JP6989121B2 - Manufacturing method of chemical heat storage material and chemical heat storage material - Google Patents

Manufacturing method of chemical heat storage material and chemical heat storage material Download PDF

Info

Publication number
JP6989121B2
JP6989121B2 JP2018025539A JP2018025539A JP6989121B2 JP 6989121 B2 JP6989121 B2 JP 6989121B2 JP 2018025539 A JP2018025539 A JP 2018025539A JP 2018025539 A JP2018025539 A JP 2018025539A JP 6989121 B2 JP6989121 B2 JP 6989121B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
chemical heat
sio
licl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018025539A
Other languages
Japanese (ja)
Other versions
JP2019142988A (en
Inventor
醇一 劉
友希 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2018025539A priority Critical patent/JP6989121B2/en
Publication of JP2019142988A publication Critical patent/JP2019142988A/en
Application granted granted Critical
Publication of JP6989121B2 publication Critical patent/JP6989121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、化学蓄熱材及び化学蓄熱材の製造方法に関するものである。 The present invention relates to a chemical heat storage material and a method for producing a chemical heat storage material.

近年、二酸化炭素排出規制によって化石燃料の使用削減が求められており、各プロセスの省エネルギー化に加え、排熱の利用を進める必要がある、排熱の利用の手段としては、水を利用した100℃以下の温水蓄熱が知られている。しかし、温水蓄熱には、(1)放熱損失があるため長時間の蓄熱が不可能である、(2)顕熱量が小さいため大量の水が必要であり、蓄熱設備のコンパクト化が困難である、(3)出力温度が利用料に応じて非定常で、次第に降下する、等の課題がある。
効率の高い蓄熱技術として化学蓄熱材が挙げられる。化学蓄熱法は、物質の吸着、水和等の化学変化を伴うため、材料自体(水、溶融塩等)の潜熱や顕熱による蓄熱法に比べて単位質量当たりの蓄熱量が高くなる。化学蓄熱法としては、固体材料(化学蓄熱材)と水蒸気や二酸化炭素との気固反応法、金属塩へのアンモニア吸収(アンミン錯体生成反応)、アルコール等の有機物の吸脱着による反応等が提案されている。環境への負荷や装置の簡便性を考慮すると、気固反応法が最も有利である。気固反応法に用いられる化学蓄熱材として、水蒸気との気固反応系ではアルカリ土類金属酸化物である酸化カルシウムや酸化マグネシウム、二酸化炭素との気固反応系では酸化カルシウムやリチウムシリケート等が知られている。特許文献1には、リチウムシリケート系化合物を含む化学蓄熱材が記載されている。
In recent years, reduction of fossil fuel use has been required by carbon dioxide emission regulations, and in addition to energy saving in each process, it is necessary to promote the use of waste heat. As a means of using waste heat, water is used 100. Hot water heat storage below ℃ is known. However, in hot water heat storage, (1) heat storage for a long time is impossible due to heat dissipation loss, and (2) a large amount of water is required because the amount of exposed heat is small, and it is difficult to make the heat storage facility compact. , (3) There are problems such as the output temperature is unsteady according to the usage fee and gradually decreases.
A chemical heat storage material can be mentioned as a highly efficient heat storage technology. Since the chemical heat storage method involves chemical changes such as adsorption and hydration of substances, the amount of heat storage per unit mass is higher than that of the heat storage method using latent heat or sensible heat of the material itself (water, molten salt, etc.). Proposed chemical heat storage methods include an air-solid reaction method between a solid material (chemical heat storage material) and water vapor or carbon dioxide, ammonia absorption into a metal salt (ammine complex formation reaction), and a reaction by adsorption and desorption of organic substances such as alcohol. Has been done. Considering the load on the environment and the convenience of the device, the air-solid reaction method is the most advantageous. As chemical heat storage materials used in the air-solid reaction method, calcium oxide and magnesium oxide, which are alkaline earth metal oxides, are used in the air-solid reaction system with water vapor, and calcium oxide and lithium silicate are used in the air-solid reaction system with carbon dioxide. Are known. Patent Document 1 describes a chemical heat storage material containing a lithium silicate-based compound.

製鉄業等から発生する高温排熱(600℃以上)を有効利用する手段として、合金系潜熱蓄熱技術や、二酸化炭素を反応媒体として用いる化学蓄熱技術について検討が進められている。化学蓄熱技術は潜熱蓄熱技術に比べて蓄熱密度が大きいという利点がある。 As a means for effectively utilizing high-temperature waste heat (600 ° C or higher) generated from the iron-making industry, alloy-based latent heat storage technology and chemical heat storage technology using carbon dioxide as a reaction medium are being studied. The chemical heat storage technology has the advantage of having a higher heat storage density than the latent heat storage technology.

