JP2016044906A - Chemical heat storage device - Google Patents

Chemical heat storage device Download PDF

Info

Publication number
JP2016044906A
JP2016044906A JP2014170311A JP2014170311A JP2016044906A JP 2016044906 A JP2016044906 A JP 2016044906A JP 2014170311 A JP2014170311 A JP 2014170311A JP 2014170311 A JP2014170311 A JP 2014170311A JP 2016044906 A JP2016044906 A JP 2016044906A
Authority
JP
Japan
Prior art keywords
heat
reaction
heat exchange
medium
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014170311A
Other languages
Japanese (ja)
Inventor
野口 幸宏
Yukihiro Noguchi
幸宏 野口
浩康 河内
Hiroyasu Kawachi
浩康 河内
研二 森
Kenji Mori
研二 森
聡 針生
Satoshi Hario
聡 針生
鈴木 秀明
Hideaki Suzuki
秀明 鈴木
昭人 柘植
Akito Tsuge
昭人 柘植
孝則 村崎
Takanori Murazaki
孝則 村崎
貴文 山▲崎▼
Takafumi Yamazaki
貴文 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014170311A priority Critical patent/JP2016044906A/en
Publication of JP2016044906A publication Critical patent/JP2016044906A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a chemical heat storage device capable of efficiently transmitting heat generated by a reaction material in a reactor to a heating object.SOLUTION: A chemical heat storage device includes a heat exchanger 3 with a reactor having a reaction part 15 and a plurality of heat exchange members 16, and an adsorber connected so that NHcan flow between the reaction part 15 and it. The reaction part 15 is stored in the reactor 17, and has a reaction material 18 generating heat through a chemical reaction with NHand desorbing NHby stored heat of exhaust heat. The heat exchange member 16 has a heat exchange part 21 forming an exhaust gas flow passage 21a through which exhaust gas flows from one end side to the other end side and performing heat exchange between the exhaust gas and the reaction material 18, and a cylindrical heat exchange part outer cylinder 20 provided on an outer periphery of the heat exchange part 21. The heat exchange members 16 are buried in the reaction material 18 along a direction perpendicular to a flow direction of the exhaust gas in the inside of the reactor 17.SELECTED DRAWING: Figure 3

Description

本発明は、化学蓄熱装置に関する。   The present invention relates to a chemical heat storage device.

従来の化学蓄熱装置としては、例えば特許文献1に記載されている装置が知られている。特許文献1に記載の化学蓄熱装置は、エンジンより排出された排気ガスを浄化する触媒セラミック部の周囲に配置され、筐体部内に内蔵された蓄熱物質(反応材)を含む反応器と、蓄熱物質を発熱させるための水を供給する導水管部とを備えている。冷間時などに、水を反応器に供給することで、水と蓄熱物質とが化学反応して熱が発生する。そして、この反応器内で発生する熱により触媒セラミック部が加熱されて触媒活性温度に暖機される。   As a conventional chemical heat storage device, for example, a device described in Patent Document 1 is known. A chemical heat storage device described in Patent Document 1 is disposed around a catalyst ceramic portion that purifies exhaust gas discharged from an engine, and includes a reactor including a heat storage material (reaction material) built in a housing portion, and a heat storage And a water conduit for supplying water for generating heat from the substance. By supplying water to the reactor, such as when it is cold, the water and the heat storage material chemically react to generate heat. The catalyst ceramic portion is heated by the heat generated in the reactor and warmed to the catalyst activation temperature.

特開昭59−208118号公報JP 59-208118 A

しかしながら、上記従来技術においては、加熱源である反応器が加熱対象物である触媒セラミック部の周囲に配置されている。従って、例えば排ガス浄化能力を向上させるために触媒セラミック部の径を大きくすると、触媒セラミック部の外周から触媒セラミック部の中心までの伝熱距離が長くなり、触媒セラミック部の熱抵抗が増大する。このため、触媒セラミック部外周の反応器で発生する熱が触媒セラミック部の中心まで伝わりにくくなる。即ち、従来の構成では、反応器内の蓄熱物質(反応材)で発生させた熱を加熱対象物である触媒セラミック部に効率良く伝えることが困難であった。   However, in the above prior art, the reactor that is the heating source is arranged around the catalyst ceramic portion that is the heating object. Therefore, for example, when the diameter of the catalyst ceramic part is increased in order to improve the exhaust gas purification capacity, the heat transfer distance from the outer periphery of the catalyst ceramic part to the center of the catalyst ceramic part becomes long, and the thermal resistance of the catalyst ceramic part increases. For this reason, it becomes difficult for the heat generated in the reactor on the outer periphery of the catalyst ceramic portion to be transmitted to the center of the catalyst ceramic portion. That is, in the conventional configuration, it is difficult to efficiently transfer the heat generated by the heat storage material (reaction material) in the reactor to the catalyst ceramic part that is the object to be heated.

本発明の目的は、反応器内の反応材で発生した熱を加熱対象物に効率良く伝えることができる化学蓄熱装置を提供することである。   An object of the present invention is to provide a chemical heat storage device that can efficiently transfer heat generated by a reaction material in a reactor to an object to be heated.

