困難となる場合には、ヒータ11の温度を取得するために、ヒータ11に温度センサを設ける代わりに、熱交換器4(ヒータ11)の上流部の排気ガスの温度を検出する温度センサ16で代用している。 Note that the volume of the heat storage material 11a provided in the heater 11 expands due to a chemical reaction with ammonia. Therefore, for example, when a temperature sensor is provided inside the heater 11, it is necessary to prevent the temperature sensor from being damaged by receiving pressure due to expansion of the heat storage material 11a. The heater 11 forms a sealed space so that the heat storage material 11a enclosed in the casing can repeatedly react with ammonia. Therefore, when a temperature sensor is provided inside the heater 11, it is necessary to sufficiently ensure the airtightness of the sealed space. When it is difficult to provide a temperature sensor in the heater 11 in terms of cost, increase in the number of parts, and the like, instead of providing a temperature sensor in the heater 11 in order to obtain the temperature of the heater 11, a heat sensor is provided. A temperature sensor 16 that detects the temperature of the exhaust gas upstream of the exchanger 4 (heater 11) is used instead.
 また、エンジン2では、燃焼制御のために必要な排気ガスの温度を温度センサ16により取得している。つまり、排気ガスの温度を検出する温度センサ16は必須のセンサである。したがって、この温度センサ16を化学蓄熱装置10の制御にも利用することで、ヒータ11の温度を取得するための温度センサを別途設ける必要がなくなり、コストや部品点数の増加を抑制することができる。 In the engine 2, the temperature of the exhaust gas necessary for combustion control is acquired by the temperature sensor 16. That is, the temperature sensor 16 that detects the temperature of the exhaust gas is an essential sensor. Therefore, by using this temperature sensor 16 also for controlling the chemical heat storage device 10, it is not necessary to separately provide a temperature sensor for acquiring the temperature of the heater 11, and an increase in cost and the number of parts can be suppressed. .
 イグニッションスイッチ17は、エンジン2を始動/停止等するためのスイッチであり、車両の運転者がOFF、アクセサリON、イグニッションON、エンジン始動のいずれかのモードを選択するためのスイッチである。イグニッションスイッチ17では、その選択されているスイッチ情報をコントローラ15に送信する。イグニッションスイッチ17で運転者によってOFF操作がされると、そのイグニッションスイッチの17のOFFに応じてエンジンECUではエンジン2を停止させる。したがって、イグニッションスイッチ17のスイッチ情報からエンジン2が停止したか否かを判断できる。 The ignition switch 17 is a switch for starting / stopping the engine 2, and is a switch for the vehicle driver to select any one of OFF, accessory ON, ignition ON, and engine start modes. The ignition switch 17 transmits the selected switch information to the controller 15. When the driver performs an OFF operation using the ignition switch 17, the engine ECU stops the engine 2 in response to the ignition switch 17 being turned OFF. Therefore, it can be determined from the switch information of the ignition switch 17 whether the engine 2 has stopped.
 それでは、コントローラ15での具体的な処理について説明する。コントローラ15では、エンジン2の稼働中、温度センサ16で検出された熱交換器4の上流側での排気ガスの温度が暖機開始温度以下か否かを判定する。コントローラ15では、この排気ガスの温度が暖機開始温度以下と判定すると、バルブ14を開くためにバルブ14に電流を供給する。暖機開始温度は、排気ガス浄化システム1において暖機が必要な温度である。暖機開始温度は、触媒(DOC5等)の活性温度等に基づいて設定される。 Now, specific processing in the controller 15 will be described. The controller 15 determines whether the temperature of the exhaust gas upstream of the heat exchanger 4 detected by the temperature sensor 16 during operation of the engine 2 is equal to or lower than the warm-up start temperature. When the controller 15 determines that the temperature of the exhaust gas is equal to or lower than the warm-up start temperature, the controller 15 supplies a current to the valve 14 to open the valve 14. The warm-up start temperature is a temperature that requires warm-up in the exhaust gas purification system 1. The warm-up start temperature is set based on the activation temperature of the catalyst (such as DOC5).
 エンジン2の稼働中の暖機終了後、コントローラ15では、温度センサ16で検出された排気ガスの温度(ヒータ11(蓄熱材11a)の温度に相当)がアンモニア回収可能温度より高いか否かを判定する。コントローラ15では、排気ガスの温度がアンモニア回収可能温度より高いと判定すると、バルブ14を開くためにバルブ14に電流を供給する。また、コントローラ15では、排気ガスの温度がアンモニア回収可能温度以下と判定すると、バルブ14を閉じるためにバルブ14への電流の供給を停止する。 After completion of warm-up while the engine 2 is operating, the controller 15 determines whether or not the temperature of the exhaust gas detected by the temperature sensor 16 (corresponding to the temperature of the heater 11 (heat storage material 11a)) is higher than the ammonia recoverable temperature. judge. When the controller 15 determines that the temperature of the exhaust gas is higher than the temperature at which ammonia can be recovered, current is supplied to the valve 14 to open the valve 14. When the controller 15 determines that the temperature of the exhaust gas is equal to or lower than the temperature at which ammonia can be recovered, the controller 15 stops supplying current to the valve 14 in order to close the valve 14.
