JP2010053419A - Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength - Google Patents

Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength Download PDF

Info

Publication number
JP2010053419A
JP2010053419A JP2008221678A JP2008221678A JP2010053419A JP 2010053419 A JP2010053419 A JP 2010053419A JP 2008221678 A JP2008221678 A JP 2008221678A JP 2008221678 A JP2008221678 A JP 2008221678A JP 2010053419 A JP2010053419 A JP 2010053419A
Authority
JP
Japan
Prior art keywords
creep resistance
titanium alloy
less
heat resistant
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008221678A
Other languages
Japanese (ja)
Other versions
JP5228708B2 (en
Inventor
Kenichi Mori
健一 森
Hideki Fujii
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008221678A priority Critical patent/JP5228708B2/en
Publication of JP2010053419A publication Critical patent/JP2010053419A/en
Application granted granted Critical
Publication of JP5228708B2 publication Critical patent/JP5228708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium alloy for a heat resistant member having sufficient creep resistance higher than that of the conventional heat resistant alloy at 850°C higher than that of the conventional using maximum temperature at a low cost. <P>SOLUTION: Disclosed is a titanium alloy for a heat resistant member having a composition comprising, by mass, 5.0 to <6.5% Al, 0.5 to <5.0% Sn, 4.6 to <6.0% Zr, 0.3 to <0.5% Mo, 0.41 to <0.60% Si and 0.05 to <0.20% O and satisfying Fe+Cr+Ni: <0.07%, and the balance titanium with inevitable impurities. In this way, it has creep resistance higher than that of the conventional titanium alloy and is inexpensive, thus is suitable for use to high temperature applications such as an automotive engine valve, and not only contributes to the high output of an automotive engine, the reduction of its fuel consumption and noise suppression therein, but also can widely obtain its effect by the enlargement of applications to mass-produced products. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐クリープ性および高温疲労強度に優れた耐熱部材用チタン合金に関する。   The present invention relates to a titanium alloy for heat-resistant members that is excellent in creep resistance and high-temperature fatigue strength.

従来から、航空機のエンジン部品用途等に軽量、高強度で耐熱性に優れたチタン合金が開発されてきた。例えば、代表的な合金としてTi−6Al−2Sn−4Zr−2Mo−0.1Siが知られている。   Conventionally, titanium alloys that are lightweight, high-strength and excellent in heat resistance have been developed for use in aircraft engine parts. For example, Ti-6Al-2Sn-4Zr-2Mo-0.1Si is known as a typical alloy.

特許文献1には、耐熱性に優れたチタン合金として、重量%で、Al:5.0から7.0%、Sn:3.0%〜5.0%、Zr:2.5%〜6.0%、Mo:2.0%〜4.0%、Si:0.05〜0.80%、C:0.001〜0.200%、O:0.05〜0.20からなる合金が開示されている。   In Patent Document 1, as a titanium alloy having excellent heat resistance, by weight, Al: 5.0 to 7.0%, Sn: 3.0% to 5.0%, Zr: 2.5% to 6 Alloy composed of 0.0%, Mo: 2.0% to 4.0%, Si: 0.05 to 0.80%, C: 0.001 to 0.200%, O: 0.05 to 0.20 Is disclosed.

特許文献2には、Ti−6%Al−3%Sn−5%Zr−1%Mo−0.25%Siなる合金が開示されている。   Patent Document 2 discloses an alloy of Ti-6% Al-3% Sn-5% Zr-1% Mo-0.25% Si.

特許文献3には、Al:5.0〜7.0%、Sn:2.0〜5.0%、Zr:2.0〜5.0%、Mo:0.10〜1.00%、Si:0.20〜0.60%、Hf:0.10〜1.00%、さらにNb:1.50%以下、Ta:0.50%以下、W:0.50%以下、Cu:1.00%以下、またはC:0.10%以下の1種または2種以上、残部Tiおよび不可避的不純物からなる合金が開示されている。   In Patent Document 3, Al: 5.0 to 7.0%, Sn: 2.0 to 5.0%, Zr: 2.0 to 5.0%, Mo: 0.10 to 1.00%, Si: 0.20 to 0.60%, Hf: 0.10 to 1.00%, Nb: 1.50% or less, Ta: 0.50% or less, W: 0.50% or less, Cu: 1 An alloy composed of one or more of 0.000% or less or C: 0.10% or less, the balance Ti and unavoidable impurities is disclosed.

特許文献4には、500℃〜600℃において良好な耐クリープ性を有する合金として、Al:5.5〜6.5%、Sn:2.00〜4.00%、Zr:3.5〜4.5%、Mo:0.3〜0.5%、Si:0.35〜0.55%、Fe:0.03%以下、O:0.14%まで、からなる合金が開示されている。   In Patent Document 4, as an alloy having good creep resistance at 500 ° C. to 600 ° C., Al: 5.5 to 6.5%, Sn: 2.00 to 4.00%, Zr: 3.5 to An alloy consisting of 4.5%, Mo: 0.3-0.5%, Si: 0.35-0.55%, Fe: 0.03% or less, O: up to 0.14% is disclosed. Yes.