本発明は、熱媒体を加熱する化学蓄熱装置であって、反応媒体との化学反応により発熱すると共に蓄熱により反応媒体を脱離する反応材が反応容器内に充填された反応部と、反応部との間で反応媒体を流通可能に接続され、反応媒体を貯蔵する貯蔵部と、熱媒体を流通させる複数の熱交換部材と、を備え、熱交換部材は、一端側から他端側にかけて熱媒体を流通させる熱媒体流路を形成すると共に熱媒体と反応材との間で熱交換を行う熱交換部と、熱交換部の外周に設けられると共に熱媒体の流通方向に延びる筒形状の熱交換部外筒とを有し、複数の熱交換部材は、反応容器の内部において熱媒体の流通方向に垂直な方向に並んで反応材に埋設されていることを特徴とする。   The present invention relates to a chemical heat storage device for heating a heat medium, wherein a reaction part which is heated in a reaction vessel and is filled with a reaction material that generates heat and desorbs the reaction medium by heat storage, and a reaction part And a storage section that stores the reaction medium and a plurality of heat exchange members that circulate the heat medium, and the heat exchange member heats from one end side to the other end side. A heat exchanger that forms a heat medium flow path for circulating the medium and exchanges heat between the heat medium and the reaction material, and a cylindrical heat that is provided on the outer periphery of the heat exchanger and extends in the flow direction of the heat medium The plurality of heat exchanging members are embedded in the reaction material side by side in a direction perpendicular to the flow direction of the heat medium inside the reaction vessel.

このような本発明の化学蓄熱装置においては、貯蔵部から反応部に反応媒体が供給されると、反応材と反応媒体との化学反応により反応材が発熱し、その熱が各熱交換部材の熱交換部に伝えられる。このとき、複数の熱交換部材を反応容器の内部において熱媒体の流通方向に垂直な方向に並んで反応材に埋設することにより、各熱交換部材の熱交換部における熱媒体の流通方向に垂直な方向の寸法を小さくすることができる。各熱交換部材の熱交換部における熱媒体の流通方向に垂直な方向の寸法が小さくなると、加熱源が配置された熱交換部の外周から熱交換部の中心までの伝熱距離が短くなり、熱交換部の熱抵抗が小さくなる。このため、熱交換部の外周に配置された反応材で発生する熱が熱交換部の中心まで伝わりやすくなる。つまり、本発明では、反応器内の反応材で発生した熱を加熱対象物である熱交換部に効率良く伝えることができる。   In such a chemical heat storage device of the present invention, when the reaction medium is supplied from the storage unit to the reaction unit, the reaction material generates heat due to a chemical reaction between the reaction material and the reaction medium, and the heat is generated by each heat exchange member. It is transmitted to the heat exchange section. At this time, the plurality of heat exchange members are embedded in the reaction material in a direction perpendicular to the flow direction of the heat medium in the reaction vessel, thereby being perpendicular to the flow direction of the heat medium in the heat exchange portion of each heat exchange member. The dimension in a proper direction can be reduced. When the dimension in the direction perpendicular to the flow direction of the heat medium in the heat exchange part of each heat exchange member is reduced, the heat transfer distance from the outer periphery of the heat exchange part where the heating source is arranged to the center of the heat exchange part is shortened, The heat resistance of the heat exchange part is reduced. For this reason, the heat generated by the reaction material arranged on the outer periphery of the heat exchange part is easily transmitted to the center of the heat exchange part. That is, in the present invention, the heat generated by the reaction material in the reactor can be efficiently transferred to the heat exchanging part that is the object to be heated.

複数の熱交換部材は、それぞれの熱交換部外筒の全周が反応材と接触するように互いに離間して配置されていてもよい。この場合には、反応材で発生した熱が熱交換部の外周全体から熱交換部の中心に向けて伝えられる。従って、反応材で発生した熱を熱交換部に一層効率良く伝えることができる。   The plurality of heat exchange members may be arranged apart from each other so that the entire circumference of each outer tube of the heat exchange section is in contact with the reaction material. In this case, the heat generated in the reaction material is transmitted from the entire outer periphery of the heat exchange unit toward the center of the heat exchange unit. Therefore, the heat generated in the reaction material can be more efficiently transmitted to the heat exchange unit.

反応部は、反応容器と反応材との間に設けられた断熱材を更に有していてもよい。この場合には、反応材で発生した熱が反応容器から外部に放熱されることを低減できる。   The reaction part may further have a heat insulating material provided between the reaction vessel and the reaction material. In this case, the heat generated in the reaction material can be reduced from being radiated to the outside from the reaction vessel.

反応部は、熱媒体を流通させる熱媒体流通経路上に配置され、反応容器は、複数の熱交換部材の両端部を露出させる複数の開口部を有していてもよい。この場合には、複数の熱交換部材を反応材に簡単に埋設することができる。   The reaction unit may be disposed on a heat medium flow path through which the heat medium is circulated, and the reaction container may have a plurality of openings that expose both end portions of the plurality of heat exchange members. In this case, a plurality of heat exchange members can be easily embedded in the reaction material.

