JP3983644B2 - Ni-based boride-dispersed corrosion-resistant wear-resistant alloy - Google Patents

Ni-based boride-dispersed corrosion-resistant wear-resistant alloy Download PDF

Info

Publication number
JP3983644B2
JP3983644B2 JP2002304246A JP2002304246A JP3983644B2 JP 3983644 B2 JP3983644 B2 JP 3983644B2 JP 2002304246 A JP2002304246 A JP 2002304246A JP 2002304246 A JP2002304246 A JP 2002304246A JP 3983644 B2 JP3983644 B2 JP 3983644B2
Authority
JP
Japan
Prior art keywords
matrix
content
resistant
corrosion
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002304246A
Other languages
Japanese (ja)
Other versions
JP2004137570A (en
Inventor
俊之 澤田
則之 馬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2002304246A priority Critical patent/JP3983644B2/en
Publication of JP2004137570A publication Critical patent/JP2004137570A/en
Application granted granted Critical
Publication of JP3983644B2 publication Critical patent/JP3983644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性、耐摩耗性、抗折力に優れ、かつ合金鋼とのクラッド性に優れたNi基ホウ化物分散耐食耐摩耗合金に関するものである。
【0002】
【従来の技術】
従来、Ni基にホウ化物などの硬質粒子を分散させた耐食耐摩耗合金が各種提案されている。例えば特許文献1には重量%で、Mo:25〜40%、B:0.5〜2.0%、Cr:20%以下、Si:0.1%以下、Fe:12%以下、残部がNiからなる表面硬化用塩酸耐食合金が開示さてている。また、特許文献2には、硼化物よりなる硬質相35〜95重量%と、該硬質相を結合するNi基の結合相からなる硬質焼結合金において、全硬質相量のうち正方晶系のM3 2 型(M:Mo、Niの他はCrおよび/またはV)複硼化物を60%以上含み、残部が斜方晶系のM3 2 型複硼化物あるいは他の硼化物よりなる耐食性に優れた高強度硬質焼結合金が開示されている。
【0003】
さらに、特許文献3には、炭化物および硼化物を主体とする硬質相がNi基のマトリックスで結合された複合材料であって、前記硬質相およびマトリックスは、総量で、B:1.5〜5重量%、Cr:5〜15重量%、Mo:25〜50重量%、W:10〜25重量%、Fe:2〜4重量%を含有し、残部がNiと不可避的不純物とからなる耐摩耗耐食性複合材料が開示されている。
【0004】
【引用文献】
(1)特許文献1(特開平8−157991号公報)
(2)特許文献2(特許第2631791号公報)
(3)特許文献3(特開平5−132734号公報)
【0005】
【発明が解決しようとする課題】
上述した合金は、例えば溶射、肉盛り、焼結などの方法により合金鋼と複合化され使用されることが多い。ところが、Moを主体としたホウ化物などはNi基金属マトリックス相と比較し熱膨張係数が小さい。従って、このようなNi基ホウ化物分散耐食耐摩耗合金は複合化される合金鋼より熱膨張係数が小さくなってしまうことが多い。このような熱膨張係数の差異により、溶射、肉盛り、焼結などの複合化処理の時や、使用環境における昇温、降温サイクルにより複合界面に亀裂を生じてしまうという問題がある。
【0006】
【課題を解決するための手段】
上述したような問題を解消するために鋭意開発を進めた結果、特に熱膨張係数に影響するマトリックスのMo含有量、およびホウ化物の量を決定するB含有量を一定範囲とすることで合金鋼の熱膨張係数(12〜15×10-6)とほぼ同等の熱膨張係数を有し、同時に高耐食性、高耐摩耗性、高抗折力を有するNi基ホウ化物分散耐食耐摩耗合金を提供するものである。その発明の要旨とするところは、質量%で、Cr:5〜30%、Mo:10〜40%、B:0.5〜4.0%を含み、残部Niおよび不可避的不純物からなり、かつ、11≦(マトリックスMo含有量)+10(B含有量)≦40、15≦(マトリックスCr含有量)+(マトリックスMo含有量)、(マトリックスCr含有量)+1.5(マトリックスMo含有量)≦55の条件を満たすマトリックスであることを特徴とするNi基ホウ化物分散耐食耐摩耗合金である。
【0007】
【発明の実施の形態】
以下、本発明についての成分組成の限定理由について述べる。
Cr:5〜30%
Crを含むNi基マトリックス相は各種酸に対し高耐食性を有する。しかし、5%未満ではその効果が十分えられないことから5%以上とした。また、30%を超えると、その効果は飽和し、コストが高くなることから、その上限を30%とした。
【0008】
Mo:10〜40%
Moを含むNi基マトリックス相は非酸化性の酸に対し高耐食性を有する。しかし、10%未満ではその効果が十分えられないことからその下限を10%とした。また、40%を超えると、その効果は飽和し、コストが高くなることから、その上限を40%とした。
【0009】
B:0.5〜4.0%
Bは、本発明合金における硬質粒子であるホウ化物を析出させるための元素であり、0.5%未満では硬さが不十分であり、4.0%を超えると熱膨張係数が小さくなるため、その範囲を0.5〜4.0%とした。
11≦(マトリックスMo含有量)+10(B含有量)≦40
(マトリックスMo含有量)+10(B含有量)が11未満では熱膨張係数が大きくなり、また、(マトリックスMo含有量)+10(B含有量)が40を超えると熱膨張係数が小さくなることから、その範囲を11〜40とした。好ましくは16〜35とする。
【0010】
15≦(マトリックスCr含有量)+(マトリックスMo含有量)
(マトリックスCr含有量)+(マトリックスMo含有量)が15未満では良好な耐食性が得られない。従って、下限値を15とした。好ましくは20とする。
(マトリックスCr含有量)+1.5(マトリックスMo含有量)≦55
(マトリックスCr含有量)+1.5(マトリックスMo含有量)が55を超えると良好な抗折力が得られない。これはマトリックス中に脆い金属間化合物が析出するためと推定される。従って、その上限値を55とした。
【0011】
本発明に係るNi基ホウ化物分散耐食耐摩耗合金の熱膨張係数はホウ化物析出量およびマトリックス中のMo量が主に効いており、これを上述した範囲とすることで、複合化相手材として主に用いられる合金鋼とほぼ同等の値(11〜16×10-6)となることが判った。また、耐食性は主にマトリックス中のCr、Mo含有量が効いており、非酸化性の酸である弗酸についてはマトリックス中のCr、Mo含有量(質量比)が同程度の割合で効果があることが判った。つまり、(マトリックスCr含有量)+(マトリックスMo含有量)の係数を同じ1とした。その結果、本発明に係るNi基ホウ化物分散耐食耐摩耗合金は、25〜500℃における平均熱膨張係数が11〜16×10-6であり、40℃、10%弗酸浸漬試験における腐食度が0.5g/m2 /h以下で、ロックウエル硬さがHRC40以上、抗折力が1.5GPa以上の性能を示す。
【0012】
以上、Cr−Mo−B−Ni系の4元素について主に説明してきたが、本発明は、Ni基合金であればこの4元素に限定されることはない。この4元素の成分系に添加する代表的な元素を挙げると、例えば、硬さ向上のために、Zr,V,W,Cを0.2〜10%の範囲内で添加、また、耐食性を向上させるために、Cu,Coを0.1〜10%の範囲内で添加、また、原料費低減のためにFeを10%以下添加、さらには、溶接性改善のために、Si,Mnを0.2〜5%の範囲内で添加しても良い。
【0013】
【実施例】
以下、本発明について実施例によって具体的に説明する。
アルゴンガス雰囲気中で表1に示す組成に配合した原料150gを誘導溶解炉にて溶解し、急冷銅鋳型にて遠心鋳造した。得られた小鋼塊から採取した試験片より熱膨張係数、耐食性、硬さおよび抗折力について評価した。熱膨張係数は25〜500℃における平均熱膨張係数を測定し、平均熱膨張係数が11×10-6〜16×10-6;○、11×10-6未満または16×10-6を超える;×とした。また、耐食性については、10×10×10mmの試験片を採取し、40℃、10%の弗酸に10時間浸漬した。腐食度が0.5g/m2 /h以下;○、0.5g/m2 /hを超える;×とした。また、硬さについては、小鋼塊から採取した試験片を湿式研磨しロックウエル硬さを測定し、HRC40以上;○、40未満;×とした。さらに、抗折力については、小鋼塊から1.7×1.7×2.0の試験片を採取し測定した。抗折力が1.5GPa以上;○、1.5GPa未満;×とした。
【0014】
【表1】