特開平10−195563号公報JP-A-10-195563 特開昭48−4320号公報JP-A-48-4320 特許第2737500号公報Japanese Patent No. 2737500 特開昭63−118035号公報JP-A-63-118035

上に記載したように、従来の耐熱チタン合金は、最高で600℃までの使用温度が想定されている。しかし、エンジンの高性能化、低燃費化、低コスト化の要求が厳しい自動車用途への適用が増加するにつれ、800℃から850℃にも達するとされる使用温度にあわせた特性の向上が望まれている。   As described above, the conventional heat-resistant titanium alloy is assumed to have a use temperature of up to 600 ° C. However, as the application to automotive applications, where the demand for higher performance, lower fuel consumption, and lower cost of the engine is increasing, it is hoped that the characteristics will be improved in accordance with the operating temperature that is expected to reach 800 ° C to 850 ° C. It is rare.

発明者らは、自動車用途に用いられる部材の破損原因を鋭意調査、解析を行い、次のような課題認識を有するに至った。すなわち、耐熱部材の破損は、使用中のクリープ変形によって局所的に荷重が想定以上に増加することに起因する。したがって、従来は強度を高めることを対策としていたのに対し、発明者らはクリープ変形を抑制することがより重要な解決策であると考えた。同時に、高温疲労強度の低下や、特殊な添加元素を用いることによるコスト高は容認できないことは言うまでもない。   The inventors diligently investigated and analyzed the cause of breakage of members used in automobiles, and came to recognize the following problems. That is, the breakage of the heat-resistant member is caused by a local increase in load than expected due to creep deformation during use. Therefore, while the conventional countermeasures have been to increase the strength, the inventors have thought that suppressing creep deformation is a more important solution. At the same time, it goes without saying that high temperature fatigue strength is reduced and high costs due to the use of special additive elements are unacceptable.

しかしながら、代表的な耐熱チタン合金であるTi−6Al−2Sn−4Zr−2Mo−0.1Siは、850℃の高温では耐クリープ性が低いことが問題である。   However, Ti-6Al-2Sn-4Zr-2Mo-0.1Si, which is a typical heat-resistant titanium alloy, has a problem that its creep resistance is low at a high temperature of 850 ° C.

また、特許文献1および特許文献2に記載の発明の合金は、Ti−6Al−2Sn−4Zr−2Mo−0.1Siと同様にβ安定化元素であるMoを多量に含んでおり、高温でβ相を増やしやすく、耐クリープ性を低下させる。   Further, the alloys of the invention described in Patent Document 1 and Patent Document 2 contain a large amount of Mo which is a β-stabilizing element like Ti-6Al-2Sn-4Zr-2Mo-0.1Si. Easy to increase the phase and reduce creep resistance.

特許文献3に記載の合金は、高価なHfを添加しており特殊な場合を除いて工業的に広く使用することは困難である。また、Hfのほか、Nb、Ta、W、Cuといった元素もβ安定化元素であり、これらの元素をさらに添加することで耐クリープ性を低下させる。Cはα安定化元素であるが、浸入型元素であるため高温では原子の移動が容易に生じるため、850℃程度の高温域では耐クリープ性をとくに向上させるものではない。   The alloy described in Patent Document 3 is expensive to add to Hf, and is difficult to use industrially except for special cases. In addition to Hf, elements such as Nb, Ta, W, and Cu are also β-stabilizing elements, and the addition of these elements further reduces creep resistance. C is an α-stabilizing element. However, since it is an intrusion-type element, atom migration easily occurs at high temperatures, and therefore does not particularly improve creep resistance at a high temperature range of about 850 ° C.

特許文献4に記載の発明の合金は、航空機用途を想定して500℃〜600℃程度の耐クリープ性を高めることを目的に開発された合金であり、本発明とは明確に目的が異っている。したがって850℃における耐クリープ性および高温疲労強度は充分ではない。   The alloy of the invention described in Patent Document 4 is an alloy developed for the purpose of increasing the creep resistance of about 500 ° C. to 600 ° C. assuming aircraft use, and the purpose is clearly different from that of the present invention. ing. Accordingly, the creep resistance at 850 ° C. and the high temperature fatigue strength are not sufficient.

その他、TiAlやTi3Alといった金属間化合物をベースとした材料は、耐クリープ性に優れているものの加工コストが著しく高いため実用的ではない。 In addition, materials based on intermetallic compounds such as TiAl and Ti 3 Al are not practical because they have excellent creep resistance but are extremely expensive.

そこで、本発明は、上記課題を有利に解決して、850℃において優れた耐クリープ性および優れた高温疲労強度を有する耐熱部材用チタン合金を低コストで提供するものである。   Therefore, the present invention advantageously solves the above-described problems and provides a titanium alloy for a heat-resistant member having excellent creep resistance and excellent high-temperature fatigue strength at 850 ° C. at a low cost.

