JPH03202430A - Manufacture of magnesium series sintered alloy and magnesium series composite material - Google Patents

Manufacture of magnesium series sintered alloy and magnesium series composite material

Info

Publication number
JPH03202430A
JPH03202430A JP1340409A JP34040989A JPH03202430A JP H03202430 A JPH03202430 A JP H03202430A JP 1340409 A JP1340409 A JP 1340409A JP 34040989 A JP34040989 A JP 34040989A JP H03202430 A JPH03202430 A JP H03202430A
Authority
JP
Japan
Prior art keywords
powder
magnesium
mixed
sintered
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1340409A
Other languages
Japanese (ja)
Inventor
Eiji Horikoshi
堀越 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1340409A priority Critical patent/JPH03202430A/en
Publication of JPH03202430A publication Critical patent/JPH03202430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the Mg series sintered alloy light in weight and having high density by mixing Mg powder coated with Al, Zn and the other specified metals with one or more kinds among the powder of B, B4C, Si3N4, Al2O3 or the like in a specified ratio and subjecting the mixed powder to compacting and sintering. CONSTITUTION:The surface of Mg fine powder is coated with at least one kind among Al, Zn, Zr, Li, etc., by a sputtering method, a vapor deposition method, an electroless plating method or the like. The coated Mg powder is mixed with Mg powder not subjected to coating according to necessary and is furthermore mixed with one or more kinds among B, B4C, Si3N4 and Al2O3 having <=1mum grain size in <=30vol.% ratio. The mixed powder is compacted and is thereafter sintered, e.g. at 500 to 650 deg.C in the atmosphere of an inert gas such as Ar. The Mg series sintered composite material having few coarse bores in a structure, having high density and light in weight can be manufactured.

Description

【発明の詳細な説明】 [概要] 軽量・高強度なマグネシウム合金およびマグネシウム系
複合材料の製造方法に関し、 通常のダイプレスによる圧粉を行い高密度のMg系合金
焼結品を得る方法を提供することを目的とし、 表面を合金元素でコーティングしたマグネシウム原料粉
末、あるいはこのマグネシウム原料粉末に、さらに硼素
(B)、炭化硼素(B4 c) 、窒化硅素(SiAN
4)%アルミナ(AI2*Os)粒子のうちから選ばれ
た1種類以上を混合した混合粉末を、必要によりコーテ
ィングしないマグネシウム原料粉末とともに混合し、ダ
イプレスにより圧粉し、そして焼結するように構成する
[Detailed Description of the Invention] [Summary] Regarding the manufacturing method of lightweight and high-strength magnesium alloys and magnesium-based composite materials, there is provided a method for obtaining a high-density Mg-based alloy sintered product by performing powder compaction using a conventional die press. With the aim of
4) A mixed powder containing at least one type selected from % alumina (AI2*Os) particles is mixed with uncoated magnesium raw material powder if necessary, compacted using a die press, and then sintered. do.

[産業上の利用分野] 本発明は、軽量・高強度なマグネシウム合金およびマグ
ネシウム系複合材料の製造方法に関し、特に合金元素の
添加により引張強さやヤング率を大きくしたマグネシウ
ム系焼結合金やマグネシウム系複合材料の製造方法に関
する。これらの合金および複合材料は磁気ディスクやプ
リンターなどの可動部品として用いられる。
[Field of Industrial Application] The present invention relates to a method for manufacturing lightweight and high-strength magnesium alloys and magnesium-based composite materials. This invention relates to a method for manufacturing composite materials. These alloys and composite materials are used in moving parts such as magnetic disks and printers.

[従来の技術] 従来のMg系焼結合金は、主原料であるMg粉末と合金
元素であるAβ、Znなどを混合した混合粉を用いるか
、またはMg−Aβ、Mg−Zn、Mg−Al1−Zn
などの合金粉末を用いることにより、これを圧粉成形、
焼結の工程を経て製品としていた。また、Mg系複合材
料は上記混合粉末または合金粉末にさらに炭化硼素(8
4C)などの粒子を混合し、得られた混合粉末を圧粉成
形、焼結の工程を経て製品としていた。
[Prior art] Conventional Mg-based sintered alloys use a mixed powder of Mg powder as the main raw material and alloying elements Aβ, Zn, etc., or Mg-Aβ, Mg-Zn, Mg-Al1 -Zn
By using alloy powder such as
It was made into a product through a sintering process. In addition, the Mg-based composite material further contains boron carbide (8
Particles such as 4C) were mixed, and the resulting mixed powder was made into a product through powder compaction and sintering steps.