 アンモニア回収可能温度は、暖機後にヒータ11からアンモニアを回収可能な温度である。アンモニア回収可能温度は、ヒータ11で用いられる蓄熱材11aとアンモニアの組み合わせによって決まる蓄熱材11aからアンモニアが分離する温度を基準として、その基準となる温度よりも低い側(安全側)にマージン温度を加味した温度で設定される。つまり、アンモニア回収可能温度は、蓄熱材11aとアンモニアの組み合わせによって決まるアンモニア分離温度よりもマージン温度分低い温度で設定される。この温度を低くするためのマージン温度は、ヒータ11の温度の代用としてエンジン2と熱交換器4との間に設けられた温度センサ16によって排気ガスの温度を検出しているので、この温度センサ16が設けられる箇所での排気ガスの温度とこの箇所から離れた箇所にあるヒータ11(蓄熱材11a)の温度との温度差、温度センサ16の検出精度に応じた検出温度のばらつきなどを考慮して設定される。また、アンモニア回収可能温度は、外気温も考慮して設定されてもよく、例えば、外気温が高いほど高い温度が設定される。なお、この実施形態では、アンモニア回収可能温度が特許請求の範囲に記載の閾値に相当する。 The ammonia recoverable temperature is a temperature at which ammonia can be recovered from the heater 11 after warming up. The ammonia recoverable temperature is based on the temperature at which ammonia is separated from the heat storage material 11a determined by the combination of the heat storage material 11a used in the heater 11 and ammonia, and the margin temperature is set to a lower side (safe side) than the reference temperature. It is set at a temperature that takes into account. That is, the ammonia recoverable temperature is set at a temperature that is lower by the margin temperature than the ammonia separation temperature determined by the combination of the heat storage material 11a and ammonia. The margin temperature for lowering the temperature is such that the temperature of the exhaust gas is detected by a temperature sensor 16 provided between the engine 2 and the heat exchanger 4 as a substitute for the temperature of the heater 11. Consider the temperature difference between the temperature of the exhaust gas at the location where the temperature sensor 16 is provided and the temperature of the heater 11 (heat storage material 11a) at a location away from this location, and the variation in the detected temperature according to the detection accuracy of the temperature sensor 16 Is set. Further, the ammonia recoverable temperature may be set in consideration of the outside air temperature. For example, the higher the outside air temperature, the higher the temperature. In this embodiment, the ammonia recoverable temperature corresponds to the threshold value described in the claims.
 また、エンジン2の稼働中、コントローラ15では、イグニッションスイッチ17からのスイッチ情報に示されるイグニッションスイッチ17の状態がOFFになったか否か(エンジン2が停止したか否か)を判定する。コントローラ15では、イグニッションスイッチ17がOFFになったと判定すると、温度センサ16で検出された排気ガスの温度がアンモニア回収可能温度以下か否かを判定する。コントローラ15では、排気ガスの温度がアンモニア回収可能温度より高いと判定すると、バルブ14の開状態を維持するためにバルブ14への電流の供給を継続する。一方、コントローラ15では、排気ガスの温度がアンモニア回収可能温度以下と判定すると、バルブ14を閉じるためにバルブ14への電流の供給を停止する。これによって、エンジン2が停止した後も、排気ガスの温度(ヒータ11(蓄熱材11a)の温度に相当)がアンモニア回収可能温度以下になるまでバルブ14の開状態を維持することができる。 Further, during the operation of the engine 2, the controller 15 determines whether or not the state of the ignition switch 17 indicated by the switch information from the ignition switch 17 is turned off (whether the engine 2 is stopped). When the controller 15 determines that the ignition switch 17 has been turned OFF, the controller 15 determines whether or not the temperature of the exhaust gas detected by the temperature sensor 16 is equal to or lower than the ammonia recoverable temperature. When the controller 15 determines that the temperature of the exhaust gas is higher than the temperature at which ammonia can be recovered, the controller 15 continues to supply current to the valve 14 in order to maintain the valve 14 in the open state. On the other hand, when the controller 15 determines that the temperature of the exhaust gas is equal to or lower than the ammonia recoverable temperature, the controller 15 stops supplying current to the valve 14 in order to close the valve 14. Thereby, even after the engine 2 is stopped, the valve 14 can be kept open until the temperature of the exhaust gas (corresponding to the temperature of the heater 11 (heat storage material 11a)) becomes equal to or lower than the temperature at which ammonia can be recovered.
 以上のように構成した化学蓄熱装置10の動作を説明する。特に、エンジン2の停止時の動作については図2のフローチャートに沿って説明する。図2は、化学蓄熱装置10におけるエンジン停止時の動作を示すフローチャートである。 The operation of the chemical heat storage device 10 configured as described above will be described. In particular, the operation when the engine 2 is stopped will be described with reference to the flowchart of FIG. FIG. 2 is a flowchart showing the operation of the chemical heat storage device 10 when the engine is stopped.
