TWI741962B - Aluminum-nickel-copper alloy and manufacturing method thereof - Google Patents

Aluminum-nickel-copper alloy and manufacturing method thereof Download PDF

Info

Publication number
TWI741962B
TWI741962B TW110113807A TW110113807A TWI741962B TW I741962 B TWI741962 B TW I741962B TW 110113807 A TW110113807 A TW 110113807A TW 110113807 A TW110113807 A TW 110113807A TW I741962 B TWI741962 B TW I741962B
Authority
TW
Taiwan
Prior art keywords
alloy
aluminum
nickel
copper
zirconium
Prior art date
Application number
TW110113807A
Other languages
Chinese (zh)
Other versions
TW202242151A (en
Inventor
洪飛義
黃國棟
Original Assignee
圓融金屬粉末股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 圓融金屬粉末股份有限公司 filed Critical 圓融金屬粉末股份有限公司
Priority to TW110113807A priority Critical patent/TWI741962B/en
Application granted granted Critical
Publication of TWI741962B publication Critical patent/TWI741962B/en
Publication of TW202242151A publication Critical patent/TW202242151A/en

Links

Images

Abstract

The present invention relates to an aluminum-nickel-copper alloy and a manufacturing method thereof. The manufacturing method comprises the steps of: melting an aluminum-nickel master alloy and reacting at a first temperature to obtain a first alloy molten soup containing Al 3Ni; adding an aluminum-copper master alloy into the first alloy molten soup for reacting at a second temperature to obtain a second alloy molten soup containing an aluminum-nickel-copper alloy; adding an aluminum-zirconium alloy master into the second alloy molten soup for reacting at a third temperature to obtain a third alloy molten soup containing an aluminum-nickel-copper-zirconium alloy; step 4, adding an aluminum-chromium master alloy into the third alloy molten soup for reacting at a forth temperature to obtain a forth alloy molten soup containing an aluminum-nickel-copper-zirconium-chromium alloy; and cooling the forth alloy molten soup to obtain the aluminum-nickel-copper alloy.

Description

鋁鎳銅合金及其製造方法Aluminum nickel copper alloy and its manufacturing method

本發明係關於一種鋁鎳銅合金及其製造方法,並藉由超高溫固溶化熱處理,以獲得具有優異機械性質與耐疲勞壽命的鋁合金。The invention relates to an aluminum-nickel-copper alloy and a manufacturing method thereof, and through ultra-high temperature solution heat treatment to obtain an aluminum alloy with excellent mechanical properties and fatigue life.

鋁合金通常是指含有銅、鋅、錳、矽、鎂等元素的合金,跟普通的碳鋼相比,鋁合金有更輕及耐腐蝕的性能,但是抗腐蝕性仍不如純鋁。鋁合金的運用非常廣泛,包含各種工程結構,或是應用於現代的航空器,且因應不同的特性需求,開發出不同系列以及含有不同元素的多種鋁合金系統。Aluminum alloy usually refers to an alloy containing copper, zinc, manganese, silicon, magnesium and other elements. Compared with ordinary carbon steel, aluminum alloy has lighter weight and corrosion resistance, but the corrosion resistance is still not as good as pure aluminum. Aluminum alloys are widely used, including various engineering structures, or used in modern aircraft, and in response to different characteristics and requirements, different series and multiple aluminum alloy systems containing different elements have been developed.

例如中華民國專利第 TW  I692530 號發明專利為一種鋁合金粉末及其製造方法、鋁合金製品及其製造方法,其進行一熔煉製程;使含有鋁(Al)、鎳(Ni)、銅(Cu)、鐵(Fe)、錳(Mn)、鋯(Zr)、鉻(Cr)及矽(Si)的各個材料熔化成一鋁合金熔湯,並進一步製成鋁合金粉末,上述鋁合金添加鐵(Fe)及矽(Si)提升強度及耐熱性同時,需另添加錳(Mn) 鉻(Cr) 調整鐵(Fe)在鋁合金中的微結構,以提升延展性及抗拉強度,且上述鋁合金熱處理時另需控制矽(Si)組成含量,避免形成粗大矽顆粒產生,導致鋁合金抗拉強度降低。前案的化學成分的範圍與本案有差異,且沒有針對冶金機理以及高溫應用特點進行說明。For example, the Republic of China Patent No. TW I692530 Invention Patent is an aluminum alloy powder and its manufacturing method, aluminum alloy products and its manufacturing method, which undergo a smelting process; making it contain aluminum (Al), nickel (Ni), and copper (Cu) , Iron (Fe), manganese (Mn), zirconium (Zr), chromium (Cr) and silicon (Si) are melted into an aluminum alloy molten soup, and further made into aluminum alloy powder, the above-mentioned aluminum alloy is added with iron (Fe ) And silicon (Si) to improve strength and heat resistance. At the same time, manganese (Mn) and chromium (Cr) must be added to adjust the microstructure of iron (Fe) in aluminum alloys to improve ductility and tensile strength. It is also necessary to control the content of silicon (Si) during the heat treatment to avoid the formation of coarse silicon particles, which will reduce the tensile strength of the aluminum alloy. The scope of the chemical composition of the previous case is different from that of this case, and there is no explanation for the metallurgical mechanism and high-temperature application characteristics.

