JP2004340404A - Heat radiator for electronic refrigerator - Google Patents

Heat radiator for electronic refrigerator Download PDF

Info

Publication number
JP2004340404A
JP2004340404A JP2003134109A JP2003134109A JP2004340404A JP 2004340404 A JP2004340404 A JP 2004340404A JP 2003134109 A JP2003134109 A JP 2003134109A JP 2003134109 A JP2003134109 A JP 2003134109A JP 2004340404 A JP2004340404 A JP 2004340404A
Authority
JP
Japan
Prior art keywords
heat
heat pipe
electronic refrigerator
refrigerator according
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003134109A
Other languages
Japanese (ja)
Inventor
Hideo Nishibatake
秀男 西畠
Yoshihiro Ueda
啓裕 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003134109A priority Critical patent/JP2004340404A/en
Publication of JP2004340404A publication Critical patent/JP2004340404A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00264Details for cooling refrigerating machinery characterised by the incoming air flow through the front bottom part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00275Details for cooling refrigerating machinery characterised by the out-flowing air from the front top

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and light heat radiator for an electronic refrigerator with less noise without using a liquid pump nor a brine. <P>SOLUTION: This heat radiator for an electronic refrigerator is provided with a heat pipe 16, which is extended in the vertical direction, meandering several times, and of which lower end is thermally connected to a heat radiating surface 14 of a thermo-electric module (a thermo-electric converting device) 7, as an outside heat exchanger. As a blower for cooling the heat pipe 16, a cross flow fan 19 is used. With this structure, miniaturization is realized to reduce weight, and power consumption is reduced, and furthermore, noise is reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子冷蔵庫の放熱装置に関するものである。
【0002】
【従来の技術】
近年、熱電変換デバイスを用いた電子冷蔵庫が開発されている(例えば、特許文献1参照)。
【0003】
以下、図面を参照しながら上記従来の電子冷蔵庫の放熱装置を説明する。
【0004】
図7は、従来の電子冷蔵庫の概略図である。図7に示すように、従来の電子冷蔵庫の放熱装置は、熱電モジュール1、伝熱面2、電動ポンプ(液体ポンプ)3、放熱器4、ファン5、チャンバー6の主要部品で構成されている。
【0005】
以上のように構成された従来の電子冷蔵庫の放熱装置について、以下その動作を説明する。
【0006】
熱電モジュール1の放熱を行うために、電動ポンプ3により吐出された低温ブラインは、熱電モジュール1により加熱された伝熱面2にて吸熱し放熱器4に送られ、ファン5により吸入された空気と熱交換し冷却されチャンバー6へ送られる。加熱された空気は庫外へ放出される。
【0007】
【特許文献1】
特開2001−133104号公報(第6頁、図1)
