JPH02173224A - Manufacture of sintered aluminum bronze alloy - Google Patents

Manufacture of sintered aluminum bronze alloy

Info

Publication number
JPH02173224A
JPH02173224A JP32719188A JP32719188A JPH02173224A JP H02173224 A JPH02173224 A JP H02173224A JP 32719188 A JP32719188 A JP 32719188A JP 32719188 A JP32719188 A JP 32719188A JP H02173224 A JPH02173224 A JP H02173224A
Authority
JP
Japan
Prior art keywords
powder
alloy
sintering
alloy powder
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32719188A
Other languages
Japanese (ja)
Inventor
Yasuhiko Hashimoto
橋本 雍彦
Yoshiro Niimi
新見 義朗
Shinri Kikukawa
真利 菊川
Osamu Iwazu
岩津 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP32719188A priority Critical patent/JPH02173224A/en
Publication of JPH02173224A publication Critical patent/JPH02173224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the subject bronze alloy having sufficient strength by adding the alloy powder of Cr, Mn, Fe, Co, Ni, Cu, etc., contg. specific amt. of P to the powder of a Cu-Al alloy, Cu, Al or the like and subjecting the admixture to compacting and sintering. CONSTITUTION:One or more kinds of alloy powder contg. >=0.5 mass% P and the balance one or more kinds among Cr, Mn, Fe, Co, Ni and Cu are added to the one kind of powder among Cu-Al alloy powder, Cu powder and Al powder or 2 or more kinds of the mixed powder. As the amounts to be added, the total amounts of powder P to be added as alloy powder contg. P are preferably regulated to the range of 0.01 to 2% for the whole. The mixed powder obtd. by this method is regulated as the alloy powder forming a matrix, which is compacted and sintered. In this way, the sintered aluminum bronze alloy having sufficient strength by sintering operation under no pressure can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミニウム青銅合金の製造方法に関するもの
であり、より詳しくは粉末冶金法による焼結アルミニウ
ム青銅合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an aluminum bronze alloy, and more particularly to a method for producing a sintered aluminum bronze alloy by a powder metallurgy method.

〔従来の技術〕[Conventional technology]

アルミニウム青銅は銅系合金の中でも特に強度。 Aluminum bronze is particularly strong among copper-based alloys.

耐食性2耐摩耗性等に優れ、産業上広く利用されている
。しかし、本合金を粉末冶金法で製造する場合、原料粉
の表面を覆っているAl2O3皮膜によって粉末同志の
焼結が阻害され、通常の無加圧下における焼結操作では
十分な強度を有する焼結合金が得られない。このため、
フラックスを添加する方法や低融点のCu−Al合金粉
やAl粉を添加する方法が提案されている。しかしなが
ら、前者の場合、粉末同志の焼結はよく進行するものの
焼結中にフラックスが気化して焼結炉などを腐食し、焼
結炉の寿命を著しく縮め、また後者の場合でも、粉末の
焼結がなお十分でなく、しかも焼結中に発生した液相が
基質中に拡散した後に粗大な孔が残留するため、焼結合
金の強度は甚だ不十分なものである。
It has excellent corrosion resistance 2 and wear resistance, and is widely used in industry. However, when this alloy is manufactured using the powder metallurgy method, the Al2O3 film covering the surface of the raw material powder inhibits the sintering of the powders, and the sintered bond has sufficient strength in normal sintering operations under no pressure. I can't get money. For this reason,
A method of adding flux and a method of adding low melting point Cu-Al alloy powder or Al powder have been proposed. However, in the former case, although sintering of the powders progresses well, the flux evaporates during sintering and corrodes the sintering furnace, significantly shortening the life of the sintering furnace. The strength of the sintered alloy is very insufficient, since sintering is still insufficient and coarse pores remain after the liquid phase generated during sintering has diffused into the matrix.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明者らは、粉末冶金法における通常の無加圧下での
焼結操作により、焼結アルミニウム青銅合金を製造する
ための方法について種々検討を重ねた結果、本発明を完
成させたものである。
The present inventors have completed the present invention as a result of various studies on a method for producing a sintered aluminum-bronze alloy by a normal pressure-free sintering operation in powder metallurgy. .