例如中國專利第 CN105039798 B 號發明專利為一種具有改進的性質的鋁合金部件,主要為鋁(Al)矽(Si)合金,主要組成包含銅(Cu)、錳(Mn)、鐵(Fe)、鋅(Zn)、鎂(Mg)、鎳(Ni)、鉻(Cr)、錫(Sn)、鈦(Ti),添加矽主要為增加合金流動性,添加鐵(Fe)及錳(Mn)雖會增加強度,但鐵(Fe)與鋁(Al)矽(Si) 鎂(Mg)間金屬化合物會嚴重降低合金的拉伸強度及延展性,熱處理時須控制其組成含量。For example, the Chinese patent No. CN105039798 B invention patent is an aluminum alloy part with improved properties, mainly aluminum (Al) silicon (Si) alloy, and the main composition includes copper (Cu), manganese (Mn), iron (Fe), Zinc (Zn), magnesium (Mg), nickel (Ni), chromium (Cr), tin (Sn), titanium (Ti), the addition of silicon is mainly to increase the fluidity of the alloy, although the addition of iron (Fe) and manganese (Mn) It will increase the strength, but the metal compound between iron (Fe) and aluminum (Al) silicon (Si) magnesium (Mg) will seriously reduce the tensile strength and ductility of the alloy. The composition content must be controlled during heat treatment.

例如中國專利第 CN106513638 B 號發明專利為一種2024鋁合金鑄造方法,主要組成包含銅(Cu)、錳(Mn)、 鈦(Ti)、 鎂(Mg)、鋅(Zn)、 鎳(Ni)、鐵(Fe)、矽(Si),其鑄造步驟係以銅(Cu)、錳(Mn)、鈦(Ti)作為中間合金進行熔煉,為了達成較佳的硬度、延展性與抗拉伸強度,最後再添加鎂(Mg)而製成2024鋁合金。再者,2024鋁合金的銅含量更是要精確控制,否則材料強度與疲勞特性都無法滿足航太應用要求,更嚴重的話,連鹽霧試驗也無法過認證。For example, the Chinese Patent No. CN106513638 B invention patent is a 2024 aluminum alloy casting method, the main composition includes copper (Cu), manganese (Mn), titanium (Ti), magnesium (Mg), zinc (Zn), nickel (Ni), For iron (Fe) and silicon (Si), the casting step is smelted with copper (Cu), manganese (Mn), and titanium (Ti) as master alloys. In order to achieve better hardness, ductility and tensile strength, Finally, magnesium (Mg) is added to produce 2024 aluminum alloy. In addition, the copper content of 2024 aluminum alloy must be precisely controlled, otherwise the material strength and fatigue characteristics will not meet the requirements of aerospace applications. If it is more serious, even the salt spray test will not be certified.

今,發明人有鑑於目前的鋁合金的於使用上仍具有多處缺失,於是乃一本孜孜不倦之精神,並藉由其豐富專業知識及多年之實務經驗所輔佐,而加以改善,並據此研創出本發明。Today, the inventors have made improvements in view of the fact that the current aluminum alloys still have many defects in the use, so he is a tireless spirit, assisted by his wealth of professional knowledge and years of practical experience, and accordingly. Research and create the present invention.

本發明關於一種鋁鎳銅合金及其製造方法,鋁鎳銅合金包含4.0-8.0 wt.%之鎳,2.0-4.0 wt.%之銅,1.0-2.0 wt.%之鋯,0.5-1.0 wt.%之鉻,以及剩餘重量百分比之鋁;其製造方法包含:步驟一,將一鋁鎳母合金(Al-10 wt.%Ni)融化,並且於一第一作用溫度作用 (750度-800度),以獲得一含有Al 3Ni的第一合金湯;步驟二,於該第一合金湯中添加一鋁銅母合金(Al-30 wt.%Cu),於一第二溫度作用(800度-850度),以獲得一含有鋁鎳銅(Al-Ni-Cu)合金的第二合金湯,其中該鋁鎳銅合金包含4-8 wt.%的鎳、2.0-4.0 wt.%的銅以及剩餘百分比的鋁;步驟三,於該第二合金湯內加入一鋁鋯母合金(Al-30 wt.% Zr),於一第三溫度作用(850度-900度),以獲得一含有鋁鎳銅鋯(Al-Ni-Cu-Zr)合金的第三合金湯,其中該鋁鎳銅鋯合金係包含1.0-2.0 wt.%之鋯、2.0-4.0 wt.%之銅、4.0-8.0 wt.%之鎳以及剩餘百分比之鋁;步驟四,該第三合金湯中加入一鋁鉻(Al-2.0 wt.% Cr)母合金,於一第四溫度作用(900度-950度),以獲得一含有鋁鎳銅鋯鉻(Al-Ni-Cu-Zr-Cr)的第四合金湯,其中該鋁鎳銅鋯鉻合金係包含0.5-1.0 wt.%之鉻、1.0-2.0 wt.%之鋯、2.0-4.0 wt.%之銅、4.0-8.0 wt.%之鎳以及剩餘百分比之鋁;以及步驟五,將該第四合金湯冷卻,以獲得該鋁鎳銅合金。 The present invention relates to an aluminum-nickel-copper alloy and its manufacturing method. The aluminum-nickel-copper alloy contains 4.0-8.0 wt.% nickel, 2.0-4.0 wt.% copper, 1.0-2.0 wt.% zirconium, and 0.5-1.0 wt. % Chromium, and the remaining weight percentage of aluminum; its manufacturing method includes: Step 1, melting an aluminum-nickel master alloy (Al-10 wt.% Ni), and applying it at a first temperature (750°-800°C) ) To obtain a first alloy broth containing Al 3 Ni; step two, add an aluminum copper master alloy (Al-30 wt.% Cu) to the first alloy broth, and apply it at a second temperature (800 degrees -850 degrees) to obtain a second alloy soup containing Al-Ni-Cu alloy, wherein the Al-Ni-Cu alloy contains 4-8 wt.% nickel and 2.0-4.0 wt.% copper And the remaining percentage of aluminum; step three, add an aluminum-zirconium master alloy (Al-30 wt.% Zr) to the second alloy soup, and apply it at a third temperature (850°-900°C) to obtain a The third alloy soup of Al-Ni-Cu-Zr alloy, wherein the Al-Ni-Cu-Zr alloy contains 1.0-2.0 wt.% zirconium, 2.0-4.0 wt.% copper, 4.0-8.0 wt.% nickel and the remaining percentage of aluminum; step four, add an aluminum-chromium (Al-2.0 wt.% Cr) master alloy to the third alloy broth, and apply it at a fourth temperature (900 degrees -950 degrees), To obtain a fourth alloy soup containing aluminum nickel copper zirconium chromium (Al-Ni-Cu-Zr-Cr), wherein the aluminum nickel copper zirconium chromium alloy system contains 0.5-1.0 wt.% of chromium, 1.0-2.0 wt. % Of zirconium, 2.0-4.0 wt.% of copper, 4.0-8.0 wt.% of nickel, and the remaining percentage of aluminum; and step 5, cooling the fourth alloy broth to obtain the aluminum-nickel-copper alloy.

