JP2017186538A - Chemical heat storage granulated body and manufacturing method therefor - Google Patents

Chemical heat storage granulated body and manufacturing method therefor Download PDF

Info

Publication number
JP2017186538A
JP2017186538A JP2017057010A JP2017057010A JP2017186538A JP 2017186538 A JP2017186538 A JP 2017186538A JP 2017057010 A JP2017057010 A JP 2017057010A JP 2017057010 A JP2017057010 A JP 2017057010A JP 2017186538 A JP2017186538 A JP 2017186538A
Authority
JP
Japan
Prior art keywords
magnesium
heat storage
hydroxide
chemical heat
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017057010A
Other languages
Japanese (ja)
Other versions
JP7036335B2 (en
Inventor
醇一 劉
Junichi Ryu
醇一 劉
泰弘 大塚
Yasuhiro Otsuka
泰弘 大塚
翔太 岡田
Shota Okada
翔太 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Tateho Chemical Industries Co Ltd
Original Assignee
Chiba University NUC
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Tateho Chemical Industries Co Ltd filed Critical Chiba University NUC
Priority to PCT/JP2017/012707 priority Critical patent/WO2017170582A1/en
Priority to KR1020187030375A priority patent/KR102380429B1/en
Priority to CN201780022073.2A priority patent/CN108884383B/en
Publication of JP2017186538A publication Critical patent/JP2017186538A/en
Priority to SA518400077A priority patent/SA518400077B1/en
Application granted granted Critical
Publication of JP7036335B2 publication Critical patent/JP7036335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate a dehydration endothermal reaction at a low temperature range of 100 to 350°C and to provide a chemical heat storage granulated body with high strength.SOLUTION: There is provided a chemical heat storage granulated body constituted mainly by at least one kind of compound selected from oxide of magnesium, hydroxide of magnesium, composite oxide of magnesium or composite oxide of magnesium, at least one kind of compound selected a lithium compound, a potassium compound and a sodium compound and a carbon compound, and exhibiting excellent durability to a dehydration endothermal reaction at a low temperature range of 100 to 350°C with Li, K and/or Na in a range of 0.1 to 50 mol% to Mg in the chemical heat storage granulated body and further at least one kind of element selected from Ni, Co, Cu and Al in a range of 1 to 40 mol% to the composite oxide of magnesium and the composite hydroxide when the carbon content in the chemical heat storage granulated body is 12 to 35 mass%.SELECTED DRAWING: None

Description

本発明は、100〜350℃の低温域で脱水吸熱反応を起こし、かつ繰り返し耐性に優れる化学蓄熱造粒体に関する。   TECHNICAL FIELD The present invention relates to a chemical heat storage granule that undergoes a dehydration endothermic reaction in a low temperature range of 100 to 350 ° C. and is excellent in repeated resistance.

近年、二酸化炭素排出規制によって化石燃料の使用削減が求められており、各プロセスの省エネルギー化に加え、排熱の利用を進める必要がある。排熱の利用の手段としては、水を利用した100℃以下の温水蓄熱が知られている。しかし、温水蓄熱には、(1)放熱損失があるため長時間の蓄熱が不可能である、(2)顕熱量が小さいため大量の水が必要であり、蓄熱設備のコンパクト化が困難である、(3)出力温度が利用量に応じて非定常で、次第に降下する、等の問題がある。したがって、このような排熱の民生利用を進めるためには、より効率の高い蓄熱技術を開発する必要がある。   In recent years, the use of fossil fuels has been demanded by carbon dioxide emission regulations, and it is necessary to promote the use of exhaust heat in addition to energy saving in each process. As means for using exhaust heat, warm water storage at 100 ° C. or less using water is known. However, in hot water heat storage, (1) long-term heat storage is impossible due to heat dissipation loss, and (2) a large amount of water is required because the amount of sensible heat is small, making it difficult to make the heat storage equipment compact. (3) There is a problem that the output temperature is unsteady according to the usage amount and gradually drops. Therefore, it is necessary to develop a more efficient heat storage technology in order to promote consumer use of such waste heat.

効率の高い蓄熱技術として化学蓄熱法が挙げられる。化学蓄熱法は、物質の吸着、水和等の化学変化を伴うため、材料自体(水、溶融塩等)の潜熱や顕熱による蓄熱法に比べて単位質量当たりの蓄熱量が高くなる。化学蓄熱法としては、大気中の水蒸気の吸脱着による水蒸気吸脱着法、金属塩へのアンモニア吸収(アンミン錯体生成反応)、アルコール等の有機物の吸脱着による反応等が提案されている。環境への負荷や装置の簡便性を考慮すると、水蒸気吸脱着法が最も有利である。水蒸気吸脱着法に用いられる化学蓄熱材として、酸化マグネシウムが知られている。   A chemical heat storage method is an example of a highly efficient heat storage technology. Since the chemical heat storage method involves chemical changes such as adsorption and hydration of substances, the amount of heat stored per unit mass is higher than the heat storage method using latent heat or sensible heat of the material itself (water, molten salt, etc.). As the chemical heat storage method, a water vapor adsorption / desorption method by adsorption / desorption of water vapor in the atmosphere, ammonia absorption to a metal salt (ammine complex formation reaction), a reaction by adsorption / desorption of an organic substance such as alcohol, and the like have been proposed. The water vapor adsorption / desorption method is most advantageous in view of environmental load and simplicity of the apparatus. Magnesium oxide is known as a chemical heat storage material used in the water vapor adsorption / desorption method.

酸化マグネシウムは、100〜300℃の低温域では実用的な蓄熱材として機能しない。これは、マグネシウムの水酸化物が、上記低温域では有効な脱水反応を起こさないためである。これらを解決するためにMgと、Ni、Co、Cu、及びAlからなる群から選ばれた少なくとも1種の金属成分を複合化させ、100〜300℃程度で蓄熱可能である化学蓄熱材が提案されている(特許文献1)。また、水酸化マグネシウムに塩化リチウムからなる吸湿性金属塩を添加することで、単位質量又は単位体積当たりの蓄熱量が高く、100〜350℃程度で蓄熱可能である化学蓄熱材が提案されている(特許文献2)。さらに、水酸化カルシウムによる化学蓄熱材において、セピオライト等による骨格構造体を形成させることで、脱水反応時の化学蓄熱材層の凝集を抑制でき、脱水反応後に水和反応へ移行させたときに、水和反応を進行させることができ、脱水反応と水和反応の可逆性が保持されることが開示されている(特許文献3)。   Magnesium oxide does not function as a practical heat storage material in a low temperature range of 100 to 300 ° C. This is because magnesium hydroxide does not cause an effective dehydration reaction in the low temperature range. In order to solve these problems, a chemical heat storage material that can store heat at about 100 to 300 ° C. by combining Mg and at least one metal component selected from the group consisting of Ni, Co, Cu, and Al is proposed. (Patent Document 1). In addition, a chemical heat storage material that has a high heat storage amount per unit mass or unit volume and can store heat at about 100 to 350 ° C. by adding a hygroscopic metal salt made of lithium chloride to magnesium hydroxide has been proposed. (Patent Document 2). Furthermore, in the chemical heat storage material by calcium hydroxide, by forming a skeletal structure such as sepiolite, aggregation of the chemical heat storage material layer during the dehydration reaction can be suppressed, and when the hydration reaction is transferred after the dehydration reaction, It is disclosed that a hydration reaction can be allowed to proceed and that the reversibility of the dehydration reaction and the hydration reaction is maintained (Patent Document 3).

特開2007−309561号公報JP 2007-309561 A 特開2009−186119号公報JP 2009-186119 A 特開2009−256517号公報JP 2009-256517 A

しかしながら、特許文献1及び2に記載の技術では、粉体のまま化学蓄熱材として用いた場合、作動中における水和反応及び脱水反応の繰り返しにより、微粉化の後、凝集してしまい、反応面積が減少することで、蓄熱システムとしての反応性が低下するという問題があった。また、特許文献3に記載の化学蓄熱材は、セピオライト等による骨格構造体を形成させることで、脱水反応時の化学蓄熱材層の凝集を抑制しているが、骨格構造体の強度が弱く、化学蓄熱材層の凝集抑制が十分ではなかった。   However, in the techniques described in Patent Documents 1 and 2, when used as a chemical heat storage material in the form of powder, it is agglomerated after pulverization due to repetition of hydration reaction and dehydration reaction during operation, and the reaction area There is a problem that the reactivity as the heat storage system is reduced due to the decrease in the temperature. Further, the chemical heat storage material described in Patent Document 3 suppresses aggregation of the chemical heat storage material layer during the dehydration reaction by forming a skeleton structure such as sepiolite, but the strength of the skeleton structure is weak, Aggregation suppression of the chemical heat storage material layer was not sufficient.

