JPS60169539A - Nickel-base alloy - Google Patents

Nickel-base alloy

Info

Publication number
JPS60169539A
JPS60169539A JP59281985A JP28198584A JPS60169539A JP S60169539 A JPS60169539 A JP S60169539A JP 59281985 A JP59281985 A JP 59281985A JP 28198584 A JP28198584 A JP 28198584A JP S60169539 A JPS60169539 A JP S60169539A
Authority
JP
Japan
Prior art keywords
alloy
chromium
nickel
iron
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59281985A
Other languages
Japanese (ja)
Inventor
ジエームス ヘンリー デイヴイツドソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imphy SA
Original Assignee
Imphy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imphy SA filed Critical Imphy SA
Publication of JPS60169539A publication Critical patent/JPS60169539A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemically Coating (AREA)
  • Heat Treatment Of Steel (AREA)
  • Saccharide Compounds (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Nickel-based alloys containing chromium and aluminium and permitting precipitation hardening by means of a heat treatment. These alloys contain, by weight 28 to 42% of chromium, less than 25% of iron, 3 to 5% of aluminium, the remainder being nickel with the usual impurities, the iron and chromium contents being situated in the region marked I in the diagram of Figure 1 so that the said alloys have the quantity of ferrite needed to control the grain size. The alloys can be employed for applications requiring high mechanical strength with excellent corrosion resistance and additionally demanding high ductility. <IMAGE>

Description

【発明の詳細な説明】 〔産業上の利用可能性〕 本発明は、ニッケルを主成分とし、そのほかにクロム及
びアルミニウムを含有し、熱処理によって析出硬化され
得る合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applicability] The present invention relates to an alloy containing nickel as a main component, chromium and aluminum as a main component, and which can be precipitation hardened by heat treatment.

〔従来の技術〕[Conventional technology]

フランス特許公報第1.267.470号には、クロム
及びクルミニラムの含量が高く、溶体化処理とそれに続
く焼もどしとによって析出硬化が得られる、ニッケルを
主成分とする合金類が記載されている。金属間硬化相の
溶体化処理によって、成形が容易にできるように、合金
のかたさレベルを充分に低くすることができる。溶体化
処理温度は、特に焼もどしの際の硬化を確実にするため
に、1100℃、特に1150℃を超過しているべきで
ある。1100℃よりも高い温度に保つと、結晶粒の過
度な粗大化が惹起されることが多い。結晶粒が粗大すぎ
ると、成形作業の際に、表面状態が不整になると共に、
成る機械的切削作業が困難になり、焼もどし硬化後にお
いて金属が非常に脆くなる。
French Patent Publication No. 1.267.470 describes nickel-based alloys with a high content of chromium and walnut rum and precipitation hardening obtained by solution treatment and subsequent tempering. . Solution treatment of the intermetallic hardening phase can reduce the hardness level of the alloy sufficiently to allow easy forming. The solution treatment temperature should exceed 1100° C., in particular 1150° C., in order to ensure hardening, especially during tempering. If the temperature is kept higher than 1100° C., excessive coarsening of crystal grains is often induced. If the crystal grains are too coarse, the surface condition will be irregular during molding work, and
mechanical cutting operations become difficult and the metal becomes very brittle after temper hardening.

他方では、ドイツ特許公報第3,240,188号には
、前記の合金類において、滑らかな研磨と装飾的外観と
を得るには、クロム富化用を制限する必要のあることが
示されている。
On the other hand, German Patent Publication No. 3,240,188 shows that in order to obtain a smooth polish and a decorative appearance in the aforementioned alloys it is necessary to limit the use of chromium enrichment. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、フエライ1−の存在により延性を改善
した、前記の合金類を提供することにある。
It is an object of the present invention to provide such alloys whose ductility is improved due to the presence of ferrite 1-.