於本發明之一實施例中,鋁鎳銅(Al-Ni-Cu)合金的第二相包含Al 3Ni、Al 2Cu或Al 3(Cu)Ni其中至少之一。 In an embodiment of the present invention, the second phase of the Al-Ni-Cu alloy includes at least one of Al 3 Ni, Al 2 Cu, or Al 3 (Cu)Ni.

於本發明之一實施例中,鋁鎳銅鋯(Al-Ni-Cu-Zr)合金的第二相包含Al 3Ni、Al 2Cu,、Al 3(Cu)Ni與Al 3Zr其中至少之一。 In an embodiment of the present invention, the second phase of the aluminum nickel copper zirconium (Al-Ni-Cu-Zr) alloy includes at least one of Al 3 Ni, Al 2 Cu, Al 3 (Cu)Ni and Al 3 Zr one.

於本發明之一實施例中,鋁鎳銅鋯鉻(Al-Ni-Cu-Zr-Cr)合金的第二相係包含Al 3Ni、Al 2Cu、Al 3(Cu)Ni、Al 3Zr、Al 7Cr、Al 3(Cr)Zr與AlCuCr其中至少之一。 In an embodiment of the present invention, the second phase system of the Al-Ni-Cu-Zr-Cr (Al-Ni-Cu-Zr-Cr) alloy includes Al 3 Ni, Al 2 Cu, Al 3 (Cu)Ni, Al 3 Zr , At least one of Al 7 Cr, Al 3 (Cr)Zr and AlCuCr.

於本發明之一實施例中,第一作用溫度為750-800℃、該第二作用溫度為800-850℃,該第三作用溫度為850-900℃,以及該第四作用溫度為900-950℃。In an embodiment of the present invention, the first action temperature is 750-800°C, the second action temperature is 800-850°C, the third action temperature is 850-900°C, and the fourth action temperature is 900- 950°C.

於本發明之一實施例中,鋁鎳銅合金的極限抗拉強度介於550-800 MPa,硬度介於90-100 HFR,旋轉疲勞壽命次數介於30000-40000次。In an embodiment of the present invention, the ultimate tensile strength of the aluminum nickel copper alloy is between 550-800 MPa, the hardness is between 90-100 HFR, and the number of rotation fatigue life is between 30,000 and 40,000.

於本發明之一實施例中,鋁鎳銅合金於200℃高溫抗拉強度介350-400 MPa。In an embodiment of the present invention, the tensile strength of the aluminum-nickel-copper alloy at a high temperature of 200°C is between 350-400 MPa.

藉此,以本發明藉由超高溫固溶化熱處理的方式,製得一鋁鎳銅合金,含有五種金屬元素 與七種穩定析出相,且具有優異機械性質與耐疲勞壽命。Thereby, in the present invention, an aluminum nickel copper alloy is prepared by the ultra-high temperature solution heat treatment method, which contains five metal elements and seven stable precipitation phases, and has excellent mechanical properties and fatigue life.

為令本發明之技術手段其所能達成之效果,能夠有更完整且清楚的揭露,茲詳細說明如下,請一併參閱揭露之圖式。In order to enable a more complete and clear disclosure of the effects that can be achieved by the technical means of the present invention, the detailed description is as follows, please also refer to the disclosure diagrams.

本發明關於一種鋁鎳銅合金及其製造方法,本發明所製造的鋁鎳銅合金包含4.0-8.0 wt.%之鎳,2.0-4.0 wt.%之銅,1.0-2.0 wt.%之鋯,0.5-1.0 wt.%之鉻,以及剩餘重量百分比之鋁;其極限抗拉強度介於550-800 MPa,硬度介於90-100 HFR,旋轉疲勞壽命次數介於30000-40000次,且其於200℃高溫抗拉強度介350-400 MPa。The present invention relates to an aluminum-nickel-copper alloy and its manufacturing method. The aluminum-nickel-copper alloy manufactured by the present invention contains 4.0-8.0 wt.% nickel, 2.0-4.0 wt.% copper, and 1.0-2.0 wt.% zirconium. 0.5-1.0 wt.% of chromium, and the remaining weight percentage of aluminum; its ultimate tensile strength is between 550-800 MPa, hardness is between 90-100 HFR, and the number of rotation fatigue life is between 30,000 and 40,000, and its The high temperature tensile strength of 200℃ is between 350-400 MPa.

本發明鋁鎳銅合金的製造方法如下:The manufacturing method of the aluminum nickel copper alloy of the present invention is as follows:

步驟一:先將一鋁鎳母合金(Al-10 wt.%Ni)以750-800℃融化,並且於一第一作用溫度作用,以獲得一含有Al 3Ni的第一合金湯,於本實施例中,是將鋁鎳母合金於750-800℃作用10分鐘。 Step 1: First melt an aluminum-nickel master alloy (Al-10 wt.%Ni) at 750-800°C and apply it at a first temperature to obtain a first alloy broth containing Al 3 Ni. In the embodiment, the aluminum-nickel master alloy is exposed to 750-800°C for 10 minutes.