本発明者らは、上記目的を達成するために、鋭意検討した結果、850℃における耐クリープ性を向上させるため、添加元素を調整して検討した結果、既存の合金を上回る耐クリープ性および高温疲労強度を有し、かつ、低コストのチタン合金を見出した。   As a result of diligent studies to achieve the above-mentioned object, the present inventors have studied by adjusting additive elements in order to improve the creep resistance at 850 ° C. As a result, the creep resistance and high temperature exceeding existing alloys are improved. The present inventors have found a titanium alloy having fatigue strength and low cost.

本発明の要旨とするところは、以下のとおりである。
(1)質量%で、Al:5.0%以上6.5%未満、Sn:0.5%以上5.0%未満、Zr:4.6%以上6.0%未満、Mo:0.3%以上0.5%未満、Si:0.41%以上0.60%未満、O:0.05%以上0.20%未満、Fe+Cr+Ni:0.07%未満で残部チタン及び不可避不純物からなる耐クリープ性および高温疲労強度に優れた耐熱部材用チタン合金。
(2)質量%で、0.1%以上1.0%未満のNbを添加した、請求項1に記載の耐クリープ性および高温疲労強度に優れた耐熱部材用チタン合金。
The gist of the present invention is as follows.
(1) By mass%, Al: 5.0% or more and less than 6.5%, Sn: 0.5% or more and less than 5.0%, Zr: 4.6% or more and less than 6.0%, Mo: 0.00. 3% or more and less than 0.5%, Si: 0.41% or more and less than 0.60%, O: 0.05% or more and less than 0.20%, Fe + Cr + Ni: less than 0.07%, and remaining titanium and inevitable impurities Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength.
(2) The titanium alloy for a heat-resistant member excellent in creep resistance and high-temperature fatigue strength according to claim 1, wherein Nb in an amount of 0.1% to less than 1.0% is added.

本発明の耐熱チタン合金は、従来のチタン合金を上回る耐クリープ性を有し、安価であることから、自動車用エンジンバルブなど高温用途への使用に適しており、自動車用エンジンの高出力化、低燃費化、静音化に寄与するだけでなく、量産品への適用拡大により幅広くその効果を得ることが可能になることから、産業上の効果は計り知れない。   The heat-resistant titanium alloy of the present invention has creep resistance higher than that of conventional titanium alloys and is inexpensive, so it is suitable for use in high-temperature applications such as automotive engine valves. In addition to contributing to lower fuel consumption and lower noise, it is possible to obtain a wide range of effects by expanding its application to mass-produced products, so industrial effects are immeasurable.

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

本発明チタン合金の耐クリープ性の指標として、自動車用エンジンバルブ等の用途で実績のある耐熱チタン合金Ti−6Al−2Sn−4Zr−2Mo−0.1Si材がひとつの指標となり、この材料の850℃における耐クリープ性を上回ることを目標とした。具体的には、以下に述べる試験条件における耐クリープ性の評価方法において、クリープ変形量が2%以下であることを目標とした。また、靭性などの観点から室温における伸びが5%以上でることを指標とした。一部の成分については高温疲労強度を評価した。   As an index of the creep resistance of the titanium alloy of the present invention, the heat resistant titanium alloy Ti-6Al-2Sn-4Zr-2Mo-0.1Si material, which has a proven record in applications such as automotive engine valves, is one index. The goal was to exceed the creep resistance at ℃. Specifically, in the creep resistance evaluation method under the test conditions described below, the target was a creep deformation amount of 2% or less. In addition, the elongation at room temperature was 5% or more from the viewpoint of toughness and the like. Some components were evaluated for high temperature fatigue strength.

ここで、本発明における耐クリープ性の評価方法について述べる。   Here, the creep resistance evaluation method in the present invention will be described.

耐クリープ性の評価方法として、高温での片持ち梁式の試験を採用した。水平に保持した丸棒試験片の自由端に、錘の作用点が一致するように錘を載せ、試験片保持部の固定端から、試験片の自由端すなわち錘の作用点までの距離を一定の有効試験片長さLになるように設定し、850℃、大気雰囲気中、24時間保持後の試験片のたわみ変形量から、クリープ変形量を評価した。クリープ変形量は、試験後の試験片の自由端が、試験前の元の丸棒試験片中心軸から変位した距離Hを測定し、H/Lを百分率で表したものを指標とした。   As a method for evaluating creep resistance, a cantilever type test at a high temperature was adopted. Place the weight on the free end of the round bar test piece held horizontally so that the action point of the weight matches, and keep the distance from the fixed end of the test piece holding part to the free end of the test piece, that is, the action point of the weight. The amount of creep deformation was evaluated from the amount of deformation of the test piece after being kept at 850 ° C. in an air atmosphere for 24 hours. The amount of creep deformation was determined by measuring the distance H by which the free end of the test piece after the test was displaced from the central axis of the original round bar test piece before the test, and expressing H / L as a percentage.