この合金は、耐酸化性、耐食性及びa械的強度が高く、
弾性限界が非常に高く、熱処理によるかたさもすぐれて
いる。
This alloy has high oxidation resistance, corrosion resistance and mechanical strength,
It has a very high elastic limit and has excellent hardness through heat treatment.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この目的は、本発明によれば、溶体化処理に続いて焼も
どし硬化される、ニッケルを主成分とする合金であって
、重量比で、28〜42%のクロム、25%よりも少な
い鉄、3〜5%のアルミニウム、並びに、通常の不純物
と共に残部を形成するニッケルから成り、鉄及びクロム
の含量は、第1図の線図において領域Iに含まれ、合金
が溶体化処理温度において、結晶粒の大きさを制限する
ためにフェライトを含有することを特徴とする合金によ
って達成される。
This object, according to the invention, is a nickel-based alloy which is solution-treated and subsequently temper-hardened, with a weight ratio of 28 to 42% chromium and less than 25% iron. , 3-5% aluminum and nickel forming the balance together with the usual impurities, the iron and chromium content being included in region I in the diagram of FIG. This is achieved by alloys characterized by containing ferrite to limit the grain size.

成る特別の組成は、重量比で、クロム37〜38%、鉄
7〜8%、アルミニウム3〜5%及びニッケル50〜5
1%から成る。
The specific composition consists of 37-38% chromium, 7-8% iron, 3-5% aluminum and 50-5% nickel by weight.
It consists of 1%.

本発明のその他の特徴及び利点は、添付図面を参照とし
た以下の説明によって一層明らかとなろう。
Other features and advantages of the invention will become more apparent from the following description with reference to the accompanying drawings.

〔実施例〕〔Example〕

本発明による合金は、通常の冶金法(鋳造)又は粉末冶
金法によって製造される。この合金は、溶体化処理に続
く焼もどしにより析出硬化を受けている。この硬化は、
r’NiJβの不連続析出(即ち細胞析出)によって惹
起される。
The alloy according to the invention is produced by conventional metallurgical (casting) or powder metallurgical methods. This alloy has undergone precipitation hardening by solution treatment followed by tempering. This hardening is
It is caused by discontinuous precipitation (ie cell precipitation) of r'NiJβ.

クロムは耐食性にとって有用であり、体心立方晶のα相
(フェライトと呼ばれる)の形成に寄与する。
Chromium is useful for corrosion resistance and contributes to the formation of the body-centered cubic alpha phase (called ferrite).

鉄もα相の形成に寄与する。Iron also contributes to the formation of the alpha phase.

合金が充分な硬化を受けるには、クロム含量を28%よ
りも高くすると共に、鉄の含量を25%よりも少くする
必要があり、合金の脆さが過大にならないようにするに
は、クロムの含量が42%を超過しないことが必要であ
る。クロムの含量が28%よりも低く、鉄の含量が25
%よりも多いと、γ′相の細胞析出は益々遅く、そして
益々不完全になる。
For the alloy to undergo sufficient hardening, the chromium content must be greater than 28% and the iron content less than 25%, and to avoid excessive brittleness of the alloy, the chromium content must be greater than 28% and the iron content less than 25%. It is necessary that the content of The content of chromium is lower than 28% and the content of iron is less than 25%
%, the cell precipitation of the γ' phase becomes increasingly slow and incomplete.

クロム及び鉄の相対含量は、本発明による合金が、その
昔通の溶体化処理温度(1100″Cよりも高い)にお
いて、充分であるが過大ではない量のα相を有するよう
に調節すべきである。
The relative contents of chromium and iron should be adjusted such that the alloy according to the invention has a sufficient but not excessive amount of alpha phase at its conventional solution treatment temperature (above 1100"C). It is.

第1図の線図において、領域ABCDは、溶体化した時
に結晶粒の粗大化を抑制するに足る量のα相を含有する
本発明による組成の範囲を示している。曲線ABの下方
の領域Hに含まれる組成範囲は、溶体化した時に結晶粒
の粗大化を抑制するだけのフェライトを含有しない。曲
&iDCの上方の領域■に含まれる組成範囲は、多すぎ
る■のフェライトを含有するため、合金の延性は低下す
る。
In the diagram of FIG. 1, region ABCD indicates the range of compositions according to the present invention that contain a sufficient amount of α phase to suppress grain coarsening when solutionized. The composition range included in region H below curve AB does not contain enough ferrite to suppress coarsening of crystal grains when solutionized. The composition range included in the region (2) above the curve &iDC contains too much (2) ferrite, so the ductility of the alloy is reduced.

