JP2018168223A - Chemical thermal storage medium and method for producing the same - Google Patents

Chemical thermal storage medium and method for producing the same Download PDF

Info

Publication number
JP2018168223A
JP2018168223A JP2017064961A JP2017064961A JP2018168223A JP 2018168223 A JP2018168223 A JP 2018168223A JP 2017064961 A JP2017064961 A JP 2017064961A JP 2017064961 A JP2017064961 A JP 2017064961A JP 2018168223 A JP2018168223 A JP 2018168223A
Authority
JP
Japan
Prior art keywords
heat storage
compound
alkaline earth
storage material
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017064961A
Other languages
Japanese (ja)
Other versions
JP6798916B2 (en
Inventor
啓祐 塘
Keisuke Tsutsumi
啓祐 塘
忠輔 亀井
Tadasuke Kamei
忠輔 亀井
翔太 岡田
Shota Okada
翔太 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Chemical Industries Co Ltd
Original Assignee
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Chemical Industries Co Ltd filed Critical Tateho Chemical Industries Co Ltd
Priority to JP2017064961A priority Critical patent/JP6798916B2/en
Publication of JP2018168223A publication Critical patent/JP2018168223A/en
Application granted granted Critical
Publication of JP6798916B2 publication Critical patent/JP6798916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

To provide a chemical thermal storage medium that performs thermal storage using the dehydration reaction of hydroxides of alkaline earth metals, wherein, the thermal storage can be realized at lower temperature.SOLUTION: A chemical thermal storage medium has a composite compound of alkaline earth metals and alkali metals; the content of alkali metals in the composite compound is 0.1-50 mol% relative to the content of alkaline earth metals. The composite compound is preferably a compound that does not show peaks in a range of 28.0-28.4° in X-ray incidence angle, in X-ray diffraction analysis by CuKα rays.SELECTED DRAWING: None

Description

本発明は、化学蓄熱材及びその製造方法に関する。   The present invention relates to a chemical heat storage material and a method for producing the same.

近年、二酸化炭素排出規制によって化石燃料の使用削減が求められており、各プロセスの省エネルギー化に加え、排熱の利用を進める必要がある。排熱の利用の手段としては、水を利用した100℃以下の温水蓄熱が知られている。しかし、温水蓄熱には、(1)放熱損失があるため長時間の蓄熱が不可能である、(2)顕熱量が小さいため大量の水が必要であり、蓄熱設備のコンパクト化が困難である、(3)出力温度が利用量に応じて非定常で、次第に降下する、等の問題がある。したがって、このような排熱の民生利用を進めるためには、より効率の高い蓄熱技術を開発する必要がある。   In recent years, the use of fossil fuels has been demanded by carbon dioxide emission regulations, and it is necessary to promote the use of exhaust heat in addition to energy saving in each process. As means for using exhaust heat, warm water storage at 100 ° C. or less using water is known. However, in hot water heat storage, (1) long-term heat storage is impossible due to heat dissipation loss, and (2) a large amount of water is required because the amount of sensible heat is small, making it difficult to make the heat storage equipment compact. (3) There is a problem that the output temperature is unsteady according to the usage amount and gradually drops. Therefore, it is necessary to develop a more efficient heat storage technology in order to promote consumer use of such waste heat.

効率の高い蓄熱技術として化学蓄熱法が挙げられる。化学蓄熱法は、物質の吸着、水和等の化学変化を伴うため、材料自体(水、溶融塩等)の潜熱や顕熱による蓄熱法に比べて単位質量当たりの蓄熱量が高くなる。化学蓄熱法としては、大気中の水蒸気の吸脱着による水蒸気吸脱着法、金属塩へのアンモニア吸収(アンミン錯体生成反応)、アルコール等の有機物の吸脱着による反応等が提案されている。環境への負荷や装置の簡便性を考慮すると、水蒸気吸脱着法が最も有利である。水蒸気吸脱着法に用いられる化学蓄熱材として、アルカリ土類金属水酸化物である水酸化カルシウムや水酸化マグネシウムが知られている。   A chemical heat storage method is an example of a highly efficient heat storage technology. Since the chemical heat storage method involves chemical changes such as adsorption and hydration of substances, the amount of heat stored per unit mass is higher than the heat storage method using latent heat or sensible heat of the material itself (water, molten salt, etc.). As the chemical heat storage method, a water vapor adsorption / desorption method by adsorption / desorption of water vapor in the atmosphere, ammonia absorption to a metal salt (ammine complex formation reaction), a reaction by adsorption / desorption of an organic substance such as alcohol, and the like have been proposed. The water vapor adsorption / desorption method is most advantageous in view of environmental load and simplicity of the apparatus. As chemical heat storage materials used in the water vapor adsorption and desorption method, calcium hydroxide and magnesium hydroxide, which are alkaline earth metal hydroxides, are known.

しかし、これら水酸化カルシウム及び水酸化マグネシウムは、100〜300℃の低温域では有効な脱水反応を起こさないため、実用的な蓄熱材として機能しないという問題があった。   However, since these calcium hydroxide and magnesium hydroxide do not cause an effective dehydration reaction in a low temperature range of 100 to 300 ° C., there is a problem that they do not function as a practical heat storage material.

この問題を解決するために、特許文献1では、マグネシウムと、Ni、Co、Cu、及びAlからなる群から選ばれた少なくとも1種の金属成分との複合水酸化物を利用することで、100〜300℃程度で蓄熱可能な化学蓄熱材が提案されている。   In order to solve this problem, Patent Document 1 discloses that a composite hydroxide of magnesium and at least one metal component selected from the group consisting of Ni, Co, Cu, and Al is used. A chemical heat storage material capable of storing heat at about ~ 300 ° C has been proposed.