請求項1に記載の本発明では、上記の指標を達成するための、Al、Sn、Zr、Mo、Si、O、Cの各成分範囲と、Fe+Cr+Niの成分範囲を規定している。   In the first aspect of the present invention, the component ranges of Al, Sn, Zr, Mo, Si, O, and C and the component range of Fe + Cr + Ni are defined to achieve the above-described index.

Alは、α相の固溶強化能が高い元素であり、添加量を増やすと高温強度およびクリープ強度が増す。850℃で比較材以上の耐クリープ性を得るためには、5.0%以上の添加が必要である。しかし、Alを6.5%以上添加すると、脆性的なα2相を生成するため加工コストが増加する。そこで、Alの成分範囲は5.0%以上6.5%未満とした。 Al is an element with high solid solution strengthening ability of the α phase, and the high temperature strength and creep strength increase as the amount added increases. In order to obtain a creep resistance higher than that of the comparative material at 850 ° C., addition of 5.0% or more is necessary. However, if Al is added in an amount of 6.5% or more, a brittle α 2 phase is generated, which increases the processing cost. Therefore, the Al component range is set to 5.0% or more and less than 6.5%.

Snは、α相およびβ相の両方を強化する効果があり、α+β二相合金の強度を向上させる上で、有効な元素である。850℃で比較材以上の耐クリープ性を得るためには、0.5%以上の添加が必要である。しかし、5.0%以上添加すると、α2相を生成して脆化する。そこで、Snの成分範囲は0.5%以上5.0%未満とした。Snの偏析が生じるおそれのある場合、α2相の生成を確実に抑えるために、より好ましくは0.5%以上3.0%未満である。 Sn has an effect of strengthening both the α phase and the β phase, and is an effective element in improving the strength of the α + β two-phase alloy. In order to obtain a creep resistance higher than that of the comparative material at 850 ° C., addition of 0.5% or more is necessary. However, when 5.0% or more is added, an α 2 phase is generated and embrittles. Therefore, the Sn component range is set to 0.5% or more and less than 5.0%. In the case where Sn segregation may occur, it is more preferably 0.5% or more and less than 3.0% in order to reliably suppress the formation of the α 2 phase.

Zrは、α相およびβ相の両方を強化するのに有効な元素である。また、Siと同時に添加すると、耐クリープ性を向上させる効果がある。6.0%より多く添加すると、850℃における耐クリープ性は逆に低下するため、上限を6.0%とした。下限は、850℃における耐クリープ性を得るために必要な4.6%とした。   Zr is an element effective for strengthening both the α phase and the β phase. Moreover, when it adds simultaneously with Si, there exists an effect which improves creep resistance. If added more than 6.0%, the creep resistance at 850 ° C. decreases, so the upper limit was made 6.0%. The lower limit was set to 4.6% necessary for obtaining creep resistance at 850 ° C.

Moは、β安定化置換型元素であり、熱間加工性を向上させる働きをする。この効果を発現するため、下限を0.3%以上とした。しかし、850℃においては、β相が過剰に存在すると耐クリープ性が低下するため、上限を0.5%未満とした。   Mo is a β-stabilized substitutional element and functions to improve hot workability. In order to express this effect, the lower limit was made 0.3% or more. However, at 850 ° C., if the β phase is excessively present, the creep resistance decreases, so the upper limit was made less than 0.5%.

Siは、耐クリープ性を向上させる元素である。しかし、多量の添加はTiおよびZrと形成する金属間化合物の増加あるいは粗大化により、チタン合金を脆化する傾向がある。そのため、0.41%以上0.60%未満の添加とした。   Si is an element that improves creep resistance. However, a large amount of addition tends to embrittle the titanium alloy due to an increase or coarsening of intermetallic compounds formed with Ti and Zr. Therefore, the addition is 0.41% or more and less than 0.60%.

Oは、α相を強化する元素である。その効果を発現させるには、Oが0.05%以上必要である。しかし、Oを0.20%以上添加するとα2相の生成を促進して脆化する。このため、0.05%以上0.20%未満の添加とした。Alの偏析が生じるおそれのある場合、α2相の生成を確実に抑えるために、より好ましくは、0.05%以上0.14%未満である。 O is an element that strengthens the α phase. In order to express the effect, 0.05% or more of O is necessary. However, brittle to facilitate the formation of alpha 2 phase when the O is added 0.20% or more. For this reason, it was set as 0.05% or more and less than 0.20% addition. In the case where Al segregation may occur, the amount is more preferably 0.05% or more and less than 0.14% in order to surely suppress the formation of the α 2 phase.