したがって、本発明は、100〜350℃の低温域で脱水吸熱反応を起こし、かつ繰り返し耐性に優れた化学蓄熱体を提供することを目的とする。   Therefore, an object of the present invention is to provide a chemical heat storage body that causes a dehydration endothermic reaction in a low temperature range of 100 to 350 ° C. and is excellent in repeated resistance.

上記の課題を解決するために、本発明者は、種々検討を重ねた結果、マグネシウムの酸化物、マグネシウムの水酸化物、マグネシウムの複合酸化物、及びマグネシウムの複合水酸化物から選択される少なくとも1種のマグネシウム化合物、リチウム化合物、カリウム化合物、及びナトリウム化合物から選択される少なくとも1種のアルカリ金属化合物、並びに炭素化合物を主成分として構成される化学蓄熱造粒体であって、化学蓄熱造粒体中の炭素含有量が12〜35質量%であることを特徴とする化学蓄熱造粒体が、100〜350℃の低温域で脱水吸熱反応を起こし、かつ十分な強度を有し繰り返し耐性に優れることを見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventor has made various studies, and as a result, at least selected from a magnesium oxide, a magnesium hydroxide, a magnesium composite oxide, and a magnesium composite hydroxide. A chemical heat storage granulation comprising, as a main component, at least one alkali metal compound selected from one kind of magnesium compound, lithium compound, potassium compound, and sodium compound, and a carbon compound, the chemical heat storage granulation A chemical heat storage granule characterized in that the carbon content in the body is 12 to 35% by mass, causes a dehydration endothermic reaction in a low temperature range of 100 to 350 ° C., has sufficient strength and is resistant to repetition. The present invention has been found to be excellent, and the present invention has been completed.

本発明は、以下の態様で優れた十分な強度を有し繰り返し耐性に優れる。
マグネシウムの酸化物、マグネシウムの水酸化物、マグネシウムの複合酸化物、及びマグネシウムの複合水酸化物から選択される少なくとも1種の化合物、リチウム化合物、カリウム化合物、及びナトリウム化合物から選択される少なくとも1種の化合物、並びに炭素化合物を主成分として構成される化学蓄熱造粒体であって、化学蓄熱造粒体中の炭素含有量が12〜35質量%であることを要旨とする。
The present invention has excellent strength with excellent repeatability in the following aspects.
At least one compound selected from magnesium oxide, magnesium hydroxide, magnesium composite oxide, and magnesium composite hydroxide, at least one selected from lithium compounds, potassium compounds, and sodium compounds It is a chemical heat storage granule mainly composed of the above compound and a carbon compound, and the gist is that the carbon content in the chemical heat storage granulation is 12 to 35% by mass.

本発明の化学蓄熱造粒体が、100〜350℃の低温域で脱水吸熱反応を起こし、かつ十分な強度を有し繰り返し耐性に優れるのは、化学蓄熱造粒体中の炭素含有量を12〜35質量%に制御した結果、従来技術に比して化学蓄熱造粒体の強度が高いためであり、サイクル試験測定結果(パス率)から明白である。したがって、蓄熱脱水・水和サイクルを繰り返したとしても、微粉化による凝集が抑えられ、蓄熱性能が低下しない化学蓄熱材が提供される。本発明では、前記マグネシウムの複合酸化物及びマグネシウムの複合水酸化物がMgに対してNi、Co、Cu、及びAlから選択される少なくとも1種の元素を1〜40mol%含む広い範囲で100〜350℃の低温域で脱水吸熱反応を起こし、かつ十分な強度を有し繰り返し耐性に優れる。また、前記化学蓄熱造粒体中のMgに対して、Li、K、及び/又はNaを0.1〜50mol%含有する広い範囲で100〜350℃の低温域で脱水吸熱反応を起こし、かつ十分な強度を有し繰り返し耐性に優れる。   The chemical heat storage granule of the present invention causes a dehydration endothermic reaction in a low temperature range of 100 to 350 ° C., and has sufficient strength and excellent repeat resistance. This is because the strength of the chemical heat storage granulation is higher than that of the prior art as a result of controlling to ˜35% by mass, which is apparent from the cycle test measurement result (pass rate). Therefore, even if the heat storage dehydration / hydration cycle is repeated, a chemical heat storage material is provided in which aggregation due to pulverization is suppressed and the heat storage performance does not deteriorate. In the present invention, the magnesium composite oxide and the magnesium composite hydroxide contain 100 to 40 mol% of at least one element selected from Ni, Co, Cu, and Al with respect to Mg. It has a dehydration endothermic reaction in a low temperature range of 350 ° C., has sufficient strength, and is excellent in repeated resistance. In addition, dehydration endothermic reaction is caused in a low temperature range of 100 to 350 ° C. in a wide range containing 0.1 to 50 mol% of Li, K, and / or Na with respect to Mg in the chemical heat storage granule, and It has sufficient strength and excellent repeatability.

[化学蓄熱造粒体]
化学蓄熱造粒体は、マグネシウムの酸化物、マグネシウムの水酸化物、マグネシウムの複合酸化物、及びマグネシウムの複合水酸化物から選択される少なくとも1種の化合物、リチウム化合物、カリウム化合物、及びナトリウム化合物から選択される少なくとも1種の化合物、並びに炭素化合物を主成分として構成され、前記化学蓄熱造粒体中のMgに対して、Li、K、及び/又はNaを含有し、かつ化学蓄熱造粒体中の炭素含有量が12〜35質量%である。
[Chemical thermal storage granulation]
The chemical heat storage granule includes at least one compound selected from magnesium oxide, magnesium hydroxide, magnesium composite oxide, and magnesium composite hydroxide, a lithium compound, a potassium compound, and a sodium compound. At least one compound selected from the above, and a carbon compound as a main component, containing Li, K and / or Na with respect to Mg in the chemical heat storage granule, and chemical heat storage granulation The carbon content in the body is 12 to 35% by mass.

ここで、マグネシウムの酸化物、マグネシウムの水酸化物、マグネシウムの複合酸化物、及びマグネシウムの複合水酸化物から選択される少なくとも1種の化合物としては、酸化マグネシウム、水酸化マグネシウム若しくはこれらの混合物、又はMgに対してNi、Co、Cu、及びAlからなる群から選択される少なくとも1種の元素を1〜40mol%含むマグネシウムの複合酸化物、複合水酸化物若しくはこれらの混合物が挙げられる。   Here, as the at least one compound selected from magnesium oxide, magnesium hydroxide, magnesium composite oxide, and magnesium composite hydroxide, magnesium oxide, magnesium hydroxide, or a mixture thereof, Alternatively, a magnesium composite oxide, a composite hydroxide, or a mixture thereof containing 1 to 40 mol% of at least one element selected from the group consisting of Ni, Co, Cu, and Al with respect to Mg can be given.

リチウム化合物、カリウム化合物、及びナトリウム化合物としては、吸湿性を有し雰囲気中の水分を吸着し、又は対応する水和物を生成するものであればよく、任意の化合物を使用することができる。リチウム化合物、カリウム化合物、及びナトリウム化合物としては、上記要件を満たし、取り扱いが容易な塩化物、水酸化物、酸化物、臭化物、硝酸塩、又は硫酸塩であることが好ましい。リチウム化合物としては、ハロゲン化リチウム又は水酸化リチウムであることがより好ましく、塩化リチウム、臭化リチウム、又は水酸化リチウムであることがさらに好ましい。カリウム化合物としては、ハロゲン化カリウム又は水酸化カリウムであることがより好ましく、塩化カリウム、臭化カリウム、又は水酸化カリウムであることがさらに好ましい。ナトリウム化合物としては、ハロゲン化ナトリウム又は水酸化ナトリウムであることがより好ましく、塩化ナトリウム、臭化ナトリウム、又は水酸化ナトリウムであることがさらに好ましい。マグネシウムの酸化物、マグネシウムの水酸化物、マグネシウムの複合酸化物、及びマグネシウムの複合水酸化物から選択される少なくとも1種の化合物に、リチウム化合物、カリウム化合物、及びナトリウム化合物から選択される少なくとも1種の化合物を添加することにより、350℃未満の脱水吸熱温度を示し、当該温度は添加比率に応じて変化する。   As the lithium compound, potassium compound, and sodium compound, any compound may be used as long as it has hygroscopicity and adsorbs moisture in the atmosphere or generates a corresponding hydrate. The lithium compound, potassium compound, and sodium compound are preferably chlorides, hydroxides, oxides, bromides, nitrates, or sulfates that satisfy the above requirements and are easy to handle. The lithium compound is more preferably lithium halide or lithium hydroxide, and further preferably lithium chloride, lithium bromide, or lithium hydroxide. The potassium compound is more preferably potassium halide or potassium hydroxide, and further preferably potassium chloride, potassium bromide, or potassium hydroxide. The sodium compound is preferably sodium halide or sodium hydroxide, more preferably sodium chloride, sodium bromide, or sodium hydroxide. At least one compound selected from a magnesium oxide, a magnesium hydroxide, a magnesium composite oxide, and a magnesium composite hydroxide, and at least one selected from a lithium compound, a potassium compound, and a sodium compound By adding a seed compound, a dehydration endothermic temperature of less than 350 ° C. is exhibited, and the temperature varies depending on the addition ratio.