Figure 0003983644
【0015】
表1に示すように、No.1〜は本発明例であり、No.12は比較例である。比較例No.はBの含有量が低いために、硬さは劣る。比較例No.は(マトリックスMo)+10Bが低く、また、No.12は(マトリックスMo)+10Bが高い場合であり、いずれも熱膨張係数が範囲外となるNo.10は(マトリックスCr)+(マトリックスMo)が低いため耐食性が劣る。No.11は(マトリックスCr)+1.5(マトリックスMo)が高いために抗折力が劣ることが判る。これに対し、本発明であるNo.1〜のいずれも優れているが判る。
【0016】
【発明の効果】
以上述べたように、本発明により耐食性、耐摩耗性、抗折力およびクラック性に優れたNi基ホウ化物分散耐食耐摩耗合金を得ることが出来た。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Ni-based boride-dispersed corrosion-resistant wear-resistant alloy having excellent corrosion resistance, wear resistance, and bending strength, and excellent cladability with alloy steel.
[0002]
[Prior art]
Conventionally, various corrosion-resistant and wear-resistant alloys in which hard particles such as borides are dispersed in a Ni base have been proposed. For example, in Patent Document 1, by weight, Mo: 25-40%, B: 0.5-2.0%, Cr: 20% or less, Si: 0.1% or less, Fe: 12% or less, and the balance A surface hardening hydrochloric acid corrosion resistant alloy made of Ni is disclosed. Patent Document 2 discloses that a hard sintered alloy composed of 35 to 95% by weight of a hard phase composed of a boride and a Ni-based binder phase that binds the hard phase has a tetragonal system out of the total amount of hard phases. More than 60% of M 3 B 2 type (M: Mo, Ni other than Cr and / or V) double boride, the balance is orthorhombic M 3 B 2 type double boride or other boride A high-strength hard sintered alloy having excellent corrosion resistance is disclosed.
[0003]
Further, Patent Document 3 discloses a composite material in which a hard phase mainly composed of carbide and boride is bonded with a Ni-based matrix, and the hard phase and the matrix are B: 1.5 to 5 in total amount. Abrasion resistance comprising, by weight, Cr: 5 to 15% by weight, Mo: 25 to 50% by weight, W: 10 to 25% by weight, Fe: 2 to 4% by weight, the balance being Ni and inevitable impurities A corrosion resistant composite material is disclosed.
[0004]
[Cited document]
(1) Patent Document 1 (Japanese Patent Laid-Open No. 8-157991)
(2) Patent Document 2 (Japanese Patent No. 2631791)
(3) Patent Document 3 (Japanese Patent Laid-Open No. 5-132734)
[0005]
[Problems to be solved by the invention]
The alloy described above is often used in combination with alloy steel by a method such as thermal spraying, overlaying or sintering. However, borides mainly composed of Mo have a smaller thermal expansion coefficient than Ni-based metal matrix phases. Therefore, such Ni-based boride-dispersed corrosion-resistant and wear-resistant alloys often have a smaller thermal expansion coefficient than alloy steels to be compounded. Due to the difference in the thermal expansion coefficient, there is a problem that cracks are generated at the composite interface at the time of composite treatment such as thermal spraying, overlaying, sintering, etc., or due to temperature rise / fall cycles in the use environment.
[0006]
[Means for Solving the Problems]
As a result of diligent development to solve the above-mentioned problems, the alloy steel is made by keeping the Mo content of the matrix that affects the thermal expansion coefficient and the B content that determines the amount of boride within a certain range. Ni-based boride-dispersed corrosion-resistant wear-resistant alloy having a thermal expansion coefficient almost equal to the thermal expansion coefficient (12 to 15 × 10 −6 ) and having high corrosion resistance, high wear resistance, and high bending resistance at the same time To do. The gist of the invention is, in mass%, Cr: 5-30%, Mo: 10-40%, B: 0.5-4.0%, consisting of the balance Ni and inevitable impurities, and 11 ≦ (Matrix Mo content) +10 (B content) ≦ 40, 15 ≦ (Matrix Cr content) + (Matrix Mo content) + (Matrix Cr content) +1.5 (Matrix Mo content) ≦ It is a Ni-based boride-dispersed corrosion-resistant wear-resistant alloy characterized by being a matrix that satisfies the condition of 55.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reasons for limiting the component composition of the present invention will be described.
Cr: 5-30%
The Ni-based matrix phase containing Cr has high corrosion resistance against various acids. However, if it is less than 5%, the effect cannot be obtained sufficiently. Further, if it exceeds 30%, the effect is saturated and the cost becomes high, so the upper limit was made 30%.
[0008]
Mo: 10-40%
The Ni-based matrix phase containing Mo has high corrosion resistance against non-oxidizing acids. However, if the amount is less than 10%, the effect cannot be obtained sufficiently, so the lower limit was made 10%. Further, if it exceeds 40%, the effect is saturated and the cost becomes high, so the upper limit was made 40%.
[0009]
B: 0.5 to 4.0%