さらに、特許文献2では、特許文献1に記載の化学蓄熱材の蓄熱量を改善することを目的に、マグネシウム又はカルシウムの水酸化物に、塩化リチウム等の吸湿性金属塩を添加することで、単位質量又は単位体積当たりの蓄熱量が高く、100〜350℃程度で蓄熱可能な化学蓄熱材が提案されている。   Furthermore, in Patent Document 2, for the purpose of improving the heat storage amount of the chemical heat storage material described in Patent Document 1, by adding a hygroscopic metal salt such as lithium chloride to a hydroxide of magnesium or calcium, A chemical heat storage material that has a high heat storage amount per unit mass or unit volume and can store heat at about 100 to 350 ° C. has been proposed.

しかしながら、特許文献2に開示された技術によっては目的の温度で蓄熱させることが困難な場合があったとして、特許文献3では、アルカリ土類金属の水酸化物とアルカリ金属の塩化物とが化学的に結合した構造を含む複合化蓄熱材が開示されている。   However, depending on the technique disclosed in Patent Document 2, it may be difficult to store heat at a target temperature. In Patent Document 3, alkaline earth metal hydroxide and alkali metal chloride are chemically synthesized. A composite heat storage material including a structurally coupled structure is disclosed.

特開2007−309561号公報JP 2007-309561 A 特開2009−186119号公報JP 2009-186119 A 特開2013−216763号公報JP 2013-216863 A

特許文献3に開示された技術によれば、蓄熱密度の改善を達成することができるが、本願発明者らが検討したところ、脱水による蓄熱の開始温度が十分に低下しておらず、低温の廃熱を利用できないという問題があった。   According to the technique disclosed in Patent Document 3, it is possible to achieve an improvement in the heat storage density, but the inventors of the present application have examined, the starting temperature of heat storage by dehydration has not been sufficiently reduced, There was a problem that waste heat could not be used.

本発明は、上記現状に鑑み、アルカリ土類金属の水酸化物の脱水反応を利用した蓄熱を行なう化学蓄熱材において、より低温での蓄熱を実現する化学蓄熱材を提供することを目的とする。   In view of the above situation, the present invention aims to provide a chemical heat storage material that realizes heat storage at a lower temperature in a chemical heat storage material that performs heat storage using a dehydration reaction of a hydroxide of an alkaline earth metal. .

上記の課題を解決するために、本発明者らが種々検討を重ねたところ、アルカリ土類金属の水酸化物に基づいた化学蓄熱材において、アルカリ土類金属の化合物に所定量のアルカリ金属塩を組み合わせて所定の条件で加熱することで、新規の複合化合物が形成され、そのような複合化合物を用いると、特許文献3に開示された化学蓄熱材よりも、より低温での蓄熱が可能になることを見出し、本発明に至った。   In order to solve the above problems, the present inventors have made various studies, and in a chemical heat storage material based on an alkaline earth metal hydroxide, a predetermined amount of an alkali metal salt is added to the alkaline earth metal compound. Are combined and heated under predetermined conditions to form a new composite compound, and using such a composite compound enables heat storage at a lower temperature than the chemical heat storage material disclosed in Patent Document 3. As a result, the present invention has been achieved.

すなわち本発明は、化学蓄熱材であって、前記化学蓄熱材は、アルカリ土類金属及びアルカリ金属の複合化合物から構成され、前記複合化合物における前記アルカリ金属の含有量は、前記アルカリ土類金属に対して0.1〜50モル%である、化学蓄熱材に関する。   That is, the present invention is a chemical heat storage material, wherein the chemical heat storage material is composed of a composite compound of an alkaline earth metal and an alkali metal, and the content of the alkali metal in the composite compound is the same as that of the alkaline earth metal. The present invention relates to a chemical heat storage material that is 0.1 to 50 mol%.

本発明において、前記複合化合物は、CuKα線によるX線回折分析において、X線入射角28.0〜28.4°の範囲にピークを示さない化合物であることが好ましい。   In the present invention, the composite compound is preferably a compound that does not show a peak in the X-ray incident angle range of 28.0 to 28.4 ° in the X-ray diffraction analysis using CuKα rays.

本発明において、前記アルカリ土類金属が、カルシウム、マグネシウム、及びバリウムからなる群より選択される少なくとも1種であることが好ましい。また、前記アルカリ金属が、リチウム、カリウム、及びナトリウムからなる群より選択される少なくとも1種であることが好ましい。   In the present invention, the alkaline earth metal is preferably at least one selected from the group consisting of calcium, magnesium, and barium. The alkali metal is preferably at least one selected from the group consisting of lithium, potassium, and sodium.

また、本発明は、前記化学蓄熱材を製造する方法であって、アルカリ土類金属の化合物及びアルカリ金属塩の混合物を300〜600℃の温度で12〜48時間することによって、アルカリ土類金属の化合物及びアルカリ金属塩の複合化合物を形成する工程を含む、方法にも関する。前記アルカリ土類金属の化合物は水酸化物及び/又は酸化物であることが好ましい。   Further, the present invention is a method for producing the chemical heat storage material, wherein the alkaline earth metal is obtained by subjecting a mixture of an alkaline earth metal compound and an alkali metal salt to a temperature of 300 to 600 ° C. for 12 to 48 hours. And a method comprising the step of forming a compound of an alkali metal salt and an alkali metal salt. The alkaline earth metal compound is preferably a hydroxide and / or an oxide.

本発明によると、アルカリ土類金属の水酸化物の脱水反応を利用した蓄熱を行なう化学蓄熱材において、より低温での蓄熱を実現する化学蓄熱材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the chemical heat storage material which performs heat storage using the dehydration reaction of the alkaline-earth metal hydroxide, the chemical heat storage material which implement | achieves heat storage at lower temperature can be provided.