炭素化合物としては、水和・脱水温度域で変化しないものであればよく、高分子化合物を不活性雰囲気中で焼成した焼成炭化物及び無機炭素化合物等が使用できる。   The carbon compound is not particularly limited as long as it does not change in the hydration / dehydration temperature range, and calcined carbides and inorganic carbon compounds obtained by firing a polymer compound in an inert atmosphere can be used.

化学蓄熱造粒体は、化学蓄熱造粒体中の炭素含有量が12〜35質量%であれば、化学蓄熱造粒体中のMgに対して、Li、K、及び/又はNaを0.1〜50mol%の範囲で所定の効果を発揮するが、Li、K、及び/又はNaの含有量の範囲は2〜45mol%であることが好ましく、3〜30mol%であることがより好ましい。Li、K、及び/又はNaの含有量が0.1mol%未満である場合は、化学蓄熱造粒体中の炭素含有量が12〜35質量%であっても脱水温度低温化の効果が得られず、50mol%を超える場合は、水酸化マグネシウム自体の脱水・水和反応を阻害し、単位質量又は単位体積あたりの蓄熱量が減少し、蓄熱性能が低下する。炭素含有量の範囲は13〜33質量%であることが好ましく、14〜30質量%であることがより好ましい。炭素含有量が12質量%未満の場合は、十分な強度をもつ骨格構造が得られず、35質量%を超える場合は、単位質量又は単位体積あたりの蓄熱量が減少し、蓄熱性能が低下する。   If the carbon content in the chemical heat storage granule is 12 to 35% by mass, the chemical heat storage granule has a Li, K, and / or Na content of 0.1 with respect to Mg in the chemical heat storage granulation. Although a predetermined effect is exhibited in the range of 1 to 50 mol%, the content range of Li, K, and / or Na is preferably 2 to 45 mol%, and more preferably 3 to 30 mol%. When the content of Li, K and / or Na is less than 0.1 mol%, the effect of lowering the dehydration temperature is obtained even if the carbon content in the chemical heat storage granulation is 12 to 35 mass%. However, when it exceeds 50 mol%, the dehydration / hydration reaction of magnesium hydroxide itself is inhibited, the heat storage amount per unit mass or unit volume is reduced, and the heat storage performance is lowered. The range of the carbon content is preferably 13 to 33% by mass, and more preferably 14 to 30% by mass. When the carbon content is less than 12% by mass, a skeletal structure having sufficient strength cannot be obtained. When the carbon content exceeds 35% by mass, the heat storage amount per unit mass or unit volume decreases and the heat storage performance decreases. .

化学蓄熱造粒体とは、単一又は多成分からなる粉末原料を、炭素成分を含む結合剤を用いて原料より大きな粒状に加工した後、不活性雰囲気中で炭化処理したものをいう。本発明の化学蓄熱造粒体は、結合剤として炭素化合物を構成する高分子化合物を使用し、造粒した後、炭化処理することにより得られる。化学蓄熱造粒体は、嵩密度が0.2〜1.0g/cm程度のペレット形状であればよい。本発明の化学蓄熱造粒体は、蓄熱材の強度が向上し、蓄熱脱水・水和サイクルを繰り返したとしても、微粉化による凝集が抑えられ、蓄熱性能が低下しない。 The chemical heat storage granulated material is obtained by processing a powder raw material composed of a single component or multiple components into a particle larger than the raw material using a binder containing a carbon component and then carbonizing in an inert atmosphere. The chemical heat storage granule of the present invention is obtained by using a polymer compound constituting a carbon compound as a binder, granulating, and then carbonizing. The chemical heat storage granule may have a pellet shape with a bulk density of about 0.2 to 1.0 g / cm 3 . In the chemical heat storage granule of the present invention, the strength of the heat storage material is improved, and even when the heat storage dehydration / hydration cycle is repeated, aggregation due to pulverization is suppressed and the heat storage performance does not deteriorate.

化学蓄熱造粒体は、化学蓄熱材を含む混合物を、造粒機を使用して造粒し、炭化処理することにより製造することができる。造粒方法に限定はなく、乾式造粒又は湿式造粒を用いて行うことができる。湿式造粒を行った場合は、造粒後乾燥を行い、篩を通した後、炭化処理することによって化学蓄熱造粒体を得ることができる。化学蓄熱造粒体の粒子径は、化学蓄熱材として使用できる大きさであればよく、1〜20mmが好ましい。粒子径が1mm未満である場合は、ケミカルヒートポンプシステムにおいて、水蒸気導入配管等に詰まって閉塞してしまう恐れがある。粒子径が20mmを超える場合は、水蒸気を通すために大きな細孔が必要となるが、その場合、化学蓄熱造粒体の強度が低下し、化学蓄熱造粒体が割れ易くなる。   The chemical heat storage granule can be produced by granulating a mixture containing a chemical heat storage material using a granulator and carbonizing the mixture. There is no limitation in the granulation method, It can carry out using dry granulation or wet granulation. When wet granulation is performed, the chemical heat storage granule can be obtained by drying after granulation, passing through a sieve, and then carbonizing. The chemical heat storage granule may have a particle size that can be used as a chemical heat storage material, and is preferably 1 to 20 mm. When the particle diameter is less than 1 mm, the steam introduction pipe or the like may be clogged in the chemical heat pump system. When the particle diameter exceeds 20 mm, large pores are required for passing water vapor, but in this case, the strength of the chemical heat storage granule is reduced and the chemical heat storage granule is easily broken.

化学蓄熱造粒体中の炭素化合物は、多孔質構造をなすことが好ましい。多孔質構造とは、細孔が非常に沢山ある固体の構造であり、水蒸気を通す流路として機能する。多孔質体は、気孔率が10〜80%程度であればよく、細孔は、反応効率の点から、化学蓄熱造粒体中にランダムに分散している構造が好ましい。   The carbon compound in the chemical heat storage granule preferably has a porous structure. The porous structure is a solid structure having a very large number of pores and functions as a flow path for passing water vapor. The porous body may have a porosity of about 10 to 80%, and the structure in which the pores are randomly dispersed in the chemical heat storage granule is preferable from the viewpoint of reaction efficiency.

化学蓄熱造粒体は、不活性雰囲気中で400〜800℃で炭化処理することによって製造することでき、炭化することにより多孔質構造を形成する。焼成温度が400℃未満の場合は、炭素化合物を構成する高分子化合物が炭化せず、800℃を超える場合は、酸化マグネシウムの活性が低下し、水和反応性が低下する。炭素化合物を構成する高分子化合物は、炭化処理時に残炭率が高く及び/又は3次元構造になりやすい樹脂等の高分子化合物であればよい。炭素化合物を構成する高分子化合物としては、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、フラン樹脂等の熱硬化性樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂等の熱可塑性樹脂、又はセルロースのうちの1種類あるいは2種類以上を混合して用いることが好ましく、フェノール樹脂、メラミン樹脂、及びセルロースからなる群から選択される少なくとも1種の高分子化合物あることがより好ましい。   A chemical heat storage granule can be produced by carbonizing at 400 to 800 ° C. in an inert atmosphere, and forms a porous structure by carbonization. When the calcination temperature is less than 400 ° C., the polymer compound constituting the carbon compound is not carbonized, and when it exceeds 800 ° C., the activity of magnesium oxide is lowered and the hydration reactivity is lowered. The polymer compound constituting the carbon compound may be a polymer compound such as a resin that has a high residual carbon ratio and / or is likely to have a three-dimensional structure during carbonization. As the polymer compound constituting the carbon compound, thermosetting resins such as phenol resin, melamine resin, urea resin, epoxy resin, furan resin, polyamide resin, polyester resin, polyethylene resin, polypropylene resin, polystyrene resin, acrylic resin, It is preferable to use a thermoplastic resin such as a vinyl chloride resin, a fluororesin, a polyacetal resin, a polycarbonate resin, and a polyurethane resin, or a mixture of one or two or more of cellulose, from phenol resin, melamine resin, and cellulose. More preferably, there is at least one polymer compound selected from the group consisting of:

より多孔質構造を形成しやすくするために、不活性雰囲気中、400〜800℃で揮発しやすい高分子化合物をさらに添加してもよい。揮発しやすい高分子化合物としては、馬鈴薯澱粉、コーンスターチ、甘藷澱粉、タピオカ澱粉、サゴ澱粉、米澱粉、アマランサス澱粉等が好ましい。   In order to make it easier to form a porous structure, a polymer compound that easily volatilizes at 400 to 800 ° C. in an inert atmosphere may be further added. As the polymer compound which is easily volatilized, potato starch, corn starch, sweet potato starch, tapioca starch, sago starch, rice starch, amaranth starch and the like are preferable.