B is an element for precipitating boride which is a hard particle in the alloy of the present invention. If less than 0.5%, the hardness is insufficient, and if it exceeds 4.0%, the thermal expansion coefficient becomes small. The range was 0.5 to 4.0%.
11 ≦ (Matrix Mo content) +10 (B content) ≦ 40
When (Matrix Mo content) +10 (B content) is less than 11, the thermal expansion coefficient increases. When (Matrix Mo content) +10 (B content) exceeds 40, the thermal expansion coefficient decreases. The range was set to 11-40. Preferably it is 16-35.
[0010]
15 ≦ (Matrix Cr content) + (Matrix Mo content)
If (matrix Cr content) + (matrix Mo content) is less than 15, good corrosion resistance cannot be obtained. Therefore, the lower limit is set to 15. Preferably it is 20.
(Matrix Cr content) +1.5 (Matrix Mo content) ≦ 55
When (Matrix Cr content) +1.5 (Matrix Mo content) exceeds 55, good bending strength cannot be obtained. This is presumably because brittle intermetallic compounds are precipitated in the matrix. Therefore, the upper limit is set to 55.
[0011]
The thermal expansion coefficient of the Ni-based boride-dispersed corrosion-resistant wear-resistant alloy according to the present invention is mainly based on the amount of boride precipitation and the amount of Mo in the matrix. It was found that the value was almost equivalent to the alloy steel used mainly (11 to 16 × 10 −6 ). In addition, the Cr and Mo contents in the matrix are mainly effective for the corrosion resistance, and the hydrofluoric acid that is a non-oxidizing acid is effective at the same ratio of the Cr and Mo contents (mass ratio) in the matrix. It turns out that there is. That is, the coefficient of (matrix Cr content) + (matrix Mo content) was set to 1. As a result, the Ni-based boride-dispersed corrosion-resistant wear-resistant alloy according to the present invention has an average coefficient of thermal expansion of 11 to 16 × 10 −6 at 25 to 500 ° C., and the degree of corrosion at 40 ° C. and 10% hydrofluoric acid immersion test. Is 0.5 g / m 2 / h or less, Rockwell hardness is HRC40 or more, and bending strength is 1.5 GPa or more.
[0012]
As mentioned above, the Cr—Mo—B—Ni 4 elements have been mainly described, but the present invention is not limited to these 4 elements as long as they are Ni-based alloys. Typical elements to be added to the component system of these four elements include, for example, Zr, V, W, and C added in a range of 0.2 to 10% in order to improve hardness. In order to improve, Cu and Co are added within a range of 0.1 to 10%, Fe is added in an amount of 10% or less to reduce raw material costs, and Si and Mn are added to improve weldability. You may add in 0.2 to 5% of range.
[0013]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
In an argon gas atmosphere, 150 g of the raw material blended in the composition shown in Table 1 was melted in an induction melting furnace and centrifugally cast in a quenched copper mold. The thermal expansion coefficient, corrosion resistance, hardness and bending strength were evaluated from the test pieces collected from the obtained small steel ingots. The thermal expansion coefficient is an average thermal expansion coefficient measured at 25 to 500 ° C., and the average thermal expansion coefficient is 11 × 10 −6 to 16 × 10 −6 ; ○, less than 11 × 10 −6 or more than 16 × 10 −6 X was marked. For corrosion resistance, a 10 × 10 × 10 mm test piece was taken and immersed in hydrofluoric acid at 40 ° C. and 10% for 10 hours. Corrosion degree was 0.5 g / m 2 / h or less; ○, exceeding 0.5 g / m 2 / h; Moreover, about the hardness, the test piece extract | collected from the small steel ingot was wet-polished, the Rockwell hardness was measured, and it was set as HRC40 or more; (circle), less than 40; x. Further, the bending strength was measured by collecting a 1.7 × 1.7 × 2.0 test piece from a small steel ingot. The bending strength was 1.5 GPa or more; ◯, less than 1.5 GPa; x.
[0014]
[Table 1]
Figure 0003983644
[0015]
As shown in Table 1, no. 1 to 6 are examples of the present invention. 7 to 12 are comparative examples. Comparative Example No. 7 is inferior in hardness because the content of B is low. Comparative Example No. No. 8 has a low (Matrix Mo) + 10B. Nos. 9 and 12 are cases where (matrix Mo) + 10B is high. Since No. 10 has a low (matrix Cr) + (matrix Mo), the corrosion resistance is inferior. No. 11 is inferior in bending strength because (matrix Cr) +1.5 (matrix Mo) is high. On the other hand, No. 1 according to the present invention. Although all of 1-6 are excellent, it turns out.
[0016]
【The invention's effect】
As described above, according to the present invention, a Ni-based boride-dispersed corrosion-resistant wear-resistant alloy having excellent corrosion resistance, wear resistance, bending strength and cracking properties can be obtained.