【0008】
【発明が解決しようとする課題】
しかしながら上記従来の電子冷蔵庫の放熱装置は、チャンバー6に貯留しているブラインを、電動ポンプ3を用いて循環させ、フィンチューブタイプの放熱器4において、ファン5により吸入された空気と熱交換させるもので、装置が大きく重くなり、庫内側の容量が小さくなり、庫外側に不要な空間が多く存在するという欠点があった。
【0009】
また電動ポンプ3を用いていることから、電動ポンプ3のモーター音やポンプの摺動音により騒音値が高くなるという課題を有していた。
【0010】
本発明は上記従来の課題を解決するもので、小型軽量で低騒音な電子冷蔵庫の放熱装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の請求項1に記載の電子冷蔵庫の放熱装置の発明は、複数回蛇行しながら上下方向に延び下端部が熱電変換デバイスの放熱面と熱結合されたヒートパイプを庫外側熱交換器として備えたものであり、大能力ヒートパイプ放熱装置を最少スペースに収納し、摺動部を持つ部品を含め部品点数の削減を図り、また庫外側の放熱用風路の省スペース化、軽量化、低騒音化、生産作業能率の向上が可能となる。すなわち同一庫内容量であれば冷蔵庫の小型化が図られ、同一筐体外形であれば庫内容量アップが可能となる。さらに冷却ユニット部を小型に構成できるので、断熱箱体の開口部の面積を小さくすることができるため、外部からの侵入熱量の低減による消費電力量の低減が可能である。またヒートパイプの3次元曲げが可能であるので、放熱空間設計の自由度が増すため、制約されたスペースでの放熱が可能であるという作用を有する。
【0012】
また、請求項2に記載の電子冷蔵庫の放熱装置の発明は、請求項1に記載の発明において、前記ヒートパイプを冷却するための送風機にクロスフローファンを用いたものであり、放熱用風路の空気の吸い込みから吹き出しまで、最適な風量分配である2次元流を実現することができるため、狭い庫外空間を有効に利用して効率よく放熱させることができるという作用を有する。
【0013】
また、請求項3に記載の電子冷蔵庫の放熱装置の発明は、請求項1または2に記載の発明において、前記ヒートパイプを貫通孔で保持し前記熱電変換デバイスの放熱面に密着固定される金属ブロックを備え、前記金属ブロックと前記ヒートパイプとを熱結合させるための熱拡散コンパウンドの余りを貯留する逃がし溝を前記貫通孔に形成したものであり、熱拡散コンパウンドの最適塗布が可能であるため、金属ブロックとヒートパイプの熱抵抗を小さく抑えることができるという作用を有する。
【0014】
また、請求項4に記載の電子冷蔵庫の放熱装置の発明は、請求項1または2に記載の発明において、前記ヒートパイプが、前記熱電変換デバイスの電極の絶縁膜に直接熱結合されているものであり、前記熱電変換デバイスの熱電半導体からヒートパイプまでの熱抵抗を極力小さく抑え、効率よく放熱させることができるため、消費電力量の小さい冷蔵庫を提供することができるという作用を有する。
【0015】
【発明の実施の形態】
以下、本発明による電子冷蔵庫の放熱装置の一実施の形態について、図面を参照しながら説明する。なお、従来と同一構成には、同一符号を付して詳細な説明を省略する。
【0016】
(実施の形態1)
図1は本発明の実施の形態1による電子冷蔵庫の放熱装置の概略背面図である。図2は同実施の形態による電子冷蔵庫の放熱装置の概略縦断面図である。図3は同実施の形態による電子冷蔵庫の放熱装置に設置される熱伝モジュールの概略縦断面図である。図4は同実施の形態による電子冷蔵庫の放熱装置の熱電モジュール周りの放熱ユニットの概略縦断面図である。図5は同実施の形態による電子冷蔵庫の放熱装置の熱電モジュール周りの放熱ユニットの概略横断面図である。
【0017】
図3に示すように、本実施の形態の電子冷蔵庫の放熱装置に設置される熱電変換デバイスとしての熱電モジュール7は複数のP型半導体8とN型半導体9が設置され、はんだ層10を介して銅電極11で接合され、銅電極11は2枚のアルミナセラミック12と接合されている。
【0018】
P型半導体8とN型半導体9は、交互に直流電流が流れるように電気回路が構成され、N型半導体9からP型半導体8に電流が流れると双方の半導体を接続する銅電極11側の面に吸熱の作用が発生し、反対側の面に放熱の作用が発生する。すなわち熱電モジュールは通電の極性に応じて吸熱と放熱の相反する作用をする第1の面(吸熱面)13と、第2の面(放熱面)14とを持っている。
【0019】
また図4に示すように、本実施の形態の電子冷蔵庫の放熱装置は熱電モジュールの第1の面(吸熱面)13に熱作用促進媒体として庫内ヒートシンク15を密着固定して熱結合させ、第2の面(放熱面)14にヒートパイプ16を内部に密着固定した金属ブロック17を密着固定してそれぞれ熱結合されている。熱結合の方法の一例として熱拡散コンパウンド(図示せず)を使用するが、同一性能を持つ材料で熱結合させてもよい。
【0020】
また図1、2に示すように、本実施の形態の電子冷蔵庫の放熱装置は放熱ユニット18から鉛直上方に伸びる方向に湾曲化されたR曲げ化自在のフィンチューブ型のヒートパイプ16が左右対称に設置されている。また、ヒートパイプ16上方にはクロスフローファン19が設置されている。
【0021】
また図5に示すように、本実施の形態の電子冷蔵庫の放熱装置は金属ブロック17の円筒形の穴の外周の一部に逃がし溝20を設けている。