[発明が解決しようとする課題] 混合した粉末を原料とする場合には、第2図(a)、(
b)に示すように圧粉により稠密に固めれられたMg粉
粉末上A1などの合金粉末2(第2図(a)参照)が焼
結され、MgとAβが合金化するときに、合金元素が未
だ均一に拡散しないで濃化している場所でMg−Aβあ
るいはMg−Znの共晶反応が起こり、共晶溶融物がM
g粉末粒子の周りから流出することによる共晶流出孔を
生じ、Mg−A2合金粒子3の周りに直径20〜50μ
mの粗大ボア4(第2図(b)参照)が残留して、焼結
製品の機械強度や表面処理に悪影響を及ぼしていた。一
方、合金粉末を原料とする場合には、粉末が固溶強化さ
れて硬くなっており、単元素の場合の2倍以上もの硬度
(Hv=80以上)となっているため、第3図(a)、
(b)に示!ように、通常のダイプレスにより成形して
も合金粉粒子3(第3図(b)参照)の間隙にボアがか
なり残り、十分な密度が得られず、焼結後の密度も低く
なっていた(第3(b)参照)。
[Problems to be Solved by the Invention] When mixed powder is used as a raw material, Fig. 2(a), (
As shown in b), alloy powder 2 such as A1 (see Fig. 2 (a)) is sintered on Mg powder compacted densely by compaction, and when Mg and Aβ are alloyed, the alloy powder A Mg-Aβ or Mg-Zn eutectic reaction occurs where the elements are not yet uniformly diffused and are concentrated, and the eutectic melt becomes Mg.
A eutectic outflow hole is formed by flowing out from around the Mg-A2 alloy particle 3, and a diameter of 20 to 50μ is created around the Mg-A2 alloy particle 3.
The coarse bore 4 (see FIG. 2(b)) of 1.5 m remained and had an adverse effect on the mechanical strength and surface treatment of the sintered product. On the other hand, when alloy powder is used as a raw material, the powder is solid solution strengthened and becomes hard, and the hardness is more than twice that of a single element (Hv = 80 or more), as shown in Figure 3 ( a),
Shown in (b)! As shown, even when molded using a normal die press, considerable bores remained in the gaps between the alloy powder particles 3 (see Figure 3 (b)), and sufficient density could not be obtained, and the density after sintering was also low. (See Section 3(b)).

また、Mg合金に硼素(B)、炭化硼素(B4C)など
の粒子を添加した複合材料を焼結により製造する場合も
、Mg合金の原料として混合粉末を用いるにせよ、合金
粉末を用いるにせよ、上述のように製品に多量のボアが
残る問題がある。
Also, when manufacturing a composite material by adding particles such as boron (B) and boron carbide (B4C) to an Mg alloy by sintering, whether mixed powder or alloy powder is used as the raw material for the Mg alloy, As mentioned above, there is a problem in that a large amount of bore remains in the product.

一方、CI P (cold 1sostatic p
ress)などの特殊な圧粉法によれば圧粉体に全周か
ら圧力をかけて高密度の圧粉体を得ることができるであ
ろうが、生産能率が低下するという問題に直面する。
On the other hand, CI P (cold 1 sostatic p
According to a special powder compaction method such as (res.), it would be possible to obtain a high-density compact by applying pressure from all around the compact, but it faces the problem of reduced production efficiency.

したがって、本発明は通常のダイプレスによる圧粉を行
い高密度のMg系合金焼結品を得る方法を提供すること
を目的とする。
Therefore, an object of the present invention is to provide a method for obtaining a high-density Mg-based alloy sintered product by performing powder compaction using a conventional die press.