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、基質を構成する合金粉末がCu−1舎金粉、
 Cu扮、及び1扮より選ばれる1種の粉末もしくは2
種以上からなる混合粉末に、Pを0.5mass%以上
含み、残部がCr、Mn、Fe、Co、Ni及びCuの
1種以上からなるPを含む合金粉を1種以上添加し、成
形、焼結することを特徴とする焼結アルミニウム合金の
製造方法である。
In the present invention, the alloy powder constituting the substrate is Cu-1 metal powder,
Cu powder, and 1 type of powder selected from 1 powder or 2 powders
Adding one or more types of alloy powder containing P containing 0.5 mass% or more of P and the balance consisting of one or more types of Cr, Mn, Fe, Co, Ni, and Cu to a mixed powder consisting of at least one type, forming, This is a method for producing a sintered aluminum alloy, which is characterized by sintering.

〔作用〕[Effect]

本発明に記載の1合金粉の添加により、アルミニウム青
銅組成の原料粉の焼結が著しく促進する理由については
明確ではないが、Pが原料粉の表面に存在するAh(h
皮膜とリン酸塩を形成してこれを破壊し、焼結が促進さ
れるものと推察される。
Although it is not clear why the addition of the 1 alloy powder described in the present invention significantly accelerates the sintering of the raw material powder of aluminum bronze composition, it is clear that P is present on the surface of the raw material powder.
It is presumed that the sintering is promoted by forming a film and phosphate and destroying this.

ただし、Pは酸素との親和力が大きく、しかも蒸気圧も
高いため、これを単独で添加した場合には、焼結に先立
つ昇温過程において酸化あるいは昇華してしまう。この
ため、本発明では、その活動度を下げる目的で請求の範
囲に記載の金属との合金の形で添加したものである。こ
れらの金属は1)との親和力が比較的大きく、しかも、
アルミニウム青銅基質中にAIz03とリン酸塩を形成
するに十分な量のPを溶解させるだけの解離圧を有する
合金を形成する。
However, since P has a large affinity for oxygen and a high vapor pressure, if P is added alone, it will oxidize or sublimate during the temperature raising process prior to sintering. Therefore, in the present invention, it is added in the form of an alloy with the metal described in the claims for the purpose of lowering its activity. These metals have a relatively large affinity with 1), and
An alloy is formed that has a dissociation pressure sufficient to dissolve enough P to form AIz03 and phosphate in the aluminum bronze matrix.

+TI記P合金の組成については、焼結温度においてP
合金が液相であれば、萌記へ1□03皮膜の破壊及び焼
結そのものを促進するため、この意味ではP合金の融点
はできるだけ低くなるような組成がよいとは思われるが
、これについてはそれほど厳密さを必要とするものでは
ない。しかし、P量が0.5massχを下回るとPの
・活動度が低下してその効果が発現せず、一方、遊離の
Pが生成するような組成域においては、前述のように遊
離のPが昇温過程において酸化あるいは昇華して、焼結
の促進に対してほとんどその効果を発揮しない。これら
のことがらPiが0.5mass!以下の1合金粉の添
加、または′M離のPが生成する組成の1合金粉の添加
は好ましいものとは言えない。
+ Regarding the composition of the P alloy in TI, P at the sintering temperature is
If the alloy is in a liquid phase, it will promote the destruction of the Moeki 1□03 film and sintering itself, so in this sense it would be better to have a composition that lowers the melting point of the P alloy as much as possible. does not require much rigor. However, when the amount of P is less than 0.5 massχ, the activity of P decreases and the effect is not expressed.On the other hand, in the composition range where free P is generated, as mentioned above, free P is It oxidizes or sublimates during the temperature rising process and has almost no effect on promoting sintering. These things make Pi 0.5mass! It cannot be said that the following addition of an alloy powder or the addition of an alloy powder having a composition that produces P of 'M separation is preferable.

また、Pとの合金元素としては、請求の範囲に記載の金
属元素のうちの1種類に限らず、2種以上を含んでもか
まわない。この場合、それぞれの元素を単独で合金した
場合よりも焼結促進に対する効果が増大する場合がある
Moreover, the alloying element with P is not limited to one type of the metal elements described in the claims, but may include two or more types. In this case, the effect on promoting sintering may be greater than when each element is alloyed alone.

