JP6927418B2 - Titanium alloy and its manufacturing method - Google Patents

Titanium alloy and its manufacturing method Download PDF

Info

Publication number
JP6927418B2
JP6927418B2 JP2020512970A JP2020512970A JP6927418B2 JP 6927418 B2 JP6927418 B2 JP 6927418B2 JP 2020512970 A JP2020512970 A JP 2020512970A JP 2020512970 A JP2020512970 A JP 2020512970A JP 6927418 B2 JP6927418 B2 JP 6927418B2
Authority
JP
Japan
Prior art keywords
titanium alloy
phase
content
corrosion resistance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020512970A
Other languages
Japanese (ja)
Other versions
JPWO2019198147A1 (en
Inventor
浩史 神尾
浩史 神尾
一浩 ▲高▼橋
一浩 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2019198147A1 publication Critical patent/JPWO2019198147A1/en
Application granted granted Critical
Publication of JP6927418B2 publication Critical patent/JP6927418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Description

本発明は、チタン合金及びその製造方法に関する。 The present invention relates to a titanium alloy and a method for producing the same.

工業用純チタンは、SUS304などの汎用ステンレス鋼では腐食してしまう海水においても優れた耐食性を示す。この高い耐食性を活かして海水淡水化プラント等で使用されている。 Pure industrial titanium exhibits excellent corrosion resistance even in seawater, which is corroded by general-purpose stainless steel such as SUS304. Taking advantage of this high corrosion resistance, it is used in seawater desalination plants and the like.

一方で、化学プラント用の材料は、塩酸等の海水以上に腐食性の高い環境下で使用される場合がある。このような環境下では、工業用純チタンも顕著に腐食する。 On the other hand, materials for chemical plants may be used in an environment that is more corrosive than seawater such as hydrochloric acid. In such an environment, pure industrial titanium also corrodes significantly.

このような腐食性の高い環境下での使用を企図して、工業用純チタンよりも腐食性の高い環境下での耐食性に優れた耐食チタン合金が開発されてきた。 With the intention of using it in such a highly corrosive environment, a corrosion-resistant titanium alloy having excellent corrosion resistance in an environment more corrosive than industrial pure titanium has been developed.

特許文献1には、Pdなどの白金族元素を添加した合金が開示されている。特許文献2及び非特許文献1には、白金族元素添加に加えて金属間化合物を析出させた合金が開示されている。 Patent Document 1 discloses an alloy to which a platinum group element such as Pd is added. Patent Document 2 and Non-Patent Document 1 disclose an alloy in which an intermetallic compound is precipitated in addition to the addition of a platinum group element.

これらのチタン合金は、Pd等の希少元素を使用するため、素材コストを向上させる。そのため、高価な希少元素を使用せず、チタンの耐食性を向上させるという課題を有している。そこで、希少元素を使用せず、汎用元素を活用したチタン合金に関して、様々な提案がなされている。 Since these titanium alloys use rare elements such as Pd, the material cost is improved. Therefore, there is a problem of improving the corrosion resistance of titanium without using expensive rare elements. Therefore, various proposals have been made regarding titanium alloys that utilize general-purpose elements without using rare elements.

そこで、特許文献3には、Cを使用してTiの耐食性と強度を向上させた発明が開示されている。しかしながら、図4に示す通り、特許文献3に記載のチタン合金は、TiCが析出し、加工性に課題があり、実際に熱交換器やプラント部材に適用する場合に問題となる。 Therefore, Patent Document 3 discloses an invention in which C is used to improve the corrosion resistance and strength of Ti. However, as shown in FIG. 4, the titanium alloy described in Patent Document 3 has a problem in workability due to precipitation of TiC, which causes a problem when it is actually applied to a heat exchanger or a plant member.

国際公開第2007/077645号International Publication No. 2007/077645 特開平6−25779号公報Japanese Unexamined Patent Publication No. 6-25779 特表第2009−509038号公報Special Table No. 2009-509038

「鉄と鋼」、vol.80,No.4(1994),P353−358"Iron and Steel", vol. 80, No. 4 (1994), P353-358

本発明は、希少元素に代えて、Cを添加することで、高い加工性を維持しつつ、耐食性を向上させたチタン合金を提供することを課題とする。 An object of the present invention is to provide a titanium alloy having improved corrosion resistance while maintaining high processability by adding C instead of a rare element.

本発明者らが研究を進めた結果、0.10〜0.30%のCを添加したチタン合金を、750〜820℃で熱処理を施し、0.001℃/sec以上の速度で冷却することで、表面組織をα単相にすることできて、優れた加工性を維持しつつ、耐食性も向上させることができることを見出した。 As a result of the research conducted by the present inventors, a titanium alloy containing 0.10 to 0.30% C is heat-treated at 750 to 820 ° C. and cooled at a rate of 0.001 ° C./sec or more. Therefore, it has been found that the surface structure can be made into an α single phase, and the corrosion resistance can be improved while maintaining excellent processability.