【0022】
以上のように構成された本実施の形態の電子冷蔵庫の放熱装置について、以下その動作を説明する。
【0023】
まず図4の熱電モジュール7周りの放熱ユニット18に示すように、熱電モジュール7の第2の面(放熱面)14にて発熱した熱は、熱結合された金属ブロック17へ伝熱され、さらに熱結合されたヒートパイプ16に伝熱される。
【0024】
ヒートパイプ16内の作動液体(純水)は受熱後蒸発気化しヒートパイプ16内の差圧により圧力の低い部分へ移動する。
【0025】
図1において、蒸発した作動液体は放熱ユニット18から鉛直上方に伸びる方向に湾曲化されたR曲げ化自在のフィンチューブ型の左右対称のヒートパイプ16内を通過する最中に断熱箱体22上部に設置されたクロスフローファン19により筐体下部から吸い込まれた空気により冷却凝縮される。
【0026】
凝縮された液体はヒートパイプ内面のグルーブ状の細い溝を毛細管現象により伝わって最下部まで戻る。
【0027】
図1、2に示すようにヒートパイプ16が湾曲化されていることにより全長が長いヒートパイプ16を効率的に収納できるので庫外側の容積を大きく削減することができる。
【0028】
また上部に放熱用風路の幅全体に小口径のクロスフローファン19を設置しているため省スペースで2次元流の風を得ることができるので効率よくヒートパイプ16を冷却することができる。
【0029】
また図5の熱電モジュール7周りの放熱ユニット18が示すように、金属ブロック17の円筒形の穴の外周の一部に逃がし溝20を設けたことにより、ヒートパイプ16と熱結合させるための熱拡散コンパウンドを効率良く塗布することができる。
【0030】
すなわち、金属ブロック17とヒートパイプ16を熱結合させる熱拡散コンパウンドは、金属同士が接触していない部分を隙間無く埋める必要があるため、多すぎても少なすぎても熱伝導に悪影響を及ぼし、熱抵抗を向上させることになる。逃がし溝は余った熱拡散コンパウンドを貯留するため、熱抵抗を極力小さく抑えることができる。
【0031】
以上のように本実施の形態の電子冷蔵庫の放熱装置は、大能力ヒートパイプ放熱装置を最少スペースに収納し、摺動部を持つ部品を含め部品点数の削減を図り、また風回路の最適化を図るため庫外側の省スペース化、軽量化、低騒音化、生産作業能率の向上が可能となる。
【0032】
すなわち同一庫内容量であれば冷蔵庫の小型化が図られ、同一筐体外形であれば庫内容量アップが可能となる。さらに冷却ユニット部を小型に構成できるので断熱箱体の開口部の面積を小さくすることができるため、外部からの侵入熱量の低減による消費電力量の低減が可能である。またヒートパイプの3次元曲げが可能であるので放熱空間設計の自由度が増すため、制約されたスペースでの放熱が可能である。
【0033】
さらに放熱用風路の空気の吸い込みから吹き出しまで、最適な風量分配である2次元流を実現することができるため、狭い庫外空間を有効に利用して効率よく放熱させることができる。
【0034】
さらに熱拡散コンパウンドの最適塗布が可能であるため金属ブロックとヒートパイプの熱抵抗を小さく抑えることができる。
【0035】
なお、本実施の形態はヒートパイプを2次元曲げとしたが3次元曲げにしても構わない。
【0036】
また、本実施の形態はヒートパイプの受熱部分は鉛直方向となっているが、斜めでも水平でもよく、ヒートパイプの構成は左右対称でなくても構わない。
【0037】
また、本実施の形態はクロスフローファンで構成したが、プロペラファンで構成してもよい、またファンにて強制通風させたがファン無し仕様にて自然冷却させてもよい、また風の方向は下から上へとしたが、方向性に拘らなくても構わない。
【0038】
また、本実施の形態は逃がし溝断面形状を四角形としたが、三角形等の多角形でもまた複数構成しても構わない。
【0039】
また、本実施の形態は作動液体を純水としたが他の液体でも構わない。
【0040】
また、本実施の形態は冷蔵庫に限定したが車載用品等移動体へ応用展開しても構わない。
【0041】
(実施の形態2)
図6は本発明の実施の形態2による電子冷蔵庫の放熱装置の熱電モジュール周りの概略縦断面図である。
【0042】
本仕様は図4における熱電モジュール7のアルミナセラミック12と金属ブロック17を構成から外している。第1の面(吸熱面)13側に熱作用促進媒体として庫内ヒートシンク15を絶縁膜23を介して密着固定して熱結合させ、第2の面(放熱面)14側にヒートパイプ16を絶縁膜23を介して密着固定して、それぞれ熱結合されている。熱結合の方法の一例として絶縁膜を使用するが、同一性能を持つ材料で熱結合させてもよい。
【0043】
以上のように構成された本実施の形態の電子冷蔵庫の放熱装置について、以下その動作を説明する。
【0044】
熱電半導体8,9で発生した熱はハンダ10、銅電極11、絶縁膜23を介してヒートパイプ16に伝熱される。絶縁膜が50μm程度であることから熱電半導体8,9からヒートパイプ16までの熱抵抗を極力小さく抑えるため効率よく放熱させることができる。
【0045】
以上のように本実施の形態の電子冷蔵庫の放熱装置は、熱電半導体から発生した熱を効率よくヒートパイプへ伝熱させるため消費電力量の小さい冷蔵庫を提供することができる。
【0046】
【発明の効果】