步驟二:接著,在第一合金湯中,添加計算後的鋁銅母合金(Al-30 wt.%Cu),並於第二溫度作用,以獲得一含有鋁鎳銅(Al-Ni-Cu)合金的第二合金湯,其中該鋁鎳銅合金包含4-8 wt.%的鎳、2.0-4.0 wt.%的銅以及剩餘百分比的鋁,且第二相包含Al 3Ni 與Al 2Cu 及Al 3(Cu)Ni其中至少之一;於本實施例中,是將加入鋁銅母合金的第一合金湯,於800-850℃作用10分鐘,以獲得第二合金湯;此步驟中,因為鋁與銅的化學親和力高,所以會形成熱穩定佳的Al 2Cu,故這個步驟是將共晶組成的鋁銅母合金(Al-30 wt.%Cu)天加入鋁鎳母合金(Al-10 wt.% Ni)中。 Step 2: Next, in the first alloy broth, add the calculated aluminum-copper master alloy (Al-30 wt.% Cu) and apply it at the second temperature to obtain an aluminum-nickel-copper (Al-Ni-Cu) ) The second alloy soup of the alloy, wherein the aluminum-nickel-copper alloy contains 4-8 wt.% of nickel, 2.0-4.0 wt.% of copper, and the remaining percentage of aluminum, and the second phase contains Al 3 Ni and Al 2 Cu And at least one of Al 3 (Cu)Ni; in this embodiment, the first alloy broth added with the aluminum-copper master alloy is reacted at 800-850°C for 10 minutes to obtain the second alloy broth; in this step Because the chemical affinity of aluminum and copper is high, it will form Al 2 Cu with good thermal stability. Therefore, this step is to add a eutectic aluminum-copper master alloy (Al-30 wt.% Cu) to the aluminum-nickel master alloy ( Al-10 wt.% Ni).

步驟三:再於第二合金湯內,添加計算後的共晶組成的鋁鋯母合金(Al-30 wt.% Zr),並於第三溫度作用,以獲得一含有鋁鎳銅鋯(Al-Ni-Cu-Zr)合金的第三合金湯,其中該鎳銅鋯合金包含1.0-2.0 wt.%之鋯、2.0-4.0 wt.%之銅、4.0-8.0 wt.%之鎳以及剩餘百分比之鋁,且鎳銅鋯合金的第二相包含Al 3Ni、Al 2Cu、Al 3(Cu)Ni與Al 3Zr其中至少之一;於本實施例中,是將加入鋁鋯母合金的第二合金湯,於850-900℃作用10分鐘,以獲得第三合金湯; Step 3: Add the aluminum-zirconium master alloy (Al-30 wt.% Zr) with the calculated eutectic composition to the second alloy soup, and apply it at the third temperature to obtain an aluminum-nickel-copper-zirconium (Al -Ni-Cu-Zr) alloy third alloy soup, wherein the nickel-copper-zirconium alloy contains 1.0-2.0 wt.% of zirconium, 2.0-4.0 wt.% of copper, 4.0-8.0 wt.% of nickel and the remaining percentage The second phase of the nickel-copper-zirconium alloy contains at least one of Al 3 Ni, Al 2 Cu, Al 3 (Cu)Ni and Al 3 Zr; in this embodiment, the aluminum-zirconium master alloy is added The second alloy soup, act at 850-900°C for 10 minutes to obtain the third alloy soup;

步驟四:於第三合金湯中,添加計算後的鋁鉻(Al-2.0 wt.% Cr)母合金,並於第四溫度作用,以獲得一含有鋁鎳銅鋯鉻(Al-Ni-Cu-Zr-Cr)的第四合金湯,其中鋁鎳銅鋯鉻合金係包含0.5-1.0 wt.%之鉻、1.0-2.0 wt.%之鋯、2.0-4.0 wt.%之銅、4.0-8.0 wt.%之鎳以及剩餘百分比之鋁,且鋁鎳銅鋯鉻合金的第二相包含Al 3Ni,Al 2Cu,Al 3(Cu)Ni,Al 3Zr,Al 7Cr,Al 3(Cr)Zr與AlCuCr其中至少之一;於本實施例中,是將加入鋁鉻母合金的第三合金湯,於900-950℃作用10分鐘,以獲得第四合金湯;以及 Step 4: In the third alloy soup, add the calculated aluminum-chromium (Al-2.0 wt.% Cr) master alloy and apply it at the fourth temperature to obtain an aluminum-nickel-copper-zirconium-chromium (Al-Ni-Cu) -Zr-Cr) the fourth alloy soup, in which the aluminum-nickel-copper-zirconium-chromium alloy contains 0.5-1.0 wt.% of chromium, 1.0-2.0 wt.% of zirconium, 2.0-4.0 wt.% of copper, 4.0-8.0 wt.% of nickel and the remaining percentage of aluminum, and the second phase of the aluminum nickel copper zirconium chromium alloy contains Al 3 Ni, Al 2 Cu, Al 3 (Cu)Ni, Al 3 Zr, Al 7 Cr, Al 3 (Cr ) At least one of Zr and AlCuCr; in this embodiment, the third alloy broth added with aluminum-chromium master alloy is treated at 900-950°C for 10 minutes to obtain the fourth alloy broth; and

步驟五:將該第四合金湯澆鑄冷卻,以獲得本案之鋁鎳銅合金;本實施例中,所製得的鋁鎳銅合金包含4.0 wt.% 的鋁鎳(Al-Ni),Cu: 2.0 wt.%的銅(Cu),1.0 wt.%的鋯(Zr),0.5 wt.%的鉻(Cr),以及剩餘百分比的鋁;並將此製得的鋁鎳銅合金,進行性能測試。Step 5: Casting and cooling the fourth alloy broth to obtain the aluminum-nickel-copper alloy of this case; in this embodiment, the prepared aluminum-nickel-copper alloy contains 4.0 wt.% of aluminum-nickel (Al-Ni), Cu: 2.0 wt.% of copper (Cu), 1.0 wt.% of zirconium (Zr), 0.5 wt.% of chromium (Cr), and the remaining percentage of aluminum; the aluminum-nickel-copper alloy prepared from this was tested for performance .