 エンジン2が停止中、バルブ14には電流が供給されず、バルブ14は閉じられている。したがって、ストレージ12において吸着材12aからアンモニアが分離していても、接続管13を介してアンモニアがヒータ11に供給されない。車両の運転者によってイグニッションスイッチ17がONされ、エンジン2が始動される。コントローラ15では、温度センサ16で検出された排気ガスの温度が暖機開始温度以下と判定した場合、バルブ14に電流を供給する。バルブ14は、供給された電流が流れると、開く。これによって、接続管13でのアンモニアの移動が可能となる。このとき、ストレージ12内の圧力がヒータ11内の圧力よりも高く、アンモニアがヒータ11側に移動し、接続管13内を流れる。そして、接続管13内を流れるアンモニアが、ヒータ11に供給される。ヒータ11では、この供給されたアンモニアと蓄熱材11aとが化学反応して、熱を発生する。この熱は、熱交換器4の外筒に伝わり、伝熱効果によって熱交換器4の内部にまで伝わる。熱交換器4全体が加熱され、熱交換器4の内部を流れる排気ガスが迅速に昇温する。さらに、この昇温された排気ガスが下流側に流れ、DOC5、SCR7、ASC8の各触媒が昇温する。そして、この各触媒の温度が活性温度以上になると、排気ガスを浄化できる。暖機が終了すると、コントローラ15では、温度センサ16で検出された排気ガスの温度がアンモニア回収可能温度以下と判定した場合、バルブ14への電流の供給を停止する。バルブ14は、電流の供給が停止されると、閉じる。これによって、接続管13でのアンモニアの移動が不能となる。 When the engine 2 is stopped, no current is supplied to the valve 14 and the valve 14 is closed. Therefore, even if ammonia is separated from the adsorbent 12 a in the storage 12, ammonia is not supplied to the heater 11 via the connection pipe 13. The ignition switch 17 is turned on by the driver of the vehicle, and the engine 2 is started. In the controller 15, when it is determined that the temperature of the exhaust gas detected by the temperature sensor 16 is equal to or lower than the warm-up start temperature, a current is supplied to the valve 14. The valve 14 opens when the supplied current flows. As a result, ammonia can be moved in the connecting pipe 13. At this time, the pressure in the storage 12 is higher than the pressure in the heater 11, and ammonia moves to the heater 11 side and flows in the connection pipe 13. Then, ammonia flowing in the connection pipe 13 is supplied to the heater 11. In the heater 11, the supplied ammonia and the heat storage material 11a chemically react to generate heat. This heat is transferred to the outer cylinder of the heat exchanger 4 and is transferred to the inside of the heat exchanger 4 by the heat transfer effect. The entire heat exchanger 4 is heated, and the exhaust gas flowing inside the heat exchanger 4 is quickly heated. Further, the heated exhaust gas flows downstream, and the temperature of each catalyst of DOC5, SCR7, and ASC8 rises. And when the temperature of each catalyst becomes more than the activation temperature, the exhaust gas can be purified. When the warm-up is completed, the controller 15 stops the supply of current to the valve 14 when the temperature of the exhaust gas detected by the temperature sensor 16 is determined to be equal to or lower than the ammonia recoverable temperature. The valve 14 is closed when the supply of current is stopped. Thereby, the movement of ammonia in the connection pipe 13 becomes impossible.
 暖機終了後、エンジン2の稼働がある程度継続し、エンジン2から排出された排気ガスの温度が高くなると、ヒータ11では、アンモニアと蓄熱材11aとが分離し、アンモニアが発生する。コントローラ15では、温度センサ16で検出された排気ガスの温度がアンモニア回収可能温度より高いと判定した場合、バルブ14に電流を供給する。バルブ14は、供給された電流が流れると、開く。これによって、接続管13でのアンモニアの移動が可能となる。このとき、ヒータ11内の圧力がストレージ12内の圧力よりも高く、アンモニアがストレージ12側に移動し、接続管13内を流れる。そして、接続管13内を流れるアンモニアが、ストレージ12で回収される。ストレージ12では、吸着材12aでアンモニアを吸着して貯蔵する。 When the operation of the engine 2 continues to some extent after the warm-up is completed and the temperature of the exhaust gas discharged from the engine 2 becomes high, ammonia and the heat storage material 11a are separated in the heater 11 and ammonia is generated. When the controller 15 determines that the temperature of the exhaust gas detected by the temperature sensor 16 is higher than the temperature at which ammonia can be recovered, current is supplied to the valve 14. The valve 14 opens when the supplied current flows. As a result, ammonia can be moved in the connecting pipe 13. At this time, the pressure in the heater 11 is higher than the pressure in the storage 12, and ammonia moves to the storage 12 side and flows in the connection pipe 13. Then, the ammonia flowing through the connection pipe 13 is collected by the storage 12. In the storage 12, ammonia is adsorbed by the adsorbent 12a and stored.
 また、コントローラ15では、温度センサ16で検出された排気ガスの温度がアンモニア回収可能温度以下と判定した場合、バルブ14への電流の供給を停止する。バルブ14は、電流の供給が停止されると、閉じる。これによって、接続管13でのアンモニアの移動が不能となる。 In addition, when the controller 15 determines that the temperature of the exhaust gas detected by the temperature sensor 16 is equal to or lower than the temperature at which ammonia can be recovered, the supply of current to the valve 14 is stopped. The valve 14 is closed when the supply of current is stopped. Thereby, the movement of ammonia in the connection pipe 13 becomes impossible.
 エンジン2の稼働中、化学蓄熱装置10では、排気ガスの温度が暖機開始温度以下になると上記と同様の暖機時の動作が繰り返し行われ、排気ガスの温度がアンモニア回収可能温度より高くなると上記と同様のアンモニア回収時の動作が繰り返し行われる。 During the operation of the engine 2, when the temperature of the exhaust gas becomes equal to or lower than the warm-up start temperature, the chemical heat storage device 10 repeatedly performs the warm-up operation similar to the above, and the exhaust gas temperature becomes higher than the ammonia recoverable temperature. The same operation at the time of ammonia recovery as described above is repeated.
