JP2004319658A - Electronic cooler - Google Patents

Electronic cooler Download PDF

Info

Publication number
JP2004319658A
JP2004319658A JP2003109839A JP2003109839A JP2004319658A JP 2004319658 A JP2004319658 A JP 2004319658A JP 2003109839 A JP2003109839 A JP 2003109839A JP 2003109839 A JP2003109839 A JP 2003109839A JP 2004319658 A JP2004319658 A JP 2004319658A
Authority
JP
Japan
Prior art keywords
heat
cooling device
sink
heat sink
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003109839A
Other languages
Japanese (ja)
Other versions
JP3979531B2 (en
Inventor
Kazumitsu Kaneko
一光 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON BUROAA KK
Original Assignee
NIPPON BUROAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON BUROAA KK filed Critical NIPPON BUROAA KK
Priority to JP2003109839A priority Critical patent/JP3979531B2/en
Publication of JP2004319658A publication Critical patent/JP2004319658A/en
Application granted granted Critical
Publication of JP3979531B2 publication Critical patent/JP3979531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To cool an article requiring a large capacity of cooling in a relatively limited time band with small power consumption using a small facility. <P>SOLUTION: Heat generated from an article being cooled while having a high peak value is stored by utilizing the variation of a phase varying material (PCM) 12 from a solid phase to a liquid phase. The phase varying material 12 is forcibly returned back to the solid phase by means of a thermo-module 22, a heat dissipating side heat sink 24 and a cooling fan 26. Consequently, heat generated with a high peak can be absorbed and cooled without requiring large power consumption at the time of a peak. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、大容量の熱を発生する被冷却体、特に、比較的限られた時間に加熱ピークが発生する制御盤の如き被冷却体を冷却するのに好適な電子冷却装置に関するものである。
【0002】
【従来の技術】
一般に、大容量の冷却を行うためには、冷媒コンプレッサーを用いた圧縮機型の冷却装置が用いられている。この冷却装置は、被冷却体を冷却する冷媒(液体又は気体)を収納した冷熱回路から成っており、この冷熱回路は、被冷却体から吸熱して冷媒を加熱する吸熱側熱交換機と、加熱された冷媒を圧縮するコンプレッサーとを含んでおり、コンプレッサーの圧縮時に放散される熱は放熱側熱交換機によって放熱される。
【0003】
この圧縮機型冷却装置は、被冷却体からの大容量の熱を吸収することができるので大容量冷却に好適であるが、冷媒を循環する冷媒管路と大型のコンプレッサーとを必要とするので設備が大掛かりとなる欠点があった。
【0004】
また、一般に、制御盤の如き被冷却体は、常に同じ容量の熱を発生するのではなく、一日の中の数時間の時間帯に発熱のピークに達してこの時間帯だけ冷却を必要とし 、それ以外の時間帯は、必ずしも冷却を必要としない。
【0005】
しかし、圧縮機型の冷却装置は、この発熱のピークの時間帯に発生する熱量を吸収するのに必要な容量を有することが要求されるので、装置の構成部品もそれに見合った大容量のものとなる欠点があった。
【0006】
一方、電子部品等の小容量の冷却を行うの好適な冷却装置としていわゆるサーモモジュールを有する冷却装置が一般に用いられている。この冷却装置は,小型のペルチエ効果素子(サーモモジュール)とフィンとファンとから成っているので、装置を全体的に小型化することができるが、短い時間であっても高い熱ピークを有する被冷却体を冷却するのに充分な冷却容量を得ることができない。
【0007】
最近、CPU等の電子部品の熱を蓄熱する相変化材料を含んだヒートシンクが提案されている(特許文献1及び2参照)。これらのヒートシンクは、被冷却体である電子部品を内部に埋め込むか(特許文献1参照)、電子部品に熱伝導関係を保って電子部品に取付けている(特許文献2参照)。
【0008】
しかし、これらのヒートシンクは、電子部品が発生する熱を相変化材料に蓄熱し、この熱をヒートシンクの放熱部から自然放熱するので、比較的発熱量の小さな電子部品に好適であるが、この原理を大容量の冷却に応用することはできない。
【0009】
【特許文献1】
米国特許第4,446,916号明細書
【0010】
【特許文献2】
特開2002−57262号公報
【0011】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、比較的限られた時間帯に大容量の冷却を必要とする被冷却体を設備を大掛かりとすることなく冷却することができる電子冷却装置を提供することにある。
【0012】
本発明が解決しようとする他の課題は、比較的限られた時間帯に大容量の冷却を必要とする被冷却体を小容量の冷却器で冷却することができる電子冷却装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明の課題解決手段は、相変化材料から成る蓄熱手段と、この蓄熱手段の吸熱側に設けられて被冷却体からの熱を蓄熱手段に伝達する吸熱側熱交換手段と、蓄熱手段の放熱側に設けられて蓄熱手段からの熱を放散する放熱側熱交換手段とを備え、放熱側熱交換手段は、サーモモジュールと放熱側ヒートシンクと冷却ファンとから成っていることを特徴とする電子冷却装置を提供することにある。
【0014】
蓄熱手段の相変化材料は、固体とゲルと液体との間を相変化する物質から成っており、この蓄熱手段は、物質を収納する熱伝導性容器から成っていものとすることができる。
【0015】
サーモモジュールは、蓄熱手段の熱伝導性容器に取付けられ、放熱側ヒートシンクは、サーモモジュールに取付けられ、冷却ファンは、放熱側ヒートシンクに冷却空気を吹き付けたり放熱側ヒートシンクから冷却空気を吸い込んだりするように配置されるのが好ましい。
【0016】
吸熱側熱交換手段は、吸熱側ヒートシンクと吸熱ファンとから成っているものとすることができる。吸熱側ヒートシンクは、蓄熱手段の熱伝導性容器に設けられ、吸熱ファンは、被冷却体からの熱を吸引して吸熱フィンに加熱空気を吹き付けたり吸熱側ヒートシンクから冷却空気を吸い込んで被冷却体に吹き付けたりするように配置されるのが好ましい。
【0017】
このように、相変化材料(PCM)の相変化を利用して大容量の熱を蓄熱すると、短い時間帯で高い熱ピークを発生してもこのピーク熱を確実に吸収することができ、また相変化材料は、サーモモジュールで元の相に強制的に戻されるので、コンプレッサーや冷媒管路の如き大掛かり設備と大きな電力消費を必要とすることなく、大容量冷却することができる。
【0018】
また、相変化材料とサーモモジュールを組み合わせて、短時間の大きな蓄熱とこの蓄熱の強制放熱とによって相変化材料の相変化を促進するので、小容量の電子冷却器を用いて大容量冷却を行うことができる。
【0019】
【発明の実施の形態】
本発明の実施の形態を図面を参照して詳細に述べると、図1は、本発明に係わる電子冷却装置10を示し、この電子冷却装置10は、相変化材料(PCM)12から成る蓄熱手段14と、この蓄熱手段14の吸熱側に設けられて被冷却体からの熱を蓄熱手段14に伝達する吸熱側熱交換手段16と、蓄熱手段14の放熱側に設けられて蓄熱手段14からの熱を放散する放熱側熱交換手段18とを備えている。
【0020】
蓄熱手段14の相変化材料12は、熱を放散又は吸収して固体とゲルと液体との間を相変化する成分から成っており、この成分としては、相変化温度が比較的安定しており、20℃乃至60℃で液相に相変化する成分、例えばパラフィン(融点28.2乃至44℃)、塩化カルシウム水和物(融点29.7℃)、硫酸ナトリウム水和物(融点32.4℃)、チオ硫酸ナトリウム水和物(融点48℃)、酢酸ナトリウム水和物(融点58℃)等があるが、被冷却体の熱保有温度に応じてこれらの成分の中から適宜選択される。これらの成分の融点を微調整する目的でこれらの成分に適宜の調整剤を添加することができる。
【0021】
蓄熱手段14は、この相変化材料12を収納する例えばアルミニウム等の熱伝導性容器20から成っている。相変化材料12は、相変化に応じて体積が変化するので最大体積で容器20が破壊することがないように、容器20は、その内部容量を設定する。
【0022】
放熱側熱交換手段18は、図1に示すように、ペルチエ効果素子から成るサーモモジュール22と、放熱側ヒートシンク24と、冷却ファン26とを含んでいる。
【0023】
サーモモジュール22の吸熱面は、蓄熱手段14の熱伝導性容器20に直接取付けられ、放熱側ヒートシンク24は、サーモモジュール22の放熱面に取付けられ、冷却ファン26は、ヒートシンク24に冷却空気を吹き付けたりヒートシンク24から冷却空気を吸い込んだりするように配置されている。
【0024】
図示の形態では、放熱側ヒートシンク24は、サーモモジュール22の放熱面に取付けられる放熱板24Aとこの放熱板24Aから垂直に延びる多数のフィン24Bとから成っており、これらのフィン24Bは、相互に平行に配置されているが、フィン24Bの配置は適宜に設定される。
【0025】
放熱ファン26は、図示の形態では、放熱側ヒートシンク24のほぼ全面に冷却空気を吹き付けたり放熱側ヒートシンク24のほぼ全面から冷却空気を吸い込むフラットファンから成っているが、ヒートシンク24の全面に又は全面から冷却空気を誘導することができるような空気誘導手段を有すれば冷却空気の吐出口又は吸引口は、小さくてもよい。
【0026】
吸熱側熱交換手段16は、吸熱側ヒートシンク28と吸熱ファン30とから成っている。図示の形態では、吸熱側ヒートシンク28は、蓄熱手段14の容器20の壁から垂直に延びるように一体に形成された多数のフィン28Aから成っており、これらのフィン28Aは、放熱側ヒートシンク24のフィン24Bと同様に、相互に平行に配置されているが、同様にして、フィン28Aの配置は適宜設定される。
【0027】
吸熱ファン30は、図示の形態では、冷却ファン26と同様に、吸熱側ヒートシンク28のほぼ全面に吸引空気を吹き付けるか吸熱側ヒートシンク28のほぼ全面から空気を吸い込むフラットファンから成っているが、同様にして、ヒートシンク28の全面に又は全面から吸引空気を誘導することができるような空気誘導手段を有すれば吸引空気の吸引口又は吐出口は、小さくてもよい。
【0028】
図2に示すように、放熱側熱交換手段16と吸熱側熱交換手段18との運転をそれぞれ制御する放熱側制御手段32と吸熱側制御手段34とを備えている。
【0029】
吸熱側制御手段34は、被冷却体を冷却すべき指令を受けて吸熱側熱交換手段16の吸熱ファン30を適宜運転するが、例えば、被冷却体が屋外に設置された大きな制御盤であるとすると、夜間のように比較的発熱量が低い時間帯では吸熱ファン30の運転を停止するか低速運転し、夏場の昼のように外部からの熱の侵入が加わる時間帯には吸熱ファン30を高速運転するように制御し、冬場のように発熱量が比較的低い時には吸熱ファン30を停止するように制御する。
【0030】
放熱側制御手段36は、夏場では蓄熱手段14の相変化材料12からの熱を放散するようにサーモモジュール22及び冷却ファン26を連続運転するか蓄熱手段14の相変化材料12の蓄熱量に応じて間欠的に運転するように制御し、冬場のように相変化材料12の蓄熱量が低い時にはサーモモジュール22と冷却ファン26との運転を停止するか相変化材料の蓄熱量に応じて間欠運転するように制御することができる。
【0031】
次に、本発明の電子冷却装置10の使用状態を述べると、本発明の電子冷却装置10は、例えば、屋外に設置された大型の制御盤を冷却するためにこの制御盤を囲むように取付けられたフードの放熱口に取付けられるが、この場合、電子冷却装置10は、吸熱側熱交換手段16がフードの内部にあり、放熱側熱交換手段18がフードの外側に位置するように配置される。
【0032】
この制御盤は、通常の連続運転での発熱量が100Wであるが、夏場の昼間に約3時間のピーク時に400Wの熱が外部から侵入するとすると、ピーク時に必要な冷却能力は、500Wとなる。
【0033】
本発明の電子冷却装置10は、吸熱側制御手段34によって夏場のピーク時以外には吸熱ファン30を停止するか低速で連続又は間欠運転するが、ピーク時には吸熱ファン30を高速運転して制御盤からの熱を吸収し蓄熱手段14に蓄熱する。蓄熱手段14は、その相変化材料14が固相からゲルを介して液相に変換され、この相変化に伴って制御盤からの熱を吸収し蓄積する。
【0034】
一方、放熱側制御手段32は、夏場には蓄熱手段14の相変化材料12が液相から固相に戻るまで、サーモモジュール22及び放熱ファン26を連続運転する。
【0035】
冬場はもちろん、夏場でも夜間は、フードからの漏洩熱量でほとんど冷却する必要がないので、吸熱側熱交換手段34は停止し、放熱側熱交換手段32は、蓄熱手段14の相変化材料12が固相に戻った後には停止する。
【0036】
制御盤を冷却するためには、500Wの冷却能力を必要とするので、通常の冷却装置ではこの冷却能力に見合った冷却容量を有することが必要であったが、本発明の電子冷却装置は、ピーク時の500W×3時間=1500ワット時を24時間かけて熱放散すればよいので、62.5Wの冷却能力で足り、従って電子的に冷却するサーモモジュール22によってピーク時に必要な500W冷却を行うことができることが解る。
【0037】
また、従来技術の冷却装置では、一時的に大きな電力を消費し、これは、エアコンディショナー等の他の機器の電力消費と重なるが、本発明の電子冷却装置は、ピーク時の電力消費のピーク値を低減する機能を有することが解る。
【0038】
【発明の効果】
本発明によれば、上記のように、相変化材料(PCM)の相変化を利用して大容量の熱を蓄熱するので、短い時間帯で高い熱ピークを発生してもこのピーク熱を確実に吸収することができ、相変化材料は、サーモモジュールで固相に強制的に戻されるので、コンプレッサーや冷媒管路の如き大掛かりな設備と大きな電力消費を必要とすることなく、大容量冷却することができる。
【0039】
また、相変化材料とサーモモジュールとを組み合わせて、短時間の大きな蓄熱とこの蓄熱の強制放熱とによって相変化材料の相変化を促進するので、小容量の電子冷却器を用いて大容量冷却を行うことができる実益がある。
【図面の簡単な説明】
【図1】本発明の電子冷却装置の概略断面図である。
【図2】図1の電子冷却装置の制御系統の系統図である。
【符号の説明】
10 電子冷却装置
12 相変化材料(PCM)
14 蓄熱手段
16 吸熱側熱交換手段
18 放熱側熱交換手段
20 熱伝導性容器
22 サーモモジュール
24 放熱側ヒートシンク
24A 放熱板
24B フィン
26 冷却ファン
28 吸熱側ヒートシンク
28A フィン
30 吸熱ファン
32 放熱側制御手段
34 吸熱側制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, an electronic cooling device suitable for cooling an object to be cooled, such as a control panel that generates a large amount of heat, particularly a control panel in which a heating peak occurs in a relatively limited time. It is.
[0002]
[Prior art]
Generally, in order to perform large-capacity cooling, a compressor-type cooling device using a refrigerant compressor is used. The cooling device comprises a cooling circuit containing a refrigerant (liquid or gas) for cooling the cooled object. The cooling circuit includes a heat-absorbing heat exchanger that absorbs heat from the cooled object and heats the refrigerant. And a compressor for compressing the compressed refrigerant, and heat radiated when the compressor is compressed is radiated by the radiating heat exchanger.
[0003]
This compressor-type cooling device is suitable for large-capacity cooling because it can absorb large-capacity heat from the object to be cooled, but requires a refrigerant pipe for circulating refrigerant and a large-sized compressor. There was a drawback that the equipment became large.
[0004]
In general, an object to be cooled such as a control panel does not always generate the same amount of heat, but reaches a peak of heat generation in a few hours during the day and requires cooling only during this time. At other times, cooling is not required.
[0005]
However, a compressor-type cooling device is required to have a capacity necessary to absorb the amount of heat generated during the peak period of heat generation. There was a disadvantage.
[0006]
On the other hand, a cooling device having a so-called thermo module is generally used as a suitable cooling device for cooling a small capacity of an electronic component or the like. Since this cooling device is composed of a small Peltier effect element (thermo module), fins and a fan, the size of the cooling device can be reduced as a whole, but the cooling device has a high heat peak even in a short time. It is not possible to obtain sufficient cooling capacity to cool the cooling body.
[0007]
Recently, heat sinks containing a phase change material that stores heat of electronic components such as CPUs have been proposed (see Patent Documents 1 and 2). In these heat sinks, an electronic component to be cooled is embedded in the inside (see Patent Literature 1), or attached to the electronic component while maintaining a heat conduction relationship with the electronic component (see Patent Literature 2).
[0008]
However, these heat sinks store heat generated by the electronic components in the phase change material and naturally radiate the heat from the heat radiating portion of the heat sink, so that these heat sinks are suitable for electronic components having a relatively small calorific value. Cannot be applied to large capacity cooling.
[0009]
[Patent Document 1]
US Patent No. 4,446,916
[Patent Document 2]
JP, 2002-57262, A
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide an electronic cooling device that can cool a cooled object that requires a large amount of cooling in a relatively limited time zone without increasing the size of the equipment. is there.
[0012]
Another problem to be solved by the present invention is to provide an electronic cooling device capable of cooling a cooled object requiring a large capacity cooling with a small capacity cooler in a relatively limited time zone. It is in.
[0013]
[Means for Solving the Problems]
Means for solving the problems of the present invention are a heat storage means made of a phase change material, a heat absorption side heat exchange means provided on a heat absorption side of the heat storage means and transmitting heat from a cooled object to the heat storage means, and a heat radiation of the heat storage means. A heat radiation means for dissipating heat from the heat storage means, the heat radiation means comprising a thermo module, a heat sink, and a cooling fan. It is to provide a device.
[0014]
The phase change material of the heat storage means may comprise a substance that changes phase between solid, gel and liquid, and the heat storage means may comprise a thermally conductive container containing the substance.
[0015]
The thermo module is attached to the heat conductive container of the heat storage means, the heat radiation side heat sink is attached to the thermo module, and the cooling fan blows cooling air to the heat radiation side heat sink or sucks cooling air from the heat radiation side heat sink. It is preferred to be located at
[0016]
The heat-absorbing heat exchange means may include a heat-absorbing heat sink and a heat-absorbing fan. The heat-absorbing heat sink is provided in the heat conductive container of the heat storage means, and the heat-absorbing fan draws heat from the cooled body and blows heated air to the heat absorbing fins, or sucks cooling air from the heat-absorbed heat sink to cool the cooled body. It is preferably arranged so as to be sprayed.
[0017]
As described above, when a large amount of heat is stored using the phase change of the phase change material (PCM), even if a high heat peak is generated in a short time period, the peak heat can be reliably absorbed. Since the phase change material is forcibly returned to the original phase by the thermo module, large capacity cooling can be performed without requiring large-scale equipment such as a compressor or a refrigerant line and large power consumption.
[0018]
In addition, the phase change of the phase change material is promoted by the combination of the phase change material and the thermo module, and the large heat storage for a short time and the forced heat dissipation of the heat storage. Therefore, the large capacity cooling is performed by using a small capacity electronic cooler. be able to.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the present invention will be described in detail. FIG. 1 shows an electronic cooling device 10 according to the present invention, the electronic cooling device 10 comprising a heat storage means made of a phase change material (PCM) 12. 14, a heat-absorbing-side heat exchange means 16 provided on the heat-absorbing side of the heat-storing means 14 and transmitting heat from the object to be cooled to the heat-storing means 14; A heat-dissipation-side heat exchange means for dissipating heat.
[0020]
The phase change material 12 of the heat storage means 14 is composed of a component that dissipates or absorbs heat and changes phase between a solid, a gel, and a liquid, and as this component, the phase change temperature is relatively stable. A component that changes into a liquid phase at 20 ° C to 60 ° C, such as paraffin (melting point 28.2 to 44 ° C), calcium chloride hydrate (melting point 29.7 ° C), sodium sulfate hydrate (melting point 32.4) ° C), sodium thiosulfate hydrate (melting point 48 ° C), sodium acetate hydrate (melting point 58 ° C) and the like, which are appropriately selected from these components according to the heat retention temperature of the object to be cooled. . For the purpose of finely adjusting the melting points of these components, an appropriate regulator can be added to these components.
[0021]
The heat storage means 14 is composed of a heat conductive container 20 made of, for example, aluminum or the like which stores the phase change material 12. Since the volume of the phase change material 12 changes according to the phase change, the container 20 has an internal capacity set so that the container 20 does not break at the maximum volume.
[0022]
As shown in FIG. 1, the heat radiation side heat exchange means 18 includes a thermo module 22 composed of a Peltier effect element, a heat radiation side heat sink 24, and a cooling fan 26.
[0023]
The heat absorption surface of the thermo module 22 is directly attached to the heat conductive container 20 of the heat storage means 14, the heat radiation side heat sink 24 is attached to the heat radiation surface of the thermo module 22, and the cooling fan 26 blows cooling air to the heat sink 24. The cooling air is drawn from the heat sink 24.
[0024]
In the illustrated embodiment, the heat radiation side heat sink 24 is composed of a heat radiation plate 24A attached to the heat radiation surface of the thermo module 22 and a number of fins 24B extending perpendicularly from the heat radiation plate 24A. Although arranged in parallel, the arrangement of the fins 24B is appropriately set.
[0025]
In the illustrated embodiment, the heat radiating fan 26 is formed of a flat fan that blows cooling air to almost the entire surface of the heat radiating side heat sink 24 or sucks cooling air from substantially the entire surface of the heat radiating side heat sink 24. If there is an air guiding means capable of guiding cooling air from the cooling air outlet or suction port of the cooling air may be small.
[0026]
The heat absorption side heat exchange means 16 includes a heat absorption side heat sink 28 and a heat absorption fan 30. In the illustrated embodiment, the heat sink side heat sink 28 is composed of a number of fins 28A integrally formed so as to extend vertically from the wall of the container 20 of the heat storage means 14, and these fins 28A Like the fins 24B, they are arranged in parallel with each other, but similarly, the arrangement of the fins 28A is appropriately set.
[0027]
In the illustrated embodiment, the heat-absorbing fan 30 is formed of a flat fan that blows suction air over substantially the entire heat-absorbing heat sink 28 or sucks air from substantially the entire surface of the heat-absorbing heat sink 28, similarly to the cooling fan 26. Then, the suction port or the discharge port of the suction air may be small as long as there is an air guiding means capable of guiding the suction air to the entire surface of the heat sink 28 or from the entire surface.
[0028]
As shown in FIG. 2, a heat-dissipation-side control means 32 and a heat-sink-side control means 34 for controlling the operation of the heat-dissipation-side heat exchange means 16 and the heat-absorption-side heat exchange means 18 are provided.
[0029]
The heat-absorbing-side control means 34 appropriately operates the heat-absorbing fan 30 of the heat-absorbing-side heat exchange means 16 in response to a command to cool the object to be cooled. For example, it is a large control panel in which the object to be cooled is installed outdoors. Then, the operation of the heat absorbing fan 30 is stopped or operated at a low speed in a time period where the calorific value is relatively low, such as at night, and the heat absorbing fan 30 is operated in a time period in which heat enters from outside such as in the daytime in summer. Is controlled to operate at a high speed, and the heat absorbing fan 30 is controlled to stop when the calorific value is relatively low, such as in winter.
[0030]
The heat radiation side control means 36 operates the thermo module 22 and the cooling fan 26 continuously to dissipate heat from the phase change material 12 of the heat storage means 14 in summer or according to the heat storage amount of the phase change material 12 of the heat storage means 14. When the heat storage amount of the phase change material 12 is low as in winter, the operation of the thermo module 22 and the cooling fan 26 is stopped or the intermittent operation is performed according to the heat storage amount of the phase change material. Can be controlled.
[0031]
Next, the usage state of the electronic cooling device 10 of the present invention will be described. For example, the electronic cooling device 10 of the present invention is mounted so as to surround a large control panel installed outdoors so as to cool the control panel. In this case, the electronic cooling device 10 is arranged such that the heat absorption side heat exchange means 16 is located inside the hood and the heat radiation side heat exchange means 18 is located outside the hood. You.
[0032]
This control panel generates 100 W of heat during normal continuous operation, but if 400 W of heat enters from outside during a peak of about 3 hours during the daytime in summer, the cooling capacity required during the peak is 500 W. .
[0033]
The electronic cooling device 10 of the present invention stops the heat absorbing fan 30 or operates continuously or intermittently at a low speed except at the peak of the summer season by the heat absorbing side control means 34. And heat is stored in the heat storage means 14. The heat storage means 14 converts the phase change material 14 from a solid phase to a liquid phase via a gel, and absorbs and accumulates heat from the control panel with the phase change.
[0034]
On the other hand, the heat radiation side control means 32 continuously operates the thermo module 22 and the heat radiation fan 26 until the phase change material 12 of the heat storage means 14 returns from the liquid phase to the solid phase in summer.
[0035]
At night, not only in winter, but also in summer, there is almost no need to cool with the amount of heat leaked from the hood, so the heat absorption side heat exchange means 34 stops, and the heat radiation side heat exchange means 32 uses the phase change material 12 of the heat storage means 14. Stop after returning to the solid phase.
[0036]
In order to cool the control panel, a cooling capacity of 500 W is required, so that a normal cooling device needs to have a cooling capacity corresponding to this cooling capacity. It is sufficient to dissipate the heat in the peak power of 500 W × 3 hours = 1500 watt-hours over 24 hours, so that a cooling capacity of 62.5 W is sufficient, and therefore the necessary cooling at the peak power of 500 W is performed by the electronically cooled thermo module 22. Understand that you can do it.
[0037]
In addition, the conventional cooling device consumes a large amount of electric power temporarily, which overlaps with the power consumption of other devices such as an air conditioner. However, the electronic cooling device of the present invention has a peak power consumption at a peak time. It turns out that it has the function of reducing the value.
[0038]
【The invention's effect】
According to the present invention, as described above, a large amount of heat is stored by utilizing the phase change of the phase change material (PCM). Therefore, even if a high heat peak is generated in a short time period, this peak heat can be reliably obtained. The phase change material is forcibly returned to the solid phase by the thermo module, so it can be cooled to a large capacity without requiring large equipment such as a compressor or a refrigerant line and large power consumption. be able to.
[0039]
In addition, the phase change of the phase change material is promoted by the combination of the phase change material and the thermo module, and the large heat storage for a short time and the forced heat release of this heat storage. There are benefits that can be done.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an electronic cooling device of the present invention.
FIG. 2 is a system diagram of a control system of the electronic cooling device of FIG.
[Explanation of symbols]
10 Electronic cooling device 12 Phase change material (PCM)
14 heat storage means 16 heat absorption side heat exchange means 18 heat radiation side heat exchange means 20 heat conductive container 22 thermo module 24 heat radiation side heat sink 24A heat radiation plate 24B fin 26 cooling fan 28 heat absorption side heat sink 28A fin 30 heat absorption fan 32 heat radiation side control means 34 Endothermic control means

Claims (5)

相変化材料から成る蓄熱手段と、前記蓄熱手段の吸熱側に設けられて被冷却体からの熱を前記蓄熱手段に伝達する吸熱側熱交換手段と、前記蓄熱手段の放熱側に設けられて前記蓄熱手段からの熱を放散する放熱側熱交換手段とを備え、前記放熱側熱交換手段は、サーモモジュールと放熱側ヒートシンクと冷却ファンとから成っていることを特徴とする電子冷却装置。A heat storage means made of a phase change material, a heat absorption side heat exchange means provided on a heat absorption side of the heat storage means and transmitting heat from a cooled body to the heat storage means, and a heat storage means provided on a heat radiation side of the heat storage means. An electronic cooling device, comprising: a heat-dissipation-side heat exchange means for dissipating heat from the heat storage means, wherein the heat-dissipation-side heat exchange means comprises a thermo module, a heat-dissipation heat sink, and a cooling fan. 請求項1に記載の電子冷却装置であって、前記蓄熱手段の相変化材料は、固体とゲルと液体との間を相変化する物質から成っており、前記蓄熱手段は、前記相変化材料を収納する熱伝導性容器から成っていることを特徴とする電子冷却装置。2. The electronic cooling device according to claim 1, wherein the phase change material of the heat storage unit is made of a substance that changes phase between a solid, a gel, and a liquid, and the heat storage unit stores the phase change material. An electronic cooling device comprising a heat conductive container to be stored. 請求項2に記載の電子冷却装置であって、前記サーモモジュールは、前記蓄熱手段の熱伝導性容器に取付けられ、前記放熱側ヒートシンクは、前記サーモモジュールに取付けられ、前記冷却ファンは、前記放熱側ヒートシンクに冷却空気を吹き付けたり前記放熱側ヒートシンクから冷却空気を吸い込んだりするように配置されていることを特徴とする電子冷却装置。3. The electronic cooling device according to claim 2, wherein the thermo module is mounted on a heat conductive container of the heat storage unit, the heat radiating side heat sink is mounted on the thermo module, and the cooling fan is mounted on the heat radiating unit. 4. An electronic cooling device characterized by being arranged to blow cooling air to a side heat sink or to suck cooling air from the heat sink. 請求項1乃至3のいずれかに記載の電子冷却装置であって、前記吸熱側熱交換手段は、吸熱側ヒートシンクと吸熱ファンとから成っていることを特徴とする電子冷却装置。4. The electronic cooling device according to claim 1, wherein said heat-absorbing-side heat exchange means comprises a heat-absorbing heat sink and a heat-absorbing fan. 請求項4に記載の電子冷却装置であって、前記吸熱側ヒートシンクは、前記蓄熱手段の熱伝導性容器に設けられ、前記吸熱ファンは、前記被冷却体からの熱を吸引して前記吸熱側ヒートシンクに加熱空気を吹き付けたり前記吸熱側ヒートシンクから冷却空気を吸い込んだりするように配置されていることを特徴とする電子冷却装置。5. The electronic cooling device according to claim 4, wherein the heat sink side heat sink is provided in a heat conductive container of the heat storage unit, and the heat sink fan sucks heat from the cooled object to thereby form the heat sink side. An electronic cooling device, which is arranged so as to blow heated air to a heat sink or to suck cooling air from the heat sink on the heat absorbing side.
JP2003109839A 2003-04-15 2003-04-15 Electronic cooling device Expired - Lifetime JP3979531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003109839A JP3979531B2 (en) 2003-04-15 2003-04-15 Electronic cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109839A JP3979531B2 (en) 2003-04-15 2003-04-15 Electronic cooling device

Publications (2)

Publication Number Publication Date
JP2004319658A true JP2004319658A (en) 2004-11-11
JP3979531B2 JP3979531B2 (en) 2007-09-19

Family

ID=33470852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109839A Expired - Lifetime JP3979531B2 (en) 2003-04-15 2003-04-15 Electronic cooling device

Country Status (1)

Country Link
JP (1) JP3979531B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255813A (en) * 2006-03-24 2007-10-04 Takasago Thermal Eng Co Ltd System for preventing deterioration of package air conditioner performance using solar battery
KR100827725B1 (en) 2007-05-02 2008-05-08 티티엠주식회사 Pcm attachment method and automatic machine thereof
JP2009140818A (en) * 2007-12-07 2009-06-25 Rohm Co Ltd Organic el planar light emitting apparatus
WO2009110987A1 (en) * 2008-03-02 2009-09-11 Lighting Bug, Llc Thermal storage system using phase change materials in led lamps
US7810965B2 (en) 2008-03-02 2010-10-12 Lumenetix, Inc. Heat removal system and method for light emitting diode lighting apparatus
US7969075B2 (en) 2009-02-10 2011-06-28 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in LED lamps
JP2011176082A (en) * 2010-02-24 2011-09-08 Emprie Technology Development LLC Wiring board and method for manufacturing the same
US8123389B2 (en) 2010-02-12 2012-02-28 Lumenetix, Inc. LED lamp assembly with thermal management system
CN102620467A (en) * 2012-03-21 2012-08-01 美的集团有限公司 Electronic refrigerating device capable of accumulating cold
KR101391159B1 (en) 2012-11-15 2014-05-02 연세대학교 산학협력단 Pcm embedded thermoelectric element fabrication method
CN103811976A (en) * 2014-02-28 2014-05-21 苏州微木智能系统有限公司 Heat dissipation device and method of pulse type high-power laser
JP2014110426A (en) * 2012-11-30 2014-06-12 Ge Aviation Systems Llc Phase change heat sink for transient thermal management
WO2017216147A1 (en) * 2016-06-17 2017-12-21 Arcelik Anonim Sirketi Portable air-conditioning device comprising thermoelectric module
US10217921B2 (en) 2015-05-07 2019-02-26 Samsung Electronics Co., Ltd. Display apparatus
US11965679B2 (en) 2022-05-11 2024-04-23 Ember Technologies, Inc. Beverage container with active temperature control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854966B1 (en) 2008-04-16 2008-08-28 주식회사 하이럭스 Refrigerator for cosmetics

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255813A (en) * 2006-03-24 2007-10-04 Takasago Thermal Eng Co Ltd System for preventing deterioration of package air conditioner performance using solar battery
KR100827725B1 (en) 2007-05-02 2008-05-08 티티엠주식회사 Pcm attachment method and automatic machine thereof
WO2008136543A1 (en) * 2007-05-02 2008-11-13 Top Thermal Management Co., Ltd. Pcm attachment method and automatic machine thereof
JP2009140818A (en) * 2007-12-07 2009-06-25 Rohm Co Ltd Organic el planar light emitting apparatus
WO2009110987A1 (en) * 2008-03-02 2009-09-11 Lighting Bug, Llc Thermal storage system using phase change materials in led lamps
US7810965B2 (en) 2008-03-02 2010-10-12 Lumenetix, Inc. Heat removal system and method for light emitting diode lighting apparatus
JP2011513989A (en) * 2008-03-02 2011-04-28 ルメネティックス,インコーポレイテッド Heat storage system using phase change material in LED lamp, heat storage method, and method of using graph showing operating range of lighting system using phase change material
US9102857B2 (en) 2008-03-02 2015-08-11 Lumenetix, Inc. Methods of selecting one or more phase change materials to match a working temperature of a light-emitting diode to be cooled
US8632227B2 (en) 2008-03-02 2014-01-21 Lumenetix, Inc. Heat removal system and method for light emitting diode lighting apparatus
US8047690B2 (en) 2008-03-02 2011-11-01 Lumenetix, Inc. Heat removal system and method for light emitting diode lighting apparatus
US8427036B2 (en) 2009-02-10 2013-04-23 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in LED lamps
US7969075B2 (en) 2009-02-10 2011-06-28 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in LED lamps
US8783894B2 (en) 2010-02-12 2014-07-22 Lumenetix, Inc. LED lamp assembly with thermal management system
US8123389B2 (en) 2010-02-12 2012-02-28 Lumenetix, Inc. LED lamp assembly with thermal management system
JP2011176082A (en) * 2010-02-24 2011-09-08 Emprie Technology Development LLC Wiring board and method for manufacturing the same
US8669477B2 (en) 2010-02-24 2014-03-11 Empire Technology Development Llc Wiring substrate and method for manufacturing the same
CN102620467A (en) * 2012-03-21 2012-08-01 美的集团有限公司 Electronic refrigerating device capable of accumulating cold
KR101391159B1 (en) 2012-11-15 2014-05-02 연세대학교 산학협력단 Pcm embedded thermoelectric element fabrication method
JP2014110426A (en) * 2012-11-30 2014-06-12 Ge Aviation Systems Llc Phase change heat sink for transient thermal management
CN103811976A (en) * 2014-02-28 2014-05-21 苏州微木智能系统有限公司 Heat dissipation device and method of pulse type high-power laser
CN103811976B (en) * 2014-02-28 2017-02-22 苏州微木智能系统有限公司 Heat dissipation device and method of pulse type high-power laser
US10217921B2 (en) 2015-05-07 2019-02-26 Samsung Electronics Co., Ltd. Display apparatus
WO2017216147A1 (en) * 2016-06-17 2017-12-21 Arcelik Anonim Sirketi Portable air-conditioning device comprising thermoelectric module
US11965679B2 (en) 2022-05-11 2024-04-23 Ember Technologies, Inc. Beverage container with active temperature control

Also Published As

Publication number Publication date
JP3979531B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
CN107219906B (en) Semiconductor cold storage type radiator device and method
JP2004319658A (en) Electronic cooler
TW200301814A (en) Optimised use of PCMS in cooling devices
US8297062B2 (en) Heat-dissipating device for supplying cold airflow
WO2011150798A1 (en) Tec refrigerating installation and electrical apparatus using same
JP2005241148A (en) Heat pump system utilizing solar light and its operation controlling method
JP2007155269A (en) Cooling device
CN208431978U (en) A kind of electronic equipment radiating module
JP2000002493A (en) Cooling unit and cooling structure employing it
Nandini Peltier based cabinet cooling system using heat pipe and liquid based heat sink
KR20020019787A (en) High efficiency thermoelectric cooling and heating box for food and drink storage in a vehicle
JPH0821679A (en) Electronic refrigeration type drinking water cooler
KR200181246Y1 (en) Refrigerator and heater for vehicles using thermoelectric semiconductors
US10030896B1 (en) Magneto-caloric cooling system
US9631842B1 (en) Magneto-caloric cooling system
KR200389678Y1 (en) Cooing and heating apparatus without using CFC
KR20040061286A (en) Hybrid heat exchanger having tec and heat pipe
KR20080046517A (en) Outdoor unit of air-conditioner and air-conditioner having the same
CN206531339U (en) A kind of refrigerator
KR20100046342A (en) Air conditioner using thermoelectric modules
JP2004263986A (en) Air conditioner
KR100439257B1 (en) A Heat Pipe Module
CN108507226A (en) A kind of electronic equipment radiating module
CN2393050Y (en) Air-conditioning fan
KR100912195B1 (en) Cooling and warming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050824

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070621

R150 Certificate of patent or registration of utility model

Ref document number: 3979531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term