Fe,Cr、Niはいずれもβ安定化置換型元素である。β相が過剰に存在すると耐クリープ性が低下するため、これら元素が耐クリープ性に悪影響を与えない含有量を調査した結果、Fe+Cr+Niが0.07%未満、好ましくは0.05%未満であるため、これを規定した。   Fe, Cr, and Ni are all β-stabilized substitutional elements. When the β phase is excessively present, creep resistance is lowered, and as a result of investigating the content of these elements that do not adversely affect the creep resistance, Fe + Cr + Ni is less than 0.07%, preferably less than 0.05%. Therefore, this was prescribed.

請求項2に記載の本発明では、請求項1に記載の本発明合金に加えて、0.1%以上1.0%未満のNbを添加する。Nbは、β安定化元素でありβ相の固溶強化に寄与するほか、800℃以上の高温に暴露される場合に酸化を抑制する効果がある。0.1%未満の添加ではその効果が十分でなく、1.0%以上ではβ相の増加により耐クリープ性が低下するため1.0%未満の添加とした。   In the present invention described in claim 2, in addition to the alloy of the present invention described in claim 1, Nb of 0.1% or more and less than 1.0% is added. Nb is a β-stabilizing element and contributes to solid solution strengthening of the β phase, and also has an effect of suppressing oxidation when exposed to a high temperature of 800 ° C. or higher. If the addition is less than 0.1%, the effect is not sufficient. If the addition is 1.0% or more, the creep resistance decreases due to an increase in β phase, so the addition was made less than 1.0%.

本発明チタン合金の代表的な製造工程は次のとおりである。スポンジチタン、合金素材を原料として、真空中でアーク溶解または電子ビーム溶解し、水冷銅鋳型に鋳造する溶解法により、不純物の混入を抑えて、本発明のチタン合金成分の鋳塊とする。ここで、Oは、溶解の際、例えば酸化チタンまたは酸素濃度の高いスポンジチタンを用いることで添加できる。この鋳塊を1100〜1250℃に加熱後、直径100mmの円柱形状に鍛造した後、1100〜1250℃に再加熱し、熱間圧延で15〜50mm角程度の断面四角形または、直径15〜50mm程度の断面円形の棒材に加工できる。最終熱処理として、析出物等の固溶化のために1050〜1130℃のβ変態点以上の温度に5〜60分保持する溶体化処理の後空冷し、さらに、500〜850℃、30分〜4時間、空冷、望ましくは、750℃〜830℃、45分〜90分の時効処理を行なうことで、断面光学顕微鏡組織で、粒径100〜800μmの旧β粒内に、幅10μm以下の針状α相を析出させる。詳しい機構は明らかでないが、これにより、耐クリープ性のみならず、高温疲労強度についても高水準に保てるからである。溶体化処理温度が1050℃より低いと固溶化が不充分のため微視組織が不均一となり特性が低下し、1130℃以上は酸化により歩留りが悪化するため望ましくない。時効温度が500℃より低温あるいは上記範囲より短時間では時効による組織安定化の効果が小さく、高温での使用中に特性が大きく変化するので好ましくない。一方、時効温度が850℃より高温あるいは上記範囲より長時間の場合には酸化スケール層が厚くなり、製品歩留りや製造性の悪化あるいは機械的特性の低下を招くので好ましくない。なお、前記最終熱処理は、前記棒材を最終製品形状に近い形状に熱間成形加工および/または切削加工してから施しても良い。   A typical production process of the titanium alloy of the present invention is as follows. By using a melting method in which sponge titanium or an alloy material is used as a raw material, arc melting or electron beam melting in a vacuum, and casting into a water-cooled copper mold, mixing of impurities is suppressed to obtain an ingot of the titanium alloy component of the present invention. Here, O can be added at the time of dissolution by using, for example, titanium oxide or titanium sponge having a high oxygen concentration. This ingot is heated to 1100 to 1250 ° C., forged into a cylindrical shape with a diameter of 100 mm, then reheated to 1100 to 1250 ° C., and hot rolled to have a cross-sectional square of about 15 to 50 mm square or a diameter of about 15 to 50 mm Can be processed into a rod with a circular cross section. As the final heat treatment, the solution is kept at a temperature above the β transformation point of 1050 to 1130 ° C. for 5 to 60 minutes for solid solution of precipitates, and then air-cooled, and further 500 to 850 ° C. and 30 minutes to 4 Time, air cooling, preferably 750 ° C. to 830 ° C., 45 minutes to 90 minutes aging treatment, with a cross-sectional optical microscope structure, needle-like shape having a width of 10 μm or less in old β grains having a particle size of 100 to 800 μm The α phase is precipitated. This is because the detailed mechanism is not clear, but not only the creep resistance but also the high temperature fatigue strength can be maintained at a high level. If the solution treatment temperature is lower than 1050 ° C., the solid solution is insufficient and the microstructure becomes inhomogeneous and the characteristics are deteriorated. If the temperature is 1130 ° C. or higher, the yield deteriorates due to oxidation. If the aging temperature is lower than 500 ° C. or shorter than the above range, the effect of stabilizing the structure due to aging is small, and the characteristics change greatly during use at high temperatures, which is not preferable. On the other hand, when the aging temperature is higher than 850 ° C. or longer than the above range, the oxide scale layer becomes thick, which is not preferable because the product yield, manufacturability is deteriorated, or the mechanical characteristics are lowered. The final heat treatment may be performed after hot-forming and / or cutting the rod material into a shape close to the final product shape.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
表1に示す成分のチタン合金をアーク溶解法により製造し、それぞれ約1kgの鋳塊とした。これら鋳塊をそれぞれ鍛造して得た15mm角の棒材を素材とした。耐クリープ性試験片は、1090℃、10分、空冷の熱処理(溶体化処理)の後、更に、800℃、1時間、空冷の熱処理(時効処理)を行った後、試験片を採取した。引張試験は平行部φ6.25mmの丸棒試験片を用いて室温にて行った。室温延性は、実用上5%以上あることを基準とした。耐クリープ試験は、水平に保持した直径5mmの丸棒試験片の自由端に錘の作用点が一致するように0.5±0.1kgの耐熱Ni合金製の錘をのせ、850℃、大気雰囲気中、24時間保持後の変形量Hを測定した。変形量Hは、試験後の試験片自由端中心部から、試験前の元の丸棒試験片中心軸までの距離である。試験片の把持部を除いた固定端から自由端までの有効試験片長さLは45mmとした。耐クリープ性は、有効試験片長さLと、変形量Hの比(H/L)を百分率で表した。表1に、850℃の耐クリープ性試験結果と、室温引張試験における伸び値を示す。本発明範囲から外れる数値にアンダーラインを付している。
Example 1
Titanium alloys having the components shown in Table 1 were produced by the arc melting method, and each was made into an ingot of about 1 kg. A 15 mm square bar obtained by forging each of these ingots was used as a raw material. The creep resistance test piece was subjected to air-cooling heat treatment (solution treatment) at 1090 ° C. for 10 minutes, and further subjected to air-cooling heat treatment (aging treatment) at 800 ° C. for 1 hour, and then the test piece was collected. The tensile test was performed at room temperature using a round bar test piece having a parallel portion φ6.25 mm. Room temperature ductility was based on the fact that it was practically 5% or more. The creep resistance test was carried out by placing a 0.5 ± 0.1 kg heat-resistant Ni alloy weight on the free end of a 5 mm diameter round bar test piece held horizontally, at 850 ° C., in the atmosphere. The amount of deformation H after holding for 24 hours in the atmosphere was measured. The deformation amount H is a distance from the center of the free end of the test piece after the test to the center axis of the original round bar test piece before the test. The effective test piece length L from the fixed end to the free end excluding the grip portion of the test piece was 45 mm. The creep resistance was expressed as a percentage of the effective test piece length L and the deformation amount H (H / L). Table 1 shows the 850 ° C. creep resistance test results and the elongation values in the room temperature tensile test. Numerical values that fall outside the scope of the present invention are underlined.