前記Mgに対してNi、Co、Cu、及びAlからなる群から選択される少なくとも1種の元素を1〜40mol%含むマグネシウムの複合酸化物並びに複合水酸化物から選択される少なくとも1種の化合物からなる化学蓄熱造粒体は、特許文献1及び2に記載されている酸化マグネシウム/水系の化学蓄熱材の、以下のような可逆反応を利用したものである。
MgO+HO⇔Mg(OH) △H=−81.2kJ/mol
Magnesium composite oxide containing at least one element selected from the group consisting of Ni, Co, Cu, and Al with respect to Mg, and at least one compound selected from composite hydroxides The chemical heat storage granule made of the above-mentioned material utilizes the following reversible reaction of the magnesium oxide / water chemical heat storage material described in Patent Documents 1 and 2.
MgO + H 2 O⇔Mg (OH) 2 ΔH = −81.2 kJ / mol

Co及びNiは△Hが50〜60kJ/molとMgに比べて低く、Cu及びAlも同等の値を示すため、同等の作用効果を示す。Ni、Co、Cu、及びAlからなる群から選択される少なくとも1種の元素を含む複合マグネシウム化合物は、350℃未満の脱水吸熱温度を示し、当該温度は複合組成率に応じて変化する。元素としてはNi、Co、又はAlが好ましく、Ni又はCoがより好ましい。元素の含有量としては3〜30mol%が好ましく、10〜25mol%がより好ましい。元素の含有量が1mol%未満の場合は脱水温度低温化の効果が得られず、40mol%を超える場合は単位質量又は単位体積当たりの蓄熱量が低下する。   Co and Ni have ΔH of 50 to 60 kJ / mol, which is lower than that of Mg, and Cu and Al also show the same value. The composite magnesium compound containing at least one element selected from the group consisting of Ni, Co, Cu, and Al exhibits a dehydration endothermic temperature of less than 350 ° C., and the temperature changes according to the composite composition ratio. As the element, Ni, Co, or Al is preferable, and Ni or Co is more preferable. As element content, 3-30 mol% is preferable and 10-25 mol% is more preferable. When the element content is less than 1 mol%, the effect of lowering the dehydration temperature cannot be obtained, and when it exceeds 40 mol%, the heat storage amount per unit mass or unit volume is lowered.

前記Ni、Co、Cu、及びAlからなる群から選択される少なくとも1種の元素源は、水と混合可能であり取り扱いしやすい物であればよく、塩化物、水酸化物、酸化物、炭酸化物、硝酸塩、及び/又は硫酸塩を用いることができ、塩化物、硝酸塩、及び/又は硫酸塩であることが好ましく、塩化物であることがより好ましい。塩化物を用いた場合、水への溶解度が高く、ハンドリング性に富み、均一に分散させることが容易である。   The at least one element source selected from the group consisting of Ni, Co, Cu, and Al may be any material that can be mixed with water and easily handled, such as chloride, hydroxide, oxide, carbonic acid. Chloride, nitrate, and / or sulfate can be used, preferably chloride, nitrate, and / or sulfate, and more preferably chloride. When chloride is used, it has high solubility in water, is easy to handle, and can be easily dispersed uniformly.

化学蓄熱造粒体を、80〜99質量%の化学蓄熱造粒体が残る網目の大きさの篩を使用して、粒子径の小さい化学蓄熱造粒体を除去した後、直径15mmのナイロンボールが5個入っている500mLポリ容器に化学蓄熱造粒体を250mLまで入れ、回転台にて148rpmで2時間回転させた後、前述の粒子径の小さい化学蓄熱造粒体を除去するときに使用した篩を通過した量が40質量%以下であることが好ましい。通過量が40質量%を超える場合は、化学蓄熱造粒体の強度が不十分であり、蓄熱脱水・水和サイクルを繰り返すと、微粉化による凝集のため蓄熱性能が低下する。   After removing the chemical heat storage granule having a small particle diameter from the chemical heat storage granule using a mesh-size sieve in which 80 to 99% by mass of the chemical heat storage granule remains, a nylon ball having a diameter of 15 mm Is used to remove the above-mentioned chemical heat storage granule having a small particle diameter after putting the chemical heat storage granule up to 250 mL in a 500 mL plastic container containing 5 and rotating at 148 rpm for 2 hours on a turntable. The amount that has passed through the sieve is preferably 40% by mass or less. When the passing amount exceeds 40% by mass, the strength of the chemical heat storage granule is insufficient, and when the heat storage dehydration / hydration cycle is repeated, the heat storage performance decreases due to aggregation due to pulverization.

(化学蓄熱造粒体の製造方法)
化学蓄熱造粒体の製造方法は、
(A):マグネシウムの水酸化物、又はMgに対してNi、Co、Cu、及びAlからなる群から選択される少なくとも1種の元素を1〜40mol%含むマグネシウム複合水酸化物を用意する工程;
(B):工程(A)で用意したマグネシウムの水酸化物又はマグネシウムの複合水酸化物と、Mgに対して、0.1〜50mol%のリチウム化合物、カリウム化合物、及びナトリウム化合物から選択される少なくとも1種の化合物と、マグネシウムの水酸化物又はマグネシウムの複合水酸化物100重量部に対して、15〜60重量部の炭素化合物を構成する高分子化合物を混合する工程;
(C):工程(B)で得られたマグネシウムの水酸化物又はマグネシウムの複合水酸化物を含む混合物を、造粒する工程;
(D):工程(C)で得られたマグネシウムの水酸化物又はマグネシウムの複合水酸化物を含む造粒物を、分級する工程;並びに
(E):工程(D)で用意したマグネシウムの水酸化物又はマグネシウムの複合水酸化物を含む混合物を、不活性雰囲気中で400〜800℃、1〜24時間焼成する工程;
を含む。
(Method for producing chemical heat storage granulation)
The chemical heat storage granule manufacturing method is
(A): A step of preparing magnesium hydroxide or magnesium composite hydroxide containing 1 to 40 mol% of at least one element selected from the group consisting of Ni, Co, Cu, and Al with respect to Mg ;
(B): selected from 0.1 to 50 mol% lithium compound, potassium compound, and sodium compound with respect to magnesium hydroxide or magnesium composite hydroxide prepared in step (A) and Mg Mixing at least one compound and a polymer compound constituting 15 to 60 parts by weight of a carbon compound with respect to 100 parts by weight of magnesium hydroxide or magnesium composite hydroxide;
(C): a step of granulating the mixture containing magnesium hydroxide or magnesium composite hydroxide obtained in step (B);
(D): a step of classifying the granulated product containing magnesium hydroxide or magnesium composite hydroxide obtained in step (C); and (E): magnesium water prepared in step (D). Baking the mixture containing oxide or magnesium composite hydroxide in an inert atmosphere at 400 to 800 ° C. for 1 to 24 hours;
including.

工程(A)のマグネシウムの水酸化物を得る工程は、
濃度1〜10mol/Lの塩化マグネシウム水溶液、及び1〜18mol/Lの水酸化ナトリウム溶液又は水酸化カルシウム分散液を用意し、塩化マグネシウム水溶液と、反応率が80〜150%の水酸化ナトリウム溶液又は水酸化カルシウム分散液を同時に投入して反応させて、水酸化マグネシウムスラリーを得、得られた水酸化マグネシウムスラリーを濾過、水洗、乾燥させて、マグネシウムの水酸化物を得る工程;
を含むのが好ましい。
The step of obtaining the magnesium hydroxide in the step (A)
A magnesium chloride aqueous solution having a concentration of 1 to 10 mol / L and a sodium hydroxide solution or calcium hydroxide dispersion of 1 to 18 mol / L are prepared, and the magnesium chloride aqueous solution and a sodium hydroxide solution having a reaction rate of 80 to 150% or A step of simultaneously adding and reacting a calcium hydroxide dispersion to obtain a magnesium hydroxide slurry, filtering, washing and drying the obtained magnesium hydroxide slurry to obtain a magnesium hydroxide;
Is preferably included.