[課題を解決するための手段] 本発明は、表面を合金元素でコーティングしたマグネシ
ウム原料粉末を、必要によりコーティングしないマグネ
シウム原料粉末とともに混合し、ダイプレスにより圧粉
しそして焼結することを特徴とするマグネシウム系焼結
合金の製造方法を提供とする。
[Means for Solving the Problems] The present invention is characterized in that a magnesium raw material powder whose surface is coated with an alloying element is mixed with a magnesium raw material powder that is not coated if necessary, compacted by a die press, and sintered. A method for producing a magnesium-based sintered alloy is provided.

以下、本発明の構成要件を説明する。Hereinafter, the constituent elements of the present invention will be explained.

本発明で製造されるマグネシウム焼結合金は公知のもの
であって、典型的な合金元素は、AA、Zn、Zr、L
iの1種または2種以上である。
The magnesium sintered alloy produced in the present invention is known, and typical alloying elements include AA, Zn, Zr, and L.
One or more types of i.

また合金元素の含有量も特に制限はなく、一般に合計量
で20重量%以下である。
Further, the content of alloying elements is not particularly limited, and is generally 20% by weight or less in total.

また、原料粉末を圧粉し、焼結する粉末冶金条件も公知
のものであって、典型的には、圧粉はダイプレスを使用
し0.5〜8 ton/am”の圧力で行い、焼結は5
00〜650℃、0.5〜8時間、Ar雰囲気で行う。
Powder metallurgy conditions for compacting and sintering the raw material powder are also known. Typically, the powder is compacted using a die press at a pressure of 0.5 to 8 ton/am" and then sintered. The result is 5
It is carried out at 00 to 650°C for 0.5 to 8 hours in an Ar atmosphere.

本発明が最も特徴とする原料の調製法においては、原料
となるMg粒子の表面に合金元素となるAl1やZri
をスパッタ、蒸着、無電解めっきなどによりコーティン
グし、得られた粉末を混合し、以下圧粉・焼結を行う。
In the raw material preparation method that is the most distinctive feature of the present invention, Al1 and Zri, which are alloying elements, are added to the surface of the Mg particles that are the raw material.
The powder is coated by sputtering, vapor deposition, electroless plating, etc., and the resulting powder is mixed, followed by compaction and sintering.

Mgは工業的純マグネシウムであり、好ましい粒度は−
50〜−325メツシユである。合金元素のコーティン
グ膜厚は所望の合金元素量になるようにするが、典型的
なコーティング膜厚は0.1〜10ILmである。
Mg is industrially pure magnesium, and the preferred particle size is -
50 to -325 mesh. The coating thickness of the alloying element is adjusted to the desired amount of alloying element, with typical coating thicknesses ranging from 0.1 to 10 ILm.

0.1μm以下の薄いコーティング膜厚では均一な膜付
けが難しいので、0.1μm以上のコーティング膜厚が
好ましい。この場合、マグネシウム系合金の合金元素量
が少ないときはコーティングしたマグネシウム粉末のみ
を使用すると、合金元素含有量が多くなりすぎるので、
コーティングしない(純)マグネシウム粉末を混合して
使用してもよい。
Since it is difficult to apply a uniform film with a thin coating film thickness of 0.1 μm or less, a coating film thickness of 0.1 μm or more is preferable. In this case, when the amount of alloying elements in the magnesium-based alloy is small, if only coated magnesium powder is used, the alloying element content will be too large.
Uncoated (pure) magnesium powder may also be used in combination.

本発明に係るマグネシウム系複合材料の製造方法は、上
記コーティングを施したマグネシウム原料粉末(必要に
よりコーティングを施さないマグネシウム原料粉末をさ
らに加えた原料粉末)に、さらに硼素(B)、炭化硼素
(B4C) 、窒化硅素(SilN4)、アルミナ(A
Q* Os )粒子のうちから選ばれた1種類以上を混
合し、得られた混合粉末を圧粉しそして焼結することを
特徴とする。これらの硼素などの粒子は硬質二次分散相
として、マグネシウム合金の主として耐摩耗性を改良し
、ヤング率を改善するために添加される。
The method for producing a magnesium-based composite material according to the present invention further comprises adding boron (B), boron carbide (B4C ), silicon nitride (SilN4), alumina (A
The method is characterized in that one or more types selected from Q*Os) particles are mixed, the resulting mixed powder is compacted, and then sintered. These boron and other particles are added as a hard secondary dispersed phase to the magnesium alloy mainly to improve the wear resistance and Young's modulus.