本発明によれば、反応器内の反応材で発生した熱を加熱対象物に効率良く伝えることができる化学蓄熱装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the chemical heat storage apparatus which can transmit efficiently the heat | fever generated with the reaction material in a reactor to a heating target object is provided.

化学蓄熱装置の一実施形態を備えた排気浄化システムを示す概略構成図である。It is a schematic block diagram which shows the exhaust gas purification system provided with one Embodiment of the chemical heat storage apparatus. 図1に示された反応器付き熱交換器の側面図(一部断面を含む)を有する化学蓄熱装置の概略構成図である。It is a schematic block diagram of the chemical heat storage apparatus which has the side view (a partial cross section is included) of the heat exchanger with a reactor shown by FIG. 図2のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図2のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG.

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、化学蓄熱装置の一実施形態を備えた排気浄化システムを示す概略構成図である。図1において、排気浄化システム1は、車両のディーゼルエンジン2(以下、単にエンジン2という)の排気系に設けられ、エンジン2から排出される排気ガスに含まれる有害物質(環境汚染物質)を浄化する。   FIG. 1 is a schematic configuration diagram illustrating an exhaust purification system including an embodiment of a chemical heat storage device. In FIG. 1, an exhaust purification system 1 is provided in an exhaust system of a diesel engine 2 (hereinafter simply referred to as an engine 2) of a vehicle, and purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2. To do.

排気浄化システム1は、反応器付き熱交換器3、ディーゼル酸化触媒(DOC:DieselOxidation Catalyst)4、ディーゼル排気微粒子除去フィルタ(DPF:Diesel Particulate Filter)5、選択還元触媒(SCR:Selective Catalytic Reduction)6及びアンモニアスリップ触媒(ASC:Ammonia Slip Catalyst)7を備えている。反応器付き熱交換器3、DOC4、DPF5、SCR6及びASC7は、エンジン2と接続された排気通路8の途中に、上流側から下流側に向けて順に配置されている。   The exhaust purification system 1 includes a heat exchanger 3 with a reactor, a diesel oxidation catalyst (DOC) 4, a diesel exhaust particulate filter (DPF) 5, a selective catalytic catalyst (SCR) 6 And an ammonia slip catalyst (ASC) 7. The reactor-equipped heat exchanger 3, DOC 4, DPF 5, SCR 6, and ASC 7 are arranged in order from the upstream side toward the downstream side in the exhaust passage 8 connected to the engine 2.

反応器付き熱交換器3については、後で詳述する。DOC4は、排気ガス中に含まれるHC及びCO等を酸化して浄化する。DPF5は、排気ガス中に含まれる粒子状物質(PM:Particulate Matter)を捕集し、排気ガスからPMを取り除く。SCR6は、尿素またはアンモニア(NH)によって、排気ガス中に含まれるNOxを還元して浄化する。ASC7は、SCR6を通過したNHを酸化する。 The heat exchanger with a reactor 3 will be described in detail later. The DOC 4 oxidizes and purifies HC and CO contained in the exhaust gas. The DPF 5 collects particulate matter (PM) contained in the exhaust gas and removes PM from the exhaust gas. The SCR 6 reduces and purifies NOx contained in the exhaust gas with urea or ammonia (NH 3 ). ASC7 oxidizes NH 3 passing through the SCR6.

また、排気浄化システム1は、可逆的な化学反応を利用して、外部エネルギレスで熱交換器などの加熱対象物を加熱(暖機)する化学蓄熱装置10を備えている。具体的には、化学蓄熱装置10は、後述する反応材18と反応媒体とを分離した状態にすることにより、排気ガスの熱(排熱)を化学蓄熱装置10の内部に蓄えておく。そして、化学蓄熱装置10は、反応媒体を必要なときに反応材18に供給して、反応材18と反応媒体とを化学反応(化学吸着)させ、化学反応時の反応熱を利用して加熱対象物を加熱する。この実施形態では、反応媒体としてNH(アンモニア)を用いている。 Further, the exhaust purification system 1 includes a chemical heat storage device 10 that heats (warms up) a heating object such as a heat exchanger without using external energy by using a reversible chemical reaction. Specifically, the chemical heat storage device 10 stores the heat (exhaust heat) of the exhaust gas in the chemical heat storage device 10 by separating a reaction material 18 and a reaction medium described later from each other. The chemical heat storage device 10 supplies the reaction medium to the reaction material 18 when necessary, causes the reaction material 18 and the reaction medium to chemically react (chemical adsorption), and heats using the reaction heat during the chemical reaction. Heat the object. In this embodiment, NH 3 (ammonia) is used as the reaction medium.