 特に、コントローラ15では、イグニッションスイッチ17がOFF(エンジン2が停止)になったと判定すると(S1)、温度センサ16で検出された排気ガスの温度(ヒータ11(蓄熱材11a)の温度に相当)がアンモニア回収可能温度以下か否かを判定する(S2)。このS2の判定は、温度センサ16で検出される排気ガスの温度がアンモニア回収可能温度以下になるまで繰り返し行われる。 In particular, when the controller 15 determines that the ignition switch 17 is turned off (the engine 2 is stopped) (S1), the temperature of the exhaust gas detected by the temperature sensor 16 (corresponding to the temperature of the heater 11 (heat storage material 11a)). Is determined to be equal to or lower than the ammonia recoverable temperature (S2). This determination of S2 is repeatedly performed until the temperature of the exhaust gas detected by the temperature sensor 16 becomes equal to or lower than the temperature at which ammonia can be recovered.
 S2にて排気ガスの温度がアンモニア回収可能温度より高いと判定している間は(つまり、排気ガスの温度がアンモニア回収可能温度以下になるまで)、コントローラ15では、バルブ14への電流の供給を継続する(S3)。この際、エンジン2は停止したが、ヒータ11(蓄熱材11a)が未だ高温状態であるので、ヒータ11ではアンモニアと蓄熱材11aとが分離し、アンモニアが発生している可能性がある。このとき、バルブ14は電流が供給されて開いた状態を維持しているので(S3)、接続管13でのアンモニアの移動が可能な状態である。そのため、ヒータ11で発生したアンモニアがストレージ12側に移動でき、接続管13内を流れる。そして、接続管13内を流れるアンモニアがストレージ12で回収され、ストレージ12では吸着材12aでアンモニアを吸着して貯蔵できる。したがって、ヒータ11では、圧力が増大しない。 While it is determined in S2 that the temperature of the exhaust gas is higher than the temperature at which ammonia can be recovered (that is, until the temperature of the exhaust gas becomes lower than the temperature at which ammonia can be recovered), the controller 15 supplies current to the valve 14. (S3). At this time, the engine 2 is stopped, but since the heater 11 (heat storage material 11a) is still in a high temperature state, ammonia and the heat storage material 11a may be separated in the heater 11 and ammonia may be generated. At this time, since the valve 14 is maintained in the open state by being supplied with current (S3), the ammonia can be moved through the connecting pipe 13. Therefore, ammonia generated in the heater 11 can move to the storage 12 side and flows in the connection pipe 13. Then, the ammonia flowing in the connection pipe 13 is collected by the storage 12, and the storage 12 can store the ammonia by adsorbing it with the adsorbent 12a. Therefore, the heater 11 does not increase the pressure.
 S2にて排気ガスの温度がアンモニア回収可能温度以下と判定した場合、コントローラ15では、バルブ14への電流の供給を停止する(S4)。バルブ14は電流の供給が停止されると閉じ(S4)、接続管13でのアンモニアの移動が不能となる。これによって、エンジン2の停止中、ストレージ12に貯蔵されているアンモニアが吸着材12aから分離していても、接続管13を介してアンモニアがヒータ11に供給されることはない。 When it is determined in S2 that the temperature of the exhaust gas is equal to or lower than the temperature at which ammonia can be recovered, the controller 15 stops supplying current to the valve 14 (S4). When the supply of current is stopped, the valve 14 is closed (S4), and ammonia cannot be moved through the connecting pipe 13. As a result, even when ammonia stored in the storage 12 is separated from the adsorbent 12 a while the engine 2 is stopped, ammonia is not supplied to the heater 11 via the connection pipe 13.
 この化学蓄熱装置10によれば、エンジン2が停止した場合、ヒータ11の温度(温度センサ16で検出される排気ガスの温度)がアンモニア回収可能温度以下になるまでバルブ14の開状態を維持することにより、ヒータ11の過圧状態を回避できる。また、化学蓄熱装置10によれば、蓄熱材11aとアンモニアの組み合わせによって決まるアンモニア分離温度よりも低い側(安全側)にマージンを加味した温度をアンモニア回収可能温度として設定することにより、エンジン2の停止後にアンモニアを未だ回収できる状態か否かを高精度に判定できる。また、化学蓄熱装置10によれば、温度センサ16をヒータ11の温度の取得に利用することにより、ヒータ11に別途に温度センサを設ける必要がない。 According to this chemical heat storage device 10, when the engine 2 is stopped, the valve 14 is kept open until the temperature of the heater 11 (the temperature of the exhaust gas detected by the temperature sensor 16) is equal to or lower than the ammonia recoverable temperature. Thus, an overpressure state of the heater 11 can be avoided. Moreover, according to the chemical heat storage device 10, the temperature of the engine 2 of the engine 2 is set by setting a temperature that takes a margin on the side (safe side) lower than the ammonia separation temperature determined by the combination of the heat storage material 11a and ammonia as the ammonia recoverable temperature. It can be determined with high accuracy whether or not ammonia can still be recovered after stopping. Further, according to the chemical heat storage device 10, it is not necessary to provide a separate temperature sensor for the heater 11 by using the temperature sensor 16 for acquiring the temperature of the heater 11.