実施例1で製造した複合化合物をX線回折分析して得られたチャートChart obtained by X-ray diffraction analysis of the composite compound produced in Example 1 比較例1で製造した複合化合物をX線回折分析して得られたチャートChart obtained by X-ray diffraction analysis of composite compound produced in Comparative Example 1

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の化学蓄熱材は、アルカリ土類金属及びアルカリ金属の複合化合物から構成されるものである。本発明の化学蓄熱材は、アルカリ土類金属の水酸化物及び酸化物による以下の可逆反応を利用したものである。なお、以下の反応式では、アルカリ土類金属としてカルシウム又はマグネシウムを用いた場合について示した。
CaO+HO⇔Ca(OH) △H=−109.2kJ/モル
MgO+HO⇔Mg(OH) △H=−81.2kJ/モル
各式中、右方向への反応は酸化カルシウム又は酸化マグネシウムの水和発熱反応である。反対に、左方向への反応は水酸化カルシウム又は水酸化マグネシウムの脱水吸熱反応である。すなわち本発明の化学蓄熱材は、水酸化カルシウム又は水酸化マグネシウムの脱水反応が進行することによって蓄熱することができ、また、蓄えられた熱エネルギーを、酸化カルシウム又は酸化マグネシウムの水和反応が進行することによって供給することができる。
The chemical heat storage material of the present invention is composed of a complex compound of an alkaline earth metal and an alkali metal. The chemical heat storage material of the present invention utilizes the following reversible reaction with alkaline earth metal hydroxides and oxides. In the following reaction formula, the case where calcium or magnesium is used as the alkaline earth metal is shown.
CaO + H 2 O⇔Ca (OH) 2 ΔH = −109.2 kJ / mol MgO + H 2 O⇔Mg (OH) 2 ΔH = −81.2 kJ / mol In each formula, the reaction in the right direction is calcium oxide or oxidation. It is a hydration exothermic reaction of magnesium. Conversely, the reaction in the left direction is a dehydration endothermic reaction of calcium hydroxide or magnesium hydroxide. That is, the chemical heat storage material of the present invention can store heat by the dehydration reaction of calcium hydroxide or magnesium hydroxide, and the hydrated reaction of calcium oxide or magnesium oxide proceeds to the stored thermal energy. Can be supplied by doing.

このように本発明の化学蓄熱材はアルカリ土類金属の水酸化物及びアルカリ土類金属の酸化物による可逆反応により蓄熱及び放熱するものであるので、本発明の化学蓄熱材には、アルカリ土類金属は、アルカリ土類金属の水酸化物の形態、アルカリ土類金属の酸化物の形態、又は、双方の形態で含有されている。すなわち、アルカリ土類金属及びアルカリ金属の複合化合物は、アルカリ土類金属の水酸化物及び/又は酸化物、並びにアルカリ金属塩の複合化合物であってもよい。   As described above, the chemical heat storage material of the present invention stores and dissipates heat by a reversible reaction with an alkaline earth metal hydroxide and an alkaline earth metal oxide. The alkali metal is contained in the form of an alkaline earth metal hydroxide, in the form of an alkaline earth metal oxide, or in both forms. That is, the alkaline earth metal and alkali metal complex compound may be a complex compound of an alkaline earth metal hydroxide and / or oxide and an alkali metal salt.

本発明において、前記アルカリ土類金属としては、カルシウム、マグネシウム、バリウムが挙げられる。これらを1種のみ含むものであってもよく、2種以上を組み合わせて含むものであっても良い。このうち、カルシウム及び/又はマグネシウムが好ましく、カルシウムがより好ましい。好ましいアルカリ土類金属の化合物としては、水酸化マグネシウム、水酸化カルシウム、マグネシウムとカルシウムの複合水酸化物、酸化マグネシウム、酸化カルシウム、マグネシウムとカルシウムの複合酸化物が挙げられ、これらを単独で使用しても良いし、2種以上を混合して使用しても良い。   In the present invention, examples of the alkaline earth metal include calcium, magnesium, and barium. One of these may be included, or a combination of two or more may be included. Among these, calcium and / or magnesium are preferable, and calcium is more preferable. Preferred alkaline earth metal compounds include magnesium hydroxide, calcium hydroxide, magnesium-calcium composite hydroxide, magnesium oxide, calcium oxide, magnesium-calcium composite oxide, and these can be used alone. Alternatively, two or more kinds may be mixed and used.

前記アルカリ金属としては、リチウム、カリウム、ナトリウムが挙げられ、これらを1種のみ含むものであってもよく、2種以上を組み合わせて含むものであっても良い。このうち、リチウム、ナトリウムが好ましく、リチウムがより好ましい。前記アルカリ金属の塩としては、アルカリ土類金属の化合物と複合化でき、本発明の効果を奏するものである限り特に限定されないが、吸湿性を有する塩であって、雰囲気中の水分を吸着するか、又は対応する水和物を生成することができる塩が好ましい。そのような塩としては、例えば、取り扱いが容易なものとして、塩化物、臭化物等のハロゲン化物、水酸化物、炭酸塩、酢酸塩、硝酸塩、又は硫酸塩などが挙げられる。これらを単独で使用しても良いし、2種以上を混合して使用しても良い。   As said alkali metal, lithium, potassium, and sodium are mentioned, These may contain only 1 type and may contain 2 or more types in combination. Among these, lithium and sodium are preferable, and lithium is more preferable. The alkali metal salt is not particularly limited as long as it can be combined with an alkaline earth metal compound and exhibits the effects of the present invention, but is a hygroscopic salt that adsorbs moisture in the atmosphere. Or a salt capable of producing the corresponding hydrate. Examples of such salts include halides such as chlorides and bromides, hydroxides, carbonates, acetates, nitrates, and sulfates that can be easily handled. These may be used alone or in combination of two or more.