このような焼結促進効果に対する添加2合金粉の合金元
素の種類、組成の影響に関しては、本発明者らはPと合
金元素との親和力及びpta成、即ら合金中のPの活動
度に関係しているものと推察しているが、これらの関係
について一義的に決定するまでには至っていない。しか
しながら、本発明者らの実験では、焼結促進の効果はM
n−1合金粉の場合が最も大きく、従って、添加1合金
粉中のPの活動度がMn−P合金中のPの活動度と同程
度となるような場合に、最も焼結促進の効果が大きくな
るものと推察される。
Regarding the influence of the type and composition of the alloying element of the added alloy powder 2 on the sintering promotion effect, the present inventors investigated the affinity between P and the alloying element and the PTA formation, that is, the activity level of P in the alloy. Although we speculate that they are related, we have not reached the point where we can unambiguously determine these relationships. However, in our experiments, the effect of promoting sintering was
The effect of promoting sintering is greatest in the case of n-1 alloy powder, and therefore, when the activity of P in addition 1 alloy powder is comparable to the activity of P in Mn-P alloy, the effect of promoting sintering is greatest. is expected to increase.

1合金粉の添加量については添加される総PMとして焼
結アルミニウム合金全体の0.01〜2mass%の範
囲が適当であり、pHがこれ以下では焼結促進の効果が
発現セす、一方、これ以上では焼結合金の脆化をまねく
Regarding the amount of alloy powder added, it is appropriate that the total PM added is in the range of 0.01 to 2 mass% of the entire sintered aluminum alloy, and if the pH is below this, the effect of promoting sintering will be expressed. If it exceeds this, the sintered alloy will become brittle.

本発明において用いられるCu−A1合金粉、Cu粉、
Al扮及び1合金粉の粒度については、なるべ(細かい
方が好ましく、Cu−Al合金粉、Cu扮及びAl粉に
ついては200μm以下、また、1合金粉については1
50μm以下の粉末を用いることが望ましい。
Cu-A1 alloy powder used in the present invention, Cu powder,
Regarding the particle size of the Al layer and 1 alloy powder, the finer the finer, the finer the particle size, 200 μm or less for the Cu-Al alloy powder, the Cu layer and the Al powder, and 1
It is desirable to use powder with a diameter of 50 μm or less.

本発明における焼結合金の製造は粉末冶金における一般
的な還元炉を用いた通常の無加圧焼結によって行うこと
が可能であり、焼結雰囲気中の酸素分圧が低ければ低い
ほど、また、焼結温度は基質の融点を上限として高くな
るほど、得られる焼結合金の強度、延性は向上する。
The production of the sintered alloy in the present invention can be carried out by ordinary pressureless sintering using a reduction furnace commonly used in powder metallurgy, and the lower the oxygen partial pressure in the sintering atmosphere, the more The higher the sintering temperature is, with the upper limit being the melting point of the substrate, the higher the strength and ductility of the obtained sintered alloy.

なお、本発明においては基本的にはCu−へ12元系に
対して適用することを想定しているが、アルミニウム青
銅における一般的な合金元素であるNi。
Although the present invention is basically intended to be applied to a 12-element system including Cu-, Ni is a common alloying element in aluminum bronze.

Fe、Mn等を、合金粉、単体粉あるいは1合金粉の形
で添加してもよく、さらには同様の方法でZnを添加す
ることにより、高力黄銅組成の焼結合金の製造にも適用
できる。
Fe, Mn, etc. may be added in the form of alloy powder, single powder, or single alloy powder, and by adding Zn in the same way, it can also be applied to the production of sintered alloys with high strength brass composition. can.

〔実施例〕〔Example〕

次に、本発明の代表的な実施例に一ついて記述する。 Next, one typical embodiment of the present invention will be described.

実施例■ Cu−8+nassχA1合金粉に2massXのCr
−8massχP合金粉を添加して乳鉢中で混合後、成
形圧力6t/cJで幅10mm、厚さ3 、5mmの板
状に圧縮成形し、水素気流中で1000°C1時間加熱
した。得られた焼結体は、相対密度94.0%、引張り
強さ29kgf/++un2.硬さl1879で内側曲
率半径3mmにおける70°曲げに対して亀裂を発生せ
ず、十分な靭性が認められた。
Example ■ 2massX of Cr in Cu-8+nassχA1 alloy powder
-8 mass χP alloy powder was added and mixed in a mortar, then compression molded into a plate shape with a width of 10 mm and a thickness of 3.5 mm at a molding pressure of 6 t/cJ, and heated at 1000° C. for 1 hour in a hydrogen stream. The obtained sintered body had a relative density of 94.0% and a tensile strength of 29 kgf/++un2. With a hardness of 1879, no cracks were generated when bent at 70° with an inner radius of curvature of 3 mm, and sufficient toughness was observed.