この添加量は用途や使用条件により定まり特に制限はな
いが、一般に30体積%を超えると粉末の圧縮が困難に
なり、圧粉体の密度が低下するので、30体積%以下が
好ましい。また添加物質の粒度は1μm以下の平均粒径
のものが好ましい。
The amount added depends on the application and usage conditions and is not particularly limited, but in general, if it exceeds 30% by volume, it becomes difficult to compress the powder and the density of the green compact decreases, so it is preferably 30% by volume or less. Further, the particle size of the additive substance is preferably one having an average particle size of 1 μm or less.

これらの添加物質を混合することにより、マグネシウム
系複合材料は摺動や叩かれによる摩耗に対する耐摩耗性
が向上すると同時に、ヤング率が増加し、高速動作に対
応できるようになる。
By mixing these additive substances, the magnesium-based composite material improves its wear resistance against wear caused by sliding or being struck, and at the same time increases its Young's modulus, making it capable of handling high-speed operation.

[作用] 合金元素をコーティングしたマグネシウム粉末は芯にな
る部分が合金化されていないので、柔らかくてダイプレ
スで加工すると容易に変形し、粉末間隙を縮小し、しか
も共晶反応する部分が芯となる純マグネシウム粉末粒子
の周りに広く分散されるので、共晶液体の流出孔も小さ
くなり、粗大ボアも低減される。
[Function] Magnesium powder coated with alloying elements has an unalloyed core, so it is soft and deforms easily when processed with a die press, reducing the powder gap, and the core is the part that undergoes a eutectic reaction. Since it is widely dispersed around the pure magnesium powder particles, the outflow pores of the eutectic liquid are also small, and the coarse bores are also reduced.

第1図(a) 、 (b)は本発明方法における圧粉と
焼結工程を概念的に説明する図面である。Aβコーティ
ングが付着したMg粉末1がダイプレスにより矢印方向
に加圧されると、ボア4がつぶされつつ粉末自体が変形
する(第1図(a)参照)。この結果真密度比で80〜
90%の高い圧粉体密度が得られる。
FIGS. 1(a) and 1(b) are drawings conceptually explaining the powder compaction and sintering steps in the method of the present invention. When the Mg powder 1 with the Aβ coating attached is pressed in the direction of the arrow by a die press, the powder itself is deformed while the bore 4 is crushed (see FIG. 1(a)). As a result, the true density ratio is 80~
A high green compact density of 90% can be obtained.

焼結が終了すると、AQコーティング7が消減し、Al
2は一部は共晶液体の中に入って流出するが、はとんど
はMg粉末1内に拡散し、合金粉粒子3が得られる。焼
結品中のボア4は圧粉体中に存在したものと共晶流出孔
とより構成される(第1図(b)参照)。
When sintering is completed, the AQ coating 7 disappears and the Al
A part of 2 enters the eutectic liquid and flows out, but most of it diffuses into the Mg powder 1 to obtain alloy powder particles 3. The bore 4 in the sintered product is composed of what was present in the powder compact and eutectic outflow holes (see FIG. 1(b)).

また、焼結品中のボア4は主として共晶流出孔の発生に
起因して生ずる。この結果、真密度比で85〜95%の
密度の焼結体が得られる。
Further, the bores 4 in the sintered product are mainly caused by the occurrence of eutectic outflow holes. As a result, a sintered body having a density of 85 to 95% in terms of true density ratio is obtained.