より具体的には、リチウムの塩としては、ハロゲン化リチウム及び/又は水酸化リチウムが好ましく、塩化リチウム、臭化リチウム、及び/又は水酸化リチウムがより好ましい。カリウムの塩としては、ハロゲン化カリウム及び/又は水酸化カリウムが好ましく、塩化カリウム、臭化カリウム、及び/又は水酸化カリウムがより好ましい。ナトリウムの塩としては、ハロゲン化ナトリウム及び/又は水酸化ナトリウムが好ましく、塩化ナトリウム、臭化ナトリウム、及び/又は水酸化ナトリウムがより好ましい。これらのうち、リチウムの塩が好ましく、なかでも塩化リチウムが最も好ましい。   More specifically, the lithium salt is preferably lithium halide and / or lithium hydroxide, more preferably lithium chloride, lithium bromide, and / or lithium hydroxide. The potassium salt is preferably potassium halide and / or potassium hydroxide, more preferably potassium chloride, potassium bromide and / or potassium hydroxide. As a salt of sodium, sodium halide and / or sodium hydroxide are preferable, and sodium chloride, sodium bromide, and / or sodium hydroxide are more preferable. Of these, lithium salts are preferred, with lithium chloride being most preferred.

本発明において、アルカリ土類金属及びアルカリ金属の複合化合物とは、アルカリ土類金属の水酸化物及び/又は酸化物、並びにアルカリ金属塩が化学的に結合した構造を含む化合物のことをいう。例えば、アルカリ土類金属の水酸化物からなる粒子の表面にアルカリ金属塩が物理的に付着しているだけで、両者が化学的に結合していないものは、本発明でいう複合化合物には該当しない。   In the present invention, the alkaline earth metal and alkali metal complex compound refers to a compound containing a structure in which an alkaline earth metal hydroxide and / or oxide and an alkali metal salt are chemically bonded. For example, an alkali metal salt that is physically attached to the surface of a particle made of an alkaline earth metal hydroxide and that is not chemically bonded to each other is a composite compound referred to in the present invention. Not applicable.

前記複合化合物では、アルカリ土類金属の化合物が主要成分を占める。よって、前記複合化合物に含まれるアルカリ土類金属の含有量を100モル%としたときに、前記複合化合物に含まれるアルカリ金属の含有量は、0.1〜50モル%である。これよりアルカリ金属の含有量が少なすぎると、アルカリ金属塩との複合化による蓄熱温度の低下を達成することができない。また、アルカリ金属の含有量が多すぎると、化学蓄熱材による蓄熱量が低下する恐れがある。0.5〜30モル%が好ましく、1.0〜20モル%がより好ましく、2.0〜10モル%がさらに好ましい。   In the composite compound, an alkaline earth metal compound is a major component. Therefore, when the content of the alkaline earth metal contained in the composite compound is 100 mol%, the content of the alkali metal contained in the composite compound is 0.1 to 50 mol%. If the content of the alkali metal is too small, it is impossible to achieve a decrease in the heat storage temperature due to the combination with the alkali metal salt. Moreover, when there is too much content of an alkali metal, there exists a possibility that the thermal storage amount by a chemical thermal storage material may fall. 0.5-30 mol% is preferable, 1.0-20 mol% is more preferable, and 2.0-10 mol% is further more preferable.

本発明における複合化合物は、CuKα線によるX線回折分析において、X線入射角28.0〜28.4°の範囲に回折ピークを示さない複合化合物である点に特徴がある。これに対し、特許文献3で開示されている複合化合物は、X線入射角28.0°以上28.4°以下の範囲に、所定強度のピークを有するものであり(段落[0044])、この点において、本発明における複合化合物と、特許文献3開示の複合化合物は相違している。前記ピークは、「アルカリ土類金属、アルカリ金属、塩化物イオン、及び水酸化物イオン」という特定の化合物が存在することを示すものと推測されるため、前記ピークの不存在は、本発明における複合化合物には、「アルカリ土類金属、アルカリ金属、塩化物イオン、及び水酸化物イオン」なる化合物が含まれていないことを意味するものと考えられる。   The composite compound in the present invention is characterized in that it is a composite compound that does not show a diffraction peak in the range of an X-ray incident angle of 28.0 to 28.4 ° in X-ray diffraction analysis by CuKα rays. On the other hand, the composite compound disclosed in Patent Document 3 has a peak with a predetermined intensity in the range of an X-ray incident angle of 28.0 ° or more and 28.4 ° or less (paragraph [0044]). In this respect, the composite compound in the present invention is different from the composite compound disclosed in Patent Document 3. Since the peak is presumed to indicate the presence of a specific compound “alkaline earth metal, alkali metal, chloride ion, and hydroxide ion”, the absence of the peak in the present invention It is considered that the composite compound does not contain a compound of “alkaline earth metal, alkali metal, chloride ion, and hydroxide ion”.

