JP7010115B2 - Chemical heat storage material and chemical heat storage system - Google Patents
Chemical heat storage material and chemical heat storage system Download PDFInfo
- Publication number
- JP7010115B2 JP7010115B2 JP2018071371A JP2018071371A JP7010115B2 JP 7010115 B2 JP7010115 B2 JP 7010115B2 JP 2018071371 A JP2018071371 A JP 2018071371A JP 2018071371 A JP2018071371 A JP 2018071371A JP 7010115 B2 JP7010115 B2 JP 7010115B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- reaction
- chemical heat
- sample
- double hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
本発明は、複水酸化物からなる化学蓄熱材等に関する。 The present invention relates to a chemical heat storage material made of a double hydroxide and the like.
環境意識の高揚に伴い、省エネルギー化やエネルギー効率の向上を図る研究開発が盛んになされている。その一つに、蓄熱密度が大きく、保温しなくても長期間の蓄熱が可能な化学蓄熱材を用いた化学蓄熱システムが着目されている。化学蓄熱システムは、化学蓄熱材に対して熱媒(水等)の吸蔵または放出をさせて、放熱(発熱)と蓄熱(吸熱)を行う。化学蓄熱システムを利用すると、各種の機器やプラント等から生じる比較的低温な廃熱(または排熱)等も有効に活用できる。このような化学蓄熱システムに関連する記載が、下記の特許文献等にある。 With the rise of environmental awareness, research and development aimed at saving energy and improving energy efficiency are being actively carried out. One of them is a chemical heat storage system using a chemical heat storage material that has a high heat storage density and can store heat for a long period of time without heat retention. The chemical heat storage system stores or releases a heat medium (water, etc.) from the chemical heat storage material to dissipate heat (heat generation) and store heat (heat absorption). By using a chemical heat storage system, relatively low-temperature waste heat (or waste heat) generated from various devices and plants can be effectively utilized. Descriptions related to such a chemical heat storage system can be found in the following patent documents and the like.
特許文献1は、水酸化マグネシウムまたは水酸化カルシウムに、吸湿性金属塩(塩化リチウム等)を添加した組成物(複合水酸化物)からなる化学蓄熱材を用いたケミカルヒートポンプ(化学蓄熱システム)を提案している。特許文献1の化学蓄熱材では、蓄熱反応が広い温度範囲で生じるため、特定温度域の廃熱等を有効活用できない。 Patent Document 1 describes a chemical heat pump (chemical heat storage system) using a chemical heat storage material composed of a composition (composite hydroxide) in which a hygroscopic metal salt (lithium chloride, etc.) is added to magnesium hydroxide or calcium hydroxide. is suggesting. In the chemical heat storage material of Patent Document 1, since the heat storage reaction occurs in a wide temperature range, waste heat or the like in a specific temperature range cannot be effectively utilized.
非特許文献1は、[Mg6Al2(CO3)(OH)16・4H2O](HT:Hydrotalcite)中のCO3 2-をCl-で置換した層状複水酸化物(LDH:layered double hydroxide)からなる化学蓄熱材を提案している。非特許文献1の化学蓄熱材も、蓄熱反応が多段階で生じるため、やはり特定温度域の廃熱等を有効活用できない。また、Clを含む層状複水酸化物の場合、蓄熱時(水の放出時)に、HClが脱離する副反応を生じ易い。脱離したHClは、化学蓄熱装置(化学蓄熱システム)の配管の腐食等を招く。非特許文献1では、HClの離脱やその対策について全く検討されていない。 Non-Patent Document 1 describes a layered double hydroxide (LDH: layered) in which CO 3 2- in [Mg 6 Al 2 (CO 3 ) (OH) 16.4H 2 O] (HT: Hydrotalcite) is replaced with Cl- . We are proposing a chemical heat storage material consisting of double hydroxide). The chemical heat storage material of Non-Patent Document 1 also cannot effectively utilize waste heat and the like in a specific temperature range because the heat storage reaction occurs in multiple stages. Further, in the case of a layered double hydroxide containing Cl, a side reaction in which HCl is desorbed is likely to occur at the time of heat storage (during the release of water). The desorbed HCl causes corrosion of the piping of the chemical heat storage device (chemical heat storage system). In Non-Patent Document 1, the withdrawal of HCl and its countermeasures are not examined at all.
本発明はこのような事情に鑑みて為されたものであり、特定の温度域で効率的に作動させることができる新たな化学蓄熱材等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a new chemical heat storage material or the like that can be efficiently operated in a specific temperature range.
本発明者はこの課題を解決すべく鋭意研究した結果、従来と異なる組成からなる複水酸化物を合成し、この複水酸化物を特定の温度域で、蓄熱(吸熱)および再生(放熱)させることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor synthesizes a double hydroxide having a composition different from the conventional one, and stores the double hydroxide in a specific temperature range (endothermic) and regeneration (heat dissipation). I succeeded in making it. By developing this result, the present invention described below was completed.
《化学蓄熱材》
(1)本発明の化学蓄熱材は、水の吸蔵または放出により発熱または吸熱する複水酸化物からなる化学蓄熱材であって、前記複水酸化物は、水を吸蔵したときに、Mg2Al(OH)6Cl-nH2O(n=0~3.5)となる。
《Chemical heat storage material》
(1) The chemical heat storage material of the present invention is a chemical heat storage material composed of a double hydroxide that generates or absorbs heat by storing or releasing water, and the double hydroxide is Mg 2 when water is stored. Al (OH) 6 Cl-nH 2 O (n = 0 to 3.5).
(2)本発明の化学蓄熱材を用いると、特定の温度域(例えば、315~385℃、325~370℃さらには335~355℃)で蓄熱反応を生じさせて、そのような特定温度域における廃熱を有効活用できる。 (2) When the chemical heat storage material of the present invention is used, a heat storage reaction is caused in a specific temperature range (for example, 315 to 385 ° C, 325 to 370 ° C, further 335 to 355 ° C), and such a specific temperature range is generated. Can effectively utilize the waste heat in.