また、硼素やアルミナなどの物質はAl1等の合金元素
等のようにMgと著しく拡散しないので、合金元素に関
連して述べた焼結性悪化の問題は起こらない反面、アル
ミナなどが焼結体から摺動中に脱落しやすい傾向がある
。このような傾向は焼結体の密度を高めることにより、
アルミナなどをマグネシウム合金マトリックスにより強
固に保持しある程度防止することができる。
In addition, since substances such as boron and alumina do not significantly diffuse with Mg unlike alloying elements such as Al1, the problem of deterioration of sintering properties mentioned in connection with alloying elements does not occur. It tends to fall off easily during sliding. This tendency can be alleviated by increasing the density of the sintered body.
This can be prevented to some extent by firmly holding alumina etc. with a magnesium alloy matrix.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

[実施例] 平均粒径70μmのMg原料粉末に、マグネトロン型ス
パッタ法を用いて厚さ約2μmのAl1をコーティング
した。これを、4 t/cm”の圧力でプレス成形した
後、アルゴン雰囲気中、600℃で1hの焼結を行いM
g−9%Aβ合金を得た。第4図に示した焼結後の金属
組織からも明らかなように、従来法(第5図−混合粉末
、第6図−合金粉末)の場合には黒く見えるボアの径が
最大50μm程度であるのに対して、本発明では5μm
以下となり従来法の1710に低減することができた。
[Example] Mg raw material powder having an average particle size of 70 μm was coated with Al1 having a thickness of about 2 μm using a magnetron sputtering method. This was press-formed at a pressure of 4 t/cm" and then sintered at 600°C for 1 hour in an argon atmosphere to obtain M
A g-9% Aβ alloy was obtained. As is clear from the metal structure after sintering shown in Figure 4, in the case of the conventional method (Figure 5 - mixed powder, Figure 6 - alloy powder), the diameter of the bore that appears black is about 50 μm at maximum. In contrast, in the present invention, the diameter is 5 μm.
It was able to be reduced to 1710 using the conventional method.

また、焼結密度も99.7%と従来法(85〜95%)
より大きな値が得られた。この時、引張強さも18 K
gf/m1となり従来法(15Kgf/mm”)より2
0%向上することができた。
In addition, the sintered density is 99.7% compared to the conventional method (85-95%).
A larger value was obtained. At this time, the tensile strength is also 18K.
gf/m1, which is 2 from the conventional method (15Kgf/mm”)
I was able to improve it by 0%.

無電解めっきによりZnをコーティングした場合にも同
様な結果が得られた。
Similar results were obtained when Zn was coated by electroless plating.