Figure 2010053419
Figure 2010053419

表1において、No.1〜16が本発明例、No.28が従来用いられていた耐熱チタン合金Ti−6Al−2Sn−4Zr−2Mo−0.1Si材、No.29は特許文献4に記載の耐熱チタン合金、No.17〜27はいずれかの成分が本発明範囲を外れている比較例である。   In Table 1, no. 1-16 are examples of the present invention, No. No. 28 is a conventionally used heat-resistant titanium alloy Ti-6Al-2Sn-4Zr-2Mo-0.1Si, No. 28 No. 29 is a heat-resistant titanium alloy described in Patent Document 4, No. 29. 17 to 27 are comparative examples in which any of the components is outside the scope of the present invention.

No.1〜16の本発明例は、いずれも、850℃耐クリープ性、室温延性がともに良好であった。850℃耐クリープ性は、No.28の耐熱チタン合金Ti−6Al−2Sn−4Zr−2Mo−0.1Si材、およびNo.29の耐熱チタン合金に比較して良好な値を実現することができた。   No. The inventive examples 1 to 16 all had good 850 ° C. creep resistance and room temperature ductility. The 850 ° C. creep resistance is No. 28 heat-resistant titanium alloy Ti-6Al-2Sn-4Zr-2Mo-0.1Si material, and No. 28 Good values were achieved compared to 29 heat-resistant titanium alloy.