なお、本発明者は、適切な加熱温度と加熱時間の下で本発明の複水酸化物を作動させることにより、HClの発生(脱離)を抑止して、吸熱(蓄熱)と放熱(再生)を安定的に繰り返し行えることも確認している。 In addition, the present inventor suppresses the generation (desorption) of HCl by operating the double hydroxide of the present invention under an appropriate heating temperature and heating time, and endothermic (heat storage) and heat dissipation (regeneration). ) Can be repeated stably.
本発明の化学蓄熱材が、特定の温度域で集中的に(いわゆる一段階で)蓄熱反応を生じる理由は、MgとAlが幾何学的に均一に分布した層状構造をしており、Cl-がそれら各層間で均一的に保持されているためと推察される。 The reason why the chemical heat storage material of the present invention causes a heat storage reaction intensively (so-called one step) in a specific temperature range is that it has a layered structure in which Mg and Al are geometrically uniformly distributed, and Cl- Is presumed to be because it is held uniformly between each of these layers.
《化学蓄熱システム》
本発明は、上述した化学蓄熱材を用いた化学蓄熱システム(化学蓄熱装置)としても把握できる。化学蓄熱システムは、例えば、化学蓄熱材を収容する反応器、熱媒である水を加熱・凝集して反応器に対して水(水蒸気)を給排する手段(機構)、廃熱を導入する手段、水(水蒸気)や廃熱等の流路を開閉する手段、それらの作動を制御する手段等を備えることにより構成される。その際、化学蓄熱材を構成する複水酸化物の加熱温度(T)と保持時間(Δt)が所定範囲内となるように、化学蓄熱システムの作動が制御されると好ましい。これにより、HClの発生(Clの脱離)を抑止して、化学蓄熱装置(システム)を腐食等させずに、効率的な吸放熱を行うことが可能となる。
《Chemical heat storage system》
The present invention can also be grasped as a chemical heat storage system (chemical heat storage device) using the above-mentioned chemical heat storage material. The chemical heat storage system introduces, for example, a reactor that houses a chemical heat storage material, a means (mechanism) that heats and aggregates water as a heat medium, and supplies and discharges water (water vapor) to the reactor, and waste heat. It is configured by providing means, means for opening and closing the flow path of water (steam), waste heat, etc., means for controlling their operation, and the like. At that time, it is preferable that the operation of the chemical heat storage system is controlled so that the heating temperature (T) and the holding time (Δt) of the double hydroxide constituting the chemical heat storage material are within a predetermined range. This makes it possible to suppress the generation of HCl (desorption of Cl) and efficiently absorb and dissipate heat without corroding the chemical heat storage device (system).
化学蓄熱システムの制御は、具体的にいうと、複水酸化物の加熱温度(T/℃)とその保持時間(Δt/min)が下式を満たすようになされると好ましい。
Δt<139exp(29.7-0.09T) (式1)
Specifically, it is preferable that the control of the chemical heat storage system is such that the heating temperature (T / ° C.) of the double hydroxide and its holding time (Δt / min) satisfy the following equations.
Δt <139exp (29.7-0.09T) (Equation 1)
本発明に係る複水酸化物は、438℃以上になると即座にHClを放出し、吸水しても再生されなくなる。そこで、上述した加熱(保持)温度は400℃以下、385℃以下さらには365℃以下とすると好ましい。一方、その加熱温度が過小では、放水による蓄熱反応が非常に遅くなる。そこで、上述した加熱(保持)温度は315℃以上、325℃以上さらには335℃以上とすると好ましい。 The double hydroxide according to the present invention immediately releases HCl at 438 ° C. or higher, and is not regenerated even if it absorbs water. Therefore, the heating (holding) temperature described above is preferably 400 ° C. or lower, 385 ° C. or lower, and more preferably 365 ° C. or lower. On the other hand, if the heating temperature is too low, the heat storage reaction due to water discharge becomes very slow. Therefore, the heating (holding) temperature described above is preferably 315 ° C. or higher, 325 ° C. or higher, and more preferably 335 ° C. or higher.
《その他》
特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。
"others"
Unless otherwise specified, "x to y" as used herein include a lower limit value x and an upper limit value y. A range such as "a to b" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.
上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、化学蓄熱材のみならず化学蓄熱システム等にも適宜該当し得る。方法に関する構成要素でも物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in this specification may appropriately apply not only to chemical heat storage materials but also to chemical heat storage systems and the like. It can be a component of a method or a component of an object. Which embodiment is the best depends on the target, required performance, and the like.
《反応》
本発明に係る複水酸化物は、基本的にMg2Al(OH)6Clからなるが、常温域で水和物を構成することを考慮して、Mg2Al(OH)6Cl-nH2O(n≧0)と表される。但し、本明細書では、水和物か否かにかかわらず(nの値にかかわらず)、Mg2Al(OH)6Clを有するものを、単に複水酸化物という。
"reaction"
The double hydroxide according to the present invention is basically composed of Mg 2 Al (OH) 6 Cl, but in consideration of forming a hydrate in the normal temperature range, Mg 2 Al (OH) 6 Cl-nH It is expressed as 2 O (n ≧ 0). However, in the present specification, those having Mg 2 Al (OH) 6 Cl regardless of whether they are hydrates or not (regardless of the value of n) are simply referred to as double hydroxides.
複水酸化物は、室温域から加熱していくと、その温度域に応じて、図1に示すように、主に3段階の反応(反応A→反応B→反応C)をする。各反応について、以下、順次説明する。 When the double hydroxide is heated from the room temperature range, it mainly undergoes a three-step reaction (reaction A → reaction B → reaction C) as shown in FIG. 1 according to the temperature range. Each reaction will be described below in sequence.