実施例■ Cu−8massχA1合金粉に2mass%のMn−
5,5massXP合金粉を添加して乳鉢中で混合後、
実施例■と回し方法で成形、焼結した。得られた焼結体
、は相対密度97.4χ、引張り強さ43kgf/mm
2.硬さII、+95で内側曲率半径3mmにおける1
80°曲げに対して亀裂を発生せず、十分な靭性が認め
られた。
Example ■ 2 mass% Mn- in Cu-8 mass χA1 alloy powder
After adding 5,5 massXP alloy powder and mixing in a mortar,
It was molded and sintered in the same manner as in Example (2). The obtained sintered body had a relative density of 97.4χ and a tensile strength of 43 kgf/mm.
2. 1 at hardness II, +95 and inner radius of curvature 3 mm
No cracks occurred when bent at 80°, and sufficient toughness was observed.

実施例■ Cu−8mass%AI合金粉に2mass%のFe−
10Fe−1OP合金粉を添加して乳鉢中で混合後、実
施例■と同じ方法で成形、焼結した。得られた焼結体は
、相対密度96χ、引張り強さ32kgf/n+m”、
硬さ++a80で内側曲率半径3+r+mにおける90
°曲げに対して亀裂を発生せず、十分な靭性が認められ
た。
Example ■ 2 mass% Fe- to Cu-8 mass% AI alloy powder
After adding 10Fe-1OP alloy powder and mixing in a mortar, it was molded and sintered in the same manner as in Example (2). The obtained sintered body had a relative density of 96χ, a tensile strength of 32 kgf/n+m'',
Hardness ++ a 80 and inner radius of curvature 3 + r + m 90
°No cracks occurred during bending, and sufficient toughness was observed.

実施例■ Cu−8massXA1合金粉に2mass%のCo4
2mass%P合金粉を添加して乳鉢中で混合後、実施
例■と同じ方法で成形、焼結した。得られた焼結体は、
相対密度96χ、引張り強さ31kgf/mm”、硬さ
t+ m 81で内側曲率半径3mmにおける90°曲
げに対して亀裂を発生せず、十分な靭性が認められた。
Example ■ 2mass% Co4 in Cu-8massXA1 alloy powder
After adding 2 mass% P alloy powder and mixing in a mortar, it was molded and sintered in the same manner as in Example (2). The obtained sintered body is
It had a relative density of 96χ, a tensile strength of 31 kgf/mm'', a hardness of t+m of 81, and exhibited sufficient toughness with no cracking when bent at 90° at an inner radius of curvature of 3 mm.

実施例■ Cu−8massχA1合金粉に2mass%のNi−
1Ni−1O’tP合金粉を添加して乳鉢中で混合後、
実施例■と同じ方法で成形、焼結した。得られた焼結体
は、相対密度97χ、引張り強さ35kgf/mm2.
硬さ11.85で内側曲率半径3mmにおける140°
曲げに対して亀裂を発生せず、十分な靭性が認められた
Example ■ 2 mass% Ni- in Cu-8 mass χA1 alloy powder
After adding 1Ni-1O'tP alloy powder and mixing in a mortar,
It was molded and sintered in the same manner as in Example (2). The obtained sintered body had a relative density of 97χ and a tensile strength of 35 kgf/mm2.
140° at hardness 11.85 and inner radius of curvature 3mm
No cracks occurred during bending, and sufficient toughness was observed.

実施例■ Cu−8mass!A 1合金粉に2mass%のCu
−14massχP合金粉を添加して乳鉢中で混合後、
実施例■と同し方法で成形、焼結した。得られた焼結体
は、相対密度97.8χ、引張り強さ35kgf/mm
2.硬さH384で内側曲率半径3mmにおける140
°曲げに対して亀裂を発生せず、十分な靭性が認められ
た。
Example ■ Cu-8mass! A 2 mass% Cu in 1 alloy powder
- After adding 14massχP alloy powder and mixing in a mortar,
It was molded and sintered in the same manner as in Example (2). The obtained sintered body has a relative density of 97.8χ and a tensile strength of 35 kgf/mm.
2. 140 at hardness H384 and inner radius of curvature 3mm
°No cracks occurred during bending, and sufficient toughness was observed.