工程(A)マグネシウムの複合水酸化物を得る工程は、
濃度1〜10mol/Lの塩化マグネシウム水溶液、濃度0.1〜10mol/LのNi、Co、Cu、及びAlからなる群から選ばれた少なくとも1種の元素を含む水溶液、及び1〜18mol/Lの水酸化ナトリウム溶液又は水酸化カルシウム分散液を用意し、塩化マグネシウム水溶液と、Ni、Co、Cu、及びAlからなる群から選ばれた少なくとも1種の元素を含む溶液を混合し、さらに反応率が80〜150%の水酸化ナトリウム溶液又は水酸化カルシウム分散液を投入して反応させて、複合水酸化マグネシウムスラリーを得、得られた複合水酸化マグネシウムスラリーを濾過、水洗、乾燥させて、マグネシウムの複合水酸化物を得る工程;
を含むのが好ましい。
Step (A) The step of obtaining a composite hydroxide of magnesium includes:
Magnesium chloride aqueous solution having a concentration of 1 to 10 mol / L, an aqueous solution containing at least one element selected from the group consisting of Ni, Co, Cu, and Al having a concentration of 0.1 to 10 mol / L, and 1 to 18 mol / L A sodium hydroxide solution or a calcium hydroxide dispersion is prepared, a magnesium chloride aqueous solution and a solution containing at least one element selected from the group consisting of Ni, Co, Cu, and Al are mixed, and the reaction rate is further increased. 80-150% sodium hydroxide solution or calcium hydroxide dispersion was added and reacted to obtain a composite magnesium hydroxide slurry, and the resulting composite magnesium hydroxide slurry was filtered, washed with water and dried to obtain magnesium. Obtaining a composite hydroxide of:
Is preferably included.

工程(B)は、工程(A)で用意したマグネシウムの水酸化物又はマグネシウムの複合水酸化物と、Mgに対して、0.1〜50mol%のリチウム化合物、カリウム化合物、及びナトリウム化合物から選択される少なくとも1種の化合物と、マグネシウムの水酸化物又はマグネシウムの複合水酸化物100重量部に対して、15〜60重量部の炭素化合物を構成する高分子化合物を混合する工程であり、混合には万能混合攪拌機、リボンミキサー、スパルタンリューザー等を使用することができる。   The step (B) is selected from a magnesium hydroxide or a magnesium composite hydroxide prepared in the step (A) and 0.1 to 50 mol% of a lithium compound, a potassium compound, and a sodium compound with respect to Mg. And mixing at least one kind of compound and a polymer compound constituting 15 to 60 parts by weight of a carbon compound with respect to 100 parts by weight of magnesium hydroxide or magnesium composite hydroxide. A universal mixing stirrer, ribbon mixer, spartan luzer, etc. can be used.

工程(C)は、工程(B)で得られたマグネシウムの水酸化物又はマグネシウムの複合水酸化物を含む混合物を、造粒する工程であり、造粒には湿式押出造粒機ドームグラン、ディスクペレッター、製丸機等を使用することができる。   Step (C) is a step of granulating the mixture of magnesium hydroxide or magnesium composite hydroxide obtained in step (B). For granulation, wet extrusion granulator dome gran, A disk pelleter, a round machine, etc. can be used.

本発明は金属元素としてNi及びCoを、アルカリ金属としてLiを代表として実施例により造粒体の強度及び繰り返し耐性を具体的に説明するが、本発明は前記マグネシウムの複合酸化物及びマグネシウムの複合水酸化物がMgに対してNi、Co、Cu、及びAlから選択される少なくとも1種の元素を1〜40mol%含む広い範囲で十分な強度を有し繰り返し耐性に優れる。また、前記化学蓄熱造粒体中のMgに対して、Li、K、及び/又はNaを0.1〜50mol%含有する広い範囲で十分な強度を有し繰り返し耐性に優れる。よって、以下の実施例に限定されるものではない。   In the present invention, Ni and Co are used as metal elements, and Li is used as an alkali metal, and the strength and repetitive resistance of the granule will be specifically described by examples. The hydroxide has sufficient strength in a wide range including 1 to 40 mol% of at least one element selected from Ni, Co, Cu, and Al with respect to Mg, and is excellent in repeated resistance. Moreover, it has sufficient intensity | strength in the wide range which contains Li, K, and / or Na 0.1-50 mol% with respect to Mg in the said chemical heat storage granulation body, and is excellent in repetition tolerance. Therefore, it is not limited to the following examples.

[評価]
(1)Mg、Li、K、Na、Ni、Co、Cu、Alの質量測定方法
測定試料を、12Nの塩酸(試薬特級)及び過塩素酸(試薬特級)に加え加熱して完全に溶解させた後、ICP発光分光分析装置(PS3520 VDD 株式会社日立ハイテクサイエンス製)を用いて測定した。
[Evaluation]
(1) Mass measurement method for Mg, Li, K, Na, Ni, Co, Cu, Al The measurement sample is added to 12N hydrochloric acid (reagent special grade) and perchloric acid (reagent special grade) and heated to completely dissolve. After that, the measurement was performed using an ICP emission spectroscopic analyzer (PS3520 VDD, manufactured by Hitachi High-Tech Science Co., Ltd.).

(2)炭素含有量の測定方法
(1)において測定したMg、Li、K、Na、Ni、Co、Cu、Alに加えて、Fe、Ba、Ti、Zn、P、Si、Bの含有量を測定し、Li、K、Naについては使用した化合物換算で算出し、その他の元素は酸化物換算で算出し、化学蓄熱造粒体中にこれら化学成分とC以外は存在しないものと仮定して、100%からこれら化学成分値を減算することにより、炭素含有量(%)を算出した。
(2) Measuring method of carbon content In addition to Mg, Li, K, Na, Ni, Co, Cu, Al measured in (1), contents of Fe, Ba, Ti, Zn, P, Si, B And Li, K, and Na are calculated in terms of the compounds used, other elements are calculated in terms of oxides, and it is assumed that these chemical components and C are not present in the chemical heat storage granule. The carbon content (%) was calculated by subtracting these chemical component values from 100%.

(3)化学蓄熱造粒体の耐久性評価方法
化学蓄熱造粒体を120℃で12時間乾燥後、200g計量し、粒子径の小さい化学蓄熱造粒体を除去するために、篩上に80〜99質量%が残る篩を使用して粒子径の小さい化学蓄熱造粒体を除去した。その後、粒子径の小さい化学蓄熱造粒体を除去した測定試料を500mLのポリ容器に250mLまで投入し、さらに容器へ直径15mmのナイロンボールを5個入れ、ポットミル回転台にて、148rpmで2時間回した。造粒体の粉化を調査するため、前述の粒子径の小さい化学蓄熱造粒体を除去するときに使用した篩を使用して、パスした測定試料の重量を測定し、パス率を算出した。
(3) Durability evaluation method of chemical heat storage granulation After drying the chemical heat storage granulation at 120 ° C. for 12 hours, 200 g is weighed and 80 g on the sieve to remove the chemical heat storage granulation having a small particle diameter. A chemical heat storage granule having a small particle diameter was removed using a sieve in which ˜99% by mass remained. Thereafter, the measurement sample from which the chemical heat storage granule having a small particle diameter has been removed is put into a 500 mL plastic container up to 250 mL, and further, five nylon balls having a diameter of 15 mm are put into the container, and the pot mill rotary table is 148 rpm for 2 hours. Turned. In order to investigate the pulverization of the granulated material, the weight of the passed measurement sample was measured using the sieve used when removing the above-mentioned chemical heat storage granulated material having a small particle diameter, and the pass rate was calculated. .

(4)粒子径の測定方法
化学蓄熱造粒体の粒子径を、ノギスで20粒測定し、最小値及び最大値を除いて平均値を算出した。円筒形状の造粒体の直径を粒子径とした。
(4) Particle diameter measurement method The particle diameter of the chemical heat storage granule was measured with 20 calipers, and the average value was calculated except for the minimum and maximum values. The diameter of the cylindrical granule was taken as the particle size.

(5)サイクル試験後の耐久性評価方法
化学蓄熱造粒体を30g計量した後、(i)350℃で80分保持し酸化物とし、(ii)140℃で40分放冷し、(iii)水蒸気流通下140℃で80分保持し水酸化物とし、(iv)140℃で40分乾燥した。(i)〜(iv)までの工程を10サイクル実施した後、篩目開きが1mmの篩を使用し、パスした測定試料の重量を測定し、パス率を算出した。
(5) Durability evaluation method after cycle test After weighing 30 g of the chemical heat storage granule, (i) held at 350 ° C. for 80 minutes to form an oxide, (ii) allowed to cool at 140 ° C. for 40 minutes, (iii It was kept at 140 ° C. for 80 minutes under steam and converted to a hydroxide, and (iv) dried at 140 ° C. for 40 minutes. After carrying out 10 cycles of the steps (i) to (iv), a sieve having a sieve opening of 1 mm was used, the weight of the passed measurement sample was measured, and the pass rate was calculated.