WO2016/043224A1WO2016 / 043224A1

600℃以上の温度領域で蓄熱操作が可能な材料としてリチウムシリケート(オルトケイ酸リチウム。Li4SiO4。)があるが、熱出力操作に用いる二酸化炭素吸収反応が600℃以上で進行するものの、反応速度の制約があるため迅速な熱出力操作が困難であり、実用化への課題となっている。したがって、この材料を化学蓄熱材として用いるためには、熱出力操作の迅速化や低温化が求められている。 600 ° C. or more lithium silicate as materials capable heat storage operation in the temperature range (lithium orthosilicate .Li 4 SiO 4.) Has but although carbon dioxide absorption reaction using the heat output operation proceeds at 600 ° C. or higher, the reaction Due to the speed limitation, it is difficult to operate the heat output quickly, which is a problem for practical use. Therefore, in order to use this material as a chemical heat storage material, it is required to speed up the heat output operation and lower the temperature.

上記課題を解決するために、本発明の一つの手段によれば、化学蓄熱材を、アルカリ金属とアルカリ土類金属からなる群より選択される少なくとも1種の金属のハロゲン化物及び/又は水酸化物をリチウムシリケートに添加したものとした。 In order to solve the above problems, according to one means of the present invention, the chemical heat storage material is a halide and / or hydroxide of at least one metal selected from the group consisting of an alkali metal and an alkaline earth metal. The product was added to lithium silicate.

さらに、前記アルカリ金属とアルカリ土類からなる群より選択される少なくとも1種の金属の量は、前記リチウムシリケートに対して0.1モル%以上50モル%以下であるものとすると望ましい。
さらに、前記金属が、リチウム、ナトリウム、カリウム、マグネシウム又はストロンチウムであると望ましい。
Further, it is desirable that the amount of at least one metal selected from the group consisting of the alkali metal and the alkaline earth is 0.1 mol% or more and 50 mol% or less with respect to the lithium silicate.
Further, it is desirable that the metal is lithium, sodium, potassium, magnesium or strontium.

また、本発明の他の観点によれば、化学蓄熱材を、LiCl又は/及びNaClを添加したリチウムシリケートを含有するものとした。 Further, according to another aspect of the present invention, the chemical heat storage material contains lithium silicate to which LiCl and / and NaCl is added.

また、本発明の他の観点によれば、化学蓄熱材の製造方法を、Li4SiO4に、物理混合によってLiCl又は/及びNaClを添加する工程を有するものとした。 According to another aspect of the present invention, a method for producing a chemical heat storage material, the Li 4 SiO 4, and shall have the step of adding a LiCl or / and NaCl by physical mixing.

本発明によれば、より低温での熱出力操作を実現できる化学蓄熱材及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a chemical heat storage material capable of realizing a heat output operation at a lower temperature and a method for producing the same.

化学蓄熱材の二酸化炭素雰囲気下における温度による質量変化を示す図である。It is a figure which shows the mass change by the temperature under the carbon dioxide atmosphere of a chemical heat storage material. 化学蓄熱材の二酸化炭素雰囲気下における温度による質量変化を示す図(その2)である。It is a figure (2) which shows the mass change by the temperature under the carbon dioxide atmosphere of a chemical heat storage material. 化学蓄熱材の二酸化炭素雰囲気下における温度による質量変化を示す図(その3)である。It is a figure (3) which shows the mass change by the temperature under the carbon dioxide atmosphere of a chemical heat storage material. 化学蓄熱材の蓄熱操作温度域、熱出力密度を比較した図である。It is the figure which compared the heat storage operation temperature range, and the heat output density of a chemical heat storage material.

以下、本発明の実施形態例、実施例を説明するが、本発明の実施形態は以下に説明する実施形態例、実施例に限定されるものではない。 Hereinafter, embodiments and examples of the present invention will be described, but the embodiments of the present invention are not limited to the embodiments and examples described below.

上記の課題を解決するために、本発明者らが種々検討を重ねたところ、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物及び/又はアルカリ金属水酸化物をリチウムシリケートに添加することによって、二酸化炭素吸収反応活性の向上が確認され、従来の材料よりも低温である500℃での熱出力操作を実現できる化学蓄熱材を製造できることを見出した。 In order to solve the above problems, the present inventors have conducted various studies and found that alkali metal halides, alkaline earth metal halides and / or alkali metal hydroxides are added to the lithium silicate to form carbon dioxide. It was confirmed that the carbon absorption reaction activity was improved, and it was found that a chemical heat storage material capable of realizing a heat output operation at 500 ° C., which is lower than the conventional material, can be manufactured.