其中,步驟二所獲得的鋁鎳銅(Al-Ni-Cu)合金中,鎳含量最少為4.0 wt.%,此時會有大量的第二相的Al 3Ni生成;又若鋁鎳銅合金中的鎳含量高於8.0 wt.%時,鋁元素的結構會由原本的面心立方晶格 (Face Center Cubic,FCC)轉變為體心立方晶格 (Body-Centered Cubic,BCC),容易造成凝固偏析,進而會弱化機械性質;另,鋁鎳銅(Al-Ni-Cu)合金中,銅含量至少為2.0 wt.%,所生成的Al 2Cu結構才會穩定,若銅含量高於4.0 wt.%,Al 2Cu 會影響Al 3Ni的分佈型態,也會使所製造鋁鎳銅合金被誤認成2000系的鋁銅合金。 Among them, in the aluminum nickel copper (Al-Ni-Cu) alloy obtained in step 2, the nickel content is at least 4.0 wt.%, and a large amount of second phase Al 3 Ni will be generated at this time; and if the aluminum nickel copper alloy When the nickel content is higher than 8.0 wt.%, the structure of aluminum element will change from the original face centered cubic lattice (Face Center Cubic, FCC) to body-centered cubic lattice (Body-Centered Cubic, BCC), which is easy to cause Solidification segregation will weaken the mechanical properties; in addition, in Al-Ni-Cu alloys, the copper content is at least 2.0 wt.%, and the resulting Al 2 Cu structure will be stable. If the copper content is higher than 4.0 wt.%, Al 2 Cu will affect the distribution pattern of Al 3 Ni, and the manufactured Al-Ni-Cu alloy will be mistaken for 2000 series Al-Cu alloy.

又,步驟三中的鋁鋯母合金包含了屬於穩定相的Al 3Zr、以及屬於介穩相的Al 2Zr、Al 3Zr 2與AlZr;又步驟三獲得的鋁鎳銅鋯(Al-Ni-Cu-Zr)合金,其鋯含量不可高於2.0 wt.%,否則容易發生晶界脆化效應。 In addition, the aluminum-zirconium master alloy in step three contains Al 3 Zr belonging to the stable phase, and Al 2 Zr, Al 3 Zr 2 and AlZr belonging to the metastable phase; and the aluminum nickel copper zirconium (Al-Ni -Cu-Zr) alloy, the zirconium content should not be higher than 2.0 wt.%, otherwise the grain boundary embrittlement effect will easily occur.

另,步驟四的鋁鎳銅鋯鉻(Al-Ni-Cu-Zr-Cr),其鉻含量不可以高於1.0 wt.%,所生成的介金屬化合物才會是Al 7Cr。 In addition, for the aluminum nickel copper zirconium chromium (Al-Ni-Cu-Zr-Cr) in step 4, the chromium content cannot be higher than 1.0 wt.%, and the intermetallic compound produced will be Al 7 Cr.

接著,再將上述製造的鋁鎳銅合金,於510-570℃高溫作用1小時之後,再於175℃作用6小時,再測試鋁鎳銅合金的機械性質;請參見表一,為不同處理後鋁鎳銅合金的機械性質測試結果,包含測試極限抗拉強度(Ultimate Tensile Strength, UTS)、TE( Total Elonglation, TE)、硬度以及旋轉疲勞壽命,且旋轉疲勞壽命的測試,是使用長度13.0 cm、直徑6 mm的樣品,於轉速3000 rpm、壓力50 kg/mm 2的測試條件進行測試。根據表一,以570℃處理1 hr、再以175℃處理6 hr的鋁鎳銅合金,具有最佳的極限抗拉強度以及旋轉疲勞壽命。 Then, the aluminum-nickel-copper alloy manufactured above was subjected to a high temperature of 510-570°C for 1 hour, and then subjected to a temperature of 175°C for 6 hours, and then the mechanical properties of the aluminum-nickel copper alloy were tested; please refer to Table 1, after different treatments The test results of the mechanical properties of the aluminum-nickel-copper alloy, including the ultimate tensile strength (UTS), TE (Total Elonglation, TE), hardness and rotation fatigue life, and the rotation fatigue life test, the use length is 13.0 cm , A sample with a diameter of 6 mm is tested under the test conditions of 3000 rpm and 50 kg/mm 2 pressure. According to Table 1, the aluminum-nickel-copper alloy treated at 570°C for 1 hr and then at 175°C for 6 hr has the best ultimate tensile strength and rotation fatigue life.