(化学蓄熱造粒体の製造)
[実施例1]
純度が98質量%の無水塩化マグネシウムを純水で溶解させ、Mgイオン濃度が2.0mol/Lになるように調整した塩化マグネシウム水溶液に、純度97質量%の塩化ニッケル溶液に純水を加え、Niイオン濃度が0.8mol/Lになるように調整した溶液を、Mgイオンに対して、Niイオンが20mol%になるように投入し混合溶液を作製した。
(Manufacture of chemical heat storage granules)
[Example 1]
To a magnesium chloride aqueous solution prepared by dissolving anhydrous magnesium chloride with a purity of 98% by mass with pure water and adjusting the Mg ion concentration to 2.0 mol / L, pure water is added to a nickel chloride solution with a purity of 97% by mass, A solution prepared so that the Ni ion concentration was 0.8 mol / L was added so that the Ni ions might be 20 mol% with respect to the Mg ions to prepare a mixed solution.

作製した混合溶液に、試薬特級の水酸化ナトリウム溶液に純水を加え、濃度2.0mol/Lに調整した溶液を、ローラーポンプを用いて塩化マグネシウムに対する水酸化ナトリウムの反応率が90%になるように5mL/minで滴下を行い、300rpmで攪拌し、30℃で1時間反応させた。反応後の複合水酸化マグネシウムの分散液をろ過、水洗後、120℃で12時間乾燥を行い、複合水酸化マグネシウムを得た。   To the prepared mixed solution, pure water is added to a reagent-grade sodium hydroxide solution to adjust the concentration to 2.0 mol / L, and the reaction rate of sodium hydroxide to magnesium chloride is 90% using a roller pump. The solution was dropped at 5 mL / min, stirred at 300 rpm, and reacted at 30 ° C. for 1 hour. After the reaction, the composite magnesium hydroxide dispersion was filtered, washed with water, and dried at 120 ° C. for 12 hours to obtain composite magnesium hydroxide.

得られた複合水酸化マグネシウムに、Mgに対して10mol%の塩化リチウム、複合水酸化マグネシウム100重量部に対して、粉体状のフェノール樹脂を20重量部、メラミン樹脂7.3重量部を純水で77%溶液になるように調整したメラミン樹脂溶液、及び純水240重量部を、万能混合攪拌機(ダルトン製 5DM−r型)の容器に投入し、公転数62rpm、自転数141rpmの条件で10分間攪拌し、複合水酸化マグネシウムを主成分とする混合物を得た。   In the obtained composite magnesium hydroxide, 10 mol% of lithium chloride with respect to Mg, 100 parts by weight of composite magnesium hydroxide, 20 parts by weight of powdered phenol resin, and 7.3 parts by weight of melamine resin were purified. Melamine resin solution adjusted to a 77% solution with water and 240 parts by weight of pure water are put into a container of a universal mixing stirrer (5DM-r type manufactured by Dalton), under the conditions of a revolution number of 62 rpm and a rotation number of 141 rpm. The mixture was stirred for 10 minutes to obtain a mixture mainly composed of composite magnesium hydroxide.

その後、粘土状となった混合物を、湿式押出造粒機ドームグラン(不二パウダル製 DG−L1型)のホッパーに少量ずつ投入し、スクリュー回転数40rpm、ドームダイ孔径が3.0mm、板厚が1.0mm、開口比22.7%の条件で造粒した。造粒後100℃で24時間乾燥し、篩を通して粒子径が約2〜5mmの複合水酸化マグネシウムを主成分とする造粒体を得た。   After that, the mixture in the form of clay is put into a hopper of a wet extrusion granulator dome gran (DG-L1 type manufactured by Fuji Powder Co., Ltd.) little by little, screw rotation speed 40rpm, dome die hole diameter 3.0mm, plate thickness Granulation was performed under conditions of 1.0 mm and an opening ratio of 22.7%. After granulation, it was dried at 100 ° C. for 24 hours, and a granulated body mainly composed of composite magnesium hydroxide having a particle diameter of about 2 to 5 mm was obtained through a sieve.

その後、得られた造粒体を雰囲気置換型電気炉(丸祥電器製 SPX1518−17V)にて窒素ガスを0.25L/minの流速で流しながら、600℃、1時間の条件で炭化処理を行い、炭素含有量が14.4質量%の化学蓄熱造粒体を得た。   Thereafter, the obtained granulated material is carbonized under conditions of 600 ° C. for 1 hour while flowing nitrogen gas at a flow rate of 0.25 L / min in an atmosphere substitution type electric furnace (SPX1518-17V manufactured by Marusho Denki). And a chemical heat storage granule having a carbon content of 14.4% by mass was obtained.

[実施例2]
塩化ニッケル水溶液を塩化コバルト水溶液に変えた以外は実施例1と同様の方法で製造し、炭素含有量が19.6質量%の化学蓄熱造粒体を得た。
[Example 2]
A chemical heat storage granule having a carbon content of 19.6% by mass was obtained in the same manner as in Example 1 except that the nickel chloride aqueous solution was changed to a cobalt chloride aqueous solution.

[実施例3]
Niを添加しない以外は、実施例1と同様の方法で製造し、炭素含有量が28.3質量%の化学蓄熱造粒体を得た。
[Example 3]
Except not adding Ni, it manufactured by the method similar to Example 1, and obtained the chemical heat storage granule whose carbon content is 28.3 mass%.

[実施例4]
Mgイオンに対して、Coイオンを5mol%とした以外は実施例1と同様の方法で製造し、炭素含有量が20.6質量%の化学蓄熱造粒体を得た。
[Example 4]
A chemical heat storage granule having a carbon content of 20.6% by mass was obtained in the same manner as in Example 1 except that the Co ion was changed to 5 mol% with respect to Mg ions.

[実施例5]
複合水酸化マグネシウム100重量部に対して、粉体状のフェノール樹脂を50重量部とした以外は実施例4と同様の方法で製造し、炭素含有量が32.2質量%の化学蓄熱造粒体を得た。
[Example 5]
Chemical heat storage granulation produced in the same manner as in Example 4 except that 50 parts by weight of powdered phenol resin was used with respect to 100 parts by weight of composite magnesium hydroxide, and the carbon content was 32.2% by mass. Got the body.

[実施例6]
複合水酸化マグネシウム100重量部に対して、粉体状のフェノール樹脂を10重量部とした以外は実施例4と同様の方法で製造し、炭素含有量が14.5質量%の化学蓄熱造粒体を得た。
[Example 6]
Chemical heat storage granulation produced in the same manner as in Example 4 except that 10 parts by weight of the powdery phenol resin was used per 100 parts by weight of the composite magnesium hydroxide, and the carbon content was 14.5% by mass. Got the body.

[実施例7]
メラミン樹脂の代わりにセルロースを用いた以外は実施例4と同様の方法で製造し、炭素含有量20.6質量%の化学蓄熱造粒体を得た。
[Example 7]
Manufactured in the same manner as in Example 4 except that cellulose was used in place of the melamine resin, and a chemical heat storage granule having a carbon content of 20.6% by mass was obtained.

[実施例8]
塩化リチウムの代わりに臭化リチウムを用いた以外は実施例1と同様の方法で製造し、炭素含有量26.4質量%の化学蓄熱造粒体を得た。
[Example 8]
A chemical heat storage granule having a carbon content of 26.4% by mass was obtained in the same manner as in Example 1 except that lithium bromide was used instead of lithium chloride.

[比較例1]
フェノール樹脂及びメラミン樹脂の代わりにセピオライトを複合水酸化マグネシウム100重量部に対して、27.3重量部使用した以外は実施例3と同様の方法で製造し、化学蓄熱造粒体を得た。
[Comparative Example 1]
A chemical heat storage granule was obtained in the same manner as in Example 3 except that 27.3 parts by weight of sepiolite was used instead of phenol resin and melamine resin with respect to 100 parts by weight of composite magnesium hydroxide.

[比較例2]
炭素化合物を構成する高分子化合物を用いず、実施例3と同様の方法で製造したが、造粒体を形成できなかった。
[Comparative Example 2]
Although the polymer compound which comprises a carbon compound was not used and it manufactured by the method similar to Example 3, the granulated body was not able to be formed.

[比較例3]
複合水酸化マグネシウム100重量部に対して、粉体状のフェノール樹脂を5重量部とした以外は実施例4と同様の方法で製造し、炭素含有量10.9質量%の化学蓄熱造粒体を得た。
[Comparative Example 3]
A chemical heat storage granule produced in the same manner as in Example 4 except that 5 parts by weight of the powdery phenol resin was used with respect to 100 parts by weight of the composite magnesium hydroxide and having a carbon content of 10.9% by mass. Got.

[比較例4]
複合水酸化マグネシウム100重量部に対して、粉体状のフェノール樹脂を70重量部とした以外は実施例4と同様の方法で製造し、炭素含有量38.9質量%の化学蓄熱造粒体を得た。
[Comparative Example 4]
A chemical heat storage granule produced in the same manner as in Example 4 except that 70 parts by weight of the powdery phenol resin was used with respect to 100 parts by weight of the composite magnesium hydroxide and having a carbon content of 38.9% by mass. Got.