本実施例では、従来CO2吸収材として研究されてきたLi系複合酸化物のCO2吸収能力やCO2選択性に着目した。特に600℃以上で下式のようにCO2と可逆的に反応するLi4SiO4 [1]に対してLiCl、NaClを添加することによるCO2との反応性への影響を評価した。また、異なる2種類の添加方法を用い、添加方法の影響を評価した。 In this embodiment, attention is paid to CO 2 absorption capacity and CO 2 selectivity of the conventional CO 2 Li composite oxide has been studied as an absorbent. In particular LiCl against Li 4 SiO 4 [1] that reversibly react with CO 2 by the following equation at 600 ° C. or higher, and evaluate the impact of the reactivity with CO 2 by the addition of NaCl. In addition, the effects of the addition methods were evaluated using two different addition methods.

Figure 0006989121
Figure 0006989121

Li4SiO4の合成は固相法を用いた。原料としてLi2CO3とSiO2をモル比2:1で混合し、1000℃で20時間加熱し、粉砕した試料をLi4SiO4とした。Li4SiO4に対して、含浸法と物理混合の2種類でLiClとNaClを、モル比Li4SiO4:NaCl=5:1、Li4SiO4:LiCl=5:1となるように添加した。含浸法で添加した試料は、LiClを添加した場合はLiCl/Li4SiO4、物理混合で添加した試料はLi4SiO4+LiClのように示す。CO2との反応性評価は熱天秤(TG-DTA2000SEネッチ・ジャパン(株)社製)を用いた。反応は昇温速度10℃/minで室温から900℃まで昇温した。反応ガスとして200℃までN2ガスを100mL/min流通し試料を乾燥させた後CO2ガスを100mL/minを流通させた。200℃における試料重量を初期重量とした。反応転化率X[%]、熱出力密度Q[kJ/kg]は下記数式1、数式2で定義した。 Synthesis of li 4 SiO 4 was a solid phase method. Material as Li 2 CO 3 and SiO 2 molar ratio of 2: 1. The mixture was heated at 1000 ° C. 20 hours, the milled sample was Li 4 SiO 4. Li 4 against SiO 4, LiCl, NaCl in two impregnation method and physical mixing, the molar ratio of Li 4 SiO 4: NaCl = 5 : 1, Li 4 SiO 4: LiCl = 5: 1 and comprising as additives did. Added sample in the impregnation method, the case of adding LiCl LiCl / Li 4 SiO 4, the added sample in the physical mixture shows as Li 4 SiO 4 + LiCl. A thermal balance (TG-DTA2000SE, manufactured by Netch Japan Co., Ltd.) was used to evaluate the reactivity with CO 2. The reaction was heated from room temperature to 900 ° C at a heating rate of 10 ° C / min. As a reaction gas, 100 mL / min of N 2 gas was circulated up to 200 ° C. to dry the sample, and then 100 mL / min of CO 2 gas was circulated. The sample weight at 200 ° C was used as the initial weight. The reaction conversion rate X [%] and the heat output density Q [kJ / kg] were defined by the following formulas 1 and 2.

Figure 0006989121
Figure 0006989121
Figure 0006989121
Figure 0006989121

ここで、Msample:試料分子量[g/mol]、Wini:試料初期重量[mg]、MLi4SiO4:Li4SiO4の分子量[g/mol]、ΔH:反応エンタルピー[kJ/mol]、A:試料1kgあたりに含まれるLi4SiO4の重量割合である。 Here, M sample: sample molecular weight [g / mol], W ini : Sample Initial Weight [mg], M Li4SiO4: molecular weight of Li 4 SiO 4 [g / mol ], ΔH: enthalpy of reaction [kJ / mol], A : a weight ratio of Li 4 SiO 4 contained per sample 1 kg.