アルミニウムは、良好な耐食性を与えることに寄与し、
硬化相γ′を生成させる働きをする。この元素の含量は
、析出硬化が充分なように、3%よりも多くずべきであ
り、また製造上の困難を避けると共に、脆くなり過ぎな
いように、5%よりも少くすべきである。
Aluminum contributes to giving good corrosion resistance,
It functions to generate a hardened phase γ'. The content of this element should be more than 3% so that precipitation hardening is sufficient, and less than 5% to avoid manufacturing difficulties and to avoid too much brittleness.

フェライトの安定性を高くすることがわかっている元素
例えばモリブデン、バナジウム及びチタンは、本発明の
特性を変更せずに合金に混入することかできる。
Elements known to increase the stability of ferrite, such as molybdenum, vanadium, and titanium, can be incorporated into the alloy without changing the properties of the invention.

本発明による合金tiNとフェライトを含有しない、比
較のための合金Aとについて特に検討した。
The alloy tiN according to the invention and the comparative alloy A, which does not contain ferrite, were particularly investigated.

次表1は、重量百分比で表わした各合金の組成を表わし
ている。
Table 1 below shows the composition of each alloy expressed as a percentage by weight.

表 1 合金di Ni Cr Fe Aj2 にュアンス) N 50.37 37.50 7.38 4.00Δ 
50.8G 33.71 10.38 4.05前記の
合金の分析によって、製造に基因することのある重要で
ない元素(これらの元素の含量は、各々の元素について
、0.05%を超過しない)が明らかにされる。これら
の元素のいくつかを示すと、炭素、ケイ素、イオウ、リ
ン、マンガン、カルシウム、マグネシウム及びイツトリ
ウムである。
Table 1 Alloy di Ni Cr Fe Aj2 Nuance) N 50.37 37.50 7.38 4.00Δ
50.8G 33.71 10.38 4.05 Analysis of the above-mentioned alloy reveals insignificant elements that may be due to manufacturing (the content of these elements does not exceed 0.05% for each element) is revealed. Some of these elements are carbon, silicon, sulfur, phosphorus, manganese, calcium, magnesium and yttrium.

予め圧延により加工硬化された合金A、Nの試イ′−1
について、10006〜1250℃で溶体化処理させた
後氷で急冷する処理が、結晶粒の大きさく粒径)に対し
てもつ効果を検討した。合金Nは処理後に非常に徽細な
結晶を示した(第2図参照)その反対に、合金Aは、よ
りλ■大−ζ常に2ASTMよりも小さくない結晶を示
した(第3図参照)。η、Yに、溶体化処理は、成形加
工を行ない1Gるように、充分に低いかたさレベル(2
40II V[F)となるように、1150°Cより高
いl普度で行なうへきである。
Trial case of alloys A and N which were work-hardened by rolling in advance '-1
The effect of solution treatment at 10,006 to 1,250°C followed by rapid cooling with ice on crystal grain size was investigated. Alloy N showed very fine crystals after treatment (see Figure 2); on the contrary, Alloy A showed crystals that were more λ■large-ζ not always smaller than 2 ASTM (see Figure 3). . η, Y, the solution treatment is performed at a sufficiently low hardness level (2
It should be carried out at a temperature higher than 1150°C so that the temperature is 40IIV[F].

次に、合金の引張り強度を試験するために、合金Nを1
200℃で溶体化処理した後、水焼入れすることにより
、9.5ASTMの結晶粒をIIIた。
Next, to test the tensile strength of the alloy, 1
After solution treatment at 200° C., crystal grains of 9.5 ASTM were obtained by water quenching.