結果を表1にまとめる。   The results are summarized in Table 1.

Figure 2017186538
Figure 2017186538

*1 判定は、化学蓄熱造粒体のうち、炭素を除く蓄熱可能な部分を蓄熱体とし、その含有量が65%以上の場合を○、65%未満の場合を×とした。65%を下回る場合、蓄熱容量が低下する。
*2 比較例1の蓄熱体含有量は、混合時に使用したセピオライトを減じて算出した。
* 1 Judgment made the part which can be stored heat except a carbon among chemical heat storage granulations as a heat storage body, and made the case where the content is 65% or more into (circle) and less than 65% x. When it is less than 65%, the heat storage capacity decreases.
* 2 The heat storage body content of Comparative Example 1 was calculated by subtracting the sepiolite used during mixing.

表1の結果からも明らかなように、本発明の化学蓄熱造粒体は、炭素化合物の代わりにセピオライトを用いたもの(比較例1)、及び炭素化合物を構成する高分子化合物を用いなかったもの(比較例2)と比較して、明らかに強度が高くなり、高強度の化学蓄熱造粒体が得られた。   As is clear from the results of Table 1, the chemical heat storage granule of the present invention used sepiolite instead of the carbon compound (Comparative Example 1) and did not use the polymer compound constituting the carbon compound. Compared with a thing (comparative example 2), intensity | strength became high clearly and the high intensity | strength chemical thermal storage granulation body was obtained.

本発明の蓄熱造粒体は、100〜350℃の低温域で脱水吸熱反応を起こし、かつ高強度である。そのため、エンジンや燃料電池等から排出される排気ガスの熱を有効利用するのに適している。例えば、排気ガスの熱は、自動車の暖機運転の短縮、搭乗者のアメニティーの向上、燃費の改善及び排気ガス触媒の活性向上による排気ガスの低害化等に活用することができる。特に、エンジンの場合、運転による負荷が一定でなく排気出力も不安定であることから、排気熱の直接利用は必然的に非効率・不便を伴う。本発明のような化学蓄熱系によると、排気熱を一旦化学的に蓄熱し、熱需要に応じて熱出力することで、より理想的な排気熱利用が可能となる。   The heat storage granule of the present invention causes a dehydration endothermic reaction in a low temperature range of 100 to 350 ° C. and has high strength. Therefore, it is suitable for effectively using the heat of exhaust gas discharged from an engine, a fuel cell, or the like. For example, the heat of exhaust gas can be used for shortening the warm-up operation of an automobile, improving passenger amenity, improving fuel efficiency, and reducing exhaust gas damage by improving the activity of an exhaust gas catalyst. In particular, in the case of an engine, since the load due to operation is not constant and the exhaust output is also unstable, the direct use of exhaust heat is necessarily inefficient and inconvenient. According to the chemical heat storage system of the present invention, exhaust heat is temporarily stored temporarily, and heat output according to the heat demand enables more ideal exhaust heat utilization.

Claims (9)

マグネシウムの酸化物、マグネシウムの水酸化物、マグネシウムの複合酸化物、及びマグネシウムの複合水酸化物から選択される少なくとも1種のマグネシウム化合物、リチウム化合物、カリウム化合物、及びナトリウム化合物から選択される少なくとも1種のアルカリ金属化合物、並びに炭素化合物を主成分として構成される化学蓄熱造粒体であって、化学蓄熱造粒体中の炭素含有量が12〜35質量%であることを特徴とする化学蓄熱造粒体。   At least one selected from at least one magnesium compound selected from magnesium oxide, magnesium hydroxide, magnesium composite oxide, and magnesium composite hydroxide, lithium compound, potassium compound, and sodium compound A chemical heat storage granule composed mainly of a seed alkali metal compound and a carbon compound, wherein the chemical heat storage granule has a carbon content of 12 to 35% by mass. Granulated body. 化学蓄熱造粒体中の炭素化合物が、多孔質構造をなすことを特徴とする請求項1に記載の化学蓄熱造粒体。   The chemical heat storage granule according to claim 1, wherein the carbon compound in the chemical heat storage granule has a porous structure. 前記多孔質構造の炭素化合物が、フェノール樹脂、メラミン樹脂、及びセルロースからなる群から選択される少なくとも1種の樹脂の不活性雰囲気中の焼成物である請求項1又は2に記載の化学蓄熱造粒体。   The chemical heat storage structure according to claim 1 or 2, wherein the porous carbon compound is a fired product in an inert atmosphere of at least one resin selected from the group consisting of a phenol resin, a melamine resin, and cellulose. Granules. 前記アルカリ金属化合物がリチウム、カリウム、及びナトリウムの、塩化物、水酸化物、酸化物、臭化物、硝酸塩、及び/又は硫酸塩の形態であって、前記化学蓄熱造粒体中のMgに対して、Li、K、及び/又はNaを0.1〜50mol%含有する請求項1記載の化学蓄熱造粒体。   The alkali metal compound is in the form of chloride, hydroxide, oxide, bromide, nitrate, and / or sulfate of lithium, potassium, and sodium, and with respect to Mg in the chemical heat storage granulation The chemical heat storage granule according to claim 1, comprising 0.1 to 50 mol% of Li, K, and / or Na. 前記マグネシウム複合酸化物又はマグネシウム複合水酸化物がNi、Co、Cu、及びAlからなる群から選択される少なくとも1種の元素源を塩化物、水酸化物、酸化物、炭酸化物、硝酸塩、及び/又は硫酸塩の形態であって,前記化学蓄熱造粒体中のMgに対して、Ni、Co、Cu及び/又はAlを1〜40mol%含有することを特徴とする請求項1に記載の化学蓄熱造粒体。   The magnesium composite oxide or the magnesium composite hydroxide is at least one element source selected from the group consisting of Ni, Co, Cu, and Al, chloride, hydroxide, oxide, carbonate, nitrate, and It is in the form of / or sulfate and contains 1 to 40 mol% of Ni, Co, Cu and / or Al with respect to Mg in the chemical heat storage granule. Chemical heat storage granulation. 化学蓄熱造粒体を、80〜99質量%の化学蓄熱造粒体が残る網目の大きさの篩を使用して、粒子径の小さい化学蓄熱造粒体を除去した後、直径15mmのナイロンボールが5個入っている500mLポリ容器に化学蓄熱造粒体を250mLまで入れ、回転台にて148rpmで2時間回した後、前述の粒子径の小さい化学蓄熱造粒体を除去するときに使用した篩を通過した量が40質量%以下である請求項1〜5のいずれか1項に記載の化学蓄熱造粒体。   After removing the chemical heat storage granule having a small particle diameter from the chemical heat storage granule using a mesh-size sieve in which 80 to 99% by mass of the chemical heat storage granule remains, a nylon ball having a diameter of 15 mm Was put into a 500 mL plastic container containing 5 to 250 mL of chemical heat storage granules, and after rotating for 2 hours at 148 rpm on a rotating table, it was used to remove the above-mentioned chemical heat storage granules with a small particle diameter. The chemical heat storage granule according to any one of claims 1 to 5, wherein an amount of the sieve passing is 40 mass% or less. (A):マグネシウムの水酸化物、又はMgに対してNi、Co、Cu、及びAlからなる群から選択される少なくとも1種の元素を1〜40mol%含むマグネシウムの複合水酸化物を用意する工程;
(B):工程(A)で用意したマグネシウムの水酸化物又はマグネシウムの複合水酸化物と、Mgに対して、0.1〜50mol%のリチウム化合物、カリウム化合物、及びナトリウム化合物から選択される少なくとも1種の化合物と、マグネシウムの水酸化物又はマグネシウムの複合水酸化物100重量部に対して、15〜60重量部の炭素化合物を構成する高分子化合物を混合する工程;
(C):工程(B)で得られたマグネシウムの水酸化物又はマグネシウムの複合水酸化物を含む混合物を、造粒する工程;
(D):工程(C)で得られたマグネシウムの水酸化物又はマグネシウムの複合水酸化物を含む造粒物を、分級する工程;及び
(E):工程(D)で用意したマグネシウムの水酸化物又はマグネシウムの複合水酸化物を含む混合物を、不活性雰囲気中で400〜800℃、1〜24時間焼成する工程;
を含む、化学蓄熱造粒体の製造方法。
(A): Prepare a magnesium hydroxide or a magnesium composite hydroxide containing 1 to 40 mol% of at least one element selected from the group consisting of Ni, Co, Cu, and Al with respect to Mg. Process;
(B): selected from 0.1 to 50 mol% lithium compound, potassium compound, and sodium compound with respect to magnesium hydroxide or magnesium composite hydroxide prepared in step (A) and Mg Mixing at least one compound and a polymer compound constituting 15 to 60 parts by weight of a carbon compound with respect to 100 parts by weight of magnesium hydroxide or magnesium composite hydroxide;
(C): a step of granulating the mixture containing magnesium hydroxide or magnesium composite hydroxide obtained in step (B);
(D): a step of classifying the granulated product containing magnesium hydroxide or magnesium composite hydroxide obtained in step (C); and (E): magnesium water prepared in step (D). Baking the mixture containing oxide or magnesium composite hydroxide in an inert atmosphere at 400 to 800 ° C. for 1 to 24 hours;
The manufacturing method of a chemical thermal storage granulation body containing.
前記工程(A)のマグネシウムの水酸化物を得る工程が、
濃度1〜10mol/Lの塩化マグネシウム水溶液、及び1〜18mol/Lの水酸化ナトリウム溶液又は水酸化カルシウム分散液を用意し、塩化マグネシウム水溶液と、反応率が80〜150%の水酸化ナトリウム溶液又は水酸化カルシウム分散液を同時に投入して反応させて、水酸化マグネシウムスラリーを得、得られた水酸化マグネシウムスラリーを濾過、水洗、乾燥させて、マグネシウムの水酸化物を得る工程;
を含む、請求項7記載の化学蓄熱体の製造方法。
The step of obtaining the magnesium hydroxide in the step (A)
A magnesium chloride aqueous solution having a concentration of 1 to 10 mol / L and a sodium hydroxide solution or calcium hydroxide dispersion of 1 to 18 mol / L are prepared, and the magnesium chloride aqueous solution and a sodium hydroxide solution having a reaction rate of 80 to 150% or A step of simultaneously adding and reacting a calcium hydroxide dispersion to obtain a magnesium hydroxide slurry, filtering, washing and drying the obtained magnesium hydroxide slurry to obtain a magnesium hydroxide;
The manufacturing method of the chemical heat storage body of Claim 7 containing this.
工程(A)のマグネシウムの複合水酸化物を得る工程が、
濃度1〜10mol/Lの塩化マグネシウム水溶液、濃度0.1〜10mol/LのNi、Co、Cu、及びAlからなる群から選ばれた少なくとも1種の元素を含む水溶液、及び1〜18mol/Lの水酸化ナトリウム溶液又は水酸化カルシウム分散液を用意し、塩化マグネシウム水溶液と、Ni、Co、Cu、及びAlからなる群から選ばれた少なくとも1種の元素を含む溶液を混合し、さらに反応率が80〜150%の水酸化ナトリウム溶液又は水酸化カルシウム分散液を投入して反応させて、複合水酸化マグネシウムスラリーを得、得られた複合水酸化マグネシウムスラリーを濾過、水洗、乾燥させて、マグネシウムの複合水酸化物を得る工程;
を含む、請求項7記載の化学蓄熱体の製造方法。
The step of obtaining the magnesium composite hydroxide in step (A)
Magnesium chloride aqueous solution having a concentration of 1 to 10 mol / L, an aqueous solution containing at least one element selected from the group consisting of Ni, Co, Cu, and Al having a concentration of 0.1 to 10 mol / L, and 1 to 18 mol / L A sodium hydroxide solution or a calcium hydroxide dispersion is prepared, a magnesium chloride aqueous solution and a solution containing at least one element selected from the group consisting of Ni, Co, Cu, and Al are mixed, and the reaction rate is further increased. 80-150% sodium hydroxide solution or calcium hydroxide dispersion was added and reacted to obtain a composite magnesium hydroxide slurry, and the resulting composite magnesium hydroxide slurry was filtered, washed with water and dried to obtain magnesium. Obtaining a composite hydroxide of:
The manufacturing method of the chemical heat storage body of Claim 7 containing this.
JP2017057010A 2016-03-31 2017-03-23 Chemical heat storage granulation and its manufacturing method Active JP7036335B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/012707 WO2017170582A1 (en) 2016-03-31 2017-03-28 Chemical heat storage granules and production process therefor
KR1020187030375A KR102380429B1 (en) 2016-03-31 2017-03-28 Chemical thermal storage assembly and manufacturing method thereof
CN201780022073.2A CN108884383B (en) 2016-03-31 2017-03-28 Chemical heat-storage granules and method for producing same
SA518400077A SA518400077B1 (en) 2016-03-31 2018-09-20 Chemical heat storage granules and production process therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016072404 2016-03-31
JP2016072404 2016-03-31