表一   UTS(MPa) TE(%) 硬度(HFR) 旋轉疲勞壽命(N)次數 510℃(1 hr)+ 175℃(6 hr) 539 12.1 105 21082 530℃(1 hr)+ 175℃(6 hr) 556 11.6 100 24450 550℃(1 hr)+ 175℃(6 hr) 562 10.8 96 26386 570℃(1 hr)+ 175℃(6 hr) 588 10.2 95 31075 Table I UTS(MPa) TE(%) Hardness (HFR) Rotation fatigue life (N) times 510℃(1 hr)+ 175℃(6 hr) 539 12.1 105 21082 530℃(1 hr)+ 175℃(6 hr) 556 11.6 100 24450 550℃(1 hr)+ 175℃(6 hr) 562 10.8 96 26386 570℃(1 hr)+ 175℃(6 hr) 588 10.2 95 31075

再將以570℃處理1 hr、再以175℃處理6 hr後的鋁鎳銅合金,與目前商用6061鋁合金與航太級2024鋁合金,進行機械性質的比較;請參見表二,本案製造的鋁鎳銅合金,與現有的鋁合金相比,也具有最佳的極限抗拉強度以及旋轉疲勞壽命。Then compare the mechanical properties of the aluminum-nickel-copper alloy treated at 570°C for 1 hr and then at 175°C for 6 hours with the current commercial 6061 aluminum alloy and aerospace-grade 2024 aluminum alloy; please refer to Table 2, manufactured in this case Compared with the existing aluminum alloy, the aluminum nickel copper alloy also has the best ultimate tensile strength and rotation fatigue life.

表二   UTS(MPa) TE(%) 硬度(HFR) 旋轉疲勞壽命(N)次數 570℃(1 hr)+ 175℃(6 hr) 588 10.2 95 31075 商用6061鋁合金(T6) 320 20.2 72 16578 航太2024鋁合金(T6) 520 10.8 102 27622 Table II UTS(MPa) TE(%) Hardness (HFR) Rotation fatigue life (N) times 570℃(1 hr)+ 175℃(6 hr) 588 10.2 95 31075 Commercial 6061 aluminum alloy (T6) 320 20.2 72 16578 Aerospace 2024 aluminum alloy (T6) 520 10.8 102 27622

再將以570℃處理1 hr、再以175℃處理6 hr後的鋁鎳銅合金,與目前商用6061鋁合金與航太2024鋁合金,進行高溫拉伸強度、鹽霧試驗以及耐磨耗性的比較;其中耐磨耗性(g/g)是指單位噴砂量的材料重量損失,其數值愈低,表示耐磨耗性能愈優異,進行測試時,測試樣本的尺寸為48 x 28 x 3 mm 3,使用的氧化鋁顆粒大小為300 μm,沖蝕壓力為3 kg/mm 2;根據表三的試驗結果,本案之鋁鎳銅合金於200℃高溫抗拉測試中,具有最高的200℃抗拉強度;又,經過72小時的鹽霧測試,本案之鋁鎳銅合金表面並沒有改變,但是商用6061鋁合金與2024鋁合金的表面會觀察到鏽斑;耐磨耗性的結果也顯示,本案之鋁鎳銅合金具有最佳的耐磨性。 The aluminum-nickel-copper alloy treated at 570°C for 1 hr and 175°C for 6 hr, and the current commercial 6061 aluminum alloy and aerospace 2024 aluminum alloy, were subjected to high temperature tensile strength, salt spray test and wear resistance The abrasion resistance (g/g) refers to the material weight loss per unit of sandblasting. The lower the value, the better the abrasion resistance. When testing, the size of the test sample is 48 x 28 x 3 mm 3 , the alumina particle size used is 300 μm, and the erosion pressure is 3 kg/mm 2 ; according to the test results in Table 3, the aluminum-nickel-copper alloy in this case has the highest 200℃ tensile test at 200℃ Tensile strength; after 72 hours of salt spray test, the surface of the aluminum-nickel-copper alloy in this case has not changed, but rust spots will be observed on the surface of commercial 6061 aluminum alloy and 2024 aluminum alloy; the results of wear resistance also show that, The aluminum-nickel-copper alloy in this case has the best wear resistance.

表三   200℃高溫抗拉強度(MPa) 鹽霧試驗(72小時) 耐磨耗性 (g/g)(x 10 -5) 570℃(1 hr)+ 175℃(6 hr) 355 表面正常 2.2 商用6061鋁合金(T6) 188 表面出現鏽斑 4.5 商用2024鋁合金(T6) 316 表面出現鏽斑 3.1 Table Three 200℃ high temperature tensile strength (MPa) Salt spray test (72 hours) Wear resistance (g/g) (x 10 -5 ) 570℃(1 hr)+ 175℃(6 hr) 355 Surface normal 2.2 Commercial 6061 aluminum alloy (T6) 188 Rust spots appear on the surface 4.5 Commercial 2024 aluminum alloy (T6) 316 Rust spots appear on the surface 3.1

另,請參見第一圖,為本發明製造的鋁鎳銅合金,於510-570℃作用1小時、再於175℃作用6小時之後,以顯微鏡於200倍放大倍率下,觀察到的顯微組織特徵。In addition, please refer to the first figure, which is the aluminum-nickel-copper alloy manufactured by the present invention. After acting at 510-570°C for 1 hour, and then at 175°C for 6 hours, the microscope was observed under 200 times magnification. Organizational characteristics.

綜上,本發明之鋁鎳銅合金,藉由超高溫固溶化熱處理與人工時效處理,所獲得的產物具有優異機械性質與耐疲勞壽命,In summary, the aluminum-nickel-copper alloy of the present invention has excellent mechanical properties and fatigue life through ultra-high temperature solution heat treatment and artificial aging treatment.

綜上所述,本發明鋁鎳銅合金及其製造方法,的確能藉由上述所揭露之實施例,達到所預期之使用功效,且本發明亦未曾公開於申請前,誠已完全符合專利法之規定與要求。爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。In summary, the aluminum-nickel-copper alloy of the present invention and its manufacturing method can indeed achieve the expected use effect through the embodiments disclosed above, and the present invention has not been disclosed before the application, and it is in full compliance with the patent law. The regulations and requirements. If you file an application for a patent for invention in accordance with the law, you are kindly requested to review and grant a quasi-patent.