本発明の要旨は以下のとおりである。
(1)
質量%で、C:0.10〜0.30%、N:0.001〜0.03%、S:0.001〜0.03%、P:0.001〜0.03%、Si:0.001〜0.10%、Fe:0.01〜0.3%、H:0.015%以下、O:0.25%以下であり、残部がTi及び不可避的不純物であり、表面組織がα単相であるチタン合金。
(2)
表層の組織における、β相、α’相、TiCのX線回析ピークの強度がバックグラウンドの強度に比較して10%以下であることを特徴とする(1)に記載のチタン合金。
The gist of the present invention is as follows.
(1)
By mass%, C: 0.10 to 0.30%, N: 0.001 to 0.03%, S: 0.001 to 0.03%, P: 0.001 to 0.03%, Si: 0.001 to 0.10%, Fe: 0.01 to 0.3%, H: 0.015% or less, O: 0.25% or less, the balance is Ti and unavoidable impurities, and the surface structure Is an α single-phase titanium alloy.
(2)
The titanium alloy according to (1), wherein the intensity of the X-ray diffraction peaks of the β phase, α'phase, and TiC in the surface structure is 10% or less as compared with the intensity of the background.

(3)
質量%で、C:0.10〜0.30%、N:0.001〜0.03%、S:0.001〜0.03%、P:0.001〜0.03%、Si:0.001〜0.10%、Fe:0.01〜0.3%、H:0.015%以下、O:0.25%以下であり、残部がTi及び不可避的不純物であるチタン合金に760〜820℃で仕上熱処理を施し、0.001℃/sec以上の速度で冷却する(1)または(2)に記載のチタン合金の製造方法。
(3)
By mass%, C: 0.10 to 0.30%, N: 0.001 to 0.03%, S: 0.001 to 0.03%, P: 0.001 to 0.03%, Si: 0.001 to 0.10%, Fe: 0.01 to 0.3%, H: 0.015% or less, O: 0.25% or less, and the balance is Ti and titanium alloy which is an unavoidable impurity. The method for producing a titanium alloy according to (1) or (2) , wherein the finish heat treatment is performed at 760 to 820 ° C. and the titanium alloy is cooled at a rate of 0.001 ° C./sec or more.

本発明によれば、高い加工性を維持しつつ耐食性の良好なチタン合金を提供することができる。具体的には、本発明の組成範囲のチタン合金を、本発明の製造方法で製造すると、表面組織がα単相となり、加工性と耐食性の両方が向上していた。 According to the present invention, it is possible to provide a titanium alloy having good corrosion resistance while maintaining high workability. Specifically, when the titanium alloy having the composition range of the present invention was produced by the production method of the present invention, the surface structure became an α single phase, and both processability and corrosion resistance were improved.

塩酸浸漬試験における腐食速度とC添加量の関係を示した図である。It is a figure which showed the relationship between the corrosion rate and the amount of C addition in a hydrochloric acid immersion test. 塩酸浸漬試験における腐食速度と熱処理温度の関係を示した図である。It is a figure which showed the relationship between the corrosion rate and the heat treatment temperature in a hydrochloric acid immersion test. 本発明の製造方法で製造したチタン合金の金属組織写真の一例である。This is an example of a metallographic photograph of a titanium alloy produced by the production method of the present invention. 従来の製造方法で製造したチタン合金の金属写真の一例である。This is an example of a metal photograph of a titanium alloy manufactured by a conventional manufacturing method.

(成分組成)
本発明のチタン合金は、C:0.10〜0.30%、N:0.001〜0.03%、S:0.001〜0.03%、P:0.001〜0.03%、Si:0.001〜0.10%、Fe:0.01〜0.3%、H:0.015%以下(0%を含む)、O:0.25%以下(0%を含む)であり、残部がTi及び不可避的不純物である。なお、以下の説明において「%」で示す含有量は、全て「質量%」を示す。
(Ingredient composition)
The titanium alloy of the present invention has C: 0.10 to 0.30%, N: 0.001 to 0.03%, S: 0.001 to 0.03%, P: 0.001 to 0.03%. , Si: 0.001 to 0.10%, Fe: 0.01 to 0.3%, H: 0.015% or less (including 0%), O: 0.25% or less (including 0%) The balance is Ti and unavoidable impurities. In the following description, all the contents indicated by "%" indicate "mass%".

<C:0.10〜0.30%>
Cは、本発明において耐食性向上に重要な役割を果たす。Cの含有量増大に伴い腐食速度は低下し、耐食性が向上する(図1)。C含有による耐食性向上効果は0.10%以上の場合に顕著に発現する。一方、後述するように、C添加による耐食性向上効果はα単相組織を形成し、Cがα相に侵入型固溶元素として存在する場合に最も顕著になる。さらに、多量のC添加は加工性に悪影響を及ぼすTiCの析出を促進するため好ましくない。多量のC添加は、加工性に悪影響を及ぼすことに加え、耐食性向上効果を充分には発現しない。よって、Cの含有量は0.10〜0.30%とする。なお、より好ましい固溶Cの含有量の下限は0.12%、より好ましい固溶Cの含有量の上限は0.28%である。Cが侵入型固溶元素として固溶するα相は、後述する表面組織のα相である。
<C: 0.10 to 0.30%>
C plays an important role in improving corrosion resistance in the present invention. As the C content increases, the corrosion rate decreases and the corrosion resistance improves (Fig. 1). The effect of improving the corrosion resistance due to the inclusion of C is remarkably exhibited when the content is 0.10% or more. On the other hand, as will be described later, the effect of improving the corrosion resistance by adding C is most remarkable when an α single-phase structure is formed and C is present in the α phase as an intrusive solid solution element. Further, the addition of a large amount of C is not preferable because it promotes the precipitation of TiC, which adversely affects the processability. In addition to adversely affecting workability, the addition of a large amount of C does not sufficiently exhibit the effect of improving corrosion resistance. Therefore, the content of C is set to 0.10 to 0.30%. The lower limit of the more preferable content of the solid solution C is 0.12%, and the upper limit of the more preferable content of the solid solution C is 0.28%. The α phase in which C dissolves as an intrusive solid solution element is the α phase of the surface structure described later.

<N:0.001〜0.03%>
Nは強度向上に有効な必須元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Nは、本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、N含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Nの含有量は0.001〜0.03%とする。より好ましいNの含有量の上限は0.025%である。
<N: 0.001 to 0.03%>
N is an essential element effective for improving strength, but ductility and toughness deteriorate as its content increases. Further, N is an invading solid solution element like C, which plays an important role in improving corrosion resistance in the present invention. Therefore, the solid solution content of C may decrease due to the increase in N content. Therefore, the content of N is set to 0.001 to 0.03%. The upper limit of the more preferable N content is 0.025%.

<S:0.001〜0.03%>
Sは強度向上に有効な必須元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Sは、本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、S含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Sの含有量は0.001〜0.03%とする。より好ましいSの含有量の上限は0.025%である。
<S: 0.001 to 0.03%>
S is an essential element effective for improving strength, but its ductility and toughness deteriorate as its content increases. Further, S is an intrusive solid solution element like C, which plays an important role in improving corrosion resistance in the present invention. Therefore, the solid solution content of C may decrease due to the increase of the S content. Therefore, the content of S is set to 0.001 to 0.03%. The upper limit of the more preferable S content is 0.025%.

<P:0.001〜0.03%>
Pは強度向上に有効な必須元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Pは、本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、P含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Pの含有量は0.001〜0.03%とする。より好ましいPの含有量の上限は0.025%である。
<P: 0.001 to 0.03%>
P is an essential element effective for improving strength, but ductility and toughness deteriorate as its content increases. Further, P is an invading solid solution element like C, which plays an important role in improving corrosion resistance in the present invention. Therefore, the solid solution content of C may decrease due to the increase of the P content. Therefore, the content of P is set to 0.001 to 0.03%. The upper limit of the more preferable P content is 0.025%.

<Si:0.001〜0.10%>
Siは比較的安価な元素であり、耐熱性(耐酸化性、高温強度)向上に有効な元素であるが、多量の添加は化合物析出を促し、延性及び靭性を劣化させる。したがって、Siの含有量は0.001〜0.10%とする。より好ましいSiの含有量の下限は0.003%、より好ましいSiの含有量の上限は0.08%である。
<Si: 0.001 to 0.10%>
Si is a relatively inexpensive element and is an element effective for improving heat resistance (oxidation resistance, high temperature strength), but addition of a large amount promotes compound precipitation and deteriorates ductility and toughness. Therefore, the Si content is set to 0.001 to 0.10%. The lower limit of the more preferable Si content is 0.003%, and the upper limit of the more preferable Si content is 0.08%.

<Fe:0.01〜0.3%>
Feは強度向上に有効な元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Feは、本発明のチタン合金に含有される元素の中では強力なβ安定化元素であり、多量に添加されると、後述するα単相組織を得にくくなる。したがって、Feの含有量は0.01〜0.30%とする。より好ましいFeの含有量の下限は0.03%、より好ましいFeの含有量の上限は0.25%である。
<Fe: 0.01-0.3%>
Fe is an element effective for improving strength, but its ductility and toughness deteriorate as its content increases. Further, Fe is a strong β-stabilizing element among the elements contained in the titanium alloy of the present invention, and when added in a large amount, it becomes difficult to obtain an α single-phase structure described later. Therefore, the Fe content is set to 0.01 to 0.30%. The lower limit of the more preferable Fe content is 0.03%, and the upper limit of the more preferable Fe content is 0.25%.

<H:0.015%以下>
Hは、チタン水素化物を形成し素材の延性及び靭性を劣化させる元素である。そのため含有量は少ない方がよいが、製造工程でHの増加は不可避である。また、Hは本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、H含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Hの含有量は0.015%以下に制限する。また、このような低Hのチタン合金を得る場合は高純度スポンジチタンを用いればよいが、高純度のスポンジチタンを使用しすぎるとコスト増となる。本発明において、Hは不純物元素であり、0%でも良いが、コスト面からHは0.001%以上が好ましい。より好ましいHの含有量の上限は0.005%である。
<H: 0.015% or less>
H is an element that forms a titanium hydride and deteriorates the ductility and toughness of the material. Therefore, it is better that the content is small, but an increase in H is unavoidable in the manufacturing process. Further, H is an intrusive solid solution element like C, which plays an important role in improving corrosion resistance in the present invention. Therefore, the solid solution content of C may decrease due to the increase in H content. Therefore, the H content is limited to 0.015% or less. Further, in order to obtain such a low H titanium alloy, high-purity titanium sponge may be used, but if too much high-purity titanium sponge is used, the cost will increase. In the present invention, H is an impurity element and may be 0%, but H is preferably 0.001% or more from the viewpoint of cost. The upper limit of the more preferable H content is 0.005%.

<O:0.25%以下>
Oは、強度向上に有効な必須元素であるが、その含有量の増大にしたがい延性及び靭性が劣化する。また、Oは本発明において耐食性向上に重要な役割を果たすCと同じく、侵入型固溶元素である。そのため、O含有量の増加によりCの固溶含有量が低下するおそれがある。したがって、Oの含有量は0.25%以下とする。また、このような低Oのチタン合金を得る場合は高純度スポンジチタンを用いればよいが、高純度のスポンジチタンを使用しすぎるとコスト増となる。本発明において、Oは不純物元素であり、0%でも良い、コスト面からはOは0.01%以上が好ましい。より好ましいOの含有量の上限は0.20%である。
<O: 0.25% or less>
O is an essential element effective for improving strength, but its ductility and toughness deteriorate as its content increases. Further, O is an intrusive solid solution element like C, which plays an important role in improving corrosion resistance in the present invention. Therefore, the solid solution content of C may decrease due to the increase of the O content. Therefore, the content of O is set to 0.25% or less. Further, in order to obtain such a low O titanium alloy, high-purity titanium sponge may be used, but if too much high-purity titanium sponge is used, the cost will increase. In the present invention, O is an impurity element and may be 0%, and O is preferably 0.01% or more from the viewpoint of cost. The upper limit of the more preferable O content is 0.20%.

<表層がα単相>
表層がα単相とは、表層の組織がα相であり、β相、α’相、TiCのX線回析ピークの強度がバックグラウンドの強度に比較して10%以下であることを意味する。ここで、表層とは、表面から深さ5μmまでの範囲である。α相には、α’相や針状α相は含まれない。図3は、本願発明の製造方法で製造したチタン合金の表面の様子である。
<Surface layer is α single phase>
When the surface layer is α single phase, it means that the structure of the surface layer is α phase, and the intensity of the X-ray diffraction peaks of β phase, α'phase, and TiC is 10% or less of the background intensity. do. Here, the surface layer is a range from the surface to a depth of 5 μm. The α phase does not include the α'phase or the acicular α phase. FIG. 3 shows the surface of the titanium alloy produced by the production method of the present invention.

α相は、六方細密充填構造から構成され、β相から変態して形成するα'相や針状α相とは結晶構造や粒界分布が異なる。α相に固溶したC原子はTi原子間に侵入型固溶元素として存在しやすく、Ti原子核の周囲に存在する電子状態に作用することでアノード反応を抑制することで耐食性を向上できる。アノード反応とは金属が腐食してイオン化する反応を指す。金属がイオン化する際にTi原子核から電子を乖離させる必要があり、α相にCを固溶させることで、電子を乖離しがたくし耐食性を向上させている。α'相は最密構造でないこと、針状α相は粒界偏析の影響が大きいことが原因となり、α相に比べて十分な耐食性向上効果を得られない。 The α phase is composed of a hexagonal close-packed structure, and has a different crystal structure and grain boundary distribution from the α'phase and acicular α phase formed by metamorphosis from the β phase. The C atom dissolved in the α phase tends to exist as an interpenetrating solid solution element between Ti atoms, and the corrosion resistance can be improved by suppressing the anodic reaction by acting on the electronic state existing around the Ti nucleus. The anodic reaction refers to a reaction in which a metal is corroded and ionized. When the metal is ionized, it is necessary to dissociate the electrons from the Ti nucleus, and by dissolving C in the α phase, it is difficult for the electrons to dissociate and the corrosion resistance is improved. Due to the fact that the α'phase does not have a close-packed structure and that the acicular α phase is greatly affected by grain boundary segregation, a sufficient effect of improving corrosion resistance cannot be obtained as compared with the α phase.

TiCは硬質な化合物であり、素材の加工性を著しく劣化させる。しかし、本発明のチタン合金の表層には、炭素がほとんど固溶し、TiCもほとんど析出しないため、加工性が劣化することはない。 TiC is a hard compound and significantly deteriorates the processability of the material. However, since carbon is hardly dissolved in the surface layer of the titanium alloy of the present invention and TiC is hardly precipitated, the workability is not deteriorated.

<熱処理温度>
上述した成分組成を満足する素材であっても、熱処理温度によって表層の組織が変化する。そのため発揮される性能も変わってくる。図2に示されるように、800℃付近の熱処理で製造したチタン合金の腐食速度が最も抑制される。したがって、本発明においては、熱処理温度を750〜820℃である。この温度域での保持時間については特別な限定はなく、1sec以上、望ましくは30sec以上の時間保持すれば充分である。
<Heat treatment temperature>
Even if the material satisfies the above-mentioned component composition, the structure of the surface layer changes depending on the heat treatment temperature. Therefore, the performance to be exhibited also changes. As shown in FIG. 2, the corrosion rate of the titanium alloy produced by the heat treatment at around 800 ° C. is most suppressed. Therefore, in the present invention, the heat treatment temperature is 750 to 820 ° C. There is no particular limitation on the holding time in this temperature range, and holding for 1 sec or more, preferably 30 sec or more is sufficient.

750〜820℃でチタン合金の腐食速度が抑制される理由としては、この温度域以外で熱処理を施すとTiCが析出したり、組織がα’相や針状α相になったりするためである。たとえば、図4には、この温度域以外で熱処理を施した従来の方法で製造されるチタン合金の表層の様子が示されている。表層には、島状のTiC析出物が発生している(図4)。TiCは硬質な化合物であり、素材の加工性を著しく劣化させる。そのため、従来の方法で製造されたチタン合金は加工性が劣化している。 The reason why the corrosion rate of the titanium alloy is suppressed at 750 to 820 ° C. is that if heat treatment is performed outside this temperature range, TiC is precipitated and the structure becomes α'phase or acicular α phase. .. For example, FIG. 4 shows the surface layer of a titanium alloy produced by a conventional method that has been heat-treated outside this temperature range. Island-shaped TiC precipitates are generated on the surface layer (Fig. 4). TiC is a hard compound and significantly deteriorates the processability of the material. Therefore, the workability of the titanium alloy produced by the conventional method is deteriorated.

<冷却速度>
熱処理温度が上記の範囲であっても、冷却速度が遅い場合は、冷却過程でTiCが析出するため、表層がαにならない。本発明の冷却速度は、0.001℃/sec以上、好ましくは1℃/sec以上がよい。また、冷却速度は速い方がTiCの析出を抑制できるが、速すぎる冷却速度はチタン板の形状維持に悪影響をもたらすため、上限を2000℃/secとする。
<Cooling speed>
Even if the heat treatment temperature is in the above range, if the cooling rate is slow, TiC is precipitated in the cooling process, so that the surface layer does not become α. The cooling rate of the present invention is preferably 0.001 ° C./sec or more, preferably 1 ° C./sec or more. Further, the faster the cooling rate, the more the precipitation of TiC can be suppressed, but the too fast cooling rate adversely affects the shape maintenance of the titanium plate, so the upper limit is set to 2000 ° C./sec.

<製造方法>
次に、本発明のチタン合金の製造方法について説明する。本発明のチタン合金は、通常の工業用純チタンと同様に、鋳造→分塊圧延(又は熱間鍛造)→熱間圧延→焼鈍(→冷間圧延→最終焼鈍)といった各工程間に、随時ブラスト、酸洗処理を入れること等によって、特に特殊な方法を用いることなく製造することができる。なお、上記工程の説明で、括弧書きの(→冷間圧延→最終焼鈍)という工程は必ずしも必要ではないが、製造するチタンの板厚、形状、大きさなどによって適宜実施する。
<Manufacturing method>
Next, the method for producing the titanium alloy of the present invention will be described. The titanium alloy of the present invention can be used at any time during each process such as casting → slabbing rolling (or hot forging) → hot rolling → annealing (→ cold rolling → final annealing) in the same manner as ordinary industrial pure titanium. By adding blasting, pickling treatment, etc., it can be manufactured without using a special method. In the above description of the process, the process of parentheses (→ cold rolling → final annealing) is not always necessary, but it is appropriately carried out depending on the thickness, shape, size, etc. of the titanium to be manufactured.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

スポンジチタン及び所定の添加元素を含む溶解原料と用い、真空アーク溶解炉により、表1に示す各成分組成のチタンインゴットを鋳造した。添加元素のうち、Feは電解鉄、CはTiC粉末をそれぞれ添加した。 A titanium ingot having each component composition shown in Table 1 was cast by a vacuum arc melting furnace using a melting raw material containing titanium sponge and a predetermined additive element. Among the added elements, Fe was electrolytic iron and C was TiC powder.

なお、表中の、Al、V、Cr、Ru、Pd、Ni、及びCoは意図的に添加する元素ではなく、表中の値は上記のそれぞれの元素含有量が不純物レベルであることを示すものである。 In addition, Al, V, Cr, Ru, Pd, Ni, and Co in the table are not elements to be added intentionally, and the values in the table indicate that the content of each of the above elements is an impurity level. It is a thing.

Figure 0006927418
Figure 0006927418

鋳造したチタン鋳塊を用いて、800〜1000℃の加熱温度で鍛造、熱間圧延を行い、厚さ4.0mmの熱延板とし、酸洗と機械加工により耐食性評価用の試験片を作製した。その後、表2に示すそれぞれ温度で真空焼鈍を実施し、耐食性を評価した。 Using the cast titanium ingot, forging and hot rolling are performed at a heating temperature of 800 to 1000 ° C. to obtain a hot-rolled plate with a thickness of 4.0 mm, and a test piece for corrosion resistance evaluation is prepared by pickling and machining. bottom. Then, vacuum annealing was carried out at each temperature shown in Table 2 to evaluate the corrosion resistance.

表面組織の同定は、XRD(X線回折)とミクロ組織観察により行った、X線回折の条件は、特性X線としてCoKα線を用い、電圧は30kV、電流は100mAとした。X線回折の範囲は10°≦2θ≦110°、ステップは0.04°、積算時間は2sとし、X線入射角は0.3°とした。試験片(縦20mm、横20mm)のX線回折ピークの位置からα相、β相、α’相、TiCの有無を調査し、ミクロ組織観察により針状αの有無を含めて総合的に表面組織を調査した。X線回折ピーク強度がバックグラウンドよりも10%を超えて検出された場合にβ相、α’相、TiCの形成を認め、そのほかの場合にはα単相であると判断した。 The surface structure was identified by XRD (X-ray diffraction) and microstructure observation. The conditions for X-ray diffraction were CoKα rays as characteristic X-rays, a voltage of 30 kV, and a current of 100 mA. The range of X-ray diffraction was 10 ° ≤ 2θ ≤ 110 °, the step was 0.04 °, the integration time was 2 s, and the X-ray incident angle was 0.3 °. Investigate the presence or absence of α phase, β phase, α'phase, and TiC from the position of the X-ray diffraction peak of the test piece (length 20 mm, width 20 mm), and observe the microstructure to comprehensively surface the surface including the presence or absence of needle-shaped α. The organization was investigated. When the X-ray diffraction peak intensity was detected to exceed 10% of the background, formation of β phase, α'phase, and TiC was observed, and in other cases, it was judged to be α single phase.

耐食性は、試験片を90℃、3mass%の塩酸水溶液に168h浸漬し、浸漬前後の重量を比較することで、算出した腐食速度の大小により評価した。腐食速度が2mm/year以下の場合を合格とした。耐食性評価試験の結果を表2に示す。加工性は、JIS
Z 2241に記載された方法で引張試験を行い、その伸びによって評価した。伸びの測定は、伸び計によって行い、全伸びが40%以上の場合を合格とした。

Figure 0006927418
The corrosion resistance was evaluated by immersing the test piece in a 3 mass% hydrochloric acid aqueous solution at 90 ° C. for 168 hours and comparing the weights before and after the immersion, based on the calculated corrosion rate. The case where the corrosion rate was 2 mm / year or less was regarded as acceptable. The results of the corrosion resistance evaluation test are shown in Table 2. Workability is JIS
A tensile test was performed by the method described in Z 2241 and evaluated by its elongation. The elongation was measured by an extensometer, and the case where the total elongation was 40% or more was regarded as acceptable.
Figure 0006927418

本発明で規定する素材成分、熱処理温度、表層組織の全てを満足するNo.1〜9では腐食速度が顕著に低く、耐食性が向上し、十分な伸びを示すことから耐食性と加工性の両立が確認できた。 In Nos. 1 to 9 which satisfy all of the material components, heat treatment temperature, and surface structure specified in the present invention, the corrosion rate is remarkably low, the corrosion resistance is improved, and sufficient elongation is exhibited, so that both corrosion resistance and workability are compatible. It could be confirmed.

No.10〜16は炭素などの素材成分は本発明の範囲内にあるが、熱処理温度もしくは冷却速度が本発明の範囲外であるため、表面組織がα単相とならず、腐食速度が大きく満足する伸びを示さなかった。No.14、16、18、20は冷却速度が遅いため、冷却過程でTiCが析出した。
No.17〜24は、S、P、SiなどCの固溶限を低下させる元素が、本発明の範囲以上に添加されており、本発明の温度や冷却速度を満足してもα単相にならず、耐食性も向上せず、TiCも析出しているために伸びが低かった。
No.1、5は、屋外の環境では変色等がほとんど見られなかったのに対して、No.23、24は、屋外の環境では表面が褐色となった。
No. In 10 to 16, the material components such as carbon are within the range of the present invention, but since the heat treatment temperature or the cooling rate is outside the range of the present invention, the surface structure does not become α single phase, and the corrosion rate is greatly satisfied. It did not show any growth. No. Since the cooling rates of 14, 16, 18 and 20 are slow, TiC was precipitated during the cooling process.
No. In 17 to 24, elements such as S, P, and Si that lower the solid solution limit of C are added beyond the range of the present invention, and even if the temperature and cooling rate of the present invention are satisfied, the α single phase is formed. However, the corrosion resistance was not improved, and the elongation was low because TiC was also precipitated.
In Nos. 1 and 5, discoloration and the like were hardly observed in the outdoor environment, whereas in Nos. 23 and 24, the surface became brown in the outdoor environment.

Claims (3)

質量%で、
C:0.10〜0.30%、
N:0.001〜0.03%、
S:0.001〜0.03%、
P:0.001〜0.03%、
Si:0.001〜0.10%、
Fe:0.01〜0.3%、
H:0.015%以下、
O:0.25%以下
であり、残部がTi及び不可避的不純物であり、表層がα単相であることを特徴とするチタン合金。
By mass%
C: 0.10 to 0.30%,
N: 0.001 to 0.03%,
S: 0.001 to 0.03%,
P: 0.001 to 0.03%,
Si: 0.001 to 0.10%,
Fe: 0.01-0.3%,
H: 0.015% or less,
O: A titanium alloy characterized by having an O: 0.25% or less, the balance being Ti and unavoidable impurities, and the surface layer being an α single phase.
表層の組織における、β相、α’相、TiCのX線回析ピークの強度がバックグラウンドの強度に比較して10%以下であることを特徴とする請求項1に記載のチタン合金。The titanium alloy according to claim 1, wherein the intensity of the X-ray diffraction peaks of the β phase, α'phase, and TiC in the surface structure is 10% or less as compared with the intensity of the background. 質量%で、
C:0.10〜0.30%、
N:0.001〜0.03%、
S:0.001〜0.03%、
P:0.001〜0.03%、
Si:0.001〜0.10%、
Fe:0.01〜0.3%、
H:0.015%以下、
O:0.25%以下
であり、残部がTi及び不可避的不純物であるチタン合金に760〜820℃で仕上熱処理を施し、0.001℃/sec以上の速度で冷却することを特徴とする請求項1または2に記載のチタン合金の製造方法。
By mass%
C: 0.10 to 0.30%,
N: 0.001 to 0.03%,
S: 0.001 to 0.03%,
P: 0.001 to 0.03%,
Si: 0.001 to 0.10%,
Fe: 0.01-0.3%,
H: 0.015% or less,
O: A claim characterized by subjecting a titanium alloy having an O: 0.25% or less and the balance being Ti and an unavoidable impurity to a finish heat treatment at 760 to 820 ° C. and cooling at a rate of 0.001 ° C./sec or more. Item 2. The method for producing a titanium alloy according to Item 1 or 2.
JP2020512970A 2018-04-10 2018-04-10 Titanium alloy and its manufacturing method Active JP6927418B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015065 WO2019198147A1 (en) 2018-04-10 2018-04-10 Titanium alloy and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2019198147A1 JPWO2019198147A1 (en) 2021-01-14
JP6927418B2 true JP6927418B2 (en) 2021-08-25

Family

ID=68163163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020512970A Active JP6927418B2 (en) 2018-04-10 2018-04-10 Titanium alloy and its manufacturing method

Country Status (5)

Country Link
JP (1) JP6927418B2 (en)
KR (1) KR102340036B1 (en)
CN (1) CN111902550B (en)
RU (1) RU2752094C1 (en)
WO (1) WO2019198147A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727821Y2 (en) * 1976-02-27 1982-06-17
JPH0625779A (en) 1992-07-08 1994-02-01 Nkk Corp Titanium alloy excellent in corrosion resistance to sulfuric acid and hydrochloric acid
DE69610544T2 (en) * 1995-04-21 2001-05-31 Nippon Steel Corp HIGH-STRENGTH, HIGH-DUCTILE TITANIUM ALLOY AND METHOD FOR THE PRODUCTION THEREOF
US20070062614A1 (en) 2005-09-19 2007-03-22 Grauman James S Titanium alloy having improved corrosion resistance and strength
JP3916088B2 (en) 2005-12-28 2007-05-16 住友金属工業株式会社 Titanium alloy for corrosion resistant materials
JP5421796B2 (en) * 2010-01-13 2014-02-19 株式会社神戸製鋼所 Titanium alloy billet with excellent defect detection capability in ultrasonic testing
JP5615792B2 (en) * 2011-10-31 2014-10-29 株式会社神戸製鋼所 Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger
JP6263040B2 (en) * 2013-03-19 2018-01-17 株式会社神戸製鋼所 Titanium plate
WO2015111652A1 (en) * 2014-01-22 2015-07-30 新日鐵住金株式会社 Titanium material or titanium alloy material that have surface conductivity, fuel cell separator using same, and fuel cell
CN104099531B (en) * 2014-07-31 2016-08-24 宁国市宁武耐磨材料有限公司 A kind of high hardness wear-resisting ball and preparation method thereof
RU2724272C2 (en) * 2015-07-29 2020-06-22 Ниппон Стил Корпорейшн Titanium composite material and titanium material for hot forming

Also Published As

Publication number Publication date
JPWO2019198147A1 (en) 2021-01-14
CN111902550A (en) 2020-11-06
CN111902550B (en) 2022-03-08
WO2019198147A1 (en) 2019-10-17
KR102340036B1 (en) 2021-12-16
KR20200118878A (en) 2020-10-16
RU2752094C1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
JP4605514B2 (en) Titanium plate and titanium plate manufacturing method
JP6705508B2 (en) NiCrFe alloy
JP2020510139A (en) High nitrogen, multi-element, high entropy corrosion resistant alloy
JP5661938B2 (en) Ni-Fe-Cr-Mo-alloy
WO2009151031A1 (en) α-β TYPE TITANIUM ALLOY
CN104245978A (en) Nickel-chromium-aluminum alloy having good processability, creep resistance and corrosion resistance
JP2017524830A (en) Nickel-chromium-iron-molybdenum corrosion resistant alloys, products and methods for their production
JP5505214B2 (en) High corrosion resistance titanium alloy having a large 0.2% proof stress in the rolling direction and its manufacturing method
JP6816779B2 (en) Austenitic heat-resistant alloy member and its manufacturing method
WO2005118898A1 (en) Titanium alloy and method of manufacturing titanium alloy material
JP6602462B2 (en) Chromium-based two-phase alloy and product using the two-phase alloy
JP2020026568A (en) Titanium alloy, method for producing the same and engine component including the same
JP6690359B2 (en) Austenitic heat-resistant alloy member and method for manufacturing the same
JPH083670A (en) Nickel-base alloy excellent in workability and corrosion resistance
JP6085211B2 (en) Titanium alloy material excellent in scale adhesion control and formability, its manufacturing method, and heat exchanger or seawater evaporator
JP6927418B2 (en) Titanium alloy and its manufacturing method
JP7046800B2 (en) New austenitic stainless steel alloy
JP2010053419A (en) Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it
TWI650428B (en) Titanium alloy and its manufacturing method
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JP2013001973A (en) Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them
JP4065146B2 (en) Titanium alloy having excellent corrosion resistance and method for producing the same
JP2009007679A (en) Titanium alloy, and method for producing titanium alloy material
WO2008047869A1 (en) Nickel material for chemical plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R151 Written notification of patent or utility model registration

Ref document number: 6927418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151