(1)第1段階(反応A)
複水酸化物を加熱していくと(QAが加わると)、複水酸化物に結合していた水分子(H2O)が分離する脱水反応が生じる(式A1の左辺から右辺への進行)。この脱水反応は、概ね50~150℃の温度域で生じる。この段階を経て、無水複水酸化物(Mg2Al(OH)6Cl)が得られる。
(1) First stage (reaction A)
As the double hydroxide is heated (when QA is added), a dehydration reaction occurs in which the water molecules ( H2O ) bound to the double hydroxide are separated (from the left side to the right side of the formula A1). Progress). This dehydration reaction occurs in a temperature range of approximately 50 to 150 ° C. Through this step, anhydrous double hydroxide (Mg 2 Al (OH) 6 Cl) is obtained.
なお、本段階の反応は可逆反応である。このため、水が供給されると、水和反応により無水複水酸化物は複水酸化物の水和物となり、熱(QA)を放出する(式A1の右辺から左辺への進行)。 The reaction at this stage is a reversible reaction. Therefore, when water is supplied, the anhydrous double hydroxide becomes a hydrate of the double hydroxide by the hydration reaction and releases heat ( QA ) (progress from the right side to the left side of the formula A1).
(2)第2段階(反応B)
複水酸化物をさらに加熱していくと(QBが加わると)、複水酸化物中の水酸基から水が離脱する蓄熱反応(本来の吸熱反応)が生じる。(式B1、式B2の左辺から右辺への進行)。この蓄熱反応は、概ね315~400℃の温度域で生じる。なお、脱水の程度により、式B1または式B2に示す反応となる。
(2) Second stage (reaction B)
When the double hydroxide is further heated (when QB is added), a heat storage reaction (original endothermic reaction) in which water is separated from the hydroxyl group in the double hydroxide occurs. (Progress from the left side to the right side of equations B1 and B2). This heat storage reaction occurs in a temperature range of approximately 315 to 400 ° C. Depending on the degree of dehydration, the reaction represented by the formula B1 or the formula B2 will occur.
本段階の反応も可逆反応であるため、水が供給されると、再生反応(放熱反応)により熱(QB)を放出して、Mg2Al(OH)6Clへ戻る(式B1、B2の右辺から左辺へ進行)。 Since the reaction at this stage is also a reversible reaction, when water is supplied, heat ( QB ) is released by the regeneration reaction (heat dissipation reaction) and returns to Mg 2 Al (OH) 6 Cl (formulas B1 and B2). From the right side to the left side of).
(3)第3段階(反応C)
複水酸化物をさらに加熱していくと(QCが加わると)、複水酸化物中からClがHClとなって離脱する脱離反応が生じる(式C1~C3の左辺から右辺への進行)。この脱離反応は、概ね415℃以上の温度域で生じる。なお、加熱履歴や加熱温度により、式C1~C3のような反応を示す。本段階の反応は不可逆反応であるため、水の供給だけでは、元の複水酸化物が再生されることはない(式C1~C3は右辺から左辺へ進行しない)。
(3) Third stage (reaction C)
When the double hydroxide is further heated (when QC is added), a desorption reaction occurs in which Cl becomes HCl and is removed from the double hydroxide (progress from the left side to the right side of the formulas C1 to C3). ). This elimination reaction occurs in a temperature range of about 415 ° C. or higher. It should be noted that the reaction as shown in the formulas C1 to C3 is shown depending on the heating history and the heating temperature. Since the reaction at this stage is an irreversible reaction, the original double hydroxide is not regenerated only by supplying water (formulas C1 to C3 do not proceed from the right side to the left side).
もっとも、そのようなHClの離脱反応は、上述した温度域に至る以前にも生じ得る。例えば、400℃以下の温度域でも、複水酸化物を長時間保持した場合、式C1~C3に示すような不可逆反応が、式B1、B2に示す蓄熱反応と併行して生じ得る。 However, such a release reaction of HCl can occur even before the temperature range described above is reached. For example, when the double hydroxide is held for a long time even in the temperature range of 400 ° C. or lower, an irreversible reaction as shown in the formulas C1 to C3 may occur in parallel with the heat storage reaction shown in the formulas B1 and B2.
但し、加熱温度(T)に応じて、その保持時間(Δt)を所定範囲内にすれば、HClの発生を抑止できる。例えば、複水酸化物の加熱温度(T)と保持時間(Δt)が、既述した式1を満たすようにするとよい。 However, if the holding time (Δt) is set within a predetermined range according to the heating temperature (T), the generation of HCl can be suppressed. For example, the heating temperature (T) and the holding time (Δt) of the double hydroxide may satisfy the above-mentioned formula 1.
複水酸化物(試料)を合成し、種々の実験によりその特性を明らかにした。これらの具体例に基づいて、本発明をより詳しく説明する。 A double hydroxide (sample) was synthesized and its characteristics were clarified by various experiments. The present invention will be described in more detail based on these specific examples.
《試料の製造》
試料(Mg2Al(OH)6Cl-nH2O)を次のような工程により合成した。なお、大気中からのCO2の混入を避けるため、以下に示す全工程を不活性ガス(Ar)雰囲気下で行った。
《Manufacturing of samples》
A sample (Mg 2 Al (OH) 6 Cl-nH 2 O) was synthesized by the following steps. In addition, in order to avoid mixing of CO 2 from the atmosphere, all the steps shown below were carried out in an inert gas (Ar) atmosphere.
(1)溶液調製工程
原料として、MgCl2・6H2O(和光純薬工業株式会社製/純度98%)、AlCl3・6H2O(和光純薬工業株式会社製/純度98%)およびアンモニア水(和光純薬工業株式会社製/濃度25%)を用意した。これらは購入した状態のまま用いた。また、Ar通気により溶存酸素を予め除去した脱イオン水も用意した。
(1) Solution preparation process As raw materials, MgCl 2.6H 2 O (manufactured by Wako Pure Chemical Industries, Ltd./purity 98%), AlCl 3.6H 2 O (manufactured by Wako Pure Chemical Industries, Ltd./purity 98%) and ammonia Water (manufactured by Wako Pure Chemical Industries, Ltd./
MgCl2・6H2O:20.3g(0.1mol)とAlCl3・6H2O:12.1g(0.05mol)は、脱イオン水:500mLに溶かして混合水溶液とした。また、上述したアンモニア水(濃度25%):160mLは、脱イオン水:500mLで希釈して希アンモニア水とした。
MgCl 2.6H 2 O: 20.3 g (0.1 mol) and AlCl 3.6 H 2 O: 12.1 g ( 0.05 mol) were dissolved in deionized water: 500 mL to prepare a mixed aqueous solution. Further, the above-mentioned ammonia water (
(2)混合安定化工程(生成工程)
マグネチックスターラーで撹拌中の希アンモニア水へ、混合水溶液を約8mL/minの割合で全量を滴下した。その滴下終了後、約4時間、室温で撹拌を続けた。こうして、固液共存状態の混合液を得た。
(2) Mixing stabilization step (generation step)
The entire amount of the mixed aqueous solution was added dropwise to the dilute ammonia water being stirred with a magnetic stirrer at a rate of about 8 mL / min. After the completion of the dropping, stirring was continued at room temperature for about 4 hours. In this way, a mixed liquid in a solid-liquid coexisting state was obtained.