[発明の効果] 本発明によれば、原料粉末として合金元素をコーティン
グしたMgを用いるため、ダイブレス可能な柔らかさを
失わずに、しかも共晶流出孔による粗大ボアを低減した
焼結体を提供することができる。
[Effects of the Invention] According to the present invention, since Mg coated with an alloying element is used as the raw material powder, a sintered body is provided that does not lose the softness that allows die pressing and has reduced coarse bores due to eutectic flow holes. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明による圧粉および焼結工
程をそれぞれ説明する概念図、 第2図(a)、(b)は混合粉を用いる従来法について
の第1図(a)、(b)と同様の図面、第3図(a)、
(b)は合金粉末を用いる従来法についての第1図(a
)、(b)と同様の図面、第4図は本発明法により製造
したMg−9%Aj2焼結合金の顕微鏡写真、 第5図は混合粉を用いる従来法により製造したMg−9
%Afl焼結合金の顕微鏡写真、第6図は合金粉末を用
いる従来法により製造したMg−9%AJ2焼結合金の
顕微鏡写真である。 1−Mg粉末、2−合金粉末、3−Mg−A4合金粒子
、4−ボア、5−AAコーティング↓ ↓ ↓ ↓ ↓ +1111 29%5月ブレス1麦 第1図(C1) 第 図(G) 164− 図(α) 図(b) 図(b) 図(b) 手続ネm正書(方式) 1.事件の表示 平成 1年 特許願 第340409号2、発明の名称 マグネシウム系焼結合金およびマグネシウム系複合材料
の製造方法 3、補正をする者 事件との関係   特許出願人 郵便番号 211 住所 神奈川県用崎市中原区上小田中1015番地(5
22)名称 富士通株式会社 代表者山本卓眞 4、代理人 第6図 従来法 (合金粉) 5、補正命令の日付 平成 2年 4月24日(発送臼) (P−154o)
6、補正の対象 明細書の「図面の簡単な説明」の欄、血止、圏如犠今拐
〜島す図)7、補正の内容 (1)明細書の第11頁、第3行の 属顕微鏡写真1に補正する。 (2)明細書の第11頁、第5行の 属顕微鏡写真1に補正する。 (3)明細書の第11頁、第7行の 属顕微鏡写真1に補正する。 (+)   !NipあO熟イ側I〜看56旧を補正号
も。 「顕微鏡写真」をr金 「顕微鏡写真jをr金 「顕微鏡写真」を「金 本ヱ明 第 ’、i  N 従5′法 (々会粉) 従来法 (合金ト→
Figures 1 (a) and (b) are conceptual diagrams explaining the powder compaction and sintering processes of the present invention, respectively. Figures 2 (a) and (b) are Figure 1 ( Drawings similar to a) and (b), Figure 3 (a),
(b) is Fig. 1 (a) for the conventional method using alloy powder.
), drawings similar to (b), Figure 4 is a micrograph of Mg-9% Aj2 sintered alloy produced by the method of the present invention, Figure 5 is a micrograph of Mg-9 produced by the conventional method using mixed powder.
%Afl sintered alloy. FIG. 6 is a micrograph of a Mg-9% AJ2 sintered alloy produced by a conventional method using alloy powder. 1-Mg powder, 2-alloy powder, 3-Mg-A4 alloy particles, 4-bore, 5-AA coating↓ ↓ ↓ ↓ ↓ +1111 29% May breath 1 barley Fig. 1 (C1) Fig. (G) 164- Diagram (α) Diagram (b) Diagram (b) Diagram (b) Procedural formalism (method) 1. Display of the case 1999 Patent Application No. 340409 2, Name of the invention Method for producing magnesium-based sintered alloys and magnesium-based composite materials 3, Person making the amendment Relationship to the case Patent applicant Zip code 211 Address Yozaki, Kanagawa Prefecture 1015 Kamiodanaka, Nakahara-ku, City (5
22) Name Fujitsu Limited Representative Takuma Yamamoto 4, Agent Figure 6 Conventional method (alloy powder) 5. Date of amendment order April 24, 1990 (Shipping mill) (P-154o)
6. "Brief explanation of drawings" column of the specification subject to amendment, hemostasis, area, sacrifice, and kidnapping - island map) 7. Contents of amendment (1) Page 11, line 3 of the specification Corrected to genus micrograph 1. (2) Corrected to Genus Micrograph 1 on page 11, line 5 of the specification. (3) Corrected to Genus Micrograph 1 on page 11, line 7 of the specification. (+)! Nip AO mature side I~Kan 56 old revised issue as well. ``Microphotograph'' is r Gold ``Micrograph j is r Gold ``Micrograph'' is ``Kanemoto Emeidai'', i N Ju5' method (Zhuai powder) Conventional method (Alloy to →

Claims (1)

【特許請求の範囲】 1、表面を合金元素でコーティングしたマグネシウム原
料粉末を、必要によりコーティングしないマグネシウム
原料粉末とともに混合し、ダイプレスにより圧粉しそし
て焼結することを特徴とするマグネシウム系焼結合金の
製造方法。 2、請求項1記載のマグネシウム原料粉末に、さらに硼
素(B)、炭化硼素(B_4C)、窒化硅素(Si_3
N_4)、アルミナ(Al_2O_3)粒子のうちから
選ばれた1種類以上を混合し、得られた混合粉末を圧粉
し、そして焼結することを特徴とするマグネシウム系複
合材料の製造方法。
[Claims] 1. A magnesium-based sintered alloy characterized in that a magnesium raw material powder whose surface is coated with an alloying element is mixed with an uncoated magnesium raw material powder if necessary, compacted by a die press, and sintered. manufacturing method. 2. The magnesium raw material powder according to claim 1 further contains boron (B), boron carbide (B_4C), silicon nitride (Si_3
A method for producing a magnesium-based composite material, comprising mixing at least one type selected from N_4) and alumina (Al_2O_3) particles, compacting the obtained mixed powder, and sintering.
JP1340409A 1989-12-29 1989-12-29 Manufacture of magnesium series sintered alloy and magnesium series composite material Pending JPH03202430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340409A JPH03202430A (en) 1989-12-29 1989-12-29 Manufacture of magnesium series sintered alloy and magnesium series composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340409A JPH03202430A (en) 1989-12-29 1989-12-29 Manufacture of magnesium series sintered alloy and magnesium series composite material