比較例のNo.17はAl含有量が下限を外れ、No.19はSn含有量が下限を外れ、No.21はZr含有量が下限を外れ、No.22はZr含有量が上限を外れ、No.23はMo含有量が上限を外れ、No.24はSi含有量が下限を外れ、No.26はNb含有量が上限を外れ、No.27はFe+Cr+Ni含有量が上限を外れ、いずれも850℃クリープ性が不良であった。また比較例No.18はAlが上限を外れ、No.20はSnが上限を外れ、No.25はOが上限を外れ、いずれも室温延性が不良であった。   Comparative Example No. No. 17 has an Al content outside the lower limit. No. 19 has a Sn content outside the lower limit. No. 21 has a Zr content outside the lower limit. No. 22 has a Zr content outside the upper limit. In No. 23, the Mo content exceeded the upper limit. No. 24 has a Si content outside the lower limit. No. 26 has an Nb content exceeding the upper limit. In No. 27, the Fe + Cr + Ni content exceeded the upper limit, and in all cases, the 850 ° C. creep property was poor. Comparative Example No. In No. 18, Al was outside the upper limit. No. 20 has Sn exceeding the upper limit. In No. 25, O exceeded the upper limit, and the ductility at room temperature was poor in all cases.

(実施例2)
さらに、真空アーク溶解法により200kgの鋳塊を製造し、鍛造、熱延によりφ15mmの丸棒素材を得た。前記実施例1と同様の溶体化処理および時効処理を施した後、平行部φ8mmの丸棒試験片を作製し、850℃、3000rpm、大気雰囲気で、回転曲げ疲労試験を実施した。表2に、その試験成分と850℃回転曲げ疲労試験における、107回の疲労強度を示す。また、本発明範囲から外れる数値にアンダーラインを付している。
(Example 2)
Further, a 200 kg ingot was produced by a vacuum arc melting method, and a φ15 mm round bar material was obtained by forging and hot rolling. After performing the same solution treatment and aging treatment as in Example 1, a round bar test piece having a parallel part φ8 mm was prepared, and a rotating bending fatigue test was performed at 850 ° C., 3000 rpm, in an air atmosphere. Table 2 shows the test components and 10 7 times fatigue strength in the 850 ° C. rotating bending fatigue test. In addition, numerical values outside the scope of the present invention are underlined.

Figure 2010053419
Figure 2010053419

表2において、No.1は本発明例である。No.2は従来用いられていた耐熱チタン合金Ti−6Al−2Sn−4Zr−2Mo−0.1Si材であるが、850℃回転曲げ疲労試験における、107回の疲労強度は100MPaより小さい。No.3は特許文献4に記載の耐熱チタン合金であるが、850℃の疲労強度は130MPaである。本発明の合金は、耐クリープ性に優れているのみでなく、いずれの既存の合金をも上回る高い疲労強度を有している。 In Table 2, no. Reference numeral 1 denotes an example of the present invention. No. 2 is a conventionally used heat-resistant titanium alloy Ti-6Al-2Sn-4Zr-2Mo-0.1Si, but its fatigue strength of 10 7 times in the 850 ° C. rotating bending fatigue test is less than 100 MPa. No. 3 is a heat-resistant titanium alloy described in Patent Document 4, but the fatigue strength at 850 ° C. is 130 MPa. The alloy of the present invention not only has excellent creep resistance, but also has high fatigue strength that surpasses any existing alloy.

(実施例3)
さらに、実施例2で用いた本発明成分のφ15mm丸棒素材を用いて、(1)1000℃〜1120℃の溶体化処理後、空冷の後、800℃、1時間、空冷の熱処理(時効処理)を行った棒材、および、(2)1090℃の溶体化処理後、炉冷の後、800℃、1時間、空冷の熱処理(時効処理)を行った棒材、を用いて、前記実施例1と同様の耐クリープ試験を行った。表3に、その試験結果を示す。また、本発明範囲から外れる数値にアンダーラインを付している。
(Example 3)
Further, using the φ15 mm round bar material of the present invention component used in Example 2, (1) After solution treatment at 1000 ° C. to 1120 ° C., after air cooling, 800 ° C., 1 hour, air cooling heat treatment (aging treatment) ), And (2) a bar material that was subjected to a heat treatment (aging treatment) at 800 ° C. for 1 hour after solution cooling at 1090 ° C. and after furnace cooling. The same creep resistance test as in Example 1 was performed. Table 3 shows the test results. In addition, numerical values outside the scope of the present invention are underlined.

Figure 2010053419
Figure 2010053419

表3において、No.1〜2は、溶体化処理の温度が本発明範囲の下限を外れており、耐クリープ性が不良である。   In Table 3, no. In Nos. 1 and 2, the solution treatment temperature is outside the lower limit of the range of the present invention, and the creep resistance is poor.