(3)固液分離洗浄工程(抽出工程)
遠心分離(15000rpm×10min)により、その混合液から固体を分離した。この固体を1000mLの脱イオン水に分散させて洗浄した。その分散液を同様に遠心分離して、固体を抽出した。
(3) Solid-liquid separation and cleaning process (extraction process)
The solid was separated from the mixture by centrifugation (15000 rpm x 10 min). The solid was dispersed in 1000 mL of deionized water and washed. The dispersion was similarly centrifuged to extract a solid.
(4)乾燥工程
その固体をホットプレート上で、150℃×5時間加熱した。こうして試料を合成した。
(4) Drying step The solid was heated on a hot plate at 150 ° C. for 5 hours. The sample was synthesized in this way.
得られた試料をX線回折(XRD:Cu-Kα、λ=1.5418Å)により分析すると、Mg2Al(OH)6Cl-nH2Oであることが確認された(図6の試料A参照)。なお、分子状で吸着した水の数を示すn値は、乾燥工程時の加熱条件により変化する。n値は、例えば、熱重量分析(TG)により、脱水反応(図1の反応A)時の重量減少率を求めることにより特定される。上述した試料では、n≒1.5であった。以下、特に断らない限り、試料はMg2Al(OH)6Cl-1.5H2Oとして説明する。 When the obtained sample was analyzed by X-ray diffraction (XRD: Cu-Kα, λ = 1.5418 Å), it was confirmed that it was Mg 2 Al (OH) 6 Cl-nH 2 O (Sample A in FIG. 6). reference). The n value indicating the number of adsorbed water in the form of a molecule changes depending on the heating conditions during the drying step. The n value is specified by, for example, thermogravimetric analysis (TG) to determine the rate of weight loss during the dehydration reaction (reaction A in FIG. 1). In the above-mentioned sample, n≈1.5. Hereinafter, unless otherwise specified, the sample will be described as Mg 2 Al (OH) 6 Cl-1.5H 2 O.
《吸熱反応》
(1)上述した試料:20mgを、He:60mL/minの気流下で、5℃/minで昇温し、生成したガスを質量分析計(株式会社アルバック製 REGA Ptype)で分析した。このとき得られた昇温脱離スペクトルを図2に示した。m/e=18はH2Oを、m/e=36はHClをそれぞれ示す。図1に示した信号強度は任意単位であり、HClの縦軸はH2Oの縦軸を約6倍に拡大して示した。
《Endothermic reaction》
(1) The above-mentioned sample: 20 mg was heated at 5 ° C./min under an air flow of He: 60 mL / min, and the generated gas was analyzed by a mass spectrometer (REGA Ptype manufactured by ULVAC, Inc.). The temperature-increased elimination spectrum obtained at this time is shown in FIG. m / e = 18 indicates H 2 O, and m / e = 36 indicates HCl. The signal strength shown in FIG. 1 is an arbitrary unit, and the vertical axis of HCl is shown by enlarging the vertical axis of H2O by about 6 times.
(2)図2から明らかなように、試料の昇温に伴い、脱水反応(図1の反応A)→蓄熱反応(図1の反応B)→HClの離脱反応(図1の反応C)が順次生じることがわかる。また、蓄熱反応の完了前からHClが発生することもわかった。 (2) As is clear from FIG. 2, as the temperature of the sample rises, the dehydration reaction (reaction A in FIG. 1) → the heat storage reaction (reaction B in FIG. 1) → the withdrawal reaction of HCl (reaction C in FIG. 1). It can be seen that they occur sequentially. It was also found that HCl was generated even before the heat storage reaction was completed.
HClの発生(Clの離脱)が生じると、試料は、H2Oの供給だけでは元の組成(Mg2Al(OH)6Cl-nH2O)に戻れない。このため、H2O(熱媒)の吸蔵と放出により、発熱と吸熱を繰り返し行えるようにするには、HClの発生(Clの離脱)が生じない条件下で、複水酸化物に対する吸放水を行う必要がある When the generation of HCl (withdrawal of Cl) occurs, the sample cannot return to the original composition (Mg 2 Al (OH) 6 Cl-nH 2 O) only by supplying H 2 O. Therefore, in order to be able to repeatedly generate heat and absorb heat by storing and releasing H2O (heat medium), water absorption and desorption for double hydroxides are performed under conditions where HCl is not generated (Cl is separated). Need to do
《HClの発生抑止/加熱温度の上限》
上述した場合と同様に、試料(20mg)を昇温(5℃/min)しつつ加熱し、目標温度(Te)に到達後、その温度で一定時間保持した。その加熱中に生成したガスを質量分析計を用いて検出した。Te=338℃または397℃としたときの昇温脱離スペクトルを図3Aに併せて示した。
<< Suppression of HCl generation / Upper limit of heating temperature >>
In the same manner as described above, the sample (20 mg) was heated while raising the temperature (5 ° C./min), and after reaching the target temperature (Te), the sample (Te) was held at that temperature for a certain period of time. The gas generated during the heating was detected using a mass spectrometer. The warm-up desorption spectrum when Te = 338 ° C. or 397 ° C. is also shown in FIG. 3A.