図1に、Li4SiO4にLiCl、NaClをそれぞれ添加した合成法別試料の熱重量変化を示す。含浸法によってLiCl、NaClを添加した試料は200℃でのCO2流通直後からCO2を吸収するが、700℃以上で初期重量より大きく減少することから、含浸法によるLiCl、NaClの添加ではLi系酸化物の他に、別の化合物を生成していると考えられる。Li4SO4に対して何も添加せずに含浸法と同様の処理を施した結果、元のLi4SiO4とは異なる熱重量変化を示したことから、含浸法によってLi4SiO4とは異なる物質が生成したことからも裏付けられる。一方、物理混合によってLiCl、NaClを添加した試料は700℃以上におけるCO2放出の挙動はLi4SiO4と類似したが、CO2吸収開始温度が低温化したことがわかる。Li4Si4O4+LiClの質量がピーク時の温度は、645℃となった(図2)。また、Li4SiO4+NaClの質量ピーク時の温度は、662℃になった。今回の実験条件では、物理混合によるLiCl、NaClの添加によって、CO2吸収温度を低温化する効果があることがわかった。 Figure 1 shows the Li 4 SiO 4 LiCl, thermogravimetric change of synthesis by-added sample, respectively NaCl. Samples to which LiCl and NaCl have been added by the impregnation method absorb CO 2 immediately after CO 2 flow at 200 ° C, but since the weight decreases significantly from the initial weight at 700 ° C or higher, LiCl and NaCl are added by the impregnation method. In addition to the system oxide, it is considered that another compound is produced. Li 4 SO 4 results anything subjected to the same processing as impregnation method without adding respect, since it showed thermogravimetric change differ from the original Li 4 SiO 4, and Li 4 SiO 4 by impregnation Is also supported by the production of different substances. On the other hand, the behavior of the physical mixture LiCl, samples with the addition of NaCl is definitive CO 2 emission above 700 ° C. Although similar to Li 4 SiO 4, CO 2 absorption initiation temperature it is found that the low temperature. The temperature at the peak of the mass of Li 4 Si 4 O 4 + LiCl was 645 ° C (Fig. 2). The temperature at the time of the mass peak of Li 4 SiO 4 + NaCl became 662 ° C.. Under the experimental conditions this time, it was found that the addition of LiCl and NaCl by physical mixing has the effect of lowering the CO 2 absorption temperature.

今回合成したLi4SiO4、Li4SiO4+LiCl、Li4SiO4+NaClの最大反応転化率はそれぞれ70%、78%、81%であった。これを考慮して熱出力密度を計算すると、Li4SiO4は837[kJ/kg]、Li4SiO4+LiClは852[kJ/kg]、Li4SiO4+NaClは903[kJ/kg]となり、この温度域で蓄熱操作が可能な合金系潜熱蓄熱材よりも大きい熱出力密度であった。熱出力密度及び蓄熱操作温度域の比較結果を図4に示す。 We synthesized Li 4 SiO 4, Li 4 SiO 4 + LiCl, Li 4 SiO 4 + 70% , respectively maximum reaction conversion of NaCl, 78%, was 81%. When considering this to calculate the thermal power density, Li 4 SiO 4 is 837 [kJ / kg], Li 4 SiO 4 + LiCl is 852 [kJ / kg], Li 4 SiO 4 + NaCl is 903 [kJ / kg] The heat output density was higher than that of the alloy-based latent heat storage material that can be operated for heat storage in this temperature range. The comparison result of the heat output density and the heat storage operation temperature range is shown in FIG.

本実施例では、Li4SiO4に対して異なる添加方法を用いてLiCl、NaClを添加することによるCO2との反応性への影響を評価した。その結果、含浸法を用いたLiClやNaClは従来のLi4SiO4のような可逆性が見られず、含浸法の処理自体がLi4SiO4と異なる物質を生成する可能性があると考えられる。一方、物理混合によってLiCl、NaClを添加することでCO2吸収開始温度が最大約50℃低温化する効果が見られた。さらに、これらは高温域での蓄熱操作が可能な合金系潜熱蓄熱材よりも大きい熱出力密度をもつことが分かった。 In this example, to evaluate the effect of using different addition methods against Li 4 SiO 4 LiCl, the reactivity with CO 2 by the addition of NaCl. Considered a result, LiCl and NaCl using impregnation method showed no reversibility such as a conventional Li 4 SiO 4, the process itself of the impregnation method is likely to produce a material different from Li 4 SiO 4 Be done. On the other hand, the effect of lowering the CO 2 absorption start temperature by up to about 50 ° C was observed by adding LiCl and NaCl by physical mixing. Furthermore, it was found that these have a higher heat output density than alloy-based latent heat storage materials that can perform heat storage operations in the high temperature range.

本発明は、化学蓄熱材及び科学蓄熱材の製造方法として産業上利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be industrially used as a method for producing a chemical heat storage material and a scientific heat storage material.