実施例■ Cu−8massXAI合金粉に2mass%のNi−
13massχCr−1Cr−1OχP合金粉を添加し
て乳鉢中で混合後、実施例■と同じ方法で成形、焼結し
た。得られた焼結体は、相対密度98.4χ1引張り強
さ44kgf/n+n+2、硬さ11895で内側曲率
半径3mmにおける180°曲げに対して亀裂を発生せ
ず、著しい靭性が認められた。
Example ■ 2 mass% Ni- in Cu-8 mass XAI alloy powder
13 mass χCr-1Cr-1OχP alloy powder was added and mixed in a mortar, followed by molding and sintering in the same manner as in Example (2). The obtained sintered body had a relative density of 98.4x1, a tensile strength of 44 kgf/n+n+2, and a hardness of 11895, and exhibited remarkable toughness without cracking when bent at 180° at an inner radius of curvature of 3 mm.

実施例■ Cu−1Cu−1lχA1合金扮とCo扮の4:1混合
粉に対しMn−8massχP合金粉を2χ添加して乳
鉢中で混合後、実施例■と同じ方法で成形、焼結した。
Example (2) To a 4:1 mixed powder of Cu-1Cu-11xA1 alloy and Co, 2x of Mn-8massxP alloy powder was added and mixed in a mortar, followed by molding and sintering in the same manner as in Example (2).

得られた焼結体は、相対密度98.7χ、引張り強さ4
2kgf/mm2゜硬さlI+94で内側曲率半径3m
mにおける180°曲げに対して亀裂を発生せず、著し
い靭性が認められた。
The obtained sintered body had a relative density of 98.7χ and a tensile strength of 4.
2kgf/mm2゜hardness lI+94, inner radius of curvature 3m
No cracks occurred during 180° bending at m, and remarkable toughness was observed.

比較例■ Cu−8massχA1合金を実施例■と同じ方法で成
形、焼結した。得られた焼結体の密度比は87zで、引
張り強さ7kgf/+m2.内側曲率半径3mmにおけ
る曲げ角はほぼ0°で、実施例■〜■に比べて強度、靭
性ともに著しく劣っていた。
Comparative Example ■ A Cu-8massχA1 alloy was molded and sintered in the same manner as in Example ■. The density ratio of the obtained sintered body was 87z, and the tensile strength was 7kgf/+m2. The bending angle at an inner radius of curvature of 3 mm was approximately 0°, and both the strength and toughness were significantly inferior to Examples ① to ②.

[発明の効果] 以上、本発明により、従来法では製造することができな
かった粉末冶金法による焼結アルミニウムが銅合金の製
造が可能となる。このような焼結アルミニウム青銅合金
は種々の低域部品、その他に利用できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to produce a copper alloy from sintered aluminum by powder metallurgy, which could not be produced by conventional methods. Such a sintered aluminum-bronze alloy can be used in various low-frequency parts and other applications.

Claims (2)

【特許請求の範囲】[Claims] (1)基質を構成する合金粉末がCu−Al合金粉、C
u粉、及びAl粉より選ばれる1種の粉末もしくは2種
以上からなる混合粉末に、Pを0.5mass%以上含
み、残部がCr、Mn、Fe、Co、Ni及びCuの1
種以上からなる合金粉を1種以上添加し、成形、焼結す
ることを特徴とする焼結アルミニウム合金の製造方法。
(1) The alloy powder constituting the substrate is Cu-Al alloy powder, C
One type of powder selected from U powder and Al powder, or a mixed powder of two or more types, containing 0.5 mass% or more of P, and the balance being Cr, Mn, Fe, Co, Ni, and Cu.
A method for producing a sintered aluminum alloy, which comprises adding one or more types of alloy powder, forming and sintering the alloy powder.
(2)前記Pを含む合金粉として添加される粉末の総P
量が基質の合金粉末に対し、0.01〜2mass%の
範囲にあることを特徴とする請求の範囲(1)に記載の
焼結アルミニウム青銅合金の製造方法。
(2) Total P of the powder added as alloy powder containing the above P
The method for producing a sintered aluminum bronze alloy according to claim 1, wherein the amount is in the range of 0.01 to 2 mass% based on the alloy powder of the substrate.
JP32719188A 1988-12-24 1988-12-24 Manufacture of sintered aluminum bronze alloy Pending JPH02173224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32719188A JPH02173224A (en) 1988-12-24 1988-12-24 Manufacture of sintered aluminum bronze alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32719188A JPH02173224A (en) 1988-12-24 1988-12-24 Manufacture of sintered aluminum bronze alloy

Publications (1)

Publication Number Publication Date
JPH02173224A true JPH02173224A (en) 1990-07-04

Family

ID=18196329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32719188A Pending JPH02173224A (en) 1988-12-24 1988-12-24 Manufacture of sintered aluminum bronze alloy

Country Status (1)