図3Aからわかるように、Te=338℃のときは、その温度に到達後、約90分経過してからHClが発生した。また、Te=397℃のときは、その温度に到達後、約5分経過してからHClが発生した。なお、いずれも場合も、HClの発生開始時において、水の放出(反応B)は完了していなかった。 As can be seen from FIG. 3A, when Te = 338 ° C., HCl was generated about 90 minutes after the temperature was reached. Further, when Te = 397 ° C., HCl was generated about 5 minutes after the temperature was reached. In each case, the release of water (reaction B) was not completed at the start of the generation of HCl.
このように、保持する温度が高温になるほど、短時間でHClが発生することがわかった。338℃~397℃の間にある他の目標温度(保持温度)についても同様に、HClが発生するまでの保持時間を調査した。こうして得られた保持温度(T)と、その温度に到達してからHClの発生開始までの保持時間(Δt)との相関を図3Bにまとめて示した。 As described above, it was found that the higher the holding temperature, the shorter the time it takes to generate HCl. Similarly, for other target temperatures (holding temperatures) between 338 ° C and 397 ° C, the holding time until HCl was generated was investigated. The correlation between the holding temperature (T) thus obtained and the holding time (Δt) from reaching that temperature to the start of generation of HCl is summarized in FIG. 3B.
図3Bに示す結果から、加熱温度(T)と、その温度に到達してからの保持時間(Δt)とが、下記の式1を満たす範囲内となるように制御すると、HClの発生を伴わずにH2Oが放出されることがわかった。
Δt<139exp(29.7-0.09T) (式1)
なお、この数式は、実験データとカーブフィッティングで近似して算出した。
From the results shown in FIG. 3B, when the heating temperature (T) and the holding time (Δt) after reaching the temperature are controlled to be within the range satisfying the following equation 1, HCl is generated. It was found that H 2 O was released without.
Δt <139exp (29.7-0.09T) (Equation 1)
This formula was calculated by approximating the experimental data with curve fitting.
《蓄熱反応の開始温度/加熱温度の下限》
試料(Mg2Al(OH)6Cl)からH2Oの放出が開始される温度は、約200℃であることが図2からわかる。従って、蓄熱反応(反応B)の開始に必要な加熱温度の下限値は約200℃となる。しかし、200℃付近では、H2Oの放出速度が非常に遅い。そこで、化学蓄熱材の実用性を考慮した温度を、蓄熱反応の開始温度として設定することが必要となる。
<< Starting temperature of heat storage reaction / Lower limit of heating temperature >>
It can be seen from FIG. 2 that the temperature at which the release of H2O starts from the sample (Mg 2 Al (OH) 6 Cl) is about 200 ° C. Therefore, the lower limit of the heating temperature required to start the heat storage reaction (reaction B) is about 200 ° C. However, at around 200 ° C., the release rate of H2O is very slow. Therefore, it is necessary to set a temperature in consideration of the practicality of the chemical heat storage material as the start temperature of the heat storage reaction.
(1)上述した場合と同様に、試料(20mg)を昇温(5℃/min)しつつ加熱し、目標温度(Te)に到達後、その温度で一定時間保持して、その加熱中の生成ガスを質量分析計で検出した。Te=327℃または338℃としたときに得られた生成ガスの熱伝導度(TCD)の積算値を図4Aに示した。なお、その積算値は、昇温開始時からの水の放出量と比例関係にある。 (1) In the same manner as described above, the sample (20 mg) is heated while raising the temperature (5 ° C./min), and after reaching the target temperature (Te), the sample (Te) is held at that temperature for a certain period of time during heating. The produced gas was detected by a mass spectrometer. The integrated value of the thermal conductivity (TCD) of the produced gas obtained when Te = 327 ° C. or 338 ° C. is shown in FIG. 4A. The integrated value is proportional to the amount of water released from the start of temperature rise.
(2)図4Aから明らかなように、例えば、1.0×105(μV×min)相当のH2Oを放出する場合、Te=327℃のときは、Te=338℃のときよりも約100分間長くなる。そこで、下記の式2を満たす範囲内で、加熱温度(T)とその温度に到達してからの保持時間(Δt)が調整されると好ましい。
232exp(30.6-0.1T)<Δt (式2)
なお、この数式は、実験データに基づいて、上述した式1を変形して算出した。
(2) As is clear from FIG. 4A, for example, when releasing H 2 O equivalent to 1.0 × 105 ( μV × min), when Te = 327 ° C, it is higher than when Te = 338 ° C. It will be longer for about 100 minutes. Therefore, it is preferable that the heating temperature (T) and the holding time (Δt) after reaching the temperature are adjusted within the range satisfying the
232exp (30.6-0.1T) <Δt (Equation 2)
This formula was calculated by modifying the above-mentioned formula 1 based on the experimental data.