 例えば、エンジン2が急加速等の過渡状態から停止した場合、エンジン2の停止後も、排気系の温度が高く、ヒータ11も高温状態である。そのため、ヒータ11では蓄熱材11aからアンモニアが分離し、アンモニアが発生する可能性がある。このような場合に、化学蓄熱装置10ではアンモニア回収可能温度以下になるまでバルブ14の開状態を維持して、ヒータ11が過圧状態になるようなことはない。 For example, when the engine 2 is stopped from a transient state such as rapid acceleration, even after the engine 2 is stopped, the temperature of the exhaust system is high and the heater 11 is also in a high temperature state. Therefore, in the heater 11, ammonia may be separated from the heat storage material 11a and ammonia may be generated. In such a case, the chemical heat storage device 10 maintains the valve 14 in the open state until the temperature is below the temperature at which ammonia can be recovered, and the heater 11 does not enter an overpressure state.
 以上、本発明の実施形態について説明したが、上記実施形態に限定されることなく様々な形態で実施される。 As mentioned above, although embodiment of this invention was described, it is implemented with various forms, without being limited to the said embodiment.
 例えば、上記実施形態では触媒としてDOC、SCR及びASC、フィルタとしてDPFを備える排気ガス浄化システムに適用したが、他の構成の排気ガス浄化システムに適用してもよく、例えば、DOC、SCR、ASCのうちのいずれか1つ又は2つの触媒を備えない排気ガス浄化システムや、DOC、SCR、ASC以外の触媒を備える排気ガス浄化システムに適用してもよい。また、車両もディーゼルエンジン車としたが、ガソリンエンジン車等にも適用できる。また、エンジンを駆動源とする船、発電機等の他の搭載対象物にも適用できる。 For example, in the above embodiment, the present invention is applied to an exhaust gas purification system including DOC, SCR, and ASC as a catalyst and DPF as a filter. However, the present invention may be applied to an exhaust gas purification system having other configurations, for example, DOC, SCR, ASC. The present invention may be applied to an exhaust gas purification system that does not include any one or two of these catalysts, or an exhaust gas purification system that includes a catalyst other than DOC, SCR, and ASC. Although the vehicle is a diesel engine vehicle, it can also be applied to a gasoline engine vehicle. Further, the present invention can also be applied to other mounted objects such as ships and generators using an engine as a drive source.
 また、上記実施形態では加熱対象物としてDOCの上流側の熱交換器としたが、加熱対象物としては他のものでよく、例えば、DOC、SCR、ASCのうちのいずれかの触媒を加熱対象物としてもよい。 Moreover, in the said embodiment, although it was set as the heat exchanger of the upstream of DOC as a heating target object, other things may be sufficient as a heating target object, for example, any catalyst of DOC, SCR, and ASC is heated. It is good also as a thing.
 また、上記実施形態ではヒータを熱交換器の外周部の全周に設ける構成としたが、加熱対象物の外周部の一部分にだけヒータを設けてもよいし、また、加熱対象物の外周部以外の箇所に設けてもよく、例えば、排気ガスを加熱するために、排気ガス配管の内部にヒータを設けてもよい。排気ガス配管の内部にヒータを設ける場合には、複数の加熱器と熱交換部とを交互に積層した構成としてもよい。 Moreover, in the said embodiment, although it was set as the structure which provides a heater in the perimeter of the outer peripheral part of a heat exchanger, you may provide a heater only in a part of outer peripheral part of a heating target object, and the outer peripheral part of a heating target object For example, in order to heat exhaust gas, a heater may be provided inside the exhaust gas pipe. When a heater is provided in the exhaust gas pipe, a configuration in which a plurality of heaters and heat exchange units are alternately stacked may be employed.
 また、上記実施形態で反応媒体をアンモニアとしたが、アルコール、水等の他の反応媒体でもよい。また、上記実施形態では反応媒体がアンモニアの場合の蓄熱材、吸着材の各材料をそれぞれ例示したが、化学蓄熱装置で用いられる反応媒体に応じて、蓄熱材、吸着材は適宜他の材料が用いられる。 Further, although the reaction medium is ammonia in the above embodiment, other reaction medium such as alcohol or water may be used. In the above embodiment, each material of the heat storage material and the adsorbent when the reaction medium is ammonia is exemplified, but depending on the reaction medium used in the chemical heat storage device, other materials may be used as appropriate for the heat storage material and the adsorbent. Used.
 また、上記実施形態ではヒータの温度を取得するために、排気ガスの温度を検出する温度センサを熱交換器とエンジンとの間に設けたが、排気ガスの温度を検出する温度センサを排気ガス浄化システムの他の箇所に設けてもよく、例えば、熱交換器とDOCとの間に温度センサを設けてもよいし、熱交換器とエンジンとの間及び熱交換器とDOCとの間に温度センサをそれぞれ設け、その2箇所で検出した各温度からヒータの温度を取得してもよい。また、ヒータに温度センサを設けることが可能であれば、ヒータに温度センサを設けて、ヒータ内(特に、蓄熱材)の温度を直接検出してもよい。 In the above embodiment, in order to acquire the temperature of the heater, a temperature sensor that detects the temperature of the exhaust gas is provided between the heat exchanger and the engine, but the temperature sensor that detects the temperature of the exhaust gas is provided in the exhaust gas. For example, a temperature sensor may be provided between the heat exchanger and the DOC, or between the heat exchanger and the engine, and between the heat exchanger and the DOC. A temperature sensor may be provided, and the heater temperature may be acquired from the temperatures detected at the two locations. If the heater can be provided with a temperature sensor, the heater may be provided with a temperature sensor to directly detect the temperature in the heater (particularly the heat storage material).