前記CuKα線によるX線回折分析においては、複合化合物のX線回折分析を行なって得られた回折強度の数値を、X線入射角(2θ)を横軸とし回折強度を縦軸とする二次元座標にプロットし、その回折強度のピークを確認する。これにより、X線入射角28.0〜28.4°の範囲において、実質的なピークが存在しない場合に、本発明の複合化合物に該当するものと判断できる。ここで、実質的なピークが存在しないとは、28.0〜28.4°の範囲においてピークがまったく観察されない場合を含むが、これに加えて、28.0〜28.4°の範囲に現れる最大のピークの高さが、アルカリ土類金属の水酸化物に由来するX線入射角28.4°〜29.0°に現れるピークの高さに対して10%未満である場合も含む。   In the X-ray diffraction analysis by the CuKα ray, the numerical value of the diffraction intensity obtained by performing the X-ray diffraction analysis of the composite compound is two-dimensional with the X-ray incident angle (2θ) as the horizontal axis and the diffraction intensity as the vertical axis. Plot the coordinates and confirm the peak of the diffraction intensity. Thereby, it can be judged that it corresponds to the composite compound of this invention, when a substantial peak does not exist in the range of 28.0-28.4 degrees of X-ray incident angles. Here, the absence of a substantial peak includes the case where no peak is observed in the range of 28.0 to 28.4 °, but in addition to this, the range of 28.0 to 28.4 ° is included. The case where the height of the maximum peak that appears is less than 10% with respect to the height of the peak that appears at an X-ray incident angle of 28.4 ° to 29.0 ° derived from an alkaline earth metal hydroxide is included. .

本発明における複合化合物は、X線入射角28.0〜28.4°の範囲にピークを示さないものであるため、「アルカリ土類金属、アルカリ金属、塩化物イオン、及び水酸化物イオン」なる化合物が形成されておらず、特許文献3開示の複合化合物と比較すると、長時間焼成することにより、より均一に、アルカリ土類金属の水酸化物及びアルカリ金属塩が複合化しているものと推測される。この均一性が高い化学的複合状態に起因して、本発明の化学蓄熱材では、蓄熱がより低温で実現するものと推測される。   Since the composite compound in the present invention does not show a peak in the range of an X-ray incident angle of 28.0 to 28.4 °, “alkaline earth metal, alkali metal, chloride ion, and hydroxide ion” The compound is not formed, and compared with the composite compound disclosed in Patent Document 3, the alkaline earth metal hydroxide and the alkali metal salt are more uniformly compounded by baking for a long time. Guessed. Due to this highly uniform chemical compound state, it is presumed that heat storage is realized at a lower temperature in the chemical heat storage material of the present invention.

一方、特許文献3開示の複合化合物では、アルカリ土類金属の水酸化物からなる相及びアルカリ金属塩からなる相に加えて、「アルカリ土類金属、アルカリ金属、塩化物イオン、及び水酸化物イオン」という化合物からなる第三の相が部分的に形成されており、この第三相の存在によって、蓄熱サイクル上の機能が損なわれ、蓄熱時の温度が十分に低下しないものと考えられる。   On the other hand, in the composite compound disclosed in Patent Document 3, in addition to a phase composed of an alkaline earth metal hydroxide and a phase composed of an alkali metal salt, “alkaline earth metal, alkali metal, chloride ion, and hydroxide” A third phase composed of a compound called “ion” is partially formed, and the presence of this third phase impairs the function on the heat storage cycle, and it is considered that the temperature during heat storage does not sufficiently decrease.

なお、本発明の化学蓄熱材が前記複合化合物から構成されるとは、化学蓄熱材が奏する蓄熱作用が主に前記複合化合物によって実現される程度に、前記化学蓄熱材が前記複合化合物を含有することを意味する。従って、本発明の化学蓄熱材には、前記複合化合物以外の化学蓄熱成分や、化学蓄熱作用を示さない成分(例えばバインダー)が含まれていても良い。   Note that the chemical heat storage material of the present invention is composed of the composite compound means that the chemical heat storage material contains the composite compound to such an extent that the heat storage effect exhibited by the chemical heat storage material is mainly realized by the composite compound. Means that. Therefore, the chemical heat storage material of the present invention may contain a chemical heat storage component other than the composite compound or a component that does not exhibit a chemical heat storage action (for example, a binder).

本発明の化学蓄熱材の形状は特に限定されないが、例えば、粉末や、造粒体、成形体などの形状であってよい。   Although the shape of the chemical heat storage material of this invention is not specifically limited, For example, it may be shapes, such as powder, a granulated body, a molded object.

次に、本発明における複合化合物を製造する方法について説明する。   Next, a method for producing the composite compound in the present invention will be described.

本発明における複合化合物を製造する方法は特に限定されないが、一例として、まず、アルカリ土類金属の水酸化物の粉末及びアルカリ金属塩の粉末を混合し、混合物を得る。この混合の際には、水等の溶媒を用いて湿式混合しても良いが、溶媒を用いずに乾式混合することが好ましい。   The method for producing the composite compound in the present invention is not particularly limited, but as an example, first, an alkaline earth metal hydroxide powder and an alkali metal salt powder are mixed to obtain a mixture. In this mixing, wet mixing may be performed using a solvent such as water, but dry mixing is preferably performed without using a solvent.

次に、得られた混合物を焼成して焼成物とすることで、本発明における複合化合物を製造することができる。焼成の際には、その焼成条件を厳密に選択する必要があり、例えば300〜600℃の温度で12〜48時間焼成を行なうことが好ましい。焼成温度が300℃未満となると、複合化合物が十分に形成されず、焼成温度が600℃より大きい場合は、蓄熱材粒子が大きく成長し、水和が十分に進行しない。また、焼成時間が短くなると、特許文献3に記載のX線入射角28.0〜28.4°の範囲にピークを持つ複合化合物が形成されてしまう。焼成を12〜48時間という長時間実施することで、X線入射角28.0〜28.4°の範囲にあるピークが消失して、本発明における複合化合物を形成することができる。焼成を長時間行なうことで、複合化合物の化学的複合状態の均一性が向上して、「アルカリ土類金属、アルカリ金属、塩化物イオン、及び水酸化物イオン」という化合物からなる第三相が消失するものと考えられる。   Next, the composite compound in this invention can be manufactured by baking the obtained mixture into a baked product. When firing, it is necessary to strictly select the firing conditions. For example, it is preferable to perform firing at a temperature of 300 to 600 ° C. for 12 to 48 hours. When the firing temperature is less than 300 ° C., the composite compound is not sufficiently formed, and when the firing temperature is greater than 600 ° C., the heat storage material particles grow large and hydration does not proceed sufficiently. Moreover, when baking time becomes short, the composite compound which has a peak in the range of X-ray incident angle 28.0-28.4 degrees of patent document 3 will be formed. By carrying out the firing for 12 to 48 hours for a long time, the peak in the range of the X-ray incident angle of 28.0 to 28.4 ° disappears, and the composite compound in the present invention can be formed. By performing the firing for a long time, the uniformity of the chemical compound state of the compound compound is improved, and the third phase consisting of compounds of “alkaline earth metal, alkali metal, chloride ion, and hydroxide ion” is formed. It is thought to disappear.