(3)図4Bに、式1と式2を併せて示した。複水酸化物の加熱温度(T)と保持時間(Δt)を、両式から定まる範囲内(図4Bのハッチング領域内)に収めることにより、HClの放出を抑止しつつ、その実用性の確保が可能となる。これを利用した化学蓄熱システムの一形態例を図8に模式的に示した。
(3) Equation 1 and
この化学蓄熱システムでは、先ず、蓄熱体のうちで、昇温速度の最大点(A)と昇温速度の最小点(B)をそれぞれ検出する。次に、A点の温度(Ta)とB点の温度(Tb)が共に、上述した式1と式2を同時に満たすように(つまり、図4の範囲内となるように)、各点の温度(T)または保持時間(Δt)を制御する。
In this chemical heat storage system, first, among the heat storage bodies, the maximum point (A) of the temperature rise rate and the minimum point (B) of the temperature rise rate are detected, respectively. Next, at each point, the temperature at point A (Ta) and the temperature at point B (Tb) both satisfy the above-mentioned
なお、A点とB点は、例えば、蓄熱体容器の内部に複数の熱電対を設置しておき、それらの温度変化を検出することにより特定できる。また、各点の温度制御は、例えば、次のようにして行える。図8に示すように、熱媒(水蒸気等)の流路を複数設けると共に、各流路(特に上流側)にバルブを設ける。蓄熱体の温度分布状況に応じて、各流路の開閉または各流路を流れる熱媒の流量調整を各バルブにより行う。こうした温度制御により、式1と式2を同時に満たす化学蓄熱システムを構築できる。
It should be noted that points A and B can be specified, for example, by installing a plurality of thermocouples inside the heat storage container and detecting their temperature changes. Further, the temperature of each point can be controlled as follows, for example. As shown in FIG. 8, a plurality of heat medium (water vapor and the like) flow paths are provided, and valves are provided in each flow path (particularly on the upstream side). Depending on the temperature distribution of the heat storage body, each valve opens and closes each flow path or adjusts the flow rate of the heat medium flowing through each flow path. By such temperature control, it is possible to construct a chemical heat storage system that satisfies both
《蓄熱反応/水の放出》
複水酸化物(Mg2Al(OH)6Cl)の蓄熱量は、吸放出可能な水の分子数(複水酸化物1molに対する水のmol数)に比例する。そこで、HClを発生させない範囲で、吸放出可能な水の分子数を次のようにして明らかにした。
《Heat storage reaction / release of water》
The heat storage amount of the double hydroxide (Mg 2 Al (OH) 6 Cl) is proportional to the number of molecules of water that can be absorbed and released (the number of mols of water with respect to 1 mol of the double hydroxide). Therefore, the number of molecules of water that can be absorbed and released was clarified as follows within the range that does not generate HCl.
(1)試料:18mgを、N2:100mL/minの気流下で、5℃/minで昇温し、325℃で180分間保持した後、さらに同速度で昇温させて、900℃で60分間保持した。この加熱過程中の質量変化を熱重量分析した結果を図5に示した。 (1) Sample: 18 mg was heated at 5 ° C./min under an air flow of N 2 : 100 mL / min, held at 325 ° C. for 180 minutes, then further heated at the same rate, and 60 at 900 ° C. Held for minutes. The result of thermogravimetric analysis of the mass change during this heating process is shown in FIG.
(2)蓄熱反応(図中の反応B)で放出される水による重量減少は14.4%であった。これは、Mg2Al(OH)6Clあたり1.9分子(≒2分子)の水に相当する。従って、HClを発生させない条件下では、式B1に示す蓄熱反応が生じていることが確認された。 (2) The weight loss due to the water released in the heat storage reaction (reaction B in the figure) was 14.4%. This corresponds to 1.9 molecules (≈2 molecules) of water per 6 Cl of Mg 2 Al (OH). Therefore, it was confirmed that the heat storage reaction shown in the formula B1 occurred under the condition that HCl was not generated.
《再生反応/水の吸蔵》
複水酸化物が放水後に吸水して再生可能であることを、種々の再生試料を製造して確認した。なお、いずれの工程も不活性ガス雰囲気下で行った。
《Regeneration reaction / occlusion of water》
It was confirmed by producing various regenerated samples that the double hydroxide can be regenerated by absorbing water after being discharged. Both steps were carried out in an inert gas atmosphere.
(1)再生試料の製造
(i)既述した方法で合成した複水酸化物(「試料A」という。)を、めのう乳鉢で粉砕した。その粉末を同じ乳鉢を用いて加熱(327℃×3時間)した。こうして蓄熱反応後に相当する加熱処理後の複水酸化物(「試料B10」という。)を用意した。
(1) Production of regenerated sample (i) The double hydroxide (referred to as "Sample A") synthesized by the method described above was pulverized in an agate mortar. The powder was heated (327 ° C. × 3 hours) using the same mortar. In this way, a double hydroxide (referred to as "Sample B10") after the heat treatment corresponding to the heat storage reaction was prepared.
試料B10(0.1g)をバイアル(5mL)に入れて、脱気した脱イオン水(4mL)に分散させた。この後、密閉したバイアルを超音波洗浄機に浸して、超音波を1時間照射した。得られた分散液をビーカーに移し、加熱撹拌(150℃×1時間)しつつ、水を蒸発させた。こうして再生処理した固体の複水酸化物(「試料B1」という。)を得た。 Sample B10 (0.1 g) was placed in a vial (5 mL) and dispersed in degassed deionized water (4 mL). After that, the sealed vial was immersed in an ultrasonic cleaner and irradiated with ultrasonic waves for 1 hour. The obtained dispersion was transferred to a beaker, and the water was evaporated while heating and stirring (150 ° C. × 1 hour). The solid double hydroxide (referred to as "Sample B1") regenerated in this manner was obtained.
(ii)試料Aに対してボールミル(Fritsch製P-4)による粉砕処理を施した。ボールミルによる粉砕は、200rpm×15minを4回行った。得られた粉末に対して、上述した(i)と同様な加熱処理を施した複水酸化物(「試料B20」という。)を得た。 (Ii) Sample A was pulverized with a ball mill (P-4 manufactured by Fritzch). Milling with a ball mill was performed at 200 rpm × 15 min four times. The obtained powder was subjected to the same heat treatment as in (i) described above to obtain a double hydroxide (referred to as "Sample B20").
試料B20に対して、上述した(i)と同様な再生処理を施した複水酸化物(「試料B2」という。)を得た。但し、このときの再生処理では、超音波の照射時間を1時間から3時間へ延長した。 A double hydroxide (referred to as "Sample B2") was obtained by subjecting the sample B20 to the same regeneration treatment as in (i) described above. However, in the reproduction process at this time, the ultrasonic irradiation time was extended from 1 hour to 3 hours.
(iii)試料B20に対して、還流による再生処理も行なった。すなわち、試料B20(0.1g)を丸底フラスコ(100mL)に入れて、脱気した脱イオン水(20mL)に分散させた。このフラスコをオイルバスに浸してホットスターラーで加熱撹拌した(105℃×8時間)。得られた分散液をビーカーに移し、上述した(i)と同様に加熱撹拌して水を蒸発させた。こうして再生処理した固体の複水酸化物(「試料B3」という。)を得た。 (Iii) The sample B20 was also regenerated by reflux. That is, sample B20 (0.1 g) was placed in a round bottom flask (100 mL) and dispersed in degassed deionized water (20 mL). The flask was immersed in an oil bath and heated and stirred with a hot stirrer (105 ° C. × 8 hours). The obtained dispersion was transferred to a beaker and heated and stirred in the same manner as in (i) above to evaporate the water. The solid double hydroxide (referred to as "Sample B3") regenerated in this manner was obtained.