Publications (2)

Publication Number Publication Date
JP2017186538A true JP2017186538A (en) 2017-10-12
JP7036335B2 JP7036335B2 (en) 2022-03-15

Family

ID=60043878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057010A Active JP7036335B2 (en) 2016-03-31 2017-03-23 Chemical heat storage granulation and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7036335B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019182924A (en) * 2018-04-03 2019-10-24 株式会社豊田中央研究所 Chemical heat storage material, and chemical heat storage system
WO2021106881A1 (en) * 2019-11-29 2021-06-03 タテホ化学工業株式会社 Chemical heat storage material and method for producing same, and chemical heat pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309561A (en) * 2006-05-17 2007-11-29 Tokyo Institute Of Technology Chemical heat pump
JP2009186119A (en) * 2008-02-07 2009-08-20 Tokyo Institute Of Technology Chemical heat pump
JP2011162746A (en) * 2010-02-15 2011-08-25 Nagoya Electrical Educational Foundation Molded article of chemical heat storage material and method for producing the same
JP2013112706A (en) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology Chemical thermal storage medium and chemical heat pump
JP2013216763A (en) * 2012-04-06 2013-10-24 Toyota Central R&D Labs Inc Chemical heat storage material, and reaction device, heat storage device, and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309561A (en) * 2006-05-17 2007-11-29 Tokyo Institute Of Technology Chemical heat pump
JP2009186119A (en) * 2008-02-07 2009-08-20 Tokyo Institute Of Technology Chemical heat pump
JP2011162746A (en) * 2010-02-15 2011-08-25 Nagoya Electrical Educational Foundation Molded article of chemical heat storage material and method for producing the same
JP2013112706A (en) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology Chemical thermal storage medium and chemical heat pump
JP2013216763A (en) * 2012-04-06 2013-10-24 Toyota Central R&D Labs Inc Chemical heat storage material, and reaction device, heat storage device, and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019182924A (en) * 2018-04-03 2019-10-24 株式会社豊田中央研究所 Chemical heat storage material, and chemical heat storage system
JP7010115B2 (en) 2018-04-03 2022-01-26 株式会社豊田中央研究所 Chemical heat storage material and chemical heat storage system
WO2021106881A1 (en) * 2019-11-29 2021-06-03 タテホ化学工業株式会社 Chemical heat storage material and method for producing same, and chemical heat pump

Also Published As

Publication number Publication date
JP7036335B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP5177386B2 (en) Chemical heat pump
JP5586262B2 (en) Chemical heat storage material molded body and method for producing the same
CN106311190A (en) Preparation method of porous manganese-based lithium ion sieve adsorbent
WO2024027044A1 (en) Preparation method for high-adsorption-capacity granular aluminum salt lithium extraction adsorbent
CN106622103A (en) Method for preparing granular adsorbent used for extracting lithium from lithium-containing brine
JP7036335B2 (en) Chemical heat storage granulation and its manufacturing method
Zheng et al. Unravelling the pore templating effect on CO2 adsorption performance of alkali metal nitrates promoted MgO pellets
Hu et al. Lithium-based ceramics in nonsilicates for CO 2 capture: Current status and new trends
CN106315690A (en) Porous cobalt tetroxide nanosheet and preparation method thereof
CN110449147B (en) Catalyst for phosgene synthesis and preparation method and application thereof
WO2017170582A1 (en) Chemical heat storage granules and production process therefor
CN1562739A (en) Method for producing active carbon by using cinder of brown coal
WO2023083062A1 (en) Method for preparing titanium-based lithium ion exchanger
JP7332316B2 (en) Method for producing granules for chemical heat storage
JP6743685B2 (en) Chemical heat storage material and manufacturing method thereof
JP6895108B2 (en) Moisture adsorbent
Palacios et al. Water sorption-based thermochemical storage materials: A review from material candidates to manufacturing routes
JPH11349320A (en) Production of activated carbon
JP6815915B2 (en) Chemical heat storage material and its manufacturing method
CN109748565B (en) Calcination-free molecular sieve forming method
Chen et al. Extraction of lithium in salt lake brine through highly selective titanium ion sieves-A review
CN112752609A (en) Sorbent pellets suitable for carbon dioxide capture
Clark et al. Salt hydrate-based composite materials for thermochemical energy storage
Li et al. Improved properties of the Co/Al-doped carbide slag pellet as a potential high-temperature thermal battery by tunable coating strategy
JP2018168223A (en) Chemical thermal storage medium and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220118

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7036335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150