焼成温度は、300〜500℃が好ましく、300〜400℃がより好ましい。焼成時間は、18〜36時間が好ましく、18〜24時間がより好ましい。   The firing temperature is preferably 300 to 500 ° C, more preferably 300 to 400 ° C. The firing time is preferably 18 to 36 hours, and more preferably 18 to 24 hours.

本発明の化学蓄熱材は、100〜300℃程度の熱源、例えば工場排熱等の未利用熱によって蓄熱材を加熱脱水することにより蓄熱することができる。脱水された蓄熱材は、乾燥状態に保つことにより容易に蓄熱状態を維持することができ、またその蓄熱状態を維持しながら所望の場所へ持ち運ぶことができる。放熱する場合には、所定圧力の水蒸気と接触させることにより水和反応熱(水蒸気収着熱)を熱エネルギーとして取り出すことができる。また、気密封鎖空間内の一方で水蒸気収着を行わせ、他方では水を蒸発させることにより冷熱を発生させることもできる。   The chemical heat storage material of the present invention can store heat by heating and dehydrating the heat storage material with a heat source of about 100 to 300 ° C., for example, unused heat such as factory exhaust heat. The dehydrated heat storage material can be easily maintained in a dry state by keeping it in a dry state, and can be carried to a desired place while maintaining the heat storage state. In the case of radiating heat, the heat of hydration reaction (water vapor sorption heat) can be taken out as thermal energy by contacting with water vapor at a predetermined pressure. It is also possible to generate cold by causing water vapor sorption on the one hand in the hermetic chain space and evaporating water on the other.

また、本発明の化学蓄熱材は、エンジンや燃料電池等から排出される排気ガスの熱を有効利用するのにも適している。例えば、排気ガスの熱は、自動車の暖機運転の短縮、搭乗者のアメニティーの向上、燃費の改善、排気ガス触媒の活性向上による排気ガスの低害化等に活用することができる。特に、エンジンの場合、運転による負荷が一定でなく排気出力も不安定であることから、排気熱の直接利用は必然的に非効率・不便を伴う。本発明の化学蓄熱材によると、排気熱を一旦化学的に蓄熱し、熱需要に応じて熱出力することで、より理想的な排気熱利用が可能となる。   The chemical heat storage material of the present invention is also suitable for effectively utilizing the heat of exhaust gas discharged from an engine, a fuel cell, or the like. For example, the heat of exhaust gas can be used for shortening the warm-up operation of an automobile, improving passenger amenity, improving fuel consumption, reducing exhaust gas damage by improving the activity of an exhaust gas catalyst, and the like. In particular, in the case of an engine, since the load due to operation is not constant and the exhaust output is also unstable, the direct use of exhaust heat is necessarily inefficient and inconvenient. According to the chemical heat storage material of the present invention, exhaust heat is temporarily stored once, and more ideal exhaust heat can be used by outputting heat according to the heat demand.

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(脱水開始温度の測定方法)
各実施例及び比較例で得られた複合化合物について、熱重量/示差熱分析測定装置(TG/DTA6300、セイコーインスツルメンツ社製)を用いて熱評価を行った。測定は、昇温速度10℃/min.,大気条件下・常圧で、常温から500℃の範囲で行った。各複合化合物中の水酸化カルシウムが酸化カルシウムへと変化を開始する温度を、吸熱挙動から計測し、これを脱水開始温度とした。
(Measurement method of dehydration start temperature)
About the composite compound obtained by each Example and the comparative example, thermal evaluation was performed using the thermogravimetric / differential thermal analysis measuring device (TG / DTA6300, Seiko Instruments Inc. make). The measurement was performed at a rate of temperature increase of 10 ° C./min. , It was carried out in the range from room temperature to 500 ° C. under atmospheric conditions and normal pressure. The temperature at which calcium hydroxide in each composite compound starts changing to calcium oxide was measured from the endothermic behavior, and this was used as the dehydration start temperature.

(X線回折分析の測定方法)
化学蓄熱材の構造は、X線回折装置(MiniFlex600、株式会社リガク社製)を用いて構造解析を行った。CuKα線を用い、横軸にX線入射角2θ(単位:°)、縦軸を回折強度(単位:cps)として表し、特定の入射角とその回折強度のピーク高さを読み取り、構造を確認した。
(Measurement method of X-ray diffraction analysis)
The structure of the chemical heat storage material was subjected to structural analysis using an X-ray diffractometer (MiniFlex 600, manufactured by Rigaku Corporation). Using CuKα rays, the horizontal axis represents the X-ray incident angle 2θ (unit: °) and the vertical axis represents the diffraction intensity (unit: cps). The specific incident angle and the peak height of the diffraction intensity are read to confirm the structure. did.