 また、上記実施形態ではエンジンの停止を判断するためにイグニッションスイッチからのスイッチ情報を受信する構成としたが、コントローラとエンジンECUとが別体の場合にはエンジンECUからエンジンの停止を示す信号を受信する構成としてもよいしあるいはエンジンECUを介してイグニッションスイッチのスイッチ情報を受信してよいし、また、コントローラがエンジンECUの一機能として組み込まれるものである場合にはエンジンECU内でエンジンの停止を示す情報を取得できる。 In the above embodiment, the switch information from the ignition switch is received to determine whether the engine has stopped. However, if the controller and the engine ECU are separate, a signal indicating the engine stop is sent from the engine ECU. It may be configured to receive the information, or the switch information of the ignition switch may be received via the engine ECU. If the controller is incorporated as a function of the engine ECU, the engine is stopped in the engine ECU. Can be obtained.
 また、上記実施形態では蓄熱材と反応媒体との組み合わせから決まるアンモニア分離温度よりも低い側(安全側)にマージンを加味してアンモニア回収可能温度を設定する構成としたが、ヒータ(蓄熱材)の温度を高精度に取得できるなどの条件によっては、このようなマージンを加味しないでアンモニア回収可能温度を設定してもよい。 Moreover, in the said embodiment, although it was set as the structure which takes a margin into the side (safety side) lower than the ammonia separation temperature determined from the combination of a heat storage material and a reaction medium, the temperature which can collect | recover ammonia is set, but a heater (heat storage material) Depending on conditions such that the temperature can be obtained with high accuracy, the ammonia recoverable temperature may be set without taking such a margin into consideration.
 また、上記実施形態では、エンジンを駆動源とする搭載対象物に搭載され、当該搭載対象物における加熱対象物を加熱する化学蓄熱装置を例示したが、当該化学蓄熱装置は、車両に搭載され、当該車両における加熱対象物を加熱する化学蓄熱装置であってよい。すなわち、化学蓄熱装置は、排気ガスを温めるものに限られず、エンジンオイル、変速機オイル、冷却水、或いは空気等、車両における種々の熱媒体を温めるものであってよい。 Moreover, in the said embodiment, although it mounted in the mounting target object which uses an engine as a drive source, and illustrated the chemical heat storage apparatus which heats the heating target object in the said mounting target object, the said chemical heat storage apparatus is mounted in the vehicle, It may be a chemical heat storage device for heating an object to be heated in the vehicle. That is, the chemical heat storage device is not limited to the one that warms the exhaust gas, and may be one that warms various heat media in the vehicle such as engine oil, transmission oil, cooling water, or air.
 化学蓄熱装置を種々の熱媒体に適用するときには、熱媒体が流れる熱媒体経路の外周部にヒータを配置し、当該ヒータによって熱媒体流路を加熱する構成としてもよい。この場合、熱媒体流路が加熱対象物となる。また、熱媒体流路内に熱交換機を配置し、当該熱交換機をヒータによって加熱する構成としてもよい。この場合、熱交換機が加熱対象物となる。さらに、蓄熱材が配置される加熱器と熱交換フィン等の熱交換部とを交互に複数並べて熱交換部一体型のヒータを構成し、熱媒体を貯蔵する熱媒体貯蔵部内や熱媒体流路上に熱交換部一体型のヒータを配置する構成としてもよい。この場合、各加熱器に対して隣接配置された熱交換部が加熱対象となる。 When the chemical heat storage device is applied to various heat media, a heater may be disposed on the outer periphery of the heat medium path through which the heat medium flows, and the heat medium flow path may be heated by the heater. In this case, the heat medium flow path becomes a heating object. Moreover, it is good also as a structure which arrange | positions a heat exchanger in a heat-medium flow path, and heats the said heat exchanger with a heater. In this case, the heat exchanger becomes a heating object. Furthermore, a plurality of heaters on which heat storage materials are arranged and heat exchange parts such as heat exchange fins are alternately arranged to form a heat exchange part integrated heater, and in the heat medium storage part for storing the heat medium or on the heat medium flow path It is good also as a structure which arrange | positions a heat exchanger integrated heater. In this case, the heat exchanging unit disposed adjacent to each heater is a heating target.
 また、上記実施形態では、排気ガスの温度を検出する温度センサにより検出した排気ガスの温度に基づいて、排気ガスの経路上の熱交換器(加熱対象物)を加熱するヒータの温度を取得しているが、熱媒体(例えばオイルなど)の温度に基づいて、熱媒体が流れる経路上の加熱対象物を加熱するヒータの温度を取得してもよい。 Moreover, in the said embodiment, based on the temperature of the exhaust gas detected by the temperature sensor which detects the temperature of exhaust gas, the temperature of the heater which heats the heat exchanger (heating target) on the path | route of exhaust gas is acquired. However, the temperature of the heater that heats the heating object on the path through which the heat medium flows may be acquired based on the temperature of the heat medium (for example, oil).
 また、上記実施形態では、車両の駆動源としてエンジンを搭載したエンジン車において、イグニッションスイッチがOFF状態になったこと、或いはエンジンECUからのエンジン停止信号に基づいて、車両の駆動源の停止を判定している。これに対し、車両の駆動源としてモータを搭載する電気自動車や燃料電池自動車の場合、電源スイッチがOFF状態となったこと、或いはPCU(制御ECU)からのモータ停止信号に基づいて、車両の駆動源の停止を判定すればよい。 Further, in the above embodiment, in an engine vehicle equipped with an engine as a vehicle drive source, it is determined whether the vehicle drive source is stopped based on an ignition switch being turned off or an engine stop signal from the engine ECU. is doing. On the other hand, in the case of an electric vehicle or a fuel cell vehicle equipped with a motor as a vehicle drive source, the vehicle is driven based on the fact that the power switch is turned off or a motor stop signal from the PCU (control ECU). What is necessary is just to determine the stop of a source.