化学蓄熱装置10は、図2にも示されるように、上記の反応器付き熱交換器3と、この反応器付き熱交換器3の反応部15(後述)とNH供給管11を介してNHを流通可能に接続された吸着器12とを備えている。NH供給管11には、反応器付き熱交換器3の反応部15と吸着器12との間の流路を開閉させる開閉弁13が設けられている。 As shown in FIG. 2, the chemical heat storage device 10 includes the heat exchanger 3 with a reactor, a reaction unit 15 (described later) of the heat exchanger 3 with a reactor, and an NH 3 supply pipe 11. And an adsorber 12 connected to be able to circulate NH 3 . The NH 3 supply pipe 11 is provided with an on-off valve 13 for opening and closing a flow path between the reaction unit 15 and the adsorber 12 of the heat exchanger 3 with a reactor.

吸着器12は、反応媒体であるNHの物理吸着による保持及び脱離が可能な吸着材14を含んでいる。吸着材14としては、活性炭、カーボンブラック、メソポーラスカーボン、ナノカーボンまたはゼオライト等が用いられる。吸着器12は、NHを吸着材14に物理吸着させることで、NHを貯蔵する貯蔵部を構成する。 The adsorber 12 includes an adsorbent 14 that can hold and desorb NH 3 as a reaction medium by physical adsorption. As the adsorbent 14, activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used. The adsorber 12 forms a storage unit that stores NH 3 by physically adsorbing NH 3 on the adsorbent 14.

反応器付き熱交換器3は、図2〜図4に示されるように、反応部15と、この反応部15に対して熱媒体である排気ガスの流通方向に垂直な方向に隣接して配置された複数(ここでは4つ)の熱交換部材16とを有している。上記のNH供給管11は、反応部15と連結されている。 As shown in FIGS. 2 to 4, the reactor-equipped heat exchanger 3 is disposed adjacent to the reaction unit 15 and the reaction unit 15 in a direction perpendicular to the flow direction of the exhaust gas that is a heat medium. And a plurality of (in this case, four) heat exchange members 16. The NH 3 supply pipe 11 is connected to the reaction unit 15.

反応部15は、熱媒体である排気ガスを流通させる排気ガス流通経路A(熱媒体流通経路)上に配置されている。反応部15は、反応容器17と、この反応容器17内に充填され、NHとの化学反応により発熱すると共に排熱の蓄熱によりNHを脱離する反応材18とを有している。 The reaction unit 15 is disposed on an exhaust gas distribution path A (heat medium distribution path) through which exhaust gas that is a heat medium flows. The reaction unit 15 includes a reaction vessel 17, is charged to the reaction vessel 17, the NH 3 and a reaction member 18 that is eliminated by the heat storage of waste heat while heat by chemical reaction with NH 3.

反応容器17は、円筒状の外筒部17aと、この外筒部17aの上流側端部及び下流側端部にそれぞれ固定された1対の円形状の蓋部17bとからなっている。各蓋部17bには、複数の熱交換部材16の両端部を露出させる複数の開口部17cが形成されている。反応容器17は、ステンレス鋼等の金属で形成されている。   The reaction vessel 17 includes a cylindrical outer cylinder portion 17a and a pair of circular lid portions 17b fixed to the upstream end portion and the downstream end portion of the outer cylinder portion 17a. Each lid portion 17b is formed with a plurality of openings 17c that expose both end portions of the plurality of heat exchange members 16. The reaction vessel 17 is made of a metal such as stainless steel.

反応材18としては、組成式MXaで表されるハロゲン化物が用いられる。Mは、Mg、CaまたはSr等のアルカリ土類金属、若しくはCr、Mn、Fe、Co、Ni、CuまたはZn等の遷移金属である。Xは、Cl、BrまたはI等である。aは、Mの価数により特定される数であり、2〜3である。   As the reaction material 18, a halide represented by the composition formula MXa is used. M is an alkaline earth metal such as Mg, Ca or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu or Zn. X is Cl, Br, I or the like. a is a number specified by the valence of M, and is 2-3.

反応材18は、粉末状であってもよいし、プレス成型体であってもよい。反応材18には、熱伝導性を向上させる添加物が混合されていてもよい。添加物としては、カーボンファイバ、カーボンビーズ、SiCビーズ、金属ビーズ、高分子ビーズまたは高分子ファイバ等が用いられる。金属ビーズの金属材料としては、Cu、Ag、Ni、Ci−Cr、Al、Feまたはステンレス鋼等が挙げられる。   The reaction material 18 may be in the form of a powder or a press-molded body. The reaction material 18 may be mixed with an additive for improving thermal conductivity. As the additive, carbon fiber, carbon bead, SiC bead, metal bead, polymer bead, polymer fiber or the like is used. Examples of the metal material of the metal beads include Cu, Ag, Ni, Ci—Cr, Al, Fe, and stainless steel.