Claims (2)

質量%で、Al:5.0%以上6.5%未満、Sn:0.5%以上5.0%未満、Zr:4.6%以上6.0%未満、Mo:0.3%以上0.5%未満、Si:0.41%以上0.60%未満、O:0.05%以上0.20%未満、Fe+Cr+Ni:0.07%未満で残部チタン及び不可避不純物からなる耐クリープ性および高温疲労強度に優れた耐熱部材用チタン合金。   In mass%, Al: 5.0% or more and less than 6.5%, Sn: 0.5% or more and less than 5.0%, Zr: 4.6% or more and less than 6.0%, Mo: 0.3% or more Creep resistance comprising less than 0.5%, Si: 0.41% or more and less than 0.60%, O: 0.05% or more and less than 0.20%, Fe + Cr + Ni: less than 0.07% and the balance titanium and inevitable impurities And titanium alloy for heat-resistant members with excellent high-temperature fatigue strength. 質量%で、0.1%以上1.0%未満のNbを添加した、請求項1に記載の耐クリープ性および高温疲労強度に優れた耐熱部材用チタン合金。   The titanium alloy for heat-resistant members excellent in creep resistance and high-temperature fatigue strength according to claim 1, wherein Nb in an amount of 0.1% or more and less than 1.0% is added.
JP2008221678A 2008-08-29 2008-08-29 Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength Active JP5228708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008221678A JP5228708B2 (en) 2008-08-29 2008-08-29 Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008221678A JP5228708B2 (en) 2008-08-29 2008-08-29 Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength

Publications (2)

Publication Number Publication Date
JP2010053419A true JP2010053419A (en) 2010-03-11
JP5228708B2 JP5228708B2 (en) 2013-07-03

Family

ID=42069637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008221678A Active JP5228708B2 (en) 2008-08-29 2008-08-29 Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength

Country Status (1)

Country Link
JP (1) JP5228708B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105620A1 (en) 2010-02-26 2011-09-01 新日本製鐵株式会社 Automotive engine valve comprising titanium alloy and having excellent heat resistance
JP2014047392A (en) * 2012-08-31 2014-03-17 Honda Motor Co Ltd Titanium valve for internal combustion engine
CN105803256A (en) * 2016-04-06 2016-07-27 苏州裕通达特种金属材料有限公司 High-temperature titanium alloy for automobile engine valve and preparation method and application thereof
JP2020026568A (en) * 2018-08-17 2020-02-20 国立研究開発法人物質・材料研究機構 Titanium alloy, method for producing the same and engine component including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195563A (en) * 1996-12-27 1998-07-28 Daido Steel Co Ltd Ti alloy excellent in heat resistance and treatment thereof
WO2000005425A1 (en) * 1998-07-21 2000-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
JP2009041065A (en) * 2007-08-08 2009-02-26 Nippon Steel Corp Titanium alloy for heat resistant member having excellent high temperature fatigue strength and creep resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195563A (en) * 1996-12-27 1998-07-28 Daido Steel Co Ltd Ti alloy excellent in heat resistance and treatment thereof
WO2000005425A1 (en) * 1998-07-21 2000-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
JP2009041065A (en) * 2007-08-08 2009-02-26 Nippon Steel Corp Titanium alloy for heat resistant member having excellent high temperature fatigue strength and creep resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105620A1 (en) 2010-02-26 2011-09-01 新日本製鐵株式会社 Automotive engine valve comprising titanium alloy and having excellent heat resistance
JP2014047392A (en) * 2012-08-31 2014-03-17 Honda Motor Co Ltd Titanium valve for internal combustion engine
CN105803256A (en) * 2016-04-06 2016-07-27 苏州裕通达特种金属材料有限公司 High-temperature titanium alloy for automobile engine valve and preparation method and application thereof
JP2020026568A (en) * 2018-08-17 2020-02-20 国立研究開発法人物質・材料研究機構 Titanium alloy, method for producing the same and engine component including the same
JP7144840B2 (en) 2018-08-17 2022-09-30 国立研究開発法人物質・材料研究機構 Titanium alloy, method for producing the same, and engine parts using the same

Also Published As

Publication number Publication date
JP5228708B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5582532B2 (en) Co-based alloy
EP2826877B1 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
KR101492356B1 (en) Abrasion-resistant titanium alloy member having excellent fatigue strength
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
US8562763B2 (en) High strength α+β type titanuim alloy
JP5328694B2 (en) Automotive engine valve made of titanium alloy with excellent heat resistance
JP4666271B2 (en) Titanium plate
JP7250811B2 (en) high temperature titanium alloy
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP5284935B2 (en) Heat-resistant aluminum alloy extruded material with excellent high-temperature strength and fatigue properties
JP4987615B2 (en) Titanium alloy for heat-resistant members with excellent high-temperature fatigue strength and creep resistance
JP5228708B2 (en) Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength
KR101387551B1 (en) High strength titanium alloy with excellent oxidation resistance and formability and method for manufacturing the same
JP5747410B2 (en) Heat resistant titanium alloy
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it
JP2008144202A (en) Heat-resistant spring and manufacturing method therefor
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JP6881119B2 (en) Ferritic stainless steel and heat resistant members
JP5522998B2 (en) Heat resistant alloy
JP5026686B2 (en) Ni-base alloy material excellent in workability and high-temperature strength and method for producing the same
WO2022211062A1 (en) Aluminum alloy material, production method therefor, and machine component
JP5533352B2 (en) β-type titanium alloy
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
JP2022045612A (en) Titanium alloy, and manufacturing method of the same, and engine component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5228708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350