 1…排気ガス浄化システム、2…エンジン、3…排気管、4…熱交換器、5…ディーゼル酸化触媒(DOC)、6…ディーゼル排気微粒子除去フィルタ(DPF)、7…選択還元触媒(SCR)、7a…インジェクタ、8…アンモニアスリップ触媒(ASC)、10…化学蓄熱装置、11…ヒータ、11a…蓄熱材、12…ストレージ、12a…吸着材、13…接続管、14…バルブ、15…コントローラ、16…温度センサ、17…イグニッションスイッチ。 DESCRIPTION OF SYMBOLS 1 ... Exhaust gas purification system, 2 ... Engine, 3 ... Exhaust pipe, 4 ... Heat exchanger, 5 ... Diesel oxidation catalyst (DOC), 6 ... Diesel exhaust particulate filter (DPF), 7 ... Selective reduction catalyst (SCR) , 7a ... injector, 8 ... ammonia slip catalyst (ASC), 10 ... chemical heat storage device, 11 ... heater, 11a ... heat storage material, 12 ... storage, 12a ... adsorbent, 13 ... connecting pipe, 14 ... valve, 15 ... controller , 16 ... Temperature sensor, 17 ... Ignition switch.

Claims (7)

  1.  エンジンを駆動源とする搭載対象物に搭載され、当該搭載対象物における加熱対象物を加熱する化学蓄熱装置であって、
     反応媒体と化学反応して熱を発生させる蓄熱材を有し、前記加熱対象物を加熱する加熱器と、
     反応媒体を貯蔵する貯蔵器と、
     前記加熱器と前記貯蔵器とを接続し、反応媒体が流れる接続管と、
     前記接続管に設けられる開閉弁と、
     前記開閉弁の開閉を制御する制御部と、
     前記加熱器の温度を取得する温度取得部と、
     を備え、
     前記制御部は、前記エンジンが停止した場合に前記温度取得部で取得した前記加熱器の温度が閾値以下になるまで前記開閉弁の開状態を維持する、化学蓄熱装置。
    A chemical heat storage device that is mounted on a mounting object using an engine as a drive source and heats the heating object in the mounting object,
    A heat storage material that chemically reacts with the reaction medium to generate heat, and a heater that heats the heating object;
    A reservoir for storing the reaction medium;
    A connecting pipe that connects the heater and the reservoir and through which a reaction medium flows;
    An on-off valve provided in the connection pipe;
    A control unit for controlling opening and closing of the on-off valve;
    A temperature acquisition unit for acquiring the temperature of the heater;
    With
    The said control part is a chemical heat storage apparatus which maintains the open state of the said on-off valve until the temperature of the said heater acquired in the said temperature acquisition part becomes below a threshold value when the said engine stops.
  2.  前記閾値は、蓄熱材から反応媒体が分離する温度よりも低い側にマージンを加味した温度で設定される、請求項1に記載の化学蓄熱装置。 2. The chemical heat storage device according to claim 1, wherein the threshold value is set at a temperature in which a margin is added to a side lower than a temperature at which the reaction medium is separated from the heat storage material.
  3.  前記温度取得部は、前記エンジンから排出される排気ガスの温度を検出し、当該検出した排気ガスの温度から前記加熱器の温度を取得する、請求項1又は請求項2に記載の化学蓄熱装置。 The chemical heat storage device according to claim 1, wherein the temperature acquisition unit detects a temperature of exhaust gas discharged from the engine and acquires a temperature of the heater from the detected temperature of the exhaust gas. .
  4.  車両に搭載され、当該車両における加熱対象物を加熱する化学蓄熱装置であって、
     反応媒体と化学反応して熱を発生させる蓄熱材を有し、前記加熱対象物を加熱する加熱器と、
     反応媒体を貯蔵する貯蔵器と、
     前記加熱器と前記貯蔵器とを接続し、反応媒体が流れる接続管と、
     前記接続管に設けられる開閉弁と、
     前記開閉弁の開閉を制御する制御部と、
     前記加熱器の温度を取得する温度取得部と、
     を備え、
     前記制御部は、前記車両の駆動源が停止した場合に前記温度取得部で取得した前記加熱器の温度が閾値以下になるまで前記開閉弁の開状態を維持する、化学蓄熱装置。
    A chemical heat storage device mounted on a vehicle for heating an object to be heated in the vehicle,
    A heat storage material that chemically reacts with the reaction medium to generate heat, and a heater that heats the heating object;
    A reservoir for storing the reaction medium;
    A connecting pipe that connects the heater and the reservoir and through which a reaction medium flows;
    An on-off valve provided in the connection pipe;
    A control unit for controlling opening and closing of the on-off valve;
    A temperature acquisition unit for acquiring the temperature of the heater;
    With
    The said control part is a chemical thermal storage apparatus which maintains the open state of the said on-off valve until the temperature of the said heater acquired by the said temperature acquisition part becomes below a threshold value when the drive source of the said vehicle stops.