反応容器17と反応材18との間には、断熱材19が円環状に配置されている。断熱材19としては、例えばグラスウール等が用いられる。断熱材19を設けることにより、反応材18で発生した熱が反応容器17から外部に放熱されることが抑制される。NH供給管11の一端部は、断熱材19を貫通して反応材18と接続されている。反応材18と断熱材19との間には、NHの流路を形成する多孔体(図示せず)が介在されている。 Between the reaction vessel 17 and the reaction material 18, a heat insulating material 19 is arranged in an annular shape. For example, glass wool or the like is used as the heat insulating material 19. By providing the heat insulating material 19, heat generated in the reaction material 18 is suppressed from being radiated to the outside from the reaction container 17. One end of the NH 3 supply pipe 11 penetrates the heat insulating material 19 and is connected to the reaction material 18. A porous body (not shown) that forms a NH 3 flow path is interposed between the reaction material 18 and the heat insulating material 19.

熱交換部材16は、ハニカム構造の熱交換部21と、この熱交換部21の外周に設けられ、排気ガスの流通方向に延びる筒形状の熱交換部外筒20とを有している。熱交換部21は、一端側から他端側にかけて排気ガスを流通させる排気ガス流路21a(熱媒体流路)を形成すると共に、排気ガスと反応材18との間で熱交換を行う。熱交換部外筒20は、NHに対して耐腐食性を有するステンレス鋼等で形成されている。熱交換部21は、熱伝導性が高いSiSiC等のセラミックで形成されている。 The heat exchange member 16 includes a heat exchange part 21 having a honeycomb structure and a cylindrical heat exchange part outer cylinder 20 provided on the outer periphery of the heat exchange part 21 and extending in the flow direction of the exhaust gas. The heat exchanging unit 21 forms an exhaust gas passage 21 a (heat medium passage) through which exhaust gas flows from one end side to the other end side, and performs heat exchange between the exhaust gas and the reactant 18. The heat exchange portion outer cylinder 20 is formed of stainless steel or the like having corrosion resistance against NH 3 . The heat exchanging portion 21 is made of ceramic such as SiSiC having high thermal conductivity.

各熱交換部材16は、反応部15の反応容器17内に収容されている。具体的には、各熱交換部材16は、反応容器17の内部において排気ガスの流通方向に垂直な方向に並んで反応材18に埋設されている。このとき、各熱交換部材16は、熱交換部外筒20の全周が反応材18と接触するように互いに離間して配置されている。これにより、各熱交換部材16の周囲全体には、反応材18が配置されている。   Each heat exchange member 16 is accommodated in a reaction container 17 of the reaction unit 15. Specifically, the heat exchange members 16 are embedded in the reaction material 18 side by side in the direction perpendicular to the flow direction of the exhaust gas inside the reaction vessel 17. At this time, the heat exchange members 16 are arranged so as to be separated from each other so that the entire circumference of the heat exchange portion outer cylinder 20 is in contact with the reaction material 18. Thereby, the reaction material 18 is arrange | positioned in the whole circumference | surroundings of each heat exchange member 16. FIG.

以上のような化学蓄熱装置10を備えた排気浄化システム1において、エンジン2から排出される排気ガスの温度が所定温度よりも低いときは、開閉弁13を開く。すると、吸着器12と反応部15との圧力差によって、吸着器12の吸着材14から脱離したNHがNH供給管11を通って反応部15に供給される。そして、反応部15の反応材18(例えばMgCl)とNHとが化学反応して化学吸着し、反応材18から熱が発生する。つまり、下記の反応式(A)における左辺から右辺への反応(発熱反応)が起こる。そして、反応材18から発生した熱が各熱交換部材16に伝えられる。これにより、各熱交換部材16が加熱され、これに伴って各熱交換部材16の熱交換部21を流れる排気ガスが加熱される。つまり、各熱交換部材16により排気ガスが熱交換されて加熱される。そして、暖められた排気ガスによってDOC4が汚染物質の浄化に適した活性温度まで上昇する。
MgClNH ⇔ Mg(NHCl+熱 …(A)
In the exhaust purification system 1 including the chemical heat storage device 10 as described above, the open / close valve 13 is opened when the temperature of the exhaust gas discharged from the engine 2 is lower than a predetermined temperature. Then, NH 3 desorbed from the adsorbent 14 of the adsorber 12 due to the pressure difference between the adsorber 12 and the reaction unit 15 is supplied to the reaction unit 15 through the NH 3 supply pipe 11. Then, the reaction material 18 (for example, MgCl 2 ) and NH 3 in the reaction unit 15 chemically react and chemically adsorb, and heat is generated from the reaction material 18. That is, a reaction from the left side to the right side (exothermic reaction) in the following reaction formula (A) occurs. Then, the heat generated from the reaction material 18 is transmitted to each heat exchange member 16. Thereby, each heat exchange member 16 is heated, and the exhaust gas which flows through the heat exchange part 21 of each heat exchange member 16 is heated in connection with this. That is, the exhaust gas is heat-exchanged by each heat exchange member 16 and heated. Then, the heated exhaust gas raises the DOC 4 to an activation temperature suitable for purification of pollutants.
MgCl 2 + x NH 3 ⇔ Mg (NH 3) x Cl 2 + heat ... (A)