合金Aは、1225°Cで溶体化処理した後、水焼入れ
することにより、−3ASTMの結晶粒を得た。次に合
金を数時間650°〜800℃の温度で焼もどし硬化さ
せた。焼もどし条件に従って、5001(V〜700 
HV以」二の範囲の、かたさの大きな合金が得られた。
Alloy A was solution-treated at 1225°C and then water-quenched to obtain -3ASTM crystal grains. The alloy was then tempered and hardened at temperatures between 650° and 800°C for several hours. According to the tempering conditions, 5001 (V ~ 700
An alloy with high hardness in the range of HV or higher was obtained.

これらの異なった処理によって、弾性限界を調節するこ
とができる。
These different treatments allow the elastic limit to be adjusted.

次に20℃で、合金の引張り強度を試験した。The alloy was then tested for tensile strength at 20°C.

第4.5図にその結果を示す。全伸び(第4図)、特に
絞り(第5図)は、結晶粒を微細にすることによって、
著しく改善されており、非常に有用なレベルに到達した
ことが明らかである。
The results are shown in Figure 4.5. The total elongation (Fig. 4), especially the reduction (Fig. 5), is achieved by making the crystal grains finer.
It is clear that it has improved significantly and has reached a very useful level.

本発明による合金は、非常にすぐれた耐食性と機械的強
度とのほかにずくれた延性も必要とする用途に使用する
ことができる。可能な用途の例としては、すぐれた延性
を必要とする構造材(ポルI・、配管、タービン羽根)
がある。
The alloy according to the invention can be used in applications requiring not only very good corrosion resistance and mechanical strength but also exceptional ductility. Examples of possible applications include structural materials requiring good ductility (Pol I, piping, turbine blades)
There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による合金類のクロム及び鉄の相対重
量百分比を示す線図、第2.3図はそれぞれ本発明によ
る合金及びフェライトを含有しない合金について、溶体
化処理温度θ< ’c >の関数としての結晶粒径の値
を示す線図、第4図は、弾性限界(MPa)を横軸に、
破断伸び(%)を縦軸にそれぞれプロットして示す線図
、第5図は、弾性限界(MPa)を横軸に、破断絞り(
%)を縦軸にそれぞれプロットして示す線図である。 20号の説明 ■、■、■・・・領域。
FIG. 1 is a diagram showing the relative weight percentages of chromium and iron for alloys according to the invention, and FIG. 2.3 is a diagram showing the relative weight percentages of chromium and iron for alloys according to the invention and for alloys without ferrite, respectively, at the solution treatment temperature θ <'c A diagram showing the value of grain size as a function of >, Figure 4 shows the elastic limit (MPa) on the horizontal axis,
Figure 5 is a diagram showing the elongation at break (%) plotted on the vertical axis, with the elastic limit (MPa) on the horizontal axis and the aperture at break (%).
%) is plotted on the vertical axis. Explanation of No. 20 ■, ■, ■... area.

Claims (3)

【特許請求の範囲】[Claims] (1)溶体化処理に続いて焼もどし硬化される、ニッケ
ルを主成分とする合金であって、合金が、重量比で、2
8〜42%のクロム、25%より少ない鉄、3〜5%の
アルミニウム、並びに、通常の不純物と共に残部を形成
するニッケルから成り、鉄及びクロムの含量は、第1図
の線図において領域Iに含まれ、合金が溶体化処理温度
において、結晶粒の大きさを制限するためにフェライト
を含有することを特徴とする合金。
(1) An alloy mainly composed of nickel, which is tempered and hardened following solution treatment, the alloy having a weight ratio of 2
Consisting of 8-42% chromium, less than 25% iron, 3-5% aluminum and nickel forming the balance together with the usual impurities, the iron and chromium content is in region I in the diagram of FIG. an alloy comprising ferrite to limit grain size at solution treatment temperatures.
(2)重量比で、クロム37〜38%、鉄7〜8%、ア
ルミニウム3〜5%及びニッケル50〜51%を含有す
ることを特徴とする特許請求の範囲第1項記載の合金。
(2) The alloy according to claim 1, which contains, by weight, 37 to 38% chromium, 7 to 8% iron, 3 to 5% aluminum, and 50 to 51% nickel.
(3)高度の延性を必要とする構造材の製造に応用され
る特許請求の範囲第1項又は第2項記載の合金。
(3) The alloy according to claim 1 or 2, which is applied to the production of structural materials that require a high degree of ductility.
JP59281985A 1983-12-30 1984-12-27 Nickel-base alloy Pending JPS60169539A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8321083A FR2557594B1 (en) 1983-12-30 1983-12-30 NICKEL-BASED ALLOYS
FR8321083 1983-12-30