Claims (5)

アルカリ金属とアルカリ土類金属からなる群より選択される少なくとも1種の金属のハロゲン化をリチウムシリケートに添加した化学蓄熱材。 Chemical heat storage material of at least one metal halide compound was added to the lithium silicate is selected from the group consisting of alkali metals and alkaline earth metals. 前記アルカリ金属とアルカリ土類からなる群より選択される少なくとも1種の金属の量は、前記リチウムシリケートに対して0.1モル%以上50モル%以下であることを特徴とする請求項1記載の化学蓄熱材。 The chemistry according to claim 1, wherein the amount of at least one metal selected from the group consisting of the alkali metal and the alkaline earth is 0.1 mol% or more and 50 mol% or less with respect to the lithium silicate. Heat storage material. 前記金属が、リチウム、ナトリウム、カリウム、マグネシウム又はストロンチウムであることを特徴とする請求項1記載の化学蓄熱材。 The chemical heat storage material according to claim 1, wherein the metal is lithium, sodium, potassium, magnesium or strontium. LiCl又は/及びNaClを添加したリチウムシリケートを含有する化学蓄熱材。 A chemical heat storage material containing lithium silicate to which LiCl or / and NaCl is added. Li4SiO4に、物理混合によってLiCl又は/及びNaClを添加する工程を有する化学蓄熱材の製造方法。 The Li 4 SiO 4, a manufacturing method of a chemical heat storage material comprising the step of adding LiCl or / and NaCl by physical mixing.
JP2018025539A 2018-02-16 2018-02-16 Manufacturing method of chemical heat storage material and chemical heat storage material Active JP6989121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018025539A JP6989121B2 (en) 2018-02-16 2018-02-16 Manufacturing method of chemical heat storage material and chemical heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018025539A JP6989121B2 (en) 2018-02-16 2018-02-16 Manufacturing method of chemical heat storage material and chemical heat storage material

Publications (2)

Publication Number Publication Date
JP2019142988A JP2019142988A (en) 2019-08-29
JP6989121B2 true JP6989121B2 (en) 2022-01-05

Family

ID=67770977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018025539A Active JP6989121B2 (en) 2018-02-16 2018-02-16 Manufacturing method of chemical heat storage material and chemical heat storage material

Country Status (1)

Country Link
JP (1) JP6989121B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202007661D0 (en) * 2020-05-22 2020-07-08 Univ Liverpool Solid-state conductor materials

Also Published As

Publication number Publication date
JP2019142988A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP5177386B2 (en) Chemical heat pump
JP4765072B2 (en) Chemical heat pump
Kariya et al. Development of thermal storage material using vermiculite and calcium hydroxide
Funayama et al. Composite material for high‐temperature thermochemical energy storage using calcium hydroxide and ceramic foam
JP2015507528A5 (en)
Wang et al. High temperature capture of CO2 on Li4SiO4‐based sorbents from biomass ashes
US7588630B2 (en) Carbon dioxide absorbent, carbon dioxide separating apparatus, and reformer
JP2009515697A5 (en)
JP2009106812A (en) Carbon dioxide absorber, carbon dioxide separator, reformer and producing method of carbon dioxide absorber
Li et al. Tremendous enhancement of heat storage efficiency for Mg (OH) 2-MgO-H2O thermochemical system with addition of Ce (NO3) 3 and LiOH
JP6989121B2 (en) Manufacturing method of chemical heat storage material and chemical heat storage material
JP2007031169A (en) Hydrogen production method, and method of immobilizing carbon dioxide
Romero‐Ibarra et al. Influence of the K‐, Na‐and K‐Na‐carbonate additions during the CO2 chemisorption on lithium oxosilicate (Li8SiO6)
Li et al. Preparation of Li4SiO4-based adsorbents with coal slag for high temperature cyclic CO2 capture
Milone et al. Thermal energy storage with chemical reactions
Zaki et al. Investigation of Ca12Al14O33 Mayenite for hydration/dehydration thermochemical energy storage
Pacewska et al. Studies on the pozzolanic and hydraulic properties of fly ashes in model systems
JP6798916B2 (en) Chemical heat storage material and its manufacturing method
JP6815915B2 (en) Chemical heat storage material and its manufacturing method
WO2021106881A1 (en) Chemical heat storage material and method for producing same, and chemical heat pump
JP6036730B2 (en) Method for producing composite metal halide and chemical heat storage material
JP2004216245A (en) Carbon dioxide absorbent, and its production method
CN104475008B (en) High-temperature CO2 adsorbing material and application method of high-temperature CO2 adsorbing material in adsorbing enhancement hydrogen production reaction
JP6798917B2 (en) Chemical heat storage material and its manufacturing method
Kim et al. Reversible reaction-based thermochemical energy storage materials

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211125

R150 Certificate of patent or registration of utility model

Ref document number: 6989121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150