一方、エンジン2から排出される排気ガスの温度が所定温度以上になると、排気ガスの熱(排熱)が反応部15の反応材18に与えられることで、反応材18からNHが脱離する。つまり、上記の反応式(A)における右辺から左辺への反応(再生反応)が起こる。そして、反応部15と吸着器12との圧力差によって、反応材18から脱離したNHがNH供給管11を通って吸着器12に戻り、吸着器12の吸着材14にNHが物理吸着される。これにより、NHが吸着器12に回収される。 On the other hand, when the temperature of the exhaust gas discharged from the engine 2 becomes equal to or higher than a predetermined temperature, the heat (exhaust heat) of the exhaust gas is given to the reaction material 18 of the reaction unit 15, whereby NH 3 is desorbed from the reaction material 18. To do. That is, a reaction (regeneration reaction) from the right side to the left side in the above reaction formula (A) occurs. Then, due to the pressure difference between the reaction unit 15 and the adsorber 12, NH 3 desorbed from the reaction material 18 returns to the adsorber 12 through the NH 3 supply pipe 11, and NH 3 is adsorbed on the adsorbent 14 of the adsorber 12. Physically adsorbed. Thereby, NH 3 is recovered in the adsorber 12.

以上のように本実施形態にあっては、反応部15の反応容器17内に反応材18を充填し、複数の熱交換部材16を反応容器17の内部において排気ガスの流通方向に垂直な方向に並んで反応材18に埋設したので、1つの熱交換部材の周囲に円環状に反応材を配置する場合に比し、各熱交換部材16の熱交換部21の外径(排気ガスの流通方向に垂直な方向の寸法)を小さくすることができる。このように熱交換部21の外径が小さくなると、熱交換部21における外周と中心との距離(伝熱距離)が短くなり、熱交換部21の熱抵抗が小さくなる。   As described above, in the present embodiment, the reaction material 17 is filled in the reaction vessel 17 of the reaction unit 15, and the plurality of heat exchange members 16 are arranged in the reaction vessel 17 in a direction perpendicular to the flow direction of the exhaust gas. Embedded in the reaction material 18 side by side, the outer diameter of each heat exchange member 16 (circulation of exhaust gas) compared to the case where the reaction material is arranged in an annular shape around one heat exchange member. Dimension in a direction perpendicular to the direction) can be reduced. Thus, when the outer diameter of the heat exchange part 21 becomes small, the distance (heat transfer distance) between the outer periphery and the center in the heat exchange part 21 becomes short, and the heat resistance of the heat exchange part 21 becomes small.

従って、発熱反応時には、反応材18で発生した熱が熱交換部21の中心まで伝わりやすくなる。これにより、反応材18で発生した熱を熱交換部21に効率良く伝えることができる。その結果、排気ガスを効率良く最適温度まで加熱することができる。   Therefore, during the exothermic reaction, the heat generated in the reaction material 18 is easily transmitted to the center of the heat exchange unit 21. Thereby, the heat generated in the reaction material 18 can be efficiently transmitted to the heat exchange unit 21. As a result, the exhaust gas can be efficiently heated to the optimum temperature.

また、再生反応時には、各熱交換部材16の熱交換部21の中心部を通る排気ガスの熱が反応部15の反応材18に伝わりやすくなる。これにより、排気ガスの熱によってNHを反応材18から効率良く脱離させることができる。その結果、吸着器12へのNHの回収を効率良く行うことができる。 Further, during the regeneration reaction, the heat of the exhaust gas passing through the central portion of the heat exchange part 21 of each heat exchange member 16 is easily transmitted to the reaction material 18 of the reaction part 15. Thereby, NH 3 can be efficiently desorbed from the reaction material 18 by the heat of the exhaust gas. As a result, the recovery of NH 3 to the adsorber 12 can be performed efficiently.

さらに、各熱交換部材16を、熱交換部外筒20の全周が反応材18と接触するように互いに離間して配置したので、上述したように各熱交換部材16の周囲全体に反応材18が配置されることとなる。   Furthermore, since the heat exchange members 16 are arranged so as to be separated from each other so that the entire circumference of the heat exchange portion outer cylinder 20 is in contact with the reaction material 18, as described above, the reaction material is entirely disposed around the heat exchange members 16. 18 will be arranged.

このため、発熱反応時には、反応材18で発生した熱が各熱交換部材16の熱交換部21の外周全体から熱交換部21の中心に向けて伝えられる。従って、反応材18で発生した熱によって各熱交換部材16の熱交換部21が外周全体から加熱されるため、排気ガスを一層効率良く加熱することができる。また、再生反応時には、各熱交換部材16の熱交換部21を通る排気ガスの熱が反応材18に効率良く与えられるため、吸着器12へのNHの回収を一層効率良く行うことができる。 For this reason, at the time of exothermic reaction, the heat generated in the reaction material 18 is transmitted from the entire outer periphery of the heat exchange part 21 of each heat exchange member 16 toward the center of the heat exchange part 21. Therefore, since the heat exchange portion 21 of each heat exchange member 16 is heated from the entire outer periphery by the heat generated in the reaction material 18, the exhaust gas can be heated more efficiently. Further, during the regeneration reaction, the heat of the exhaust gas passing through the heat exchanging portion 21 of each heat exchange member 16 is efficiently given to the reaction material 18, so that the recovery of NH 3 to the adsorber 12 can be performed more efficiently. .