Publications (1)

Publication Number Publication Date
JPH03202430A true JPH03202430A (en) 1991-09-04

Family

ID=18336669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340409A Pending JPH03202430A (en) 1989-12-29 1989-12-29 Manufacture of magnesium series sintered alloy and magnesium series composite material

Country Status (1)

Country Link
JP (1) JPH03202430A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030039829A (en) * 2001-11-15 2003-05-22 박영철 Light alloy which magnesium is used as main raw naterials and casting products by using the light alloy
CN102554221A (en) * 2012-03-02 2012-07-11 南华大学 Hydrocarbon coated cermet powder and preparation method thereof
WO2015025666A1 (en) * 2013-08-20 2015-02-26 株式会社豊田自動織機 Chemical heat storage device
US9020090B2 (en) 2007-08-21 2015-04-28 Mitsubishi Heavy Industries, Ltd. Axial power distribution control method, axial power distribution control system and axial power distribution control program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030039829A (en) * 2001-11-15 2003-05-22 박영철 Light alloy which magnesium is used as main raw naterials and casting products by using the light alloy
US9020090B2 (en) 2007-08-21 2015-04-28 Mitsubishi Heavy Industries, Ltd. Axial power distribution control method, axial power distribution control system and axial power distribution control program
CN102554221A (en) * 2012-03-02 2012-07-11 南华大学 Hydrocarbon coated cermet powder and preparation method thereof
WO2015025666A1 (en) * 2013-08-20 2015-02-26 株式会社豊田自動織機 Chemical heat storage device
JP2015040646A (en) * 2013-08-20 2015-03-02 株式会社豊田自動織機 Chemical heat storage device

Similar Documents

Publication Publication Date Title
US5482670A (en) Cemented carbide
JP4662599B2 (en) Manufacturing method of submicron cemented carbide with increased toughness
EP0534191B1 (en) Cermets and their production and use
US5778301A (en) Cemented carbide
JP3084402B1 (en) AlTi-based alloy sputtering target, wear-resistant AlTi-based alloy hard coating, and method of forming the same
DE1909781A1 (en) Metal powder made from kneaded composite particles and method for their production
JP2013508546A (en) Cemented carbide and method for producing the same
JPH02232334A (en) Dispersion alloyed hard metallic complex
KR20090053934A (en) Metal powder
JP4166821B2 (en) Powder metallurgical manufacturing method of composite material
JPH09316587A (en) High strength fine-grained diamond sintered compact and tool using the same
JPH0578107A (en) Nitride powder
JPH03202430A (en) Manufacture of magnesium series sintered alloy and magnesium series composite material
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH0593233A (en) Aluminum-modified titanium/titanium alloy microcomposite material
JP3354468B2 (en) Method for producing particle-dispersed sintered titanium matrix composite
JPH05345937A (en) Production of ti-fe-al type sintered titanium alloy
JPS5891140A (en) High tensile metal alloy material and production thereof
JPH02259029A (en) Manufacture of aluminide
JPH02115329A (en) Ornament composed of gold alloy
JP2932658B2 (en) Powder sintered titanium and method for producing powder sintered titanium base alloy
JP2796011B2 (en) Whisker reinforced cemented carbide
JP2999355B2 (en) Manufacturing method of low thermal expansion tough cermet
JP3031106B2 (en) Hard ultrafine particle dispersed ceramic metal composite
JPH02173224A (en) Manufacture of sintered aluminum bronze alloy