Claims (1)

質量%で、
Cr:5〜30%、
Mo:10〜40%、
B:0.5〜4.0%
を含み、残部Niおよび不可避的不純物からなり、かつ、11≦(マトリックスMo含有量)+10(B含有量)≦40、15≦(マトリックスCr含有量)+(マトリックスMo含有量)、(マトリックスCr含有量)+1.5(マトリックスMo含有量)≦55の条件を満たすマトリックスであることを特徴とするNi基ホウ化物分散耐食耐摩耗合金。
% By mass
Cr: 5-30%
Mo: 10 to 40%,
B: 0.5 to 4.0%
Only contains, and the balance Ni and unavoidable impurities, and, 11 ≦ (matrix Mo content) +10 (B content) ≦ 40,15 ≦ (matrix Cr content) + (matrix Mo content) (Matrix A Ni-based boride-dispersed corrosion-resistant wear-resistant alloy characterized by being a matrix satisfying the condition of (Cr content) +1.5 (matrix Mo content) ≦ 55.
JP2002304246A 2002-10-18 2002-10-18 Ni-based boride-dispersed corrosion-resistant wear-resistant alloy Expired - Lifetime JP3983644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304246A JP3983644B2 (en) 2002-10-18 2002-10-18 Ni-based boride-dispersed corrosion-resistant wear-resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304246A JP3983644B2 (en) 2002-10-18 2002-10-18 Ni-based boride-dispersed corrosion-resistant wear-resistant alloy