なお、本発明は、上記実施形態には限定されない。例えば、上記実施形態では、複数の熱交換部材16は、熱交換部外筒20の全周が反応材18と接触するように互いに離間して配置されているが、特にそれには限られず、複数の熱交換部材16を接触させるように配置してもよい。この場合には、反応部15の反応容器17の外径を小さくすることができるため、反応器付き熱交換器3の体格を小型化することができる。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the plurality of heat exchanging members 16 are arranged apart from each other so that the entire circumference of the heat exchanging portion outer cylinder 20 is in contact with the reaction material 18. You may arrange | position so that the heat exchange member 16 of this may be contacted. In this case, since the outer diameter of the reaction vessel 17 of the reaction unit 15 can be reduced, the size of the reactor-equipped heat exchanger 3 can be reduced.

また、上記実施形態では、反応部15の反応容器17の外筒部17aが円筒状であり、各熱交換部材16の熱交換部外筒20が円筒状であるが、特にそれには限られず、例えば外筒部17a及び熱交換部外筒20が何れも矩形筒状等であってもよいし、外筒部17a及び熱交換部外筒20の何れか一方が円筒状で他方が矩形筒状であってもよい。   Moreover, in the said embodiment, although the outer cylinder part 17a of the reaction container 17 of the reaction part 15 is cylindrical, and the heat exchange part outer cylinder 20 of each heat exchange member 16 is cylindrical, it is not restricted to it in particular, For example, both the outer cylinder part 17a and the heat exchange part outer cylinder 20 may be rectangular cylinders, or either one of the outer cylinder part 17a and the heat exchange part outer cylinder 20 is cylindrical and the other is a rectangular cylinder. It may be.

さらに、上記実施形態では、熱交換部材16の熱交換部21がセラミックで形成されているが、熱交換部21の材料としては特にそれには限られず、熱伝導性が高いステンレス鋼等の金属であってもよい。また、熱交換部材16の熱交換部21には、触媒が担持されていてもよい。   Furthermore, in the said embodiment, although the heat exchange part 21 of the heat exchange member 16 is formed with the ceramic, it is not restricted to it in particular as a material of the heat exchange part 21, It is metal, such as stainless steel with high heat conductivity. There may be. Further, a catalyst may be supported on the heat exchange part 21 of the heat exchange member 16.

さらに、上記実施形態では、反応媒体であるNHと組成式MXaで表される反応材18とを化学反応させて熱を発生させているが、反応媒体としては、特にNHには限られず、例えばCOまたはHO等を使用してもよい。反応媒体としてCOを使用する場合、COと化学反応する反応材としては、MgO、CaO、BaO、Ca(OH)、Mg(OH)、Fe(OH)、Fe(OH)、FeO、FeまたはFe等を使用することができる。反応媒体としてHOを使用する場合、HOと化学反応する反応材としては、CaO、MnO、CuOまたはAl等を使用することができる。 Furthermore, in the above embodiment, the reaction medium NH 3 and the reaction material 18 represented by the composition formula MXa are chemically reacted to generate heat, but the reaction medium is not particularly limited to NH 3. For example, CO 2 or H 2 O may be used. When CO 2 is used as the reaction medium, the reaction material that chemically reacts with CO 2 includes MgO, CaO, BaO, Ca (OH) 2 , Mg (OH) 2 , Fe (OH) 2 , and Fe (OH) 3. FeO, Fe 2 O 3 or Fe 3 O 4 can be used. When H 2 O is used as a reaction medium, CaO, MnO, CuO, Al 2 O 3 or the like can be used as a reaction material that chemically reacts with H 2 O.

また、上記実施形態の化学蓄熱装置10は、ディーゼルエンジン2の排気系に設けられているが、本発明は、ガソリンエンジンの排気系に設けられた化学蓄熱装置、或いはエンジンの排気系以外に設けられた化学蓄熱装置にも適用可能である。   Moreover, although the chemical heat storage apparatus 10 of the said embodiment is provided in the exhaust system of the diesel engine 2, this invention is provided in addition to the chemical heat storage apparatus provided in the exhaust system of the gasoline engine, or the engine exhaust system. The present invention can also be applied to chemical heat storage devices.

10…化学蓄熱装置、12…吸着器(貯蔵部)、15…反応部、16…熱交換部材、17…反応容器、17c…開口部、18…反応材、19…断熱材、20…熱交換部外筒、21…熱交換部、21a…排気ガス流路(熱媒体流路)、A…排気ガス流通経路(熱媒体流通経路)。   DESCRIPTION OF SYMBOLS 10 ... Chemical heat storage apparatus, 12 ... Adsorber (storage part), 15 ... Reaction part, 16 ... Heat exchange member, 17 ... Reaction container, 17c ... Opening part, 18 ... Reaction material, 19 ... Heat insulation material, 20 ... Heat exchange Part outer cylinder, 21 ... heat exchange part, 21a ... exhaust gas flow path (heat medium flow path), A ... exhaust gas flow path (heat medium flow path).