(2)X線回折
試料Aおよび試料B1~B3について、X線回折(Cu-Kα、λ=1.5418Å)により結晶構造を分析した。得られた結果を図6にまとめて示した。
(2) X-ray diffraction The crystal structures of Sample A and Samples B1 to B3 were analyzed by X-ray diffraction (Cu—Kα, λ = 1.5418 Å). The obtained results are summarized in FIG.
図6から明らかなように、試料Aと試料B1~B3のXRDパターンは基本的に同じであり、再生処理したいずれの試料B1~B3も、合成時の試料Aと同様に、複水酸化物(Mg2Al(OH)6Cl-nH2O)となっていること、つまり再生されていることが確認された。 As is clear from FIG. 6, the XRD patterns of the sample A and the samples B1 to B3 are basically the same, and all the regenerated samples B1 to B3 have the same double hydroxide as the sample A at the time of synthesis. It was confirmed that it was (Mg 2 Al (OH) 6 Cl-nH 2 O), that is, it was regenerated.
(3)再生率
試料B1~B3を再加熱して、上述した再生処理による再生率を調べた。再加熱は、各試料(約18mg)をN2(100mL/min)の気流中で、昇温速度:5℃/minとし、900℃に到達後に60分間保持して行った。再加熱中の質量変化を熱重量分析した。その一例として、試料B3に係るTG曲線を図7に示した。
(3) Regeneration rate Samples B1 to B3 were reheated, and the regeneration rate by the above-mentioned regeneration treatment was examined. Reheating was performed by reheating each sample (about 18 mg) in an air stream of N 2 (100 mL / min) at a heating rate of 5 ° C./min and holding for 60 minutes after reaching 900 ° C. The mass change during reheating was thermogravimetric analysis. As an example, the TG curve for sample B3 is shown in FIG.
再生処理後の複水酸化物に結合している水分子数(n)は、乾燥条件により変化し得る。そこで、反応Aの終了後である反応Bと反応Cで生じる重量減少率に着目した。各試料の重量減少率は次の通りとなった。
試料B1:33.8%、試料B2:34.0%、試料B3:35.6%
The number of water molecules (n) bound to the double hydroxide after the regeneration treatment can change depending on the drying conditions. Therefore, attention was paid to the weight loss rate generated in the reaction B and the reaction C after the completion of the reaction A. The weight loss rate of each sample is as follows.
Sample B1: 33.8%, Sample B2: 34.0%, Sample B3: 35.6%
図1に示した反応B1、B2と反応C1、C2が生じて、Mg2Al(OH)6ClがMg2Al(O)3.5に変化したとすると、そのときの重量減少率は38.2%(理論値)となる。再生反応の進行により複水酸化物の重量は増加するため、熱重量分析の重量減少率と複水酸化物の再生率とは正の相関となる。そこで、重量減少率の理論値と熱重量分析から求まった各試料の重量減少率との比率から各試料の再生率を求めると、次のようになった。いずれの場合でも、十分に高い再生率が得られることもわかった。
試料B1:88%、試料B2:89%、試料B3:93%
Assuming that the reactions B1 and B2 and the reactions C1 and C2 shown in FIG. 1 occur and Mg 2 Al (OH) 6 Cl changes to Mg 2 Al (O) 3.5 , the weight loss rate at that time is 38. It becomes 0.2% (theoretical value). Since the weight of the double hydroxide increases as the regeneration reaction progresses, the weight loss rate of the thermogravimetric analysis and the regeneration rate of the double hydroxide have a positive correlation. Therefore, the regeneration rate of each sample was obtained from the ratio of the theoretical value of the weight loss rate to the weight loss rate of each sample obtained from the thermogravimetric analysis as follows. It was also found that a sufficiently high reproduction rate can be obtained in either case.
Sample B1: 88%, Sample B2: 89%, Sample B3: 93%
以上から、本発明に係る複水酸化物を用いると、HClを発生させることなく、特定温度域で放水による蓄熱が可能であると共に、その蓄熱後の複水酸化物は、吸水により、十分に高い割合で再生可能であることも確認できた。 From the above, when the double hydroxide according to the present invention is used, heat can be stored by discharging water in a specific temperature range without generating HCl, and the double hydroxide after the heat storage can be sufficiently absorbed by water absorption. It was also confirmed that it was reproducible at a high rate.
Claims (3)
前記複水酸化物は、水を吸蔵したときに、Mg2Al(OH)6Cl-nH2O(n=0~3.5)となる化学蓄熱材。 A chemical heat storage material consisting of a double hydroxide that generates or absorbs heat by storing or releasing water.
The double hydroxide is a chemical heat storage material that becomes Mg 2 Al (OH) 6 Cl-nH 2 O (n = 0 to 3.5) when water is occluded.
前記複水酸化物の加熱温度(T/℃)と該加熱温度の保持時間(Δt/min)が下式を満たす化学蓄熱システム。
Δt<139exp(29.7-0.09T) (式1) A chemical heat storage system using the chemical heat storage material according to claim 1.
A chemical heat storage system in which the heating temperature (T / ° C.) of the double hydroxide and the holding time (Δt / min) of the heating temperature satisfy the following equations.
