JP2013001973A - Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them - Google Patents

Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them Download PDF

Info

Publication number
JP2013001973A
JP2013001973A JP2011135652A JP2011135652A JP2013001973A JP 2013001973 A JP2013001973 A JP 2013001973A JP 2011135652 A JP2011135652 A JP 2011135652A JP 2011135652 A JP2011135652 A JP 2011135652A JP 2013001973 A JP2013001973 A JP 2013001973A
Authority
JP
Japan
Prior art keywords
titanium alloy
pipe
phase
welded pipe
hydrogen absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011135652A
Other languages
Japanese (ja)
Inventor
Satoru Kawakami
哲 川上
Hideki Fujii
秀樹 藤井
Hiroaki Otsuka
広明 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011135652A priority Critical patent/JP2013001973A/en
Publication of JP2013001973A publication Critical patent/JP2013001973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a titanium alloy welded pipe which has excellent hydrogen absorption resistance and pipe-formability in roll forming and which is used for a welded pipe product and for a hoop product serving as a material of the welded pipe product, the welded pipe product being used for a condenser and a multitubular heat exchanger or the like of a chemical plant or the like needing corrosion resistance and hydrogen-intrusion resistance, under an environment having a risk of the occurrence of embrittlement caused by hydrogen absorption, to provide a hoop product for the welded pipe, and to provide methods for manufacturing the titanium alloy welded pipe and the hoop product for the welded pipe.SOLUTION: The titanium alloy welded pipe or the titanium alloy hoop product having excellent hydrogen absorption resistance and cold workability is characterized by containing, by mass, 0.6-1.8% of Cu, ≤0.03% of Fe, and ≤0.16% of O, with the balance comprising Ti and ≤0.3%, in total, of impurities, and including 0.5-3.5% by volume fraction of a precipitated phase with TiCu having particle diameters of 10-1,000 nm as the maximum phase. Further, the method for manufacturing the titanium alloy welded pipe or the titanium alloy hoop product is characterized by performing a final annealing in the temperature range of 480°C to 730[%Cu]-160°C.

Description

本発明は、水素吸収により脆化が起る恐れのある環境下にて、耐食性および耐水素侵入性を必要とされる復水器あるいは化学プラントなどの多管式熱交換器用途に使用される溶接管製品と、その材料となるフープ製品に使用される、耐水素吸収性ならびに溶接管に造管する際のロール成形加工性に優れたチタン合金溶接管および溶接管用フープ製品とそれらの製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention is used for multi-tube heat exchanger applications such as condensers and chemical plants that require corrosion resistance and hydrogen penetration resistance in an environment where embrittlement may occur due to hydrogen absorption. Titanium alloy welded pipe excellent in hydrogen absorption resistance and roll forming processability when forming into a welded pipe, and hoop product for welded pipe used in welded pipe products and hoop products used as the materials, and methods for producing the same About.

チタンおよびチタン合金溶接管は優れた耐食性を有することから、復水器や化学プラント、海水淡水化プラントなどの多管式熱交換器に使用されている。この時、特に高い強度を要求されず、冷間加工性が最も重要とされる場合には、主に純チタンが使用されている。中でも、例えばJIS H4631(2001)「熱交換器用チタン管」に記載される2種材(TTH340W)、あるいは、ASTM B338 “Titanium tubes for heat exchanger”に記載されるGrade2が使用されることが多い。   Since titanium and titanium alloy welded pipes have excellent corrosion resistance, they are used in multi-tube heat exchangers such as condensers, chemical plants, and seawater desalination plants. At this time, when high strength is not particularly required and cold workability is most important, pure titanium is mainly used. Among them, for example, two materials (TTH340W) described in JIS H4631 (2001) “Titanium tube for heat exchanger” or Grade 2 described in ASTM B338 “Titanium tubes for heat exchanger” are often used.

一方、これらチタンおよびチタン合金管が使用される環境において、厳しい腐食環境下に晒される場合、チタンおよびチタン合金管が多量の水素を吸収し、内部にチタン水素化物が形成される場合がある。チタン水素化物は母材に比べ著しく脆いため、大量に発生すると、チタンおよびチタン合金管は脆化してしまう。このような現象は、高温水蒸気に晒される熱交換器用チューブや、非酸化性の酸液環境に晒される管、あるいは接触する鋼材の電気防食を行う場合に起ることがある。したがって、チタンおよびチタン合金管がこれらの特に過酷な腐食環境下にて使用されると、水素を吸収して水素化物が生成しやすく、水素脆化割れを起しやすくなるため、チタンおよびチタン合金管を使用できないという問題があった。   On the other hand, in the environment where these titanium and titanium alloy tubes are used, when exposed to a severe corrosive environment, the titanium and titanium alloy tubes may absorb a large amount of hydrogen and titanium hydride may be formed inside. Titanium hydride is remarkably brittle compared to the base material, so that when titanium is produced in large quantities, the titanium and titanium alloy pipes become brittle. Such a phenomenon may occur when a tube for a heat exchanger that is exposed to high-temperature steam, a tube that is exposed to a non-oxidizing acid solution environment, or a steel material that comes into contact is subjected to electrocorrosion protection. Therefore, when titanium and titanium alloy pipes are used in these particularly severe corrosive environments, hydrogen is easily absorbed and hydrides are easily generated, and hydrogen embrittlement cracks are liable to occur. There was a problem that the tube could not be used.

この問題を解決すべく、水素侵入を防止する製造方法や耐水素吸収特性に優れた種々の合金が提案されている。   In order to solve this problem, various alloys have been proposed that are superior in manufacturing methods for preventing hydrogen intrusion and hydrogen absorption resistance.

特許文献1には、窒化チタン層をチタン表面に被覆することにより水素吸収防止効果を高め、脆化を防ぐ方法が開示されている。比較的安価に耐水素吸収性が改善できる方法であるが、表面窒化チタン皮膜が異物との接触、特に、造管ロールと強く接触する連続式ロール成形による造管工程や、管製品として熱交換器等に使用される際に、サンドエロージョンなどで剥離してしまうと、その効果は損なわれてしまう。   Patent Document 1 discloses a method of preventing the embrittlement by enhancing the effect of preventing hydrogen absorption by coating a titanium nitride layer on the titanium surface. Although it is a method that can improve the hydrogen absorption resistance at a relatively low cost, the surface titanium nitride film is in contact with foreign matter, especially in the tube forming process by continuous roll forming where it strongly contacts the tube forming roll, or heat exchange as a tube product. When used in a container or the like, if it is peeled off by sand erosion or the like, the effect is impaired.

特許文献2には、表面にチタン水素化物含有層を予め設けることにより、水素吸収が進まなくなるという作用を利用して耐水素脆化特性を高める方法が開示されている。しかし、水素化物形成を制御することは困難であり、バルクの脆化が起る水素化物量に達する可能性も高い。また、そのような延性の低い水素化物層がフープ表面に存在すると、造管時のロール成形の際に表面割れなどの欠陥が発生してしまい、製品の歩留が低くなりやすいことから、実用性に乏しい。   Patent Document 2 discloses a method for improving the hydrogen embrittlement resistance by utilizing the effect that hydrogen absorption does not progress by providing a titanium hydride-containing layer on the surface in advance. However, it is difficult to control hydride formation, and there is a high possibility of reaching the amount of hydride where bulk embrittlement occurs. In addition, if such a low ductility hydride layer is present on the hoop surface, defects such as surface cracks occur during roll forming during pipe making, and the product yield tends to be low. Poor sex.

チタンに貴金属元素を添加して、耐食性を上げることにより耐水素吸収特性を高めた合金も提案されている。Pdを添加した合金が特許文献3に、また、Zr、Hfを添加した合金が特許文献4に開示されている。これら合金では、耐食性、耐水素吸収性は純チタンより大きく向上するが、上記添加元素はいずれもチタンよりも遥かに高価であり、合金の製造コストが大幅に高くなってしまう問題がある。   An alloy has been proposed in which a noble metal element is added to titanium to enhance the corrosion resistance and thereby improve the hydrogen absorption resistance. An alloy to which Pd is added is disclosed in Patent Document 3, and an alloy to which Zr and Hf are added is disclosed in Patent Document 4. In these alloys, the corrosion resistance and hydrogen absorption resistance are greatly improved as compared with pure titanium. However, all of the above-mentioned additive elements are much more expensive than titanium, and there is a problem that the manufacturing cost of the alloy is significantly increased.

これに対し、チタンよりも安価なAlを添加して合金とし、さらに最表面にAl富化層を設けると、水素の内方拡散が小さくなることを利用して、耐水素吸収性に優れるチタン合金が特許文献5に開示されている。この合金では、Al添加量を低く抑えることにより、純チタンと同等の冷間加工性が得られるとしている。しかし、Ti中でAlはOの存在下、Tiとの金属間化合物を形成しやすく、それに伴い、塑性変形能に大きな影響を与える双晶変形が抑制される。さらに、表面のAl富化層は硬くて脆いために、ロール成形による造管工程で表面欠陥を生成しやすく、溶接管を安定的に造管することは困難であった。   On the other hand, titanium, which is superior in hydrogen absorption resistance, utilizes the fact that adding aluminum, which is cheaper than titanium, to make an alloy and further providing an Al-enriched layer on the outermost surface reduces the inward diffusion of hydrogen. An alloy is disclosed in US Pat. In this alloy, it is said that cold workability equivalent to that of pure titanium can be obtained by keeping the amount of Al added low. However, in Ti, Al easily forms an intermetallic compound with Ti in the presence of O, and accordingly, twin deformation that greatly affects the plastic deformability is suppressed. Further, since the Al-enriched layer on the surface is hard and brittle, surface defects are easily generated in the pipe forming process by roll forming, and it is difficult to stably form a welded pipe.

さらに、水素化物が生成し難く電解銅箔製造用カソード電極板として最適であるとして、Cuを添加したチタン合金が、特許文献6に開示されている。これは、TiにCuを添加することにより固溶水素量が増加する機構に基づく。すなわち、当該技術では、Cuをできるだけ多くチタンに固溶させることにより、チタン合金中の水素の固溶限を高め、水素化物発生を抑えることを目的としたものである。しかし、熱交換器用途などの過酷な水素吸収環境下では、表面近傍のごく一部の領域において水素濃度が水素固溶限を上回り、僅かではあるが、水素化物を発生してしまう恐れがある。   Furthermore, a titanium alloy to which Cu is added is disclosed in Patent Document 6 because it is difficult to produce hydride and is optimal as a cathode electrode plate for producing electrolytic copper foil. This is based on a mechanism in which the amount of dissolved hydrogen is increased by adding Cu to Ti. That is, the technique aims to increase the solid solubility limit of hydrogen in the titanium alloy and suppress hydride generation by dissolving as much Cu as possible in titanium. However, in severe hydrogen absorption environments such as heat exchanger applications, the hydrogen concentration exceeds the hydrogen solid solubility limit in a small part of the vicinity of the surface, and there is a possibility that hydride may be generated although it is a little. .

特開平3−243759号公報JP-A-3-243759 特開2005−36314号公報JP 2005-36314 A 特開2000−248324号公報JP 2000-248324 A 特開2006−291263号公報JP 2006-291263 A 特開2003−129152号公報JP 2003-129152 A 特開2004−250753号公報Japanese Patent Laid-Open No. 2004-250753 特開2005−298970号公報JP 2005-298970 A

本発明は、水素吸収により脆化が起る恐れのある環境下にて、耐食性および耐水素侵入性を必要とされる復水器あるいは化学プラントなどの多管式熱交換器用途に使用される、耐水素吸収性および造管性に優れたチタン合金溶接管、あるいはその材料となるチタン合金フープ製品およびそれらの製造法を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention is used for multi-tube heat exchanger applications such as condensers and chemical plants that require corrosion resistance and hydrogen penetration resistance in an environment where embrittlement may occur due to hydrogen absorption. An object of the present invention is to provide a titanium alloy welded pipe excellent in hydrogen absorption resistance and pipe forming property, or a titanium alloy hoop product used as the material thereof, and a method for producing them.

耐水素吸収性に優れ、水素化物による水素脆化が生じにくいと同時に、製造コストが比較的低いチタン合金溶接管ならびにその材料となるフープ材のニーズは高い。本発明者らは、Tiに、比較的安価な元素であるCuを適正量添加し、Ti2Cuを最大相とする析出相を生成させると共に、Fe添加量を低く抑えることにより、耐水素吸収特性が向上することを見出した。 There is a great need for a titanium alloy welded pipe having excellent hydrogen absorption resistance and being less susceptible to hydrogen embrittlement due to hydride and a relatively low production cost, and a hoop material used as the material. The present inventors added a proper amount of Cu, which is a relatively inexpensive element, to Ti to generate a precipitation phase having Ti 2 Cu as the maximum phase, and to keep the amount of Fe added low, thereby preventing hydrogen absorption. It has been found that the characteristics are improved.

すなわち、本発明者らは、TiにCuを添加し、Ti2Cuを最大相とする析出相を積極的に生成させた場合は、添加Cuの大部分をチタンに固溶させることによってチタン合金中の水素の固溶限を高めた場合よりも、さらに耐水素吸収特性に優れることを見出した。 That is, when the present inventors added Cu to Ti and positively generated a precipitation phase having Ti 2 Cu as the maximum phase, the majority of the added Cu was dissolved in titanium to form a titanium alloy. It has been found that the hydrogen absorption resistance is further improved as compared with the case where the solid solubility limit of hydrogen is increased.

また、Ti2Cuを最大相とする析出相は析出強化による強度上昇が僅かであり、溶接管を製造する際のロール成形工程での加工性を損ねることはないことが分った。 Further, it was found that the precipitation phase having Ti 2 Cu as the maximum phase has a slight increase in strength due to precipitation strengthening, and does not impair the workability in the roll forming process when manufacturing a welded pipe.

本発明は、以上の事情を背景としてなされたものであり、耐水素吸収特性に優れた比較的低コストのチタン合金溶接管ならびにその材料となるフープ材、およびその製造方法を提供することを目的とするものである。   The present invention has been made against the background of the above circumstances, and an object thereof is to provide a relatively low-cost titanium alloy welded pipe excellent in hydrogen absorption resistance, a hoop material used as the material, and a method for producing the same. It is what.

上記課題を解決するために、本発明は以下の手段を骨子とする。
(1)質量%で0.6〜1.8%のCu、0.03%以下のFe、0.16%以下のO、残部Tiおよび総量で0.3%以下の不純物元素からなり、粒径10〜1000nmのTi2Cuを最大相とする析出物を体積分率で0.5〜3.5%含むことを特徴とする、耐水素吸収特性に優れるチタン合金溶接管。
(2)質量%で0.6〜1.8%のCu、0.03%以下のFe、0.16%以下のO、残部Tiおよび総量で0.3%以下の不純物元素からなり、粒径10〜1000nmのTi2Cuを最大相とする析出物を体積分率で0.5〜3.5%含むことを特徴とする、耐水素吸収特性ならびに造管性に優れるチタン合金フープ製品。
(3)最終焼鈍温度を、480℃以上、730[%Cu]0.126−160℃以下の温度域にて行うことを特徴とする上記(1)に記載の耐水素吸収特性に優れるチタン合金溶接管の製造方法。
ここで、[%Cu]は、該チタン合金のCu含有量化学分析値(質量%)である。
(4)最終焼鈍温度を、480℃以上、730[%Cu]0.126−160℃以下の温度域にて行うことを特徴とする上記(2)に記載の耐水素吸収特性ならびに造管性に優れるチタン合金フープ製品の製造方法。
ここで、[%Cu]は、該チタン合金のCu含有量化学分析値(質量%)である。
In order to solve the above problems, the present invention is based on the following means.
(1) Consisting of 0.6 to 1.8% Cu by mass, 0.03% or less Fe, 0.16% or less O, the balance Ti and a total amount of impurity elements of 0.3% or less, A titanium alloy welded tube excellent in hydrogen absorption resistance, characterized by containing a precipitate having a maximum phase of Ti 2 Cu having a diameter of 10 to 1000 nm in a volume fraction of 0.5 to 3.5%.
(2) It is composed of 0.6 to 1.8% by mass of Cu, 0.03% or less of Fe, 0.16% or less of O, the balance Ti, and a total amount of impurity elements of 0.3% or less, A titanium alloy hoop product excellent in hydrogen absorption resistance and tube-forming properties, comprising a precipitate having a maximum phase of Ti 2 Cu having a diameter of 10 to 1000 nm in a volume fraction of 0.5 to 3.5%.
(3) Titanium alloy welded tube excellent in hydrogen absorption resistance as described in (1) above, wherein the final annealing temperature is 480 ° C. or higher and 730 [% Cu] 0.126 to 160 ° C. or lower. Manufacturing method.
Here, [% Cu] is the Cu content chemical analysis value (mass%) of the titanium alloy.
(4) The final annealing temperature is 480 ° C. or higher and 730 [% Cu] 0.126 to 160 ° C. or lower, and the hydrogen absorption resistance and pipe forming properties are excellent as described in (2) above. Manufacturing method of titanium alloy hoop products.
Here, [% Cu] is the Cu content chemical analysis value (mass%) of the titanium alloy.

本発明者らは上記課題を解決すべく、チタンの耐水素吸収特性におよぼす成分元素の影響を詳しく調査した結果、チタンに一定量のCuを添加して、Ti2Cuを最大相とする析出物を微細に析出させるとともに、OならびにFeの含有量を適正に調整することにより、耐水素吸収特性ならびに冷間加工性を向上させることが可能であることを見出した。 In order to solve the above-mentioned problems, the present inventors have investigated in detail the influence of component elements on the hydrogen-resistant absorption characteristics of titanium. As a result, a certain amount of Cu is added to titanium, and precipitation with Ti 2 Cu as the maximum phase is performed. It was found that the hydrogen absorption resistance and the cold workability can be improved by finely depositing the material and adjusting the contents of O and Fe appropriately.

ここで、Ti2Cuを最大相とする析出物とは、Ti、Cuおよび不純物元素からなる析出物であって、Ti2Cuを体積率で、最大相とする析出物をいう。Ti2Cuを最大相とする析出物は、薄膜試料による、X線エネルギー分散型分析器装備の透過電子顕微鏡観察における電子線回折及び特性X線分析によってその存在を確認でき、その大きさと数量を測定できる。また、電解・化学処理等によって、母相の一部を溶解させ、析出物を表面に露出させた試料による、電解放射型電子銃およびX線エネルギー分散型分析器装備の走査電子顕微鏡観察によって、その存在を確認でき、その大きさと数量を測定できる。前記透過電子顕微鏡観察または、走査電子顕微鏡観察におけるX線エネルギー分散型分析により、析出相におけるCuの原子%濃度が、不純物元素よりも2倍以上高く、TiとCuの原子%比(Tiの原子%:Cuの原子%)が、1.8〜2.0:1の範囲に入る析出相は、本発明で言う、Ti2Cuを最大相とする析出物である。 Here, the precipitates and the maximum phase Ti 2 Cu, Ti, a deposit consisting of Cu and impurity elements, in a volume ratio of Ti 2 Cu, refers to precipitate the maximum phase. Precipitates with the maximum phase of Ti 2 Cu can be confirmed by electron diffraction and characteristic X-ray analysis in a transmission electron microscope observation with an X-ray energy dispersive analyzer equipped with a thin film sample. It can be measured. In addition, by electrolysis / chemical treatment, etc., by observing a scanning electron microscope equipped with an electrolytic emission electron gun and an X-ray energy dispersive analyzer with a sample in which a part of the matrix is dissolved and the precipitate is exposed on the surface, You can confirm its existence and measure its size and quantity. According to the X-ray energy dispersive analysis in the transmission electron microscope observation or the scanning electron microscope observation, the atomic% concentration of Cu in the precipitated phase is more than twice that of the impurity element, and the atomic% ratio of Ti and Cu (Ti atom %: The atomic phase of Cu) in the range of 1.8 to 2.0: 1 is a precipitate having the maximum phase of Ti 2 Cu as referred to in the present invention.

以下、本発明のチタン合金溶接管及び該チタン合金溶接管の材料となるチタン合金フープ製品について説明する。   Hereinafter, the titanium alloy welded pipe of the present invention and the titanium alloy hoop product used as the material of the titanium alloy welded pipe will be described.

まず、本発明に示した各種含有元素を選択した理由と、その含有量範囲を限定した理由を示す。   First, the reason for selecting the various contained elements shown in the present invention and the reason for limiting the content range will be described.

Cuはチタンα相中に質量%で最大1.5%まで固溶する。固溶状態のCuは、固溶体強化により高温強度を高めるとともに、双晶変形発生を損なわずに強化する作用があることが知られており、その効果は特許文献7等により公開されている。また、先に述べた特許文献6に開示されている技術は、TiにCuを添加し固溶させることにより、チタン合金中の固溶水素量を増加させ、水素化物生成を抑えることを目的としたものである。   Cu is solid-dissolved in the titanium α phase up to 1.5% by mass. It is known that Cu in a solid solution state has an effect of enhancing the high temperature strength by strengthening the solid solution and strengthening without impairing the occurrence of twin deformation, and the effect is disclosed in Patent Document 7 and the like. In addition, the technique disclosed in Patent Document 6 described above aims to increase the amount of dissolved hydrogen in the titanium alloy and suppress hydride generation by adding Cu to Ti to cause solid solution. It is a thing.

一方、Ti−Cu合金でα相中にTi2Cuを最大相とする析出相を適正量生成させると、析出強化による強度上昇はさほど大きくないが、α粒界へのピニング効果によりα相の粒成長を抑制する作用がある。これらの作用により、連続ロール成形による造管工程にて、オレンジピールと呼ばれる皺発生が抑えられ、造管性は向上することが分った。また、本発明者らは、Ti2Cuを最大相とする析出相は水素過電圧を下げて、不働態皮膜の強化をもたらすことを見出した。Ti2Cuを最大相とする析出相はチタン合金表面でカソード反応サイトとして作用し、水素ガス発生反応が当該析出相上で起りやすくなるが、この時、チタン合金内部への水素拡散に伴う水素吸収が抑制されることを新たに知見した。このTi2Cuを最大相とする析出相のサイズと生成量を制御すると、水素吸収が特に起りにくくなることも見出した。 On the other hand, when an appropriate amount of precipitation phase having Ti 2 Cu as the maximum phase is generated in the α-phase in the Ti—Cu alloy, the increase in strength due to precipitation strengthening is not so large, but the α-phase Has the effect of suppressing grain growth. By these actions, it has been found that the occurrence of wrinkles called orange peel is suppressed in the pipe making process by continuous roll forming, and the pipe making performance is improved. In addition, the present inventors have found that the precipitated phase having Ti 2 Cu as the maximum phase lowers the hydrogen overvoltage and strengthens the passive film. The precipitation phase with Ti 2 Cu as the maximum phase acts as a cathode reaction site on the surface of the titanium alloy, and a hydrogen gas generation reaction is likely to occur on the precipitation phase. At this time, hydrogen accompanying hydrogen diffusion into the titanium alloy It was newly found that absorption is suppressed. It has also been found that hydrogen absorption is particularly difficult to occur by controlling the size and amount of the precipitated phase having Ti 2 Cu as the maximum phase.

この時、Ti2Cuを最大相とする析出相の粒径が、10nm未満と超微細であると、カソード反応に伴う水素ガス発生サイトとして作用しにくく、母材で主に水素ガス発生反応が起り、母材中への水素吸収は抑制できない。一方、粒径が1000nmを超えると析出粒子は均一なカソード反応サイトとして作用しにくく、この場合も水素ガス反応は母材でも起り、母材中に水素が吸収されてしまい、耐水素吸収特性は劣化してしまう。したがって、Ti2Cuを最大相とする析出相の粒径は10〜1000nmとする必要がある。 At this time, if the particle size of the precipitated phase having Ti 2 Cu as the maximum phase is ultrafine, less than 10 nm, it is difficult to act as a hydrogen gas generation site accompanying the cathode reaction, and the hydrogen gas generation reaction mainly occurs in the base material. As a result, hydrogen absorption into the base material cannot be suppressed. On the other hand, when the particle size exceeds 1000 nm, the precipitated particles are unlikely to act as uniform cathode reaction sites. In this case, the hydrogen gas reaction also occurs in the base material, and hydrogen is absorbed in the base material. It will deteriorate. Therefore, the particle size of the precipitated phase having Ti 2 Cu as the maximum phase needs to be 10 to 1000 nm.

また、粒径10〜1000nmのTi2Cuを最大相とする析出相の体積分率が0.5%未満では、水素ガス発生反応が析出相上のみで起らず母材でも起ることから、母材への水素吸収は避けられない。一方、Ti2Cuを最大相とする析出相の体積分率が3.5%を超えると、析出相の偏在および凝集粗大化が起りやすくなる。この時、水素ガス発生反応サイトが不均一に分布することとなり、水素ガス発生反応は系内で不均一に起るようになり、母材中でもその反応が起ってしまうため耐水素吸収性は低下する。そのため、粒径10〜1000nmのTi2Cuを最大相とする析出相は、チタン溶接管が使用される腐食環境下で水素吸収を起させないためには、体積分率で0.5〜3.5%析出していることが必要である。さらに、特に、化学プラントや復水器用途でカソード防食する場合など、さらに高い耐水素脆性を要求される用途においては、粒径10〜1000nmのTi2Cuを最大相とする析出相は、体積分率で0.6〜2.0%析出していることが望ましい。 In addition, when the volume fraction of the precipitated phase having a maximum phase of Ti 2 Cu having a particle size of 10 to 1000 nm is less than 0.5%, the hydrogen gas generation reaction does not occur only on the precipitated phase but also on the base material. Hydrogen absorption into the base material is inevitable. On the other hand, if the volume fraction of the precipitated phase having Ti 2 Cu as the maximum phase exceeds 3.5%, the uneven distribution and coarsening of the precipitated phase tend to occur. At this time, the hydrogen gas generation reaction sites will be unevenly distributed, the hydrogen gas generation reaction will occur unevenly in the system, and the reaction will occur even in the base material, so the hydrogen absorption resistance is descend. Therefore, the precipitation phase having a maximum particle size of Ti 2 Cu having a particle size of 10 to 1000 nm has a volume fraction of 0.5 to 3 to prevent hydrogen absorption in a corrosive environment where a titanium welded tube is used. It is necessary to deposit 5%. Furthermore, in particular, in applications that require higher hydrogen embrittlement resistance, such as when cathodic protection is used in chemical plants and condenser applications, the precipitated phase having a maximum phase of Ti 2 Cu with a particle size of 10 to 1000 nm is It is desirable to deposit 0.6 to 2.0% by fraction.

Cu添加量の上限を1.8%としたのは、これを超えて添加すると、Ti2Cuを最大相とする析出相が体積分率で3.5%を超えて生成するため、析出相が偏在しやすくなり、さらに析出相粒径が1000nmを超えるような粗大化が起り、耐水素吸収性が低下してしまうからである。また、合金中に、Ti2Cuを最大相とする析出相を均一に分散析出させ、チタン溶接管が使用される腐食環境下で、水素ガス発生サイトとして有効に作用させるCuの最低添加量は0.6%であるため、Cuは0.6%以上添加する必要がある。 The upper limit of the Cu addition amount is set to 1.8% because if it is added exceeding this, a precipitated phase having a maximum phase of Ti 2 Cu is generated with a volume fraction exceeding 3.5%. This is because uneven distribution tends to occur, and the coarsening of the precipitated phase particle diameter exceeding 1000 nm occurs, resulting in a decrease in hydrogen absorption resistance. Moreover, the minimum addition amount of Cu that effectively acts as a hydrogen gas generation site in a corrosive environment in which a titanium welded tube is used in which a precipitation phase having Ti 2 Cu as a maximum phase is uniformly dispersed and precipitated in the alloy is Since it is 0.6%, it is necessary to add Cu 0.6% or more.

Feはチタンのβ相を安定化する元素であり、室温から高温域にかけβ相を発現させる。さらに、チタンのβ相に固溶したFeは水素を吸収しやすい。Fe含有量が0.03%以下であれば、発生するβ相は、熱交換器用途やカソード防食を行っている環境など、高い耐水素吸収性が要求される分野において実用上問題のない量であるが、これを超えて添加されると、β相の量が増え、β相に濃化しやすいCuがβ相に集中しやすくなる。こうしてCuの濃化したβ相中に、Ti2Cuを最大相とする析出相が集中して析出するため、析出物は粗大化しやすくなり、均一な分布状態ならびに水素ガス発生サイトが得られないこととなる。同時に、0.03%超のFeを含有すると、熱交換器用途やカソード防食を行うなどの過酷な腐食条件下では、水素を吸収しやすい、Feの固溶したβ相の分率が高まるため、耐水素吸収性の低下を招いてしまう。したがって、Feの含有量は0.03%以下である必要がある。 Fe is an element that stabilizes the β phase of titanium, and expresses the β phase from room temperature to high temperature. Furthermore, Fe dissolved in the β phase of titanium is likely to absorb hydrogen. If the Fe content is 0.03% or less, the generated β phase is an amount that causes no practical problems in fields where high hydrogen absorption resistance is required, such as heat exchanger applications and cathodic protection environments. However, if it is added in excess of this, the amount of β phase increases, and Cu that tends to concentrate in the β phase tends to concentrate in the β phase. In this way, the precipitation phase having the maximum phase of Ti 2 Cu concentrates and precipitates in the β phase enriched with Cu, so that the precipitate is likely to be coarsened, and a uniform distribution state and a hydrogen gas generation site cannot be obtained. It will be. At the same time, if more than 0.03% Fe is contained, the fraction of β phase in which Fe is easily dissolved and which is easy to absorb hydrogen increases under severe corrosion conditions such as heat exchanger applications and cathodic protection. This will lead to a decrease in hydrogen absorption resistance. Therefore, the Fe content needs to be 0.03% or less.

Oはα相中に固溶し固溶体強化する作用を有するため、過度に添加すると、ロール成形時の冷間加工性の低下をもたらすこととなる。この時、純チタン2種相当の高い冷間加工性を維持するには、O量は0.16%以下に抑える必要があるため、O量の上限を0.16%とした。   Since O has an action of solid solution in the α phase and strengthening of the solid solution, if added excessively, cold workability at the time of roll forming will be reduced. At this time, in order to maintain the high cold workability corresponding to two types of pure titanium, the O amount needs to be suppressed to 0.16% or less, so the upper limit of the O amount was set to 0.16%.

その他に、不純物元素として、N、C、Ni、Cr、Al、Sn、Si、Hなど、通常のチタン材に含まれる元素については、これらの総和が0.3%を超えなければ、耐水素吸収性ならびに冷間加工性に悪影響をもたらさない。したがって、これら不純物元素の総和が0.3%以下であれば、含有しても問題はない。   In addition, for impurities contained in ordinary titanium materials such as N, C, Ni, Cr, Al, Sn, Si, and H as impurity elements, if the sum of these elements does not exceed 0.3%, hydrogen resistance Does not adversely affect absorbency and cold workability. Therefore, if the total of these impurity elements is 0.3% or less, there is no problem even if it is contained.

次に、本発明のチタン合金溶接管及び該チタン合金溶接管の材料となるチタン合金フープ製品の製造方法について説明する。   Next, a titanium alloy welded pipe according to the present invention and a method for producing a titanium alloy hoop product as a material of the titanium alloy welded pipe will be described.

本発明のチタン合金成分を有する製品の製造方法において、最終焼鈍を480℃以上、730[%Cu]0.126−160℃以下の温度域にて行うことを特徴とする、耐水素吸収性ならびに冷間加工性に優れたチタン合金溶接管および溶接管用フープ材の製造方法である。最終焼鈍を当該温度範囲で行うことにより、粒径10〜1000nmのTi2Cuを最大相とする析出相を体積分率で0.5〜3.5%含むものとすることができる。 In the method for producing a product having a titanium alloy component according to the present invention, the final annealing is performed in a temperature range of 480 ° C. or higher and 730 [% Cu] 0.126 to 160 ° C. or lower. This is a method of manufacturing a titanium alloy welded pipe and a welded pipe hoop material excellent in workability. By performing the final annealing in the temperature range may be one containing 0.5 to 3.5% a precipitation phase to the maximum phase of Ti 2 Cu particle size 10~1000nm volume fraction.

すなわち、480℃以上、730[%Cu]0.126−160℃以下の温度域はTi2Cuを最大相とする析出相が粒径10〜1000nm程の微細なサイズで、かつ、0.5〜3.5%の体積分率で均一に析出しやすい温度範囲であり、この温度域で最終焼鈍することにより、耐水素吸収特性を高めることができる。 That is, in the temperature range of 480 ° C. or more and 730 [% Cu] 0.126 to 160 ° C. or less, the precipitation phase having the maximum phase of Ti 2 Cu is a fine size having a particle size of about 10 to 1000 nm, and 0.5 to 3 It is a temperature range in which it is easy to deposit uniformly with a volume fraction of 0.5%, and by carrying out final annealing in this temperature range, the hydrogen absorption resistance can be enhanced.

なお、730[%Cu]0.126℃は、Ti−Cu二元系平衡状態図における、Ti2Cu析出曲線から求めた式である。すなわち、480℃以上で、該Ti2Cu析出曲線よりも160℃低い温度以下で最終焼鈍することで、請求項1に示される化学組成範囲内のチタン合金においては、請求項1に示される、Ti2Cu析出相の所定の状態が、工業的に得られることを知見したものである。ただし、480℃未満の温度では効果を生み出す焼鈍時間が長くなることから、極力避けた方が望ましい。 Note that 730 [% Cu] 0.126 ° C. is an equation obtained from a Ti 2 Cu precipitation curve in a Ti—Cu binary equilibrium diagram. That is, in the titanium alloy within the chemical composition range shown in claim 1 by performing final annealing at 480 ° C. or more and 160 ° C. or less lower than the Ti 2 Cu precipitation curve, it is shown in claim 1. It has been found that the predetermined state of the Ti 2 Cu precipitation phase can be obtained industrially. However, it is desirable to avoid as much as possible because the annealing time for producing the effect becomes longer at temperatures lower than 480 ° C.

なお、上記最終焼鈍は、冷間圧延製品における冷間圧延後の最終焼鈍であっても、熱間圧延製品における熱間圧延後の最終焼鈍であっても良く、製品出荷前の最終焼鈍を示している。   The final annealing may be the final annealing after cold rolling in the cold rolled product or the final annealing after hot rolling in the hot rolled product, and indicates the final annealing before product shipment. ing.

<実施例1>
真空アーク溶解法により表1に示す合金番号1〜18の組成のチタン材を溶解し、これを熱間鍛造してスラブとし、860℃に加熱した後、熱間圧延により厚さ3mmの板材とした。
<Example 1>
A titanium material having a composition of alloy numbers 1 to 18 shown in Table 1 is melted by a vacuum arc melting method, this is hot forged into a slab, heated to 860 ° C., and hot rolled to a 3 mm thick plate material did.

この熱間圧延した板材をショットブラストおよび酸洗して酸化スケールを除去した後、冷間圧延により厚さ0.5mmの薄板材とした。それに最終焼鈍として550℃×6時間、炉冷の真空焼鈍を施した後、形状矯正を施した。この薄板材より切出した25mm×50mmのクーポンサンプルを600番エメリー紙で湿式研磨した後、70℃、5%のH2SO4水溶液中に24時間浸漬した場合の耐食性を評価した。また、腐食試験後のサンプルより分析用試験片を切出して、溶融法により水素濃度を測定した。溶接管の造管性は、ロール成形およびTIG溶接により連続造管するラインにおいて、造管長さ10000mまでのロールキズ発生有無を目視検査することにより評価した。さらに、金属組織観察用試験片を採取し、長手方向断面を2%弗酸水溶液でエッチングして、走査型電子顕微鏡(SEM)を用いてTi2Cuを最大相とする析出相を観察し、観察断面内で直径10〜1000nmの析出相の体積分率を調査した。析出相におけるCuの原子%濃度が、不純物元素よりも2倍以上高く、TiとCuの原子%比が、1.8〜2.4:1の範囲に入る析出相は、Ti2Cuを最大相とする析出物として、その大きさと数量を画像解析装置を併用して解析した。観察視野では、析出相の大きさによって適宜倍率を変え、50〜100視野を観察した。 The hot-rolled plate material was shot blasted and pickled to remove the oxide scale, and then cold-rolled to obtain a thin plate material having a thickness of 0.5 mm. It was subjected to furnace-cooled vacuum annealing as final annealing at 550 ° C. for 6 hours, and then subjected to shape correction. A 25 mm × 50 mm coupon sample cut out from this thin plate material was wet-polished with No. 600 emery paper, and then evaluated for corrosion resistance when immersed in an aqueous solution of 5% H 2 SO 4 at 70 ° C. for 24 hours. Moreover, the test piece for analysis was cut out from the sample after the corrosion test, and the hydrogen concentration was measured by the melting method. The pipe forming property of the welded pipe was evaluated by visually inspecting whether or not a roll flaw occurred up to a pipe forming length of 10000 m in a line continuously formed by roll forming and TIG welding. Further, a specimen for metallographic observation was collected, the longitudinal section was etched with a 2% aqueous hydrofluoric acid solution, and the precipitated phase with Ti 2 Cu as the maximum phase was observed using a scanning electron microscope (SEM), The volume fraction of the precipitated phase having a diameter of 10 to 1000 nm was examined in the observation cross section. The precipitation phase in which the atomic% concentration of Cu in the precipitated phase is more than twice as high as that of the impurity element and the atomic% ratio of Ti and Cu falls within the range of 1.8 to 2.4: 1 is Ti 2 Cu maximum. The size and quantity of the precipitates as phases were analyzed using an image analyzer. In the observation visual field, the magnification was appropriately changed depending on the size of the precipitated phase, and 50 to 100 visual fields were observed.

ここで求まった球相当直径10〜1000nmのTi2Cuを最大相とする析出相の、球相当体積の総計を求めた。さらに、予め計測しておいた、試料の前記エッチング前後における重量差から、エッチングによる母相の溶出量を算出し、試料中に含まれていた前記Ti2Cuを最大相とする析出相の球相当体積による体積分率を求めた。 The total of the sphere equivalent volume of the precipitation phase having the maximum phase of Ti 2 Cu having a sphere equivalent diameter of 10 to 1000 nm obtained here was obtained. Further, the amount of elution of the mother phase by etching is calculated from the weight difference before and after the etching of the sample, which has been measured in advance, and the precipitation phase sphere having the Ti 2 Cu contained in the sample as the maximum phase. The volume fraction based on the equivalent volume was obtained.

これらの評価結果も併せて表1に示す。   These evaluation results are also shown in Table 1.

Figure 2013001973
Figure 2013001973

表1において、試験番号1はJIS2種純チタンの例である。試験番号1では腐食速度はやや大きく、水素吸収性も十分ではない。一方、試験番号2はAlを数%含有する合金の例であり、耐水素吸収性を向上させるために、表面にAl濃化層を付与している。この合金の場合、耐水素吸収性は良好であるが、ロール成形を開始した直後にロールキズが発生した。これは表面のAl濃化層が硬くてロール成形時にその表面層の一部が割れ、ロール表面に破片が付着して、ロールキズとして溶接管表面に転写されたためであり、造管性は十分とはいえない。試験番号1、2ともに、Ti2Cu最大相とする析出相生成は認められない。 In Table 1, test number 1 is an example of JIS class 2 pure titanium. In test number 1, the corrosion rate is slightly high and the hydrogen absorption is not sufficient. On the other hand, test number 2 is an example of an alloy containing several percent of Al, and an Al concentrated layer is provided on the surface in order to improve hydrogen absorption resistance. In the case of this alloy, the hydrogen absorption resistance is good, but roll scratches occurred immediately after the start of roll forming. This is because the surface Al-concentrated layer was hard and part of the surface layer was cracked during roll forming, and debris adhered to the surface of the roll and transferred to the surface of the welded pipe as roll scratches. I can't say that. In both test numbers 1 and 2, the formation of a precipitated phase with a Ti 2 Cu maximum phase is not observed.

これに対し、本発明の実施例である試験番号5、6、8、10、11、13〜18では、腐食速度、水素吸収量ともに低く抑えられている。また、造管性もJIS2種純チタンと同様であり、良好な加工性を有する。これらはいずれも、10〜1000nmのTi2Cuを最大相とする析出相を体積分率で0.5〜3.5%含んでおり、その析出量が適正な範囲にあることは明らかである。 On the other hand, in the test numbers 5, 6, 8, 10, 11, and 13 to 18, which are examples of the present invention, both the corrosion rate and the hydrogen absorption amount are suppressed to a low level. In addition, the tube forming property is the same as that of JIS class 2 pure titanium and has good workability. All of these contain a precipitated phase having a maximum volume of Ti 2 Cu of 10 to 1000 nm in a volume fraction of 0.5 to 3.5%, and it is clear that the amount of precipitation is in an appropriate range. .

一方、試験番号4、7、9では腐食速度は低いものの、水素侵入量は本発明材に比べて高くなっていた。このうち、試験番号4は、Cu添加量が本発明の下限値である0.6%を下回っており、Ti2Cuを最大相とする析出相の生成量も0.5%未満である。この材料では、水素ガス発生サイトとして十分に機能するだけの析出相が得られなかったため、水素吸収量は比較的高かった。また、試験番号7では、Cu添加量が本発明の上限値である1.8%を越えて添加されたため、Ti2Cuを最大相とする析出相が、体積分率で3.5%を超えて多量に析出して凝集粗大化を招き、水素ガス発生反応サイトとして有効に機能しなかったためである。一方、試験番号9では、一部に1000nmを超える粗大なTi2Cuを最大相とする析出相が生成していた。これは、β安定化元素であるFeの含有量が、本発明の上限である0.03%を越えて添加されたためβ相の量が増え、Cuがそこに集中的に濃縮して粗大な析出相が生成し、化学プラント用途などの過酷な腐食環境下でカソード反応サイトとして有効に機能しなかったことと、固溶するFeが水素吸収を促進したことから、耐水素侵入性が低下したものである。 On the other hand, in test numbers 4, 7, and 9, although the corrosion rate was low, the hydrogen penetration amount was higher than that of the material of the present invention. Among these, in test number 4, the amount of Cu added is less than the lower limit of 0.6% of the present invention, and the amount of precipitation phase having Ti 2 Cu as the maximum phase is also less than 0.5%. With this material, a precipitated phase that sufficiently functions as a hydrogen gas generation site could not be obtained, so the hydrogen absorption amount was relatively high. In addition, in Test No. 7, since the Cu addition amount was added to exceed the upper limit of 1.8% of the present invention, the precipitated phase having Ti 2 Cu as the maximum phase had a volume fraction of 3.5%. This is because a large amount of the precipitate is precipitated, causing aggregation and coarsening, and does not function effectively as a hydrogen gas generation reaction site. On the other hand, in Test No. 9, a precipitated phase having a coarse phase of coarse Ti 2 Cu exceeding 1000 nm in part was generated. This is because the content of Fe, which is a β-stabilizing element, was added in excess of 0.03%, which is the upper limit of the present invention, so the amount of β-phase increased, and Cu concentrated and concentrated there. Precipitation phase was generated, and it did not function effectively as a cathode reaction site in harsh corrosive environments such as chemical plant applications, and because the solid solution Fe promoted hydrogen absorption, hydrogen penetration resistance decreased. Is.

また、試験番号12では、造管時に軽微ではあるがロールキズが発生していた。これはOが、当該発明の上限である0.16%を超えて添加されたため、強度が上昇し造管ロールとの接触応力が増加したためである。   In Test No. 12, roll flaws occurred although they were minor during pipe making. This is because O was added in excess of 0.16% which is the upper limit of the present invention, so that the strength increased and the contact stress with the tube-forming roll increased.

以上のように、本発明に規定された元素含有量およびTi2Cuを最大相とする析出相の体積分率からなるチタン合金は、JIS2種純チタンよりも優れた耐水素侵入性と、同等の造管特性を有しているが、本発明に規定された合金元素量ならびに、Ti2Cuを最大相とする析出相の体積分率を外れると、所望の耐水素侵入特性および冷間加工性を得ることはできない。 As described above, the titanium alloy composed of the element content defined in the present invention and the volume fraction of the precipitated phase having the maximum phase of Ti 2 Cu is equivalent to the hydrogen penetration resistance superior to JIS class 2 pure titanium. However, if the amount of alloying elements specified in the present invention and the volume fraction of the precipitated phase with Ti 2 Cu as the maximum phase are deviated, the desired hydrogen penetration resistance and cold working You can't get sex.