(実施例1)
粉末状水酸化カルシウム(関東化学試薬、特級)を10g秤量し、さらに、粉末状塩化リチウム(関東化学試薬、特級)を水酸化カルシウムに対して10モル%となるよう秤量の上、常温にて両粉末の混合を行なった。混合は乾式で、市販のハンディーミルを用いて行なった。得られた混合物を、電気炉にて300℃で20時間(昇温速度6℃/min.)焼成し、水酸化カルシウム及び塩化リチウムの複合化合物を得た。得られた複合化合物について、X線回折装置を用いて、CuKα線による回折ピークを測定し、X線入射角28.0〜28.4°の範囲に回折ピークが存在するか否かを確認したところ、当該ピークは存在しなかった。また、得られた複合化合物について上記方法により脱水開始温度を測定した。
Example 1
10 g of powdered calcium hydroxide (Kanto Chemical Reagent, Special Grade) is weighed, and further, powdered lithium chloride (Kanto Chemical Reagent, special grade) is weighed so as to be 10 mol% with respect to calcium hydroxide, and at room temperature. Both powders were mixed. Mixing was dry, using a commercially available handy mill. The obtained mixture was baked in an electric furnace at 300 ° C. for 20 hours (temperature increase rate: 6 ° C./min.) To obtain a composite compound of calcium hydroxide and lithium chloride. About the obtained complex compound, the diffraction peak by a CuK alpha ray was measured using the X-ray-diffraction apparatus, and it was confirmed whether the diffraction peak existed in the range of 28.0-28.4 degrees of X-ray incident angles. However, the peak did not exist. Further, the dehydration start temperature of the obtained composite compound was measured by the above method.

(比較例1)
粉末状水酸化カルシウム(関東化学試薬、特級)を10g秤量し、さらに、粉末状塩化リチウム(関東化学試薬、特級)を水酸化カルシウムに対して10モル%となるよう秤量の上、常温にて両粉末の混合を行なった。混合は乾式で、市販のハンディーミルを用いて行なった。得られた混合物を、電気炉にて300℃で1時間(昇温速度6℃/min.)焼成し、水酸化カルシウム及び塩化リチウムの複合化合物を得た。得られた複合化合物について、X線回折装置を用いて、CuKα線による回折ピークを測定し、X線入射角28.0〜28.4°の範囲に回折ピークが存在するか否かを確認したところ、当該ピークが存在しており、また、当該ピークは、水酸化カルシウムに由来するX線入射角28.4°〜29.0°に現れるピークの高さに対しておよそ12%の高さを有するものであった。また、得られた複合化合物について上記方法により脱水開始温度を測定した。
(Comparative Example 1)
10 g of powdered calcium hydroxide (Kanto Chemical Reagent, Special Grade) is weighed, and further, powdered lithium chloride (Kanto Chemical Reagent, special grade) is weighed so as to be 10 mol% with respect to calcium hydroxide, and at room temperature. Both powders were mixed. Mixing was dry, using a commercially available handy mill. The obtained mixture was baked in an electric furnace at 300 ° C. for 1 hour (heating rate 6 ° C./min.) To obtain a composite compound of calcium hydroxide and lithium chloride. About the obtained complex compound, the diffraction peak by a CuK alpha ray was measured using the X-ray-diffraction apparatus, and it was confirmed whether the diffraction peak existed in the range of 28.0-28.4 degrees of X-ray incident angles. However, the peak exists, and the peak is approximately 12% higher than the peak height appearing at an X-ray incident angle of 28.4 ° to 29.0 ° derived from calcium hydroxide. It was what had. Further, the dehydration start temperature of the obtained composite compound was measured by the above method.

以上の結果を表1にまとめた。表1では、比較例1における脱水開始温度を100とし、実施例1における脱水開始温度は、比較例1における脱水開始温度に対する相対値として示した。   The above results are summarized in Table 1. In Table 1, the dehydration start temperature in Comparative Example 1 was set to 100, and the dehydration start temperature in Example 1 was shown as a relative value to the dehydration start temperature in Comparative Example 1.

Figure 2018168223
Figure 2018168223

表1より、実施例1の複合化合物ではX線入射角28.0〜28.4°の範囲に回折ピークが存在しておらず、当該回折ピークが有している比較例1の複合化合物よりも脱水開始温度が低いものであった。従って、実施例1の複合化合物は、相対的に低温での蓄熱を実現する化学蓄熱材を構成する材料とすることができる。   From Table 1, the composite compound of Example 1 does not have a diffraction peak in the X-ray incident angle range of 28.0 to 28.4 °, and the composite compound of Comparative Example 1 that the diffraction peak has. Also, the dehydration start temperature was low. Therefore, the composite compound of Example 1 can be used as a material constituting a chemical heat storage material that realizes heat storage at a relatively low temperature.

Claims (6)