Publications (1)

Publication Number Publication Date
JPS60169539A true JPS60169539A (en) 1985-09-03

Family

ID=9295749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59281985A Pending JPS60169539A (en) 1983-12-30 1984-12-27 Nickel-base alloy

Country Status (5)

Country Link
EP (1) EP0149946B1 (en)
JP (1) JPS60169539A (en)
AT (1) ATE58182T1 (en)
DE (1) DE3483571D1 (en)
FR (1) FR2557594B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798633A (en) * 1986-09-25 1989-01-17 Inco Alloys International, Inc. Nickel-base alloy heat treatment
FI77057C (en) * 1987-03-26 1989-01-10 Outokumpu Oy FOERFARANDE FOER FRAMSTAELLNING AV ROER, STAENGER OCH BAND.
US4882125A (en) * 1988-04-22 1989-11-21 Inco Alloys International, Inc. Sulfidation/oxidation resistant alloys

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE521547C (en) * 1925-12-29 1931-03-23 Heraeus Vacuumschmelze Akt Ges Building material for the manufacture of turbine blades and components that are subjected to similar mechanical and thermal stresses
US2460590A (en) * 1946-05-11 1949-02-01 Driver Harris Co Electric resistance element and method of heat-treatment
FR1267470A (en) * 1960-09-13 1961-07-21 Heat resistant nickel, chrome, aluminum alloys
JPS5877545A (en) * 1981-10-31 1983-05-10 Toshiba Corp Hard alloy

Also Published As

Publication number Publication date
FR2557594A1 (en) 1985-07-05
EP0149946A3 (en) 1985-08-21
EP0149946A2 (en) 1985-07-31
ATE58182T1 (en) 1990-11-15
FR2557594B1 (en) 1990-04-06
DE3483571D1 (en) 1990-12-13
EP0149946B1 (en) 1990-11-07

Similar Documents

Publication Publication Date Title
US5403547A (en) Oxidation resistant low expansion superalloys
US6860948B1 (en) Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
US2809139A (en) Method for heat treating chromium base alloy
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JPH0293037A (en) Alloy containing gamma prime phase and its production
WO2021070890A1 (en) Aluminum alloy material
US3928085A (en) Timepiece mainspring of cobalt-nickel base alloys having high elasticity and high proportional limit
JPS6383251A (en) Manufacture of high strength and high elasticity aluminum alloy
JPS60169539A (en) Nickel-base alloy
JPS6254059A (en) Alloy for ultralow temperature material and its production
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JPS6022061B2 (en) Manufacturing method of aluminum alloy thin plate for drawer fin
JPS63171857A (en) Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
WO2021070889A1 (en) Aluminum alloy material
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPS5932538B2 (en) Medium strength AI alloy for extrusion with excellent toughness and press hardenability
JPS62222039A (en) Aluminum alloy excellent in wear resistance and extrudability
JPS6013050A (en) Heat-resistant alloy
TWI741962B (en) Aluminum-nickel-copper alloy and manufacturing method thereof
US3592638A (en) Alloy
JPS6147900B2 (en)
JPS6237357A (en) Manufacture of co base alloy plate material superior in wear resistance
JPS62214163A (en) Manufacture of stress corrosion-resisting aluminum-magnesium alloy soft material