惟,上述所揭之說明,僅為本發明之較佳實施例,非為限定本發明之保護範圍;其;大凡熟悉該項技藝之人士,其所依本發明之特徵範疇,所作之其它等效變化或修飾,皆應視為不脫離本發明之設計範疇。However, the above-mentioned explanations are only the preferred embodiments of the present invention, and are not intended to limit the scope of protection of the present invention; it; those who are familiar with the art, based on the characteristic scope of the present invention, etc. The effect changes or modifications should be regarded as not departing from the design scope of the present invention.

without

第一圖:本發明鋁鎳銅合金之顯微組織圖。Figure 1: The microstructure of the aluminum-nickel-copper alloy of the present invention.

Claims (8)

一種鋁鎳銅合金的製造方法,係包含: 步驟一:將一鋁鎳母合金(Al-10 wt.%Ni)融化,並且於一第一作用溫度作用(750-800℃),以獲得一含有Al 3Ni的第一合金湯; 步驟二:於該第一合金湯中添加一鋁銅母合金(Al-30 wt.%Cu),於一第二溫度作用(800-850℃),以獲得一含有鋁鎳銅(Al-Ni-Cu)合金的第二合金湯,其中該鋁鎳銅合金包含4-8 wt.%的鎳、2.0-4.0 wt.%的銅以及剩餘百分比的鋁; 步驟三:於該第二合金湯內加入一鋁鋯母合金(Al-30 wt.% Zr),於一第三溫度作用(850-900℃),以獲得一含有鋁鎳銅鋯(Al-Ni-Cu-Zr)合金的第三合金湯,其中該鋁鎳銅鋯合金係包含1.0-2.0 wt.%之鋯、2.0-4.0 wt.%之銅、4.0-8.0 wt.%之鎳以及剩餘百分比之鋁;以及 步驟四:該第三合金湯中加入一鋁鉻(Al-2.0 wt.% Cr)母合金,於一第四溫度作用(900-950℃),以獲得一含有鋁鎳銅鋯鉻(Al-Ni-Cu-Zr-Cr)的第四合金湯,其中該鋁鎳銅鋯鉻合金係包含0.5-1.0 wt.%之鉻、1.0-2.0 wt.%之鋯、2.0-4.0 wt.%之銅、4.0-8.0 wt.%之鎳以及剩餘百分比之鋁;以及 步驟五:將該第四合金湯澆鑄冷卻,以獲得該鋁鎳銅合金。 An aluminum-nickel-copper alloy manufacturing method includes: Step 1: Melting an aluminum-nickel master alloy (Al-10 wt.% Ni) and applying it at a first temperature (750-800°C) to obtain a The first alloy soup containing Al 3 Ni; Step 2: Add an aluminum-copper master alloy (Al-30 wt.% Cu) to the first alloy soup, and apply it at a second temperature (800-850°C) to Obtaining a second alloy soup containing an Al-Ni-Cu alloy, wherein the Al-Ni-Cu alloy contains 4-8 wt.% nickel, 2.0-4.0 wt.% copper, and the remaining percentage of aluminum; Step 3: Add an aluminum-zirconium master alloy (Al-30 wt.% Zr) to the second alloy broth, and apply it at a third temperature (850-900°C) to obtain an aluminum-nickel-copper-zirconium (Al- The third alloy soup of Ni-Cu-Zr) alloy, wherein the aluminum-nickel-copper-zirconium alloy contains 1.0-2.0 wt.% of zirconium, 2.0-4.0 wt.% of copper, 4.0-8.0 wt.% of nickel, and the remainder The percentage of aluminum; and Step 4: Add an aluminum-chromium (Al-2.0 wt.% Cr) master alloy to the third alloy broth, and apply it at a fourth temperature (900-950°C) to obtain a copper containing aluminum, nickel, and copper The fourth alloy soup of Al-Ni-Cu-Zr-Cr, wherein the Al-Ni-Cu-Zr-Cr alloy contains 0.5-1.0 wt.% chromium, 1.0-2.0 wt.% zirconium, 2.0-4.0 wt.% copper, 4.0-8.0 wt.% nickel, and the remaining percentage of aluminum; and step five: casting and cooling the fourth alloy broth to obtain the aluminum-nickel-copper alloy. 如請求項1所述之製造方法,其中該鋁鎳銅(Al-Ni-Cu)合金的第二相包含Al 3Ni、Al 2Cu或Al 3(Cu)Ni其中至少之一。 The manufacturing method according to claim 1, wherein the second phase of the Al-Ni-Cu alloy contains at least one of Al 3 Ni, Al 2 Cu, or Al 3 (Cu)Ni. 如請求項1所述之製造方法,其中該鋁鎳銅鋯(Al-Ni-Cu-Zr)合金的第二相包含Al 3Ni、Al 2Cu,、Al 3(Cu)Ni與Al 3Zr其中至少之一。 The manufacturing method according to claim 1, wherein the second phase of the aluminum nickel copper zirconium (Al-Ni-Cu-Zr) alloy includes Al 3 Ni, Al 2 Cu, Al 3 (Cu)Ni, and Al 3 Zr At least one of them. 如請求項1所述之製造方法,其中該鋁鎳銅鋯鉻(Al-Ni-Cu-Zr-Cr)合金的第二相係包含Al 3Ni、Al 2Cu、Al 3(Cu)Ni、Al 3Zr、Al 7Cr、Al 3(Cr)Zr與AlCuCr其中至少之一者。 The manufacturing method according to claim 1, wherein the second phase system of the Al-Ni-Cu-Zr-Cr (Al-Ni-Cu-Zr-Cr) alloy includes Al 3 Ni, Al 2 Cu, Al 3 (Cu)Ni, At least one of Al 3 Zr, Al 7 Cr, Al 3 (Cr)Zr, and AlCuCr. 如請求項1所述之製造方法,其中該第一作用溫度為750-800℃、該第二作用溫度為800-850℃,該第三作用溫度為850-900℃,以及該第四作用溫度為900-950℃。The manufacturing method according to claim 1, wherein the first action temperature is 750-800°C, the second action temperature is 800-850°C, the third action temperature is 850-900°C, and the fourth action temperature It is 900-950°C. 一種由請求項1-5所述任一項之製造方法所製得的鋁鎳銅合金,係包含4.0-8.0 wt.%之鎳,2.0-4.0 wt.%之銅,1.0-2.0 wt.%之鋯,0.5-1.0 wt.%之鉻,以及剩餘重量百分比之鋁。An aluminum-nickel-copper alloy prepared by any one of claims 1-5, containing 4.0-8.0 wt.% nickel, 2.0-4.0 wt.% copper, and 1.0-2.0 wt.% The zirconium, 0.5-1.0 wt.% of chromium, and the remaining weight percentage of aluminum. 如請求項6所述之鋁鎳銅合金,其極限抗申強度介於550-800 MPa,硬度介於90-100 HFR,旋轉疲勞壽命次數介於30000-40000次。The aluminum-nickel-copper alloy described in claim 6, the ultimate tensile strength is between 550-800 MPa, the hardness is between 90-100 HFR, and the number of rotation fatigue life is between 30,000 and 40,000. 如請求項6所述之鋁鎳銅合金,其於200℃高溫抗拉強度介350-400 MPa。The aluminum-nickel-copper alloy described in claim 6 has a high temperature tensile strength of 350-400 MPa at 200°C.
TW110113807A 2021-04-16 2021-04-16 Aluminum-nickel-copper alloy and manufacturing method thereof TWI741962B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110113807A TWI741962B (en) 2021-04-16 2021-04-16 Aluminum-nickel-copper alloy and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110113807A TWI741962B (en) 2021-04-16 2021-04-16 Aluminum-nickel-copper alloy and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI741962B true TWI741962B (en) 2021-10-01
TW202242151A TW202242151A (en) 2022-11-01

Family

ID=80782437

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113807A TWI741962B (en) 2021-04-16 2021-04-16 Aluminum-nickel-copper alloy and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI741962B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2706680A (en) * 1952-02-27 1955-04-19 Aluminum Co Of America Aluminum base alloy
US5053085A (en) * 1988-04-28 1991-10-01 Yoshida Kogyo K.K. High strength, heat-resistant aluminum-based alloys
WO1994012677A1 (en) * 1992-11-20 1994-06-09 'techma' Gesellschaft Mit Beschränkter Haftung Aluminium alloy
WO2016132994A1 (en) * 2015-02-20 2016-08-25 日本軽金属株式会社 Aluminum alloy worked material, and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2706680A (en) * 1952-02-27 1955-04-19 Aluminum Co Of America Aluminum base alloy
US5053085A (en) * 1988-04-28 1991-10-01 Yoshida Kogyo K.K. High strength, heat-resistant aluminum-based alloys
WO1994012677A1 (en) * 1992-11-20 1994-06-09 'techma' Gesellschaft Mit Beschränkter Haftung Aluminium alloy
WO2016132994A1 (en) * 2015-02-20 2016-08-25 日本軽金属株式会社 Aluminum alloy worked material, and manufacturing method thereof

Also Published As

Publication number Publication date
TW202242151A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP3027200B2 (en) Oxidation resistant low expansion alloy
Noda et al. Silicide precipitation strengthened TiAl
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
JP2005530046A (en) Creep-resistant magnesium alloy
JP2008520826A (en) Alloy based on titanium aluminum
TWI557233B (en) Nilr-based heat-resistant alloy and method of manufacturing the same
JP3774472B2 (en) Oxidation resistant coating for titanium alloys
CN114231798A (en) High-temperature-resistant wear-resistant aluminum alloy material and preparation method and application thereof
JPH0116292B2 (en)
TWI741962B (en) Aluminum-nickel-copper alloy and manufacturing method thereof
JP2868185B2 (en) Al lower 3 Ti type low density heat resistant intermetallic alloy
Mathai et al. Effect of silicon on microstructure and mechanical properties of Al-Si piston alloys
KR20210010235A (en) Aluminium casting alloy with high toughness and method of there
CN116005050B (en) Aluminum-magnesium-silicon alloy and preparation method thereof
CN101736260B (en) Aluminum-silicon-zinc-rare earth-magnesium-copper-manganese-chromium-containing hot dip coating alloy and method for preparing same
US3592638A (en) Alloy
CN101736254B (en) Aluminum-silicon-zinc-rare earth-magnesium-ferrum-manganese-chromium-zirconium-containing hot dip coating alloy and method for preparing same
JP4047197B2 (en) Ni-based boride-dispersed corrosion-resistant wear-resistant alloy
JP3983644B2 (en) Ni-based boride-dispersed corrosion-resistant wear-resistant alloy
JPS60169539A (en) Nickel-base alloy
JP3132693B2 (en) Magnesium alloy for die casting
KR20240031866A (en) Aluminum cast alloy and brake disk having the same
CN101736250B (en) Aluminum-silicon-zinc-rare earth-magnesium-copper-manganese-chromium-zirconium-containing hot dip coating alloy and method for preparing same
CN101736251B (en) Aluminum-silicon-zinc-rare earth-magnesium-ferrum-copper-manganese-chromium-containing hot dip coating alloy and method for preparing same
CN101736262B (en) Aluminum-silicon-zinc-rare earth-magnesium-copper-chromium-zirconium-containing hot dip coating alloy and method for preparing same