化学蓄熱材であって、
前記化学蓄熱材は、アルカリ土類金属及びアルカリ金属の複合化合物から構成され、
前記複合化合物における前記アルカリ金属の含有量は、前記アルカリ土類金属に対して0.1〜50モル%である、化学蓄熱材。
A chemical heat storage material,
The chemical heat storage material is composed of a complex compound of alkaline earth metal and alkali metal,
The chemical heat storage material, wherein the content of the alkali metal in the composite compound is 0.1 to 50 mol% with respect to the alkaline earth metal.
前記アルカリ土類金属が、カルシウム、マグネシウム、及びバリウムからなる群より選択される少なくとも1種である、請求項1に記載の化学蓄熱材。   The chemical heat storage material according to claim 1, wherein the alkaline earth metal is at least one selected from the group consisting of calcium, magnesium, and barium. 前記アルカリ金属が、リチウム、カリウム、及びナトリウムからなる群より選択される少なくとも1種である、請求項1又は2に記載の化学蓄熱材。   The chemical heat storage material according to claim 1 or 2, wherein the alkali metal is at least one selected from the group consisting of lithium, potassium, and sodium. 前記複合化合物は、CuKα線によるX線回折分析において、X線入射角28.0〜28.4°の範囲にピークを示さない化合物である、請求項1〜3のいずれか1項に記載の化学蓄熱材。   4. The compound compound according to claim 1, wherein the composite compound is a compound that does not show a peak in a range of an X-ray incident angle of 28.0 to 28.4 ° in an X-ray diffraction analysis using CuKα rays. Chemical heat storage material. 請求項1〜4のいずれか1項に記載の化学蓄熱材を製造する方法であって、
アルカリ土類金属の化合物及びアルカリ金属塩の混合物を300〜600℃の温度で12〜48時間焼成することによって、アルカリ土類金属の化合物及びアルカリ金属塩の複合化合物を形成する工程を含む、方法。
A method for producing the chemical heat storage material according to any one of claims 1 to 4,
Forming a composite compound of an alkaline earth metal compound and an alkali metal salt by calcining a mixture of the alkaline earth metal compound and the alkali metal salt at a temperature of 300 to 600 ° C. for 12 to 48 hours. .
前記アルカリ土類金属の化合物が水酸化物及び/又は酸化物である、請求項5記載の製造方法。   The production method according to claim 5, wherein the alkaline earth metal compound is a hydroxide and / or an oxide.
JP2017064961A 2017-03-29 2017-03-29 Chemical heat storage material and its manufacturing method Active JP6798916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064961A JP6798916B2 (en) 2017-03-29 2017-03-29 Chemical heat storage material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064961A JP6798916B2 (en) 2017-03-29 2017-03-29 Chemical heat storage material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018168223A true JP2018168223A (en) 2018-11-01
JP6798916B2 JP6798916B2 (en) 2020-12-09

Family

ID=64020027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064961A Active JP6798916B2 (en) 2017-03-29 2017-03-29 Chemical heat storage material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6798916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884383A (en) * 2016-03-31 2018-11-23 达泰豪化学工业株式会社 Chemical heat accumulation granule and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077199A (en) * 2005-09-12 2007-03-29 Tokyo Institute Of Technology Water vapor sorption-desorption heat-accumulation material and method for producing the same
JP2009186119A (en) * 2008-02-07 2009-08-20 Tokyo Institute Of Technology Chemical heat pump
JP2013216763A (en) * 2012-04-06 2013-10-24 Toyota Central R&D Labs Inc Chemical heat storage material, and reaction device, heat storage device, and vehicle
JP2015209530A (en) * 2014-04-30 2015-11-24 株式会社山陽テクノ Chemical heat storage material
JP2017003148A (en) * 2015-06-05 2017-01-05 国立大学法人神戸大学 Chemical heat pump composite and its process of manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077199A (en) * 2005-09-12 2007-03-29 Tokyo Institute Of Technology Water vapor sorption-desorption heat-accumulation material and method for producing the same
JP2009186119A (en) * 2008-02-07 2009-08-20 Tokyo Institute Of Technology Chemical heat pump
JP2013216763A (en) * 2012-04-06 2013-10-24 Toyota Central R&D Labs Inc Chemical heat storage material, and reaction device, heat storage device, and vehicle
JP2015209530A (en) * 2014-04-30 2015-11-24 株式会社山陽テクノ Chemical heat storage material
JP2017003148A (en) * 2015-06-05 2017-01-05 国立大学法人神戸大学 Chemical heat pump composite and its process of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884383A (en) * 2016-03-31 2018-11-23 达泰豪化学工业株式会社 Chemical heat accumulation granule and its manufacturing method

Also Published As

Publication number Publication date
JP6798916B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP5177386B2 (en) Chemical heat pump
CA2823165C (en) Zeolite having copper and alkali earth metal supported thereon
Shkatulov et al. Adapting the MgO-CO2 working pair for thermochemical energy storage by doping with salts
JP4765072B2 (en) Chemical heat pump
Wang et al. Synthesis of LiF-containing Li4SiO4 as highly efficient CO2 sorbents
JP5768887B2 (en) Chemical heat storage material, manufacturing method thereof, and chemical heat storage structure
JP2018168223A (en) Chemical thermal storage medium and method for producing the same
KR102599490B1 (en) Chemical heat storage material and its manufacturing method, and chemical heat pump and its operating method
JP6471947B1 (en) Chemical heat storage material and method for producing the same, chemical heat pump and method for operating the same
KR20150127532A (en) Method of manufacturing dry sorbents for high-temperature carbon dioxide capture based lithium silicate and dry sorbents for high-temperature carbon dioxide capture
JP6815915B2 (en) Chemical heat storage material and its manufacturing method
JP7332316B2 (en) Method for producing granules for chemical heat storage
JP6798917B2 (en) Chemical heat storage material and its manufacturing method
JP6901726B2 (en) Chemical heat storage material and its manufacturing method
JP6989121B2 (en) Manufacturing method of chemical heat storage material and chemical heat storage material
Xu et al. Activity enhancement of MgCO3/MgO for thermochemical energy storage by nitrate-promoted and morphology modification
JP7248989B2 (en) Chemical heat storage material and its manufacturing method
WO2021106881A1 (en) Chemical heat storage material and method for producing same, and chemical heat pump
TW202146621A (en) Chemical heat storage material and method for producing same
KR100422317B1 (en) Heating element using super corrosive alloy, method for preparing it, and heating process using it
JP2006175435A (en) Method for removing nitrogen oxide by using nitrogen oxide nox absorbing material
JP2019182922A (en) Chemical thermal storage material
JP2019182923A (en) Chemical thermal storage material
JP2016166275A (en) Heat storage material and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201119

R150 Certificate of patent or registration of utility model

Ref document number: 6798916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250