<実施例2>
表1の合金番号8、11、18の素材を製造する際の中間製品である板厚3mmの熱間圧延板を使用して、ショットブラストおよび酸洗して酸化スケールを除去した後、冷間圧延により厚さ1mmの薄板材とした。それに最終焼鈍として表2に示す条件にて真空焼鈍を施した後、形状矯正を施した。この薄板材を25mm×50mmのクーポンサンプルに切断し、600番エメリー紙で湿式研磨した後、70℃、5%のH2SO4水溶液中に24時間浸漬した場合の耐食性を評価するとともに、腐食試験後に分析用試験片を切出して溶融法により水素濃度を測定した。溶接管の造管性は、ロール成形およびTIG溶接により連続造管するラインにおいて、ロールキズの発生有無を目視検査するとともに、表面肌荒れの発生有無を観察することにより評価した。また、金属組織観察用試験片を採取し、長手方向断面を2%弗酸水溶液でエッチングして、電解放射型電子銃およびX線エネルギー分散型分析器装備の走査型電子顕微鏡(SEM)を用いて、直径10〜1000nmのTi2Cuを最大相とする析出相を観察し、体積分率を調査した。析出相におけるCuの原子%濃度が、不純物元素よりも2倍以上高く、TiとCuの原子%比が、1.8〜2.4:1の範囲に入る析出相は、Ti2Cuを最大相とする析出物として、その大きさと数量を画像解析装置を併用して解析した。観察視野では、析出相の大きさによって適宜倍率を変え、50〜100視野を観察した。
<Example 2>
Using a hot-rolled sheet having a thickness of 3 mm, which is an intermediate product when producing materials of alloy numbers 8, 11, and 18 in Table 1, after removing the oxide scale by shot blasting and pickling, A thin plate material having a thickness of 1 mm was obtained by rolling. Then, after performing vacuum annealing under the conditions shown in Table 2 as final annealing, shape correction was performed. The thin plate was cut into 25 mm x 50 mm coupon samples, wet-polished with No. 600 emery paper, and then evaluated for corrosion resistance when immersed in an aqueous solution of 5% H 2 SO 4 at 70 ° C for 24 hours. After the test, an analytical test piece was cut out and the hydrogen concentration was measured by a melting method. The pipe forming property of the welded pipe was evaluated by visually inspecting whether or not roll flaws were generated and observing the occurrence of rough surface in a line continuously formed by roll forming and TIG welding. In addition, specimens for metallographic observation were collected, the longitudinal cross section was etched with 2% aqueous hydrofluoric acid, and a scanning electron microscope (SEM) equipped with an electrolytic emission electron gun and an X-ray energy dispersive analyzer was used. Then, the precipitation phase having the maximum phase of Ti 2 Cu having a diameter of 10 to 1000 nm was observed, and the volume fraction was investigated. The precipitation phase in which the atomic% concentration of Cu in the precipitated phase is more than twice as high as that of the impurity element and the atomic% ratio of Ti and Cu falls within the range of 1.8 to 2.4: 1 is Ti 2 Cu maximum. The size and quantity of the precipitates as phases were analyzed using an image analyzer. In the observation visual field, the magnification was appropriately changed depending on the size of the precipitated phase, and 50 to 100 visual fields were observed.

ここで求まった球相当直径10〜1000nmのTi2Cuを最大相とする析出相の、球相当体積の総計を求めた。さらに、予め計測しておいた、試料の前記エッチング前後における重量差から、エッチングによる母相の溶出量を算出し、試料中に含まれていた前記Ti2Cuを最大相とする析出相の球相当体積による体積分率を求めた。 The total of the sphere equivalent volume of the precipitation phase having the maximum phase of Ti 2 Cu having a sphere equivalent diameter of 10 to 1000 nm obtained here was obtained. Further, the amount of elution of the mother phase by etching is calculated from the weight difference before and after the etching of the sample, which has been measured in advance, and the precipitation phase sphere having the Ti 2 Cu contained in the sample as the maximum phase. The volume fraction based on the equivalent volume was obtained.

これらの評価結果も併せて表2に示す。また、表2中のT(℃)はT(℃)=730[%Cu]0.126−160℃により計算される、請求項2に示した焼鈍上限温度である。 These evaluation results are also shown in Table 2. Further, T (° C.) in Table 2 is the upper limit temperature for annealing shown in claim 2 calculated by T (° C.) = 730 [% Cu] 0.126 −160 ° C.

Figure 2013001973
Figure 2013001973

表2は、表1の合金番号8、合金番号11、合金番号18に示す組成を素材にした薄板試験材における結果である。最終焼鈍を480℃以上、730[%Cu]0.126−160℃以下の温度域で実施した本発明例である試験番号20、21、24、25、28、29は、いずれも高い耐食性を有し、水素吸収量が非常に低く、優れた耐水素吸収性を示した。一方、比較例である試験番号19、22、23、26、27、30については、最終焼鈍温度が本発明範囲外であり、その結果、水素吸収量が高かった。これは、焼鈍温度が480℃未満である試験番号19、23、27では、Ti2Cuを最大相とする析出相で10nm以下の微細なものの割合が増えたためである。一方、焼鈍温度が730[%Cu]0.126−160℃を超える、試験番号22、26、30では、Ti2Cuを最大相とする析出相が一部再固溶して、析出相生成量がやや低くなったためである。これらの結果から、水素吸収による水素化物析出およびそれに伴う水素脆化が特に問題となる用途においては、焼鈍を480℃以上、730[%Cu]0.126−160℃以下で行う本発明方法により、Ti2Cuを最大相とする析出相を均一微細に分散させるとこによって本発明のチタン合金溶接管および溶接管用フープ製品が得られることを示している。 Table 2 shows the results of thin plate test materials using the compositions shown in Alloy No. 8, Alloy No. 11 and Alloy No. 18 in Table 1 as raw materials. Test numbers 20, 21, 24, 25, 28, and 29, which are examples of the present invention in which the final annealing was performed in a temperature range of 480 ° C. or higher and 730 [% Cu] 0.126 to 160 ° C., all have high corrosion resistance. The hydrogen absorption amount was very low, and the hydrogen absorption resistance was excellent. On the other hand, about the test numbers 19, 22, 23, 26, 27, and 30 which are comparative examples, the final annealing temperature was outside the range of the present invention, and as a result, the hydrogen absorption amount was high. This is because in Test Nos. 19, 23, and 27 where the annealing temperature is less than 480 ° C., the proportion of fine precipitates having a maximum phase of Ti 2 Cu of 10 nm or less increased. On the other hand, in the test numbers 22, 26, and 30 where the annealing temperature exceeds 730 [% Cu] 0.126 to 160 ° C., a part of the precipitated phase having Ti 2 Cu as the maximum phase is re-dissolved, and the amount of the generated precipitated phase is increased. This is because it is slightly lower. From these results, in the use in which hydride precipitation due to hydrogen absorption and the accompanying hydrogen embrittlement are particularly problematic, the method of the present invention in which annealing is performed at 480 ° C. or higher and 730 [% Cu] 0.126 to 160 ° C. or lower is performed. 2 shows that the titanium alloy welded pipe and the hoop product for welded pipe of the present invention can be obtained by uniformly and finely dispersing the precipitated phase having the maximum phase of Cu.

本発明のチタン合金溶接管およびフープ製品は、純チタンでは水素吸収による水素脆化が問題となる環境に使用されるとともに、純チタン2種材同等のロール成形加工性を有している。   The titanium alloy welded pipe and hoop product of the present invention are used in an environment in which hydrogen embrittlement due to hydrogen absorption is a problem in pure titanium, and has roll forming workability equivalent to that of two types of pure titanium.

Claims (4)

質量%で0.6〜1.8%のCu、0.03%以下のFe、0.16%以下のOを含有し、残部Tiおよび総量で0.3%以下の不純物元素からなり、粒径10〜1000nmのTi2Cuを最大相とする析出相を体積分率で0.5〜3.5%含むことを特徴とする、耐水素吸収性に優れるチタン合金溶接管。 It contains 0.6 to 1.8% Cu, 0.03% Fe or less, 0.16% or less O in mass%, the balance is Ti, and the total amount of impurity elements is 0.3% or less. A titanium alloy welded tube excellent in hydrogen absorption resistance, characterized by containing a precipitated phase having a maximum volume of Ti 2 Cu having a diameter of 10 to 1000 nm in terms of volume fraction. 質量%で0.6〜1.8%のCu、0.03%以下のFe、0.16%以下のOを含有し、残部Tiおよび総量で0.3%以下の不純物元素からなり、粒径10〜1000nmのTi2Cuを最大相とする析出相を体積分率で0.5〜3.5%含むことを特徴とする、耐水素吸収性ならびに造管性に優れるチタン合金フープ製品。 It contains 0.6 to 1.8% Cu, 0.03% Fe or less, 0.16% or less O in mass%, the balance is Ti, and the total amount of impurity elements is 0.3% or less. A titanium alloy hoop product excellent in hydrogen absorption resistance and tube-forming properties, characterized by containing a precipitated phase having a maximum volume of Ti 2 Cu having a diameter of 10 to 1000 nm in terms of volume fraction. 最終焼鈍温度を、480℃以上、730[%Cu]0.126−160℃以下の温度域にて行うことを特徴とする、請求項1に記載の耐水素侵入性に優れるチタン合金溶接管の製造方法。
ここで、[%Cu]は、該チタン合金のCu含有量化学分析値(質量%)である。
The method for producing a titanium alloy welded tube having excellent hydrogen penetration resistance according to claim 1, wherein the final annealing temperature is performed in a temperature range of 480 ° C or higher and 730 [% Cu] 0.126 -160 ° C or lower. .
Here, [% Cu] is the Cu content chemical analysis value (mass%) of the titanium alloy.
最終焼鈍温度を、480℃以上、730[%Cu]0.126−160℃以下の温度域にて行うことを特徴とする、請求項2に記載の耐水素吸収性ならびに造管性に優れるチタン合金フープ製品の製造方法。
ここで、[%Cu]は、該チタン合金のCu含有量化学分析値(質量%)である。
The titanium alloy hoop having excellent hydrogen absorption resistance and pipe forming property according to claim 2, wherein the final annealing temperature is 480 ° C or higher and 730 [% Cu] 0.126 to 160 ° C or lower. Product manufacturing method.
Here, [% Cu] is the Cu content chemical analysis value (mass%) of the titanium alloy.
JP2011135652A 2011-06-17 2011-06-17 Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them Pending JP2013001973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135652A JP2013001973A (en) 2011-06-17 2011-06-17 Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135652A JP2013001973A (en) 2011-06-17 2011-06-17 Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them

Publications (1)

Publication Number Publication Date
JP2013001973A true JP2013001973A (en) 2013-01-07

Family

ID=47670858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135652A Pending JP2013001973A (en) 2011-06-17 2011-06-17 Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them

Country Status (1)

Country Link
JP (1) JP2013001973A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200112940A (en) * 2018-02-07 2020-10-05 닛폰세이테츠 가부시키가이샤 Titanium alloy material
WO2020213713A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium sheet, titanium rolled coil, and copper foil production drum
WO2020213715A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium sheet and copper foil production drum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298970A (en) * 2004-03-19 2005-10-27 Nippon Steel Corp Heat resistant titanium alloy sheet excellent in cold workability and process for producing the same
JP2009030140A (en) * 2007-07-30 2009-02-12 Nippon Steel Corp Heat-resistant titanium alloy superior in cold workability for member of exhaust system, manufacturing method therefor, and member of exhaust system using the alloy
JP2009041064A (en) * 2007-08-08 2009-02-26 Nippon Steel Corp TITANIUM PLATE FOR DRUM FOR USE IN PRODUCING ELECTROLYTIC Cu FOIL AND MANUFACTURING METHOD THEREFOR
JP2009068025A (en) * 2007-09-10 2009-04-02 Nippon Steel Corp Titanium alloy bar for machine components or decorative components suitable to manufacture cold-worked components, and its manufacturing method
JP2010180448A (en) * 2009-02-04 2010-08-19 Nippon Steel Corp Titanium alloy excellent in hydrogen absorbing resistance and cold-workability, and method of producing the same
JP2010202952A (en) * 2009-03-05 2010-09-16 Nippon Steel Corp Titanium alloy sheet having excellent press formability and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298970A (en) * 2004-03-19 2005-10-27 Nippon Steel Corp Heat resistant titanium alloy sheet excellent in cold workability and process for producing the same
JP2009030140A (en) * 2007-07-30 2009-02-12 Nippon Steel Corp Heat-resistant titanium alloy superior in cold workability for member of exhaust system, manufacturing method therefor, and member of exhaust system using the alloy
JP2009041064A (en) * 2007-08-08 2009-02-26 Nippon Steel Corp TITANIUM PLATE FOR DRUM FOR USE IN PRODUCING ELECTROLYTIC Cu FOIL AND MANUFACTURING METHOD THEREFOR
JP2009068025A (en) * 2007-09-10 2009-04-02 Nippon Steel Corp Titanium alloy bar for machine components or decorative components suitable to manufacture cold-worked components, and its manufacturing method
JP2010180448A (en) * 2009-02-04 2010-08-19 Nippon Steel Corp Titanium alloy excellent in hydrogen absorbing resistance and cold-workability, and method of producing the same
JP2010202952A (en) * 2009-03-05 2010-09-16 Nippon Steel Corp Titanium alloy sheet having excellent press formability and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200112940A (en) * 2018-02-07 2020-10-05 닛폰세이테츠 가부시키가이샤 Titanium alloy material
KR102403667B1 (en) 2018-02-07 2022-05-31 닛폰세이테츠 가부시키가이샤 titanium alloy
US11390935B2 (en) * 2018-02-07 2022-07-19 Nippon Steel Corporation Titanium alloy material
WO2020213713A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium sheet, titanium rolled coil, and copper foil production drum
WO2020213715A1 (en) * 2019-04-17 2020-10-22 日本製鉄株式会社 Titanium sheet and copper foil production drum
JPWO2020213715A1 (en) * 2019-04-17 2021-05-06 日本製鉄株式会社 Titanium plate and copper foil manufacturing drum
JPWO2020213713A1 (en) * 2019-04-17 2021-11-11 日本製鉄株式会社 Titanium plate, titanium rolling coil and copper foil manufacturing drum
JP7140275B2 (en) 2019-04-17 2022-09-21 日本製鉄株式会社 Titanium plate, titanium rolled coil and copper foil manufacturing drum

Similar Documents

Publication Publication Date Title
JP5348355B2 (en) Titanium alloy
JP5660253B2 (en) Titanium alloy with excellent corrosion resistance in environments containing bromine ions
WO2011059030A1 (en) Duplex stainless steel having excellent alkali resistance
WO2018146783A1 (en) Austenitic heat-resistant alloy and method for producing same
JP5505214B2 (en) High corrosion resistance titanium alloy having a large 0.2% proof stress in the rolling direction and its manufacturing method
JP4125560B2 (en) Titanium alloy material with excellent hydrogen absorption resistance
JP2013001973A (en) Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them
CN111344426A (en) Duplex stainless steel and method for producing duplex stainless steel
JP6927418B2 (en) Titanium alloy and its manufacturing method
JP5035250B2 (en) Nickel materials for chemical plants
JP2010180448A (en) Titanium alloy excellent in hydrogen absorbing resistance and cold-workability, and method of producing the same
JP2014012884A (en) Titanium alloy material having excellent scale adhesion-suppressing property and moldability, method for producing the same, and heat exchanger or seawater evaporator
RU2502819C1 (en) Titanium-base alloy
JP2003027189A (en) Alloy having excellent corrosion resistance, member for semiconductor production system using the alloy and production method therefor
JP2013047369A (en) Titanium alloy
TWI650428B (en) Titanium alloy and its manufacturing method
JP2020164919A (en) Austenitic heat-resistant steel
WO2024100802A1 (en) Titanium material, chemical device component, and chemical device
JP3878376B2 (en) Corrosion resistant Ti alloy
JP2002194466A (en) Nickel based alloy clad steel and its production method
CN115961188B (en) Corrosion-resistant aluminum alloy ingot
JP2009007679A (en) Titanium alloy, and method for producing titanium alloy material
RU2582171C1 (en) Titanium-based alloy
JP2014001413A (en) Ni-BASED ALLOY
JP2022149679A (en) Nickel-base alloy and seamless pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324