Country Link
JP (1) JPH02173224A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114486A (en) * 2007-11-02 2009-05-28 Fukuda Metal Foil & Powder Co Ltd Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder
JP2011171274A (en) * 2010-01-25 2011-09-01 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell
WO2012008196A1 (en) * 2010-07-14 2012-01-19 三井金属鉱業株式会社 Copper powder for electrically conductive paste, and electrically conductive paste
WO2015029922A1 (en) * 2013-08-27 2015-03-05 Ntn株式会社 Sintered bearing for fuel pump and method for manufacturing same
JP2017193781A (en) * 2013-08-27 2017-10-26 Ntn株式会社 Sintered bearing for fuel pump and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497106A (en) * 1972-05-14 1974-01-22
JPS56152902A (en) * 1980-04-28 1981-11-26 Fukuda Kinzoku Hakufun Kogyo Kk Powder for sintered copper alloy containing aluminum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497106A (en) * 1972-05-14 1974-01-22
JPS56152902A (en) * 1980-04-28 1981-11-26 Fukuda Kinzoku Hakufun Kogyo Kk Powder for sintered copper alloy containing aluminum

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114486A (en) * 2007-11-02 2009-05-28 Fukuda Metal Foil & Powder Co Ltd Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder
JP2011171274A (en) * 2010-01-25 2011-09-01 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell
WO2012008196A1 (en) * 2010-07-14 2012-01-19 三井金属鉱業株式会社 Copper powder for electrically conductive paste, and electrically conductive paste
JP2012021193A (en) * 2010-07-14 2012-02-02 Mitsui Mining & Smelting Co Ltd Copper powder for electrically conductive paste, and electrically conductive paste
WO2015029922A1 (en) * 2013-08-27 2015-03-05 Ntn株式会社 Sintered bearing for fuel pump and method for manufacturing same
JP2015227500A (en) * 2013-08-27 2015-12-17 Ntn株式会社 Sintered bearing for fuel pump and production method thereof
CN105473258A (en) * 2013-08-27 2016-04-06 Ntn株式会社 Sintered bearing for fuel pump and method for manufacturing same
US20160223018A1 (en) * 2013-08-27 2016-08-04 Yoshinori Ito Sintered bearing for fuel pump and method of manufacturing same
JP2017193781A (en) * 2013-08-27 2017-10-26 Ntn株式会社 Sintered bearing for fuel pump and method of manufacturing the same
JP2018053367A (en) * 2013-08-27 2018-04-05 Ntn株式会社 Sintered bearing for fuel pump and method of manufacturing the same
CN108620590A (en) * 2013-08-27 2018-10-09 Ntn株式会社 Petrolift sintered bearing and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH09256080A (en) Sintered friction material made of titanium or/and titanium alloy
JPS5996250A (en) Wear resistant sintered alloy
JP2007527952A5 (en)
JPH04308061A (en) Oxidizing resistant and corrosion resistant alloy for member used in intermediate temperature range, consisting essentially of added iron aluminide
JP4166821B2 (en) Powder metallurgical manufacturing method of composite material
JPH02173224A (en) Manufacture of sintered aluminum bronze alloy
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
US5350107A (en) Iron aluminide alloy coatings and joints, and methods of forming
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
JPS6326295A (en) Corrision-and wear-resistant alloy and composite cylinder thereof
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JPS61143547A (en) Cylinder for plastic molding apparatus
JP2001279369A (en) Wear resistant and corrosion resistant alloy and cylinder for molding machine
JPS5831061A (en) Superhard tungsten carbide alloy with high strength and high oxidation resistance
JP2819648B2 (en) Coated cemented carbide for wear-resistant tools
JP3983644B2 (en) Ni-based boride-dispersed corrosion-resistant wear-resistant alloy
JPH1136037A (en) Hard molybdenum alloy, wear resistant alloy, and wear resistant sintered alloy, and their production
JPH05302101A (en) Mixed powder for powder metallurgy/and its sintered compact
JPH055141A (en) Copper or copper-silver alloy metal oxide composite material and production thereof
JPH03202430A (en) Manufacture of magnesium series sintered alloy and magnesium series composite material
JPH06184661A (en) Wear resistant composite material
US4985200A (en) Method of making sintered aluminium nickel alloys
KR0176294B1 (en) Binding metal of an industrial diamond
JPS5916951A (en) Fe-based sintered material excellent in wear resistance
JPS59222556A (en) Wear resistant sintered iron alloy with superior workability and its manufacture