Δt <139exp (29.7-0.09T) (Equation 1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018071371A JP7010115B2 (en) | 2018-04-03 | 2018-04-03 | Chemical heat storage material and chemical heat storage system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018071371A JP7010115B2 (en) | 2018-04-03 | 2018-04-03 | Chemical heat storage material and chemical heat storage system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019182924A JP2019182924A (en) | 2019-10-24 |
JP7010115B2 true JP7010115B2 (en) | 2022-01-26 |
Family
ID=68339660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018071371A Active JP7010115B2 (en) | 2018-04-03 | 2018-04-03 | Chemical heat storage material and chemical heat storage system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7010115B2 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005324128A (en) | 2004-05-14 | 2005-11-24 | Sakai Chem Ind Co Ltd | Phosphorus removing agent and its manufacturing method |
JP2007309561A (en) | 2006-05-17 | 2007-11-29 | Tokyo Institute Of Technology | Chemical heat pump |
JP2007538098A (en) | 2004-05-20 | 2007-12-27 | イーストマン コダック カンパニー | Composition with functional-active organic compounds intercalated |
JP2008262859A (en) | 2007-04-13 | 2008-10-30 | Toyota Central R&D Labs Inc | Nonaqueous electrolyte and lithium-ion secondary battery |
JP2009186119A (en) | 2008-02-07 | 2009-08-20 | Tokyo Institute Of Technology | Chemical heat pump |
JP2009203444A (en) | 2008-02-29 | 2009-09-10 | Toyota Central R&D Labs Inc | Chemical heat accumulation material composite body |
JP2010223575A (en) | 2009-02-24 | 2010-10-07 | Denso Corp | Heat storage device |
WO2012137604A1 (en) | 2011-04-01 | 2012-10-11 | 旭化成ケミカルズ株式会社 | Method for producing diester of polyhydric alcohol and fatty acid |
CN105255454A (en) | 2015-10-11 | 2016-01-20 | 郑叶芳 | Ternary nitrate/hydrotalcite composite heat storage material and preparing method thereof |
JP2017186538A (en) | 2016-03-31 | 2017-10-12 | タテホ化学工業株式会社 | Chemical heat storage granulated body and manufacturing method therefor |
-
2018
- 2018-04-03 JP JP2018071371A patent/JP7010115B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005324128A (en) | 2004-05-14 | 2005-11-24 | Sakai Chem Ind Co Ltd | Phosphorus removing agent and its manufacturing method |
JP2007538098A (en) | 2004-05-20 | 2007-12-27 | イーストマン コダック カンパニー | Composition with functional-active organic compounds intercalated |
JP2007309561A (en) | 2006-05-17 | 2007-11-29 | Tokyo Institute Of Technology | Chemical heat pump |
JP2008262859A (en) | 2007-04-13 | 2008-10-30 | Toyota Central R&D Labs Inc | Nonaqueous electrolyte and lithium-ion secondary battery |
JP2009186119A (en) | 2008-02-07 | 2009-08-20 | Tokyo Institute Of Technology | Chemical heat pump |
JP2009203444A (en) | 2008-02-29 | 2009-09-10 | Toyota Central R&D Labs Inc | Chemical heat accumulation material composite body |
JP2010223575A (en) | 2009-02-24 | 2010-10-07 | Denso Corp | Heat storage device |
WO2012137604A1 (en) | 2011-04-01 | 2012-10-11 | 旭化成ケミカルズ株式会社 | Method for producing diester of polyhydric alcohol and fatty acid |
CN105255454A (en) | 2015-10-11 | 2016-01-20 | 郑叶芳 | Ternary nitrate/hydrotalcite composite heat storage material and preparing method thereof |
JP2017186538A (en) | 2016-03-31 | 2017-10-12 | タテホ化学工業株式会社 | Chemical heat storage granulated body and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2019182924A (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5177386B2 (en) | Chemical heat pump | |
JP4765072B2 (en) | Chemical heat pump | |
JP4235250B2 (en) | Thermal storage method and thermal storage system | |
Clark et al. | Experimental screening of salt hydrates for thermochemical energy storage for building heating application | |
Walspurger et al. | High CO2 storage capacity in alkali‐promoted hydrotalcite‐based material: In situ detection of reversible formation of magnesium carbonate | |
CN106170330A (en) | CO2removing device | |
El-Din et al. | Decontamination of radioactive cesium ions using ordered mesoporous monetite | |
Ramírez-Moreno et al. | CO2 adsorption at elevated pressure and temperature on Mg–Al layered double hydroxide | |
Sun et al. | Evaluation of thermochemical energy storage performance of Fe-/Mn-doped, Zr-stabilized, CaO-based composites under different thermal energy storage modes | |
Yin et al. | Synthesis and CO2 adsorption characteristics of lithium zirconates with high lithia content | |
Opel et al. | Thermochemical storage materials research-TGA/DSC-hydration studies | |
Ousaleh et al. | Enhanced inorganic salts stability using bentonite clay for high-performance and low-cost thermochemical energy storage | |
Shi et al. | Design Sr, Mn-doped 3DOM LaCoO3 perovskite catalysts with excellent SO2 resistance for benzene catalytic combustion | |
JP7010115B2 (en) | Chemical heat storage material and chemical heat storage system | |
JP6582356B2 (en) | Chemical heat storage material | |
Mazur | Boosting power of salt hydrates for heat storage | |
JP6743685B2 (en) | Chemical heat storage material and manufacturing method thereof | |
SA520410933B1 (en) | Chemical Heat Storage Material, Method for Producing Same, Chemical Heat Pump, and Method for Operating Chemical Heat Pump | |
RU2446006C2 (en) | Mineral composition for trapping hydrogen, method of preparing said composition and use of mineral composition | |
Ghaderi et al. | Removal of Zn (II) from aqueous solutions using NiFe2O4 coated sand as an efficient and low cost adsorbent: Adsorption isotherm, kinetic and thermodynamic studies | |
Reuge et al. | Modeling of spray pyrolysis—why are the synthesized Y2O3 microparticles hollow? | |
JP6895108B2 (en) | Moisture adsorbent | |
JP6792774B2 (en) | Composites for chemical heat pumps and their manufacturing methods | |
Nguyen et al. | MgSO4 composites in a ferroaluminophosphate for enhancement of volumetric heat storage capacity at a low charging temperature | |
Ryu et al. | Dehydration and hydration behavior of Mg–Co mixed hydroxide as a material for chemical heat storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7010115 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |