JP2007155269A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2007155269A
JP2007155269A JP2005354044A JP2005354044A JP2007155269A JP 2007155269 A JP2007155269 A JP 2007155269A JP 2005354044 A JP2005354044 A JP 2005354044A JP 2005354044 A JP2005354044 A JP 2005354044A JP 2007155269 A JP2007155269 A JP 2007155269A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
cooling device
storage unit
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005354044A
Other languages
Japanese (ja)
Inventor
Katsumi Kuno
勝美 久野
Hideo Iwasaki
秀夫 岩崎
Akihiro Koga
章浩 古賀
Akihiro Kasahara
章裕 笠原
Akiko Saito
明子 斉藤
Tadahiko Kobayashi
忠彦 小林
Takuya Takahashi
拓也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005354044A priority Critical patent/JP2007155269A/en
Publication of JP2007155269A publication Critical patent/JP2007155269A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device capable of miniaturizing a module, and reducing noise. <P>SOLUTION: This cooling device comprises a heat receiving portion for cooling a cooled object, a heat radiating portion for cooling a refrigerant, a flow channel connecting the heat receiving portion and the heat radiating portion to move the refrigerant, a refrigerant driving portion for moving the refrigerant in the flow channel, and a thermal storage unit disposed in the flow channel between the heat receiving portion and the heat radiating portion and switching the flow of heat in the direction to conduct heat away from the refrigerant and the flow of heat in the direction to radiate heat to the refrigerant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発熱素子を冷却するための冷却装置に関する。   The present invention relates to a cooling device for cooling a heating element.

従来、ノートパソコンなどに備えられた電子部品などを冷却するための冷却装置として、例えばファンとフィンが一体になった強制空冷モジュールがある。この強制空冷モジュールは、CPUに冷却部が取り付けられたフィンに空気をファンを用いて流すことで強制的に発熱部品を冷却する。   2. Description of the Related Art Conventionally, there is a forced air cooling module in which, for example, a fan and a fin are integrated as a cooling device for cooling an electronic component or the like provided in a notebook computer or the like. The forced air cooling module forcibly cools the heat-generating components by flowing air using a fan through the fins having a cooling unit attached to the CPU.

このようなフィンとファンを用いた強制空冷モジュールは、CPUなど半導体素子の発熱量が上昇すると、ファンにより筐体内部に流す空気の流量を増やすか、フィンを大きくして放熱容量を増やすなどの対応が行われる。このような方法では冷却モジュール自体が大型化したり、ファンの負荷が上昇することによって騒音が大きくなったりするという問題がある。   Such a forced air cooling module using fins and fans increases the heat flow capacity of the semiconductor elements such as CPUs by increasing the flow rate of air flowing into the housing by the fan or increasing the fins to increase the heat dissipation capacity. Action is taken. In such a method, there is a problem that the cooling module itself is increased in size or noise is increased due to an increase in fan load.

このような問題を解決するために、特許文献1には、受熱部及び放熱部をフレキシブルな配管によって接続し、この配管中を冷媒がポンプにより駆動することによって、半導体素子からの熱をディスプレイ部に輸送して放熱する液冷装置が記載されている。

特開平7−142886号公報
In order to solve such a problem, in Patent Document 1, the heat receiving portion and the heat radiating portion are connected by a flexible pipe, and the refrigerant is driven by a pump in the pipe so that the heat from the semiconductor element is displayed on the display portion. A liquid cooling device for transporting and radiating heat is described.

JP-A-7-142886

従来の冷却装置では、発熱量がますます増大した電子装置を冷却する場合モジュールの大型化や騒音の増大という問題がある。   In the conventional cooling device, there is a problem that the size of the module is increased and the noise is increased when the electronic device whose calorific value is further increased is cooled.

本発明は、このような問題に鑑みてなされたものでモジュールの小型化及び低騒音化を可能とする冷却装置を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a cooling device that can reduce the size and noise of a module.

上記問題を解決するために、本発明は、冷却対象物を冷却する受熱部と、
冷媒を冷却するための放熱部と、
前記受熱部と前記放熱部を接続し、前記冷媒が移動するための流路と、
前記流路内の冷媒を移動させる冷媒駆動部と、
前記受熱部と前記放熱部の間の前記流路に設けられ、前記冷媒から熱を奪う向きの熱の流れと、前記冷媒に熱を放出する向きの熱の流れを切り替える蓄熱ユニットとを具備することを特徴とする冷却装置を提供する。
In order to solve the above problem, the present invention includes a heat receiving unit that cools an object to be cooled,
A heat dissipating part for cooling the refrigerant;
A flow path for connecting the heat receiving portion and the heat radiating portion, and for moving the refrigerant;
A refrigerant driving unit for moving the refrigerant in the flow path;
A heat storage unit that is provided in the flow path between the heat receiving unit and the heat radiating unit and switches a heat flow in a direction to take heat away from the refrigerant and a heat flow in a direction to release heat to the refrigerant; A cooling device is provided.

本発明は、受熱部と放熱部と間に、冷媒から熱を奪う向きの熱の流れと冷媒に熱を放出する向きの熱の流れを切り替える蓄熱ユニットを設けることで、高い冷却効率を達成できる。   The present invention can achieve high cooling efficiency by providing a heat storage unit that switches between a heat flow in a direction to take heat away from the refrigerant and a heat flow in a direction to release heat to the refrigerant between the heat receiving portion and the heat radiating portion. .

以下、図面を参照して発明の詳細な実施形態について説明する。なお、本発明は以下に説明する実施形態に限定されることはなくその趣旨を逸脱しない範囲で種々工夫して用いることができる。   Hereinafter, detailed embodiments of the invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and can be used in various ways without departing from the spirit of the present invention.

実施形態1:冷媒が往復運動し、磁性体を利用
図1は本発明の実施形態に係わる冷却装置の模式図である。
Embodiment 1: Refrigerant reciprocates and uses magnetic material FIG. 1 is a schematic view of a cooling device according to an embodiment of the present invention.

図1に示すように、この冷却装置は、受熱部7、蓄熱ユニット6、放熱部3及びポンプがループ状に管路1により接続されている。冷媒駆動部であるポンプにより管路1内に封入された不凍液、フロロカーボン、水などの冷媒は管路1内を往復運動するように制御装置2によって制御されている。冷媒の往復運動は少なくとも放熱部3と受熱部7の両者を通過するだけのストローク(移動幅)を有している。   As shown in FIG. 1, in this cooling device, a heat receiving portion 7, a heat storage unit 6, a heat radiating portion 3 and a pump are connected by a pipe line 1 in a loop shape. Refrigerants such as antifreeze, fluorocarbon, and water sealed in the pipe line 1 by a pump that is a refrigerant driving unit are controlled by the control device 2 so as to reciprocate in the pipe line 1. The reciprocating motion of the refrigerant has at least a stroke (movement width) that passes through both the heat radiating unit 3 and the heat receiving unit 7.

蓄積ユニットは、冷媒の往復運動に同期して、冷媒から熱を奪う向きの熱の流れと冷媒に熱を放出する向きの熱の流れを切り替えるように制御装置2にて制御されている。   The storage unit is controlled by the control device 2 so as to switch between a heat flow in a direction to take heat away from the refrigerant and a heat flow in a direction to release heat to the refrigerant in synchronization with the reciprocating motion of the refrigerant.

図1では、冷媒が管路1内を左矢印方向に移動している間は冷媒から熱を奪う向きの熱の流れを与え、冷媒が右矢印方向に移動している間は冷媒に熱を放出する向きの熱の流れを与えるように制御されている。   In FIG. 1, while the refrigerant is moving in the pipe 1 in the direction of the left arrow, a flow of heat is given in the direction of taking heat away from the refrigerant, and while the refrigerant is moving in the direction of the right arrow, the refrigerant is heated. It is controlled to provide heat flow in the direction of discharge.

図2は、磁気熱量効果を利用した蓄熱ユニット2の模式図である。   FIG. 2 is a schematic diagram of the heat storage unit 2 using the magnetocaloric effect.

図2に示すように、蓄熱ユニット2は、管状に成形された外囲器14の中に粒状のガドリニウム系合金など磁気熱量効果を示す磁性材料11が充填されている。磁性材料11は、外囲器14中に設けられた網12で保持され、磁性材料11のすきまを冷媒が通過することで磁性材料11と冷媒の間で熱交換が行われるようになっている。磁性材料11を保持している網12は、磁性材料11が流れださないように磁性材料の粒よりも目の細かく成形されている。   As shown in FIG. 2, in the heat storage unit 2, a magnetic material 11 showing a magnetocaloric effect such as a granular gadolinium alloy is filled in an envelope 14 formed in a tubular shape. The magnetic material 11 is held by a net 12 provided in the envelope 14, and heat exchange is performed between the magnetic material 11 and the refrigerant when the refrigerant passes through the gap of the magnetic material 11. . The mesh 12 holding the magnetic material 11 is formed finer than the grains of the magnetic material so that the magnetic material 11 does not flow out.

外囲器14の周囲には電磁石10が設けられ、磁性材料11に磁場を印加するように制御装置2にて制御されている。   An electromagnet 10 is provided around the envelope 14 and is controlled by the control device 2 so as to apply a magnetic field to the magnetic material 11.

ここで磁気熱量効果は、物質内部の磁場の変化が磁気スピン系(磁気を担う電子系)のエントロピーを変化させ、これにより電子系と格子系との間でエネルギーの移動が起こる現象である。この蓄熱ユニット6で使用されている磁性材料11は、磁場を与えると熱を放出し磁場を除去すると吸熱する性質を持つ。   Here, the magnetocaloric effect is a phenomenon in which a change in the magnetic field inside a substance changes the entropy of the magnetic spin system (electron system responsible for magnetism), thereby causing energy transfer between the electron system and the lattice system. The magnetic material 11 used in the heat storage unit 6 has a property of releasing heat when a magnetic field is applied and absorbing heat when the magnetic field is removed.

例えば、制御装置2によって、冷媒が受熱部7から蓄熱ユニット6を経由して放熱部3に流れるとき(図1中右の矢印方向に冷媒が流れるとき)に電磁石10を作動させて磁場を印加し、逆方向(図1中左の矢印方向に冷媒が流れるとき)に電磁石10を停止して磁場を除く。この場合、放熱部3には磁気熱量効果により温度の上昇した磁性材料と熱交換することにより温度が上昇した冷媒が送り込まれ、受熱部7には温度が低下した磁性材料と熱交換することにより温度が低下した冷媒を送り込むことができ冷却効率を向上させることができる。   For example, when the refrigerant flows from the heat receiving unit 7 through the heat storage unit 6 to the heat radiating unit 3 by the control device 2 (when the refrigerant flows in the direction of the arrow on the right in FIG. 1), the electromagnet 10 is operated to apply a magnetic field. Then, the electromagnet 10 is stopped in the reverse direction (when the refrigerant flows in the left arrow direction in FIG. 1) to remove the magnetic field. In this case, a refrigerant whose temperature has been increased by exchanging heat with the magnetic material whose temperature has increased due to the magnetocaloric effect is sent to the heat radiating unit 3, and the heat receiving unit 7 is heat-exchanged with the magnetic material whose temperature has been decreased. The refrigerant whose temperature has decreased can be fed, and the cooling efficiency can be improved.

図3に、本実施形態の冷却装置における冷媒の流れる向きと熱量の流れる向きを説明するためのグラフを示す。横軸に時間軸、縦軸に冷媒の流れる向き及び熱の流れる向きを示す。また、実践が冷媒の流れる向きを示し、破線は熱の流れる向きを示す。   In FIG. 3, the graph for demonstrating the direction through which the refrigerant | coolant flows in the cooling device of this embodiment and the direction through which calorie | heat amount flows is shown. The horizontal axis represents the time axis, and the vertical axis represents the direction of refrigerant flow and the direction of heat flow. Moreover, practice shows the direction in which the refrigerant flows, and the broken line shows the direction in which the heat flows.

図3に示すように、冷媒が放熱部3を出て、蓄熱ユニット6を経由して受熱部7に向うとき(図1中左矢印の向き)には、熱は冷媒から蓄熱ユニット6に流れる。すなわち冷媒は冷却される。また、冷媒の流れが逆方向(図1中右矢印の向き)であるときには、熱は蓄熱ユニット6から冷媒に流れる。すなわち冷媒は暖められる。   As shown in FIG. 3, when the refrigerant leaves the heat radiating unit 3 and goes to the heat receiving unit 7 via the heat storage unit 6 (in the direction of the left arrow in FIG. 1), heat flows from the refrigerant to the heat storage unit 6. . That is, the refrigerant is cooled. Further, when the refrigerant flows in the reverse direction (the direction of the right arrow in FIG. 1), heat flows from the heat storage unit 6 to the refrigerant. That is, the refrigerant is warmed.

このような動作によって、放熱部3により冷却された冷媒は磁気熱量効果により蓄熱ユニット6で冷却されさらに温度が低下した状態で受熱部7を流れる。また、放熱部3に流れ込む冷媒は磁気熱量効果により蓄熱ユニット6で暖められ受熱部7から流出した状態よりもさらに温度が上昇している。受熱部7での放熱性能は、
Q = (Tj−T1)/R1
Q:受熱部での熱の吸収量,W
Tj:発熱する半導体素子の温度,℃
T1:受熱部に流れ込む冷媒の温度,℃
R1:半導体素子から受熱部を流れる冷媒までの熱抵抗,℃/W
のように表される。
By such an operation, the refrigerant cooled by the heat radiating unit 3 is cooled by the heat storage unit 6 due to the magnetocaloric effect, and further flows through the heat receiving unit 7 in a state where the temperature is lowered. Further, the temperature of the refrigerant flowing into the heat radiating unit 3 is further increased than the state in which the refrigerant is heated by the heat storage unit 6 due to the magnetocaloric effect and flows out of the heat receiving unit 7. The heat dissipation performance at the heat receiving section 7 is
Q = (Tj−T1) / R1
Q: Heat absorption at the heat receiving part, W
Tj: Temperature of the semiconductor element that generates heat, ° C
T1: Temperature of refrigerant flowing into the heat receiving part, ° C
R1: Thermal resistance from the semiconductor element to the refrigerant flowing through the heat receiving part, ° C / W
It is expressed as

熱抵抗R1は、冷媒の気化などが起こらない対流熱伝達が支配的な場合には、冷媒の流速及び受熱部7や発熱部である(冷却対象である)半導体パッケージの形状により決まり、通常、温度や移動熱量に依存しない。そのため、発熱量Qの半導体素子を冷却するとき、T1が低くなれば低下分だけ素子の温度Tjを低下させることができる。   The thermal resistance R1 is determined by the flow rate of the refrigerant and the shape of the semiconductor package that is the heat receiving part 7 or the heat generating part (which is to be cooled) when convective heat transfer that does not cause vaporization of the refrigerant is dominant. It does not depend on temperature or amount of heat transferred. Therefore, when cooling a semiconductor element having a calorific value Q, the temperature Tj of the element can be lowered by a decrease if T1 is lowered.

また、受熱部で冷媒が気化する場合には、熱抵抗は温度や移動熱量に影響されるため対流熱伝達のようにT1の低下分とTjの低下分は必ずしも等しくはないが、T1が低下すればTjも低下する.
放熱部3についても、同様な理由により放熱部3に流れる冷媒の温度が高くなれば放熱性能が向上することは明らかである。
Also, when the refrigerant is vaporized in the heat receiving part, the thermal resistance is affected by the temperature and the amount of heat transferred, so the decrease in T1 and the decrease in Tj are not necessarily equal as in convective heat transfer, but the T1 decreases. Then Tj will decrease.
As for the heat radiating part 3, it is apparent that the heat radiating performance is improved if the temperature of the refrigerant flowing through the heat radiating part 3 is increased for the same reason.

すなわち、図1に示すように、磁性材料11と冷媒とが熱交換を行うための蓄熱ユニット6を、受熱部7と放熱部3の間に設けることにより、受熱部7と放熱部3の両方の性能を向上させることができる。これは放熱部3でのファン4の流量を増加させたり放熱部3の寸法を大きくしたりすることなしに向上させることができる。   That is, as shown in FIG. 1, by providing a heat storage unit 6 for heat exchange between the magnetic material 11 and the refrigerant between the heat receiving unit 7 and the heat radiating unit 3, both the heat receiving unit 7 and the heat radiating unit 3 are provided. Performance can be improved. This can be improved without increasing the flow rate of the fan 4 in the heat radiating section 3 or increasing the size of the heat radiating section 3.

図2に示すように、磁気熱量効果を示す磁性材料11には磁場の印加により熱を放出して温度が上昇し磁場を除去することにより熱を吸収して温度が降下する材料や、磁場の印加により熱を吸収し磁場を除去すると熱を放出する材料を用いることができる。   As shown in FIG. 2, the magnetic material 11 showing the magnetocaloric effect is a material that releases heat by applying a magnetic field and rises in temperature and removes the magnetic field to absorb the heat and fall in temperature. A material that absorbs heat by application and releases heat when the magnetic field is removed can be used.

実施形態2:ペルチェ素子を用いた蓄熱ユニット
次に、蓄熱ユニットとしてペルチェ素子を用いた冷却装置について説明する。基本的な構造は図1と変わらないので、図1及び図4を用いて説明する。
Second Embodiment: Thermal Storage Unit Using Peltier Element Next, a cooling device using a Peltier element as the thermal storage unit will be described. Since the basic structure is the same as FIG. 1, it will be described with reference to FIGS.

図4は、ペルチェ素子を用いた蓄熱ユニットの上面図及び断面図である。   FIG. 4 is a top view and a cross-sectional view of a heat storage unit using a Peltier element.

図4に示すように、冷媒が流れる流路にペルチェ素子19を介して蓄熱材21が充填された金属など熱伝導性の高い容器が接続されている。蓄熱材料21とペルチェ素子19の間の熱の授受を促進するために、蓄熱ユニット22は内部にフィン20を備えている。   As shown in FIG. 4, a container having high thermal conductivity such as a metal filled with a heat storage material 21 is connected to a flow path through which a refrigerant flows through a Peltier element 19. In order to promote the transfer of heat between the heat storage material 21 and the Peltier element 19, the heat storage unit 22 includes fins 20 inside.

蓄熱材料としては、ポリエチレングリコール、Na・5HO、NaCHCOO・3HOなどが用いられる。蓄熱材料は顕熱或いは潜熱として熱を蓄えている。潜熱として熱を蓄えるとき、例えば固体から液体に変化するときには体積が変化する。このため蓄熱ユニット22の内部のフィン20はペルチェ素子19とは反対側の壁には固定されておらず、蓄熱ユニット22の壁面が変形しやすい。すなわち蓄熱材料21の体積変化を吸収しやすい構造となっている。 As the heat storage material, polyethylene glycol, Na 2 S 2 O 3 .5H 2 O, NaCH 3 COO.3H 2 O, or the like is used. The heat storage material stores heat as sensible heat or latent heat. When storing heat as latent heat, for example, when changing from solid to liquid, the volume changes. For this reason, the fin 20 inside the heat storage unit 22 is not fixed to the wall opposite to the Peltier element 19, and the wall surface of the heat storage unit 22 is easily deformed. That is, it has a structure that can easily absorb the volume change of the heat storage material 21.

ペルチェ素子19に流す電流の向きにより、蓄熱材料21と冷媒の間のどちらの方向に熱を流すかを制御する。   The direction of the current flowing through the Peltier element 19 controls which direction the heat flows between the heat storage material 21 and the refrigerant.

図1に示すように、冷媒が放熱部3から受熱部7に向かって流れるときには、冷媒を冷却して蓄熱材料21を熱する方向にペルチェ素子19を作動させる。逆に冷媒が受熱部7から放熱部3に流れるときには蓄熱材料21を冷却して冷媒を熱する方向にペルチェ素子19を作動させる。このような冷媒の流れる方向と連動したペルチェ素子19の動作によって蓄熱材料21に熱を蓄えたり放出したりすることにより、受熱部7には温度の低い冷媒を放熱部3には温度の高い冷媒を流すことができる。こうすることにより冷却装置の性能を高めることができる。   As shown in FIG. 1, when the refrigerant flows from the heat radiating unit 3 toward the heat receiving unit 7, the Peltier element 19 is operated in a direction to cool the refrigerant and heat the heat storage material 21. Conversely, when the refrigerant flows from the heat receiving portion 7 to the heat radiating portion 3, the Peltier element 19 is operated in a direction in which the heat storage material 21 is cooled to heat the refrigerant. By storing and releasing heat in the heat storage material 21 by the operation of the Peltier element 19 in conjunction with the flow direction of the refrigerant, a low temperature refrigerant is used for the heat receiving unit 7 and a high temperature refrigerant is used for the heat radiating unit 3. Can flow. By doing so, the performance of the cooling device can be enhanced.

ここで蓄熱ユニットとして、ペルチェ素子と磁性材料を用いた場合の相違点について説明する。   Here, the difference when a Peltier element and a magnetic material are used as the heat storage unit will be described.

ペルチェ素子は磁気熱量効果を示す磁性材料よりも大きな温度差を得やすいため、蓄熱ユニットの内面の伝熱面積を、磁性材料を用いる場合よりも小さくすることができる。一方ペルチェ素子の損失は磁気熱量効果よりも大きく移動させる熱量に加えて、ペルチェ素子の損失に伴う発熱を放熱部で負担することになる。磁性材料は、磁場の印加と除去により熱の授受を行うため、磁性材料自体に電線などとりつけなくても非接触で動作させることができるという特徴があり粒状の磁性材料を冷媒に直接に接触させるという図2のような構成をとることができる。   Since the Peltier element can easily obtain a larger temperature difference than the magnetic material exhibiting the magnetocaloric effect, the heat transfer area on the inner surface of the heat storage unit can be made smaller than when the magnetic material is used. On the other hand, the loss of the Peltier element bears the heat generated by the loss of the Peltier element at the heat radiating part in addition to the amount of heat moved larger than the magnetocaloric effect. Since magnetic materials transfer heat by applying and removing a magnetic field, they can be operated in a non-contact manner without attaching electric wires to the magnetic material itself, and the granular magnetic material is brought into direct contact with the refrigerant. The configuration as shown in FIG. 2 can be taken.

実施形態3:冷媒が間欠的に一方向に流れる場合
次に、冷媒が管内を間欠的に一方向に流れる場合の冷却装置について説明する。
Embodiment 3: When a refrigerant | coolant flows intermittently in one direction Next, the cooling device in case a refrigerant | coolant flows the inside of a pipe | tube in one direction intermittently is demonstrated.

図5は、本実施形態における冷却装置の模式図である。   FIG. 5 is a schematic diagram of the cooling device in the present embodiment.

図5に示すように、ポンプ28により冷媒を一方向に流したり静止させたりと振動的な流れを発生させる。蓄熱ユニット26に磁気熱量効果を示す磁性材料を用いる場合、冷媒が静止しているときには蓄熱ユニット26の内部に収納された磁性材料に磁場が印加され熱を放出し温度が上昇する。放出した熱は放熱部32に取り付けられたファン31による空気の流れにより冷却される。放熱部32は冷却効果を高めるためにフィン30が取り付けられている。蓄熱ユニット26において、磁場が除去されると磁性材料は熱を吸収して温度が低下し、このときポンプ28によって管路23内の冷媒が駆動されることにより低温の冷媒が受熱部に送り込まれる。   As shown in FIG. 5, an oscillatory flow is generated by the pump 28 such that the refrigerant flows in one direction or stops. When a magnetic material exhibiting a magnetocaloric effect is used for the heat storage unit 26, when the refrigerant is stationary, a magnetic field is applied to the magnetic material housed inside the heat storage unit 26 to release heat and the temperature rises. The released heat is cooled by the flow of air by the fan 31 attached to the heat radiating section 32. The fins 30 are attached to the heat radiating portion 32 in order to enhance the cooling effect. In the heat storage unit 26, when the magnetic field is removed, the magnetic material absorbs heat and the temperature is lowered. At this time, the refrigerant in the pipe line 23 is driven by the pump 28, whereby low-temperature refrigerant is sent to the heat receiving unit. .

ペルチェ素子を蓄熱ユニット26に用いるときにも冷媒から蓄熱材料に熱を流し蓄熱ユニット26周囲の空気の流れにより蓄熱材料を冷却する動作により同様な効果を得ることができる。   Even when the Peltier element is used for the heat storage unit 26, the same effect can be obtained by the operation of flowing heat from the refrigerant to the heat storage material and cooling the heat storage material by the air flow around the heat storage unit 26.

この実施形態では、蓄積ユニット26と放熱部32は風洞で連結されファン31が駆動すると符号25に示すように空気の流れが生じている。こうすることでより冷却効果を向上させることができる。   In this embodiment, the storage unit 26 and the heat radiating portion 32 are connected by a wind tunnel, and when the fan 31 is driven, an air flow is generated as indicated by reference numeral 25. By doing so, the cooling effect can be further improved.

実施形態4:I型の流路
図6は、本実施形態におけるI型流路を用いた冷却装置の模式図である。
Embodiment 4: I-type channel FIG. 6 is a schematic diagram of a cooling device using an I-type channel in the present embodiment.

図6に示すように、管路40は閉じた回路ではなく一端に冷媒を往復運動させるためのポンプ41、もう一端に冷媒を溜める容量が可変の冷媒溜め33が設けられている。他の構成は図1で説明したものと同様なので説明を省略する。   As shown in FIG. 6, the conduit 40 is not a closed circuit, but is provided with a pump 41 for reciprocating the refrigerant at one end and a refrigerant reservoir 33 with a variable capacity for accumulating the refrigerant at the other end. Other configurations are the same as those described with reference to FIG.

このような構成により冷媒の行きと戻りの二本の管路ではなく一本の管路40で冷却装置を構成できる。例えばノートパソコンにおいて受熱部34をCPUに取り付け放熱部38をディスプレイが収納される筐体に配置する場合、ディスプレイと本体を連結するヒンジ部を通過させる管路が一本で済むという利点がある。   With such a configuration, the cooling device can be configured by a single pipeline 40 instead of the two pipelines for refrigerant return and return. For example, when a heat receiving unit 34 is attached to a CPU and a heat radiating unit 38 is arranged in a housing in which a display is housed in a notebook personal computer, there is an advantage that only one conduit is required to pass through a hinge portion connecting the display and the main body.

実施形態5:平面的な構成
図7は、半導体チップなど板状の構造物の中に設けられた冷却構造を示す上面図及び断面図である。
Embodiment 5: Planar Configuration FIG. 7 is a top view and a cross-sectional view showing a cooling structure provided in a plate-like structure such as a semiconductor chip.

図7に示すように、冷媒の出入口のついた部屋がダイヤフラム42により区切られ、片側の冷媒出入口は磁気熱量効果を示す磁性材料43が配置された部屋を通じて発熱するエリア45付近に設けられた冷却側流路44につながっている。また、もう片側の冷媒出入口は、冷却構造が設けられた板状の構造体のなかを引き回されている。ダイヤフラム42及び磁性材料43が位置する付近には平面的なコイルによる電磁石46が設けられている。ダイヤフラム42は磁石に引き寄せられる性質の材料から作られており、電磁石46により磁場を加えると、ダイヤフラム42は電磁石46に引き寄せられて撓み、内部に充填されている冷媒を図7の右側から左側へ流す。   As shown in FIG. 7, a room with a refrigerant inlet / outlet is partitioned by a diaphragm 42, and the refrigerant inlet / outlet on one side is provided in the vicinity of an area 45 that generates heat through a room in which a magnetic material 43 exhibiting a magnetocaloric effect is disposed. It is connected to the side flow path 44. The refrigerant inlet / outlet on the other side is routed through a plate-like structure provided with a cooling structure. In the vicinity of where the diaphragm 42 and the magnetic material 43 are located, an electromagnet 46 using a planar coil is provided. The diaphragm 42 is made of a material having a property of being attracted to the magnet. When a magnetic field is applied by the electromagnet 46, the diaphragm 42 is attracted to the electromagnet 46 and bends, and the refrigerant filled therein is changed from the right side to the left side in FIG. Shed.

磁性材料43は磁場が印加されて発熱し、冷媒は温められてダイヤフラム42に流れ込み、磁性材料43は冷やされる。ダイヤフラム42や磁性材料43付近に溜まっている温められた冷媒は板状の構造物の底面に設けられた放熱器48などの伝熱手段を経由して逃がされる。磁場を除去するとダイヤフラム42は弾性で元にもどり、磁性材料43の温度は低下するため、冷媒は冷やされて受熱部流路44に至り、受熱部流路44付近の発熱するエリアを冷却する。   The magnetic material 43 generates heat when a magnetic field is applied, the refrigerant is warmed and flows into the diaphragm 42, and the magnetic material 43 is cooled. The warmed refrigerant collected in the vicinity of the diaphragm 42 and the magnetic material 43 is released via a heat transfer means such as a radiator 48 provided on the bottom surface of the plate-like structure. When the magnetic field is removed, the diaphragm 42 is elastic and returns to its original state, and the temperature of the magnetic material 43 decreases. Therefore, the refrigerant is cooled down to the heat receiving part flow path 44 and cools the heat generating area near the heat receiving part flow path 44.

このような構成により、発熱するエリア45を選択的に冷却する構造を半導体チップの中に作りこむことができる。   With such a configuration, a structure for selectively cooling the heat generating area 45 can be formed in the semiconductor chip.

以上、本発明の実施形態を説明したが、冷媒は水、不凍液、油、フロロカーボンなど常温、常圧で液体であってもよいし、受熱部あるいは蓄熱ユニットで加熱されることにより液相から気相へ相変化するものでもよい。   As described above, the embodiment of the present invention has been described. However, the refrigerant may be liquid at room temperature and pressure, such as water, antifreeze liquid, oil, and fluorocarbon, or the refrigerant is heated from the liquid phase by being heated by the heat receiving unit or the heat storage unit. It may be one that changes phase to phase.

また、空気や窒素ガス、二酸化炭素を気体のまま管路を流して冷媒として使用してもよい。特に、空気を冷媒として用いる場合には、図6の冷媒溜めの代わりに管路の端面を大気に開放し環境を冷媒の体積変化を吸収するために使うこともできる。   Alternatively, air, nitrogen gas, or carbon dioxide may be used as a refrigerant by flowing through a pipeline. In particular, when air is used as the refrigerant, the end face of the pipe line can be opened to the atmosphere instead of the refrigerant reservoir shown in FIG. 6, and the environment can be used to absorb the change in volume of the refrigerant.

本発明の実施の形態に係る冷却装置の模式図The schematic diagram of the cooling device which concerns on embodiment of this invention 本発明の実施の形態に係る冷却装置の蓄熱ユニットの断面図Sectional drawing of the thermal storage unit of the cooling device which concerns on embodiment of this invention 本発明の実施の形態に係る冷却装置の冷媒の流れる向きと熱の流れる向きの関係を示したグラフThe graph which showed the relationship between the direction through which the refrigerant | coolant flows of the cooling device which concerns on embodiment of this invention, and the direction through which heat flows 本発明の実施の形態に係る冷却装置の蓄熱ユニットの断面図Sectional drawing of the thermal storage unit of the cooling device which concerns on embodiment of this invention 本発明の実施の形態に係る冷却装置の模式図The schematic diagram of the cooling device which concerns on embodiment of this invention 本発明の実施の形態に係る冷却装置の模式図The schematic diagram of the cooling device which concerns on embodiment of this invention 本発明の実施の形態に係る冷却装置の蓄熱ユニットの断面図Sectional drawing of the thermal storage unit of the cooling device which concerns on embodiment of this invention

符号の説明Explanation of symbols

1・・・管路
2・・・制御装置
3・・・放熱部
4・・・ファン
5・・・フィン
6・・・放熱ユニット
7・・・受熱部
8・・・ポンプ
DESCRIPTION OF SYMBOLS 1 ... Pipe line 2 ... Control apparatus 3 ... Radiating part 4 ... Fan 5 ... Fin 6 ... Radiating unit 7 ... Heat receiving part 8 ... Pump

Claims (7)

冷却対象物を冷却する受熱部と、
冷媒を冷却するための放熱部と、
前記受熱部と前記放熱部を接続し、前記冷媒が移動するための流路と、
前記流路内の冷媒を移動させる冷媒駆動部と、
前記受熱部と前記放熱部の間の前記流路に設けられ、前記冷媒から熱を奪う向きの熱の流れと、前記冷媒に熱を放出する向きの熱の流れを切り替える蓄熱ユニットとを具備することを特徴とする冷却装置。
A heat receiving part for cooling the object to be cooled;
A heat dissipating part for cooling the refrigerant;
A flow path for connecting the heat receiving portion and the heat radiating portion, and for moving the refrigerant;
A refrigerant driving unit for moving the refrigerant in the flow path;
A heat storage unit that is provided in the flow path between the heat receiving unit and the heat radiating unit and switches a heat flow in a direction to take heat away from the refrigerant and a heat flow in a direction to release heat to the refrigerant; A cooling device characterized by that.
前記冷媒駆動手段により前記流路内を前記冷媒が往復運動するように駆動させ、前記蓄熱ユニットが、前記冷媒から熱を奪う向きの熱の流れと、前記冷媒に熱を放出する向きの熱の流れを、前記冷媒の往復運動に同期するように切り替える制御装置とをさらに具備することを特徴とする請求項1記載の冷却装置。   The refrigerant driving means drives the refrigerant to reciprocate in the flow path, and the heat storage unit generates heat flow in a direction to take heat away from the refrigerant, and heat in a direction to release heat to the refrigerant. The cooling device according to claim 1, further comprising a control device that switches the flow so as to synchronize with the reciprocating motion of the refrigerant. 前記冷媒駆動手段により前記流路内を前記冷媒が間欠的に移動するように駆動させ、前記蓄熱ユニットが、前記冷媒から熱を奪う向きの熱の流れと、前記冷媒に熱を放出する向きの熱の流れを、前記冷媒の間欠的な移動に同期するように切り替える制御装置とをさらに具備することを特徴とする請求項1記載の冷却装置。   The refrigerant is driven so that the refrigerant intermittently moves in the flow path by the refrigerant driving means, and the heat storage unit is adapted to take heat from the refrigerant and to release heat to the refrigerant. The cooling device according to claim 1, further comprising a control device that switches a heat flow so as to synchronize with the intermittent movement of the refrigerant. 前記流路の端部に前記冷媒を溜めるための冷媒溜めとをさらに具備することを特徴とする請求項2記載の冷却装置。   The cooling apparatus according to claim 2, further comprising a refrigerant reservoir for accumulating the refrigerant at an end of the flow path. 前記流路が閉じた回路を構成することを特徴とする請求項1記載の冷却装置。   The cooling device according to claim 1, wherein the flow path constitutes a closed circuit. 前記蓄熱ユニットが、磁場の印加により温度が上昇し磁場の除去により温度が降下する磁気熱量効果を示す磁性材料及び磁場の印加により温度が降下し磁場の除去により温度が上昇する磁気熱量効果を示す磁性材料のいずれか一方或いは両方の磁気材料と前記磁性材料に磁場を付加及び除去するための電磁石或いは永久磁石とをさらに具備することを特徴とする請求項1乃至5記載の冷却装置。   The heat storage unit exhibits a magnetocaloric effect in which the temperature rises by application of a magnetic field and exhibits a magnetocaloric effect in which the temperature decreases by removal of the magnetic field, and a magnetocaloric effect in which the temperature decreases by application of the magnetic field and increases by removal of the magnetic field 6. The cooling device according to claim 1, further comprising one or both of magnetic materials and an electromagnet or permanent magnet for adding and removing a magnetic field to and from the magnetic material. 前記蓄熱ユニットが、ペルチェ素子と、前記ペルチェ素子に熱的に接続された蓄熱材とをさらに具備することを特徴とする請求項1乃至5記載の冷却装置。   The cooling device according to claim 1, wherein the heat storage unit further includes a Peltier element and a heat storage material thermally connected to the Peltier element.
JP2005354044A 2005-12-07 2005-12-07 Cooling device Pending JP2007155269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354044A JP2007155269A (en) 2005-12-07 2005-12-07 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354044A JP2007155269A (en) 2005-12-07 2005-12-07 Cooling device

Publications (1)

Publication Number Publication Date
JP2007155269A true JP2007155269A (en) 2007-06-21

Family

ID=38239874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354044A Pending JP2007155269A (en) 2005-12-07 2005-12-07 Cooling device

Country Status (1)

Country Link
JP (1) JP2007155269A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204234A (en) * 2008-02-28 2009-09-10 Toshiba Corp Magnetic material for magnetic refrigerator, heat exchange container and magnetic refrigerator
JP2009210165A (en) * 2008-03-03 2009-09-17 Toshiba Corp Magnetic refrigeration device and magnetic refrigeration system
JP2010025435A (en) * 2008-07-18 2010-02-04 Toshiba Corp Magnetic refrigeration device, magnetic refrigeration system and magnetic refrigeration method
JP2011087416A (en) * 2009-10-15 2011-04-28 Fujikura Ltd Solar thermal power generator
US20120125573A1 (en) * 2009-08-27 2012-05-24 Brandon Rubenstein Heat storage by phase-change material
JP2016020768A (en) * 2014-07-14 2016-02-04 株式会社デンソー Reciprocating flow heat exchange system
CN105485810A (en) * 2016-01-07 2016-04-13 山东商业职业技术学院 Cold-heat coupling system
CN105573452A (en) * 2015-12-19 2016-05-11 北海恒科电子配件有限公司 Low-noise laptop cooling bracket
WO2016117334A1 (en) * 2015-01-20 2016-07-28 凸版印刷株式会社 Temperature control device and temperature control method
JP2017009164A (en) * 2015-06-19 2017-01-12 株式会社フジクラ Heat exchanger and magnetic heat pump device
CN106659082A (en) * 2016-12-28 2017-05-10 郑州云海信息技术有限公司 Pump-type natural cooling system and data center with pump-type natural cooling system
JP2018156075A (en) * 2017-03-15 2018-10-04 キヤノン株式会社 Image projection device
CN110887294A (en) * 2019-12-16 2020-03-17 珠海格力电器股份有限公司 Refrigerator, refrigerating system and magnetic regenerator
CN113340556A (en) * 2020-12-29 2021-09-03 中国航天空气动力技术研究院 Global overtemperature monitoring and temperature control auxiliary system of plate heater
CN113747774A (en) * 2021-10-11 2021-12-03 中国工程物理研究院应用电子学研究所 Temperature control cooling system and use method thereof
WO2024147303A1 (en) * 2023-01-05 2024-07-11 パナソニックIpマネジメント株式会社 Cooling device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204234A (en) * 2008-02-28 2009-09-10 Toshiba Corp Magnetic material for magnetic refrigerator, heat exchange container and magnetic refrigerator
JP2009210165A (en) * 2008-03-03 2009-09-17 Toshiba Corp Magnetic refrigeration device and magnetic refrigeration system
JP4643668B2 (en) * 2008-03-03 2011-03-02 株式会社東芝 Magnetic refrigeration device and magnetic refrigeration system
US8312730B2 (en) 2008-03-03 2012-11-20 Kabushiki Kaisha Toshiba Magnetic refrigeration device and magnetic refrigeration system
JP2010025435A (en) * 2008-07-18 2010-02-04 Toshiba Corp Magnetic refrigeration device, magnetic refrigeration system and magnetic refrigeration method
US20120125573A1 (en) * 2009-08-27 2012-05-24 Brandon Rubenstein Heat storage by phase-change material
US9019704B2 (en) * 2009-08-27 2015-04-28 Hewlett-Packard Development Company, L.P. Heat storage by phase-change material
JP2011087416A (en) * 2009-10-15 2011-04-28 Fujikura Ltd Solar thermal power generator
JP2016020768A (en) * 2014-07-14 2016-02-04 株式会社デンソー Reciprocating flow heat exchange system
JPWO2016117334A1 (en) * 2015-01-20 2017-11-02 凸版印刷株式会社 Temperature control apparatus and temperature control method
WO2016117334A1 (en) * 2015-01-20 2016-07-28 凸版印刷株式会社 Temperature control device and temperature control method
JP2017009164A (en) * 2015-06-19 2017-01-12 株式会社フジクラ Heat exchanger and magnetic heat pump device
CN105573452A (en) * 2015-12-19 2016-05-11 北海恒科电子配件有限公司 Low-noise laptop cooling bracket
CN105573452B (en) * 2015-12-19 2019-02-12 北海恒科电子配件有限公司 Laptop computer low-noise heat radiation bracket
CN105485810A (en) * 2016-01-07 2016-04-13 山东商业职业技术学院 Cold-heat coupling system
CN106659082A (en) * 2016-12-28 2017-05-10 郑州云海信息技术有限公司 Pump-type natural cooling system and data center with pump-type natural cooling system
JP2018156075A (en) * 2017-03-15 2018-10-04 キヤノン株式会社 Image projection device
JP7046656B2 (en) 2017-03-15 2022-04-04 キヤノン株式会社 Image projection device
CN110887294A (en) * 2019-12-16 2020-03-17 珠海格力电器股份有限公司 Refrigerator, refrigerating system and magnetic regenerator
CN113340556A (en) * 2020-12-29 2021-09-03 中国航天空气动力技术研究院 Global overtemperature monitoring and temperature control auxiliary system of plate heater
CN113747774A (en) * 2021-10-11 2021-12-03 中国工程物理研究院应用电子学研究所 Temperature control cooling system and use method thereof
WO2024147303A1 (en) * 2023-01-05 2024-07-11 パナソニックIpマネジメント株式会社 Cooling device

Similar Documents

Publication Publication Date Title
JP2007155269A (en) Cooling device
US7607470B2 (en) Synthetic jet heat pipe thermal management system
KR20190082523A (en) Cooling device using thermo-electric module
JP6603701B2 (en) Air conditioner with at least one heat pipe, in particular a thermosyphon
US20110203296A1 (en) Temperature control systems and methods
JP2011122779A (en) Refrigerating cycle device
JP2012013373A (en) Heat pipe type cooling system and vehicle control equipment using the same
US20050121180A1 (en) Use of graphite foam materials in pumped liquid, two phase cooling, cold plates
JP2004319658A (en) Electronic cooler
CN107887356B (en) A kind of radiator for closed structure high heat flux density device
JP2007010211A (en) Cooling device of electronics device
JP2010186821A (en) Liquid-circulating cooling module with cooling material
KR20030029071A (en) The Cooler using PCM(Phase change material) and Thermoelectric module
CN110556347B (en) Liquid metal composite oscillation heat pipe type radiator
JP2006046868A (en) Radiator and heat pipe
JP6825615B2 (en) Cooling system and cooler and cooling method
JP2004340404A (en) Heat radiator for electronic refrigerator
Nandini Peltier based cabinet cooling system using heat pipe and liquid based heat sink
JPH0821679A (en) Electronic refrigeration type drinking water cooler
CN111787760B (en) Heat dissipation device, control method of heat dissipation device and electronic equipment
US10030896B1 (en) Magneto-caloric cooling system
US9631842B1 (en) Magneto-caloric cooling system
KR20080046517A (en) Outdoor unit of air-conditioner and air-conditioner having the same
Uysal et al. Futuristic methods of electronics cooling
KR101172679B1 (en) Outdoor unit of air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091113