Publications (2)

Publication Number Publication Date
JP2004137570A JP2004137570A (en) 2004-05-13
JP3983644B2 true JP3983644B2 (en) 2007-09-26

Family

ID=32451726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304246A Expired - Lifetime JP3983644B2 (en) 2002-10-18 2002-10-18 Ni-based boride-dispersed corrosion-resistant wear-resistant alloy

Country Status (1)

Country Link
JP (1) JP3983644B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855357B2 (en) * 2011-05-26 2016-02-09 山陽特殊製鋼株式会社 Ni-based boride-dispersed corrosion-resistant wear-resistant alloy
DE112017006594T5 (en) * 2016-12-27 2019-10-10 Toyo Kohan Co., Ltd. Casting material and method for producing a casting material

Also Published As

Publication number Publication date
JP2004137570A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4116677B2 (en) Aluminum-containing iron-based alloys useful as electrical resistance heating elements
WO2012026354A1 (en) Co-based alloy
JPS62112748A (en) Aluminum forging alloy
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JPH04308061A (en) Oxidizing resistant and corrosion resistant alloy for member used in intermediate temperature range, consisting essentially of added iron aluminide
JP2005325388A (en) Low specific gravity iron alloy
JP3983644B2 (en) Ni-based boride-dispersed corrosion-resistant wear-resistant alloy
JP4047197B2 (en) Ni-based boride-dispersed corrosion-resistant wear-resistant alloy
JP5011622B2 (en) Stainless cast steel with excellent heat resistance and machinability
JP4288821B2 (en) Low thermal expansion Fe-based heat-resistant alloy with excellent high-temperature strength
JP3420815B2 (en) Oxidation and corrosion resistant alloys based on doped iron aluminide and their use
JP5855357B2 (en) Ni-based boride-dispersed corrosion-resistant wear-resistant alloy
WO1997007253A1 (en) AUSTENITIC ACID CORROSION-RESISTANT STAINLESS STEEL OF Al-Mn-Si-N SERIES
JP2542603B2 (en) Abrasion resistance Al-Si-Mn sintered alloy
JP4279029B2 (en) Ni-based boride dispersion anti-corrosion and wear-resistant alloy composite method
JP4543171B2 (en) Iron alloy for high resistors
JP6927418B2 (en) Titanium alloy and its manufacturing method
JP4439881B2 (en) Welding material and roll for continuous casting roll overlay
JP2004269982A (en) High-strength low-alloyed titanium alloy and its production method
JP2003129155A (en) SINGLE CRYSTAL Ni-BASE ALLOY SUPERIOR IN STRENGTH AND CORROSION RESISTANCE
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
TWI741962B (en) Aluminum-nickel-copper alloy and manufacturing method thereof
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JP3480698B2 (en) Cr based alloy with excellent strength-ductility balance at high temperature
JP3207082B2 (en) Cr-based heat-resistant alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3983644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140713

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term