  5.  前記閾値は、蓄熱材から反応媒体が分離する温度よりも低い側にマージンを加味した温度で設定される、請求項4に記載の化学蓄熱装置。 The chemical heat storage device according to claim 4, wherein the threshold value is set at a temperature with a margin added to a side lower than a temperature at which the reaction medium is separated from the heat storage material.
  6.  前記加熱器は、前記車両のエンジンから排出される排気ガスの経路上の前記加熱対象物を加熱する加熱器であり、
     前記温度取得部は、前記エンジンから排出される排気ガスの温度を検出し、当該検出した排気ガスの温度から前記加熱器の温度を取得する、請求項4又は請求項5に記載の化学蓄熱装置。
    The heater is a heater that heats the heating object on a path of exhaust gas discharged from the engine of the vehicle,
    The chemical heat storage device according to claim 4, wherein the temperature acquisition unit detects a temperature of exhaust gas discharged from the engine, and acquires the temperature of the heater from the detected temperature of the exhaust gas. .
  7.  前記加熱器は、前記車両の熱媒体の経路上の前記加熱対象物を加熱する加熱器であり、
     前記温度取得部は、前記加熱対象物により加熱される前記熱媒体の温度を検出し、当該検出した前記熱媒体の温度から前記加熱器の温度を取得する、請求項4又は5に記載の化学蓄熱装置。
    The heater is a heater that heats the heating object on a path of a heat medium of the vehicle,
    The chemistry according to claim 4 or 5, wherein the temperature acquisition unit detects the temperature of the heating medium heated by the heating object, and acquires the temperature of the heater from the detected temperature of the heating medium. Thermal storage device.
PCT/JP2015/062409 2014-05-13 2015-04-23 Chemical heat storage device WO2015174243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-099311 2014-05-13
JP2014099311A JP2017120130A (en) 2014-05-13 2014-05-13 Chemical heat storage device

Publications (1)

Publication Number Publication Date
WO2015174243A1 true WO2015174243A1 (en) 2015-11-19

Family

ID=54479786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062409 WO2015174243A1 (en) 2014-05-13 2015-04-23 Chemical heat storage device

Country Status (2)

Country Link
JP (1) JP2017120130A (en)
WO (1) WO2015174243A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110405A1 (en) * 2015-12-24 2017-06-29 株式会社豊田自動織機 Chemical heat storage apparatus
JP2017120075A (en) * 2015-12-24 2017-07-06 株式会社豊田自動織機 Chemical heat storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264613A (en) * 2008-04-22 2009-11-12 Toyota Central R&D Labs Inc Chemical heat storage system for vehicle
JP2010107093A (en) * 2008-10-29 2010-05-13 Denso Corp Heat storage device for vehicle
JP2011208865A (en) * 2010-03-29 2011-10-20 Denso Corp Chemical heat storage device
JP2013112310A (en) * 2011-11-30 2013-06-10 Toyota Central R&D Labs Inc Chemical heat accumulation system for vehicle and air conditioning system provided with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264613A (en) * 2008-04-22 2009-11-12 Toyota Central R&D Labs Inc Chemical heat storage system for vehicle
JP2010107093A (en) * 2008-10-29 2010-05-13 Denso Corp Heat storage device for vehicle
JP2011208865A (en) * 2010-03-29 2011-10-20 Denso Corp Chemical heat storage device
JP2013112310A (en) * 2011-11-30 2013-06-10 Toyota Central R&D Labs Inc Chemical heat accumulation system for vehicle and air conditioning system provided with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110405A1 (en) * 2015-12-24 2017-06-29 株式会社豊田自動織機 Chemical heat storage apparatus
JP2017120075A (en) * 2015-12-24 2017-07-06 株式会社豊田自動織機 Chemical heat storage device
EP3396289A4 (en) * 2015-12-24 2019-01-02 Kabushiki Kaisha Toyota Jidoshokki Chemical heat storage apparatus
US10948243B2 (en) 2015-12-24 2021-03-16 Kabushiki Kaisha Toyota Jidoshokki Chemical heat storage apparatus

Also Published As

Publication number Publication date
JP2017120130A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
WO2014065086A1 (en) Thermal storage device
JP5954123B2 (en) Exhaust gas purification system
WO2015174243A1 (en) Chemical heat storage device
JP5141479B2 (en) Exhaust gas purification system and exhaust gas purification method
JP6107563B2 (en) Chemical heat storage device
WO2015194400A1 (en) Chemical thermal storage device
JP2015121382A (en) Chemical heat storage device
JP6070402B2 (en) Chemical heat storage device
JP2015081519A (en) Exhaust gas purification system
JP2010174791A (en) Exhaust emission control device
WO2016163289A1 (en) Chemical heat-storage device
JP6493338B2 (en) Chemical heat storage device
WO2016084564A1 (en) Engine exhaust purification control method
JP2015218957A (en) Chemical heat storage device
US20170335739A1 (en) Chemical heat storage apparatus
WO2015174291A1 (en) Chemical heat storage apparatus
JP6007859B2 (en) Chemical heat storage device
JP6015579B2 (en) Heat storage device
WO2015182275A1 (en) Chemical heat storage device
WO2015178137A1 (en) Chemical heat storage device
WO2016056488A1 (en) Chemical heat storage apparatus
JP6131777B2 (en) Chemical heat storage device
JP2015222153A (en) Chemical heat storage device
JP2015052442A (en) Chemical heat storage device
WO2017013907A1 (en) Chemical heat storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15792725

Country of ref document: EP

Kind code of ref document: A1