Claims (4)

熱媒体を加熱する化学蓄熱装置であって、
反応媒体との化学反応により発熱すると共に蓄熱により前記反応媒体を脱離する反応材が反応容器内に充填された反応部と、
前記反応部との間で前記反応媒体を流通可能に接続され、前記反応媒体を貯蔵する貯蔵部と、
前記熱媒体を流通させる複数の熱交換部材と、を備え、
前記熱交換部材は、一端側から他端側にかけて前記熱媒体を流通させる熱媒体流路を形成すると共に前記熱媒体と前記反応材との間で熱交換を行う熱交換部と、前記熱交換部の外周に設けられると共に前記熱媒体の流通方向に延びる筒形状の熱交換部外筒とを有し、
前記複数の熱交換部材は、前記反応容器の内部において前記熱媒体の流通方向に垂直な方向に並んで前記反応材に埋設されていることを特徴とする化学蓄熱装置。
A chemical heat storage device for heating a heat medium,
A reaction section in which a reaction material that generates heat and desorbs the reaction medium by storing heat is filled in a reaction vessel with a chemical reaction with the reaction medium;
A storage unit that is connected to the reaction unit so that the reaction medium can flow therethrough, and stores the reaction medium;
A plurality of heat exchange members for circulating the heat medium,
The heat exchange member forms a heat medium flow path through which the heat medium flows from one end side to the other end side, and performs heat exchange between the heat medium and the reaction material, and the heat exchange A cylindrical heat exchange portion outer cylinder provided on the outer periphery of the portion and extending in the flow direction of the heat medium;
The chemical heat storage device, wherein the plurality of heat exchange members are embedded in the reaction material side by side in a direction perpendicular to a flow direction of the heat medium inside the reaction vessel.
前記複数の熱交換部材は、それぞれの前記熱交換部外筒の全周が前記反応材と接触するように互いに離間して配置されていることを特徴とする請求項1記載の化学蓄熱装置。   2. The chemical heat storage device according to claim 1, wherein the plurality of heat exchange members are spaced apart from each other such that the entire circumference of each of the heat exchange portion outer cylinders is in contact with the reaction material. 前記反応部は、前記反応容器と前記反応材との間に設けられた断熱材を更に有することを特徴とする請求項1または2に記載の化学蓄熱装置。   The chemical heat storage device according to claim 1, wherein the reaction unit further includes a heat insulating material provided between the reaction container and the reaction material. 前記反応部は、前記熱媒体を流通させる熱媒体流通経路上に配置され、
前記反応容器は、前記複数の熱交換部材の両端部を露出させる複数の開口部を有することを特徴とする請求項1〜3のいずれか一項記載の化学蓄熱装置。
The reaction unit is disposed on a heat medium flow path for flowing the heat medium,
4. The chemical heat storage device according to claim 1, wherein the reaction container has a plurality of openings that expose both end portions of the plurality of heat exchange members. 5.
JP2014170311A 2014-08-25 2014-08-25 Chemical heat storage device Pending JP2016044906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014170311A JP2016044906A (en) 2014-08-25 2014-08-25 Chemical heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014170311A JP2016044906A (en) 2014-08-25 2014-08-25 Chemical heat storage device

Publications (1)

Publication Number Publication Date
JP2016044906A true JP2016044906A (en) 2016-04-04

Family

ID=55635630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014170311A Pending JP2016044906A (en) 2014-08-25 2014-08-25 Chemical heat storage device

Country Status (1)

Country Link
JP (1) JP2016044906A (en)

Similar Documents

Publication Publication Date Title
WO2015060199A1 (en) Chemical heat storage device
WO2016017428A1 (en) Chemical heat storage apparatus
JP6256224B2 (en) Chemical heat storage device
WO2014192555A1 (en) Chemical heat storage device
JP2016044906A (en) Chemical heat storage device
WO2016009916A1 (en) Chemical heat storage apparatus
JP2016023907A (en) Chemical heat storage device
JP6187418B2 (en) Chemical heat storage device
US10228195B2 (en) Chemical heat storage device
WO2016056488A1 (en) Chemical heat storage apparatus
JP2016053439A (en) Chemical heat storage device
JP2016044860A (en) Gas occlusion device and chemical heat storage device
WO2016031669A1 (en) Chemical heat storage device
WO2016194682A1 (en) Chemical heat storage device
WO2015186604A1 (en) Chemical heat storage apparatus
JP2015230132A (en) Heat medium circulation device
JP2016223761A (en) Chemical heat storage device
JP2015232406A (en) Heat medium circulation device
JP2016194399A (en) Chemical heat storage device
JP6187414B2 (en) Chemical heat storage device
JP2016188719A (en) Chemical heat storage device
JP2015087082A (en) Chemical heat storage device
JP6320551B2 (en) Chemical heat storage device
JP2016035339A (en) Chemical accumulator
JP2015197282A (en) chemical heat storage device