以上説明したように、本発明の請求項1に記載の電子冷蔵庫の放熱装置の発明は、複数回蛇行しながら上下方向に延び下端部が熱電変換デバイスの放熱面と熱結合されたヒートパイプを庫外側熱交換器として備えたものであり、大能力ヒートパイプ放熱装置を最少スペースに収納し、摺動部を持つ部品を含め部品点数の削減を図り、また庫外側の放熱用風路の省スペース化、軽量化、低騒音化、生産作業能率の向上が可能となる。すなわち同一庫内容量であれば冷蔵庫の小型化が図られ、同一筐体外形であれば庫内容量アップが可能となる。さらに冷却ユニット部を小型に構成できるので、断熱箱体の開口部の面積を小さくすることができるため、外部からの侵入熱量の低減による消費電力量の低減が可能である。またヒートパイプの3次元曲げが可能であるので、放熱空間設計の自由度が増すため、制約されたスペースでの放熱が可能である。
【0047】
また、請求項2に記載の電子冷蔵庫の放熱装置の発明は、請求項1に記載の発明において、前記ヒートパイプを冷却するための送風機にクロスフローファンを用いたものであり、放熱用風路の空気の吸い込みから吹き出しまで、最適な風量分配である2次元流を実現することができるため、狭い庫外空間を有効に利用して効率よく放熱させることができる。
【0048】
また、請求項3に記載の電子冷蔵庫の放熱装置の発明は、請求項1または2に記載の発明において、前記ヒートパイプを貫通孔で保持し前記熱電変換デバイスの放熱面に密着固定される金属ブロックを備え、前記金属ブロックと前記ヒートパイプとを熱結合させるための熱拡散コンパウンドの余りを貯留する逃がし溝を前記貫通孔に形成したものであり、熱拡散コンパウンドの最適塗布が可能であるため、金属ブロックとヒートパイプの熱抵抗を小さく抑えることができる。
【0049】
また、請求項4に記載の電子冷蔵庫の放熱装置の発明は、請求項1または2に記載の発明において、前記ヒートパイプが、前記熱電変換デバイスの電極の絶縁膜に直接熱結合されているものであり、前記熱電変換デバイスの熱電半導体からヒートパイプまでの熱抵抗を極力小さく抑え、効率よく放熱させることができるため、消費電力量の小さい冷蔵庫を提供することができる。
【図面の簡単な説明】
【図1】本発明による電子冷蔵庫の放熱装置の実施の形態1の概略背面図
【図2】同実施の形態の電子冷蔵庫の放熱装置の概略縦断面図
【図3】同実施の形態の電子冷蔵庫の放熱装置に設置される熱伝モジュールの概略縦断面図
【図4】同実施の形態の電子冷蔵庫の放熱装置の熱電モジュール周りの放熱ユニットの概略縦断面図
【図5】本発明による電子冷蔵庫の放熱装置の熱電モジュール周りの放熱ユニットの概略横断面図
【図6】本発明による電子冷蔵庫の放熱装置の実施の形態2の熱電モジュール周りの概略縦断面図
【図7】従来の電子冷蔵庫の放熱装置の概略図
【符号の説明】
7 熱電モジュール(熱電変換デバイス)
14 第2の面(放熱面)
16 ヒートパイプ
17 金属ブロック
19 クロスフローファン
20 逃がし溝
23 絶縁膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat radiating device for an electronic refrigerator.
[0002]
[Prior art]
In recent years, an electronic refrigerator using a thermoelectric conversion device has been developed (for example, see Patent Document 1).
[0003]
Hereinafter, a conventional heat radiating device for an electronic refrigerator will be described with reference to the drawings.
[0004]
FIG. 7 is a schematic diagram of a conventional electronic refrigerator. As shown in FIG. 7, the heat radiating device of the conventional electronic refrigerator includes main components of a thermoelectric module 1, a heat transfer surface 2, an electric pump (liquid pump) 3, a radiator 4, a fan 5, and a chamber 6. .
[0005]
The operation of the conventional heat radiator for an electronic refrigerator configured as described above will be described below.
[0006]
In order to radiate heat from the thermoelectric module 1, low-temperature brine discharged by the electric pump 3 absorbs heat on the heat transfer surface 2 heated by the thermoelectric module 1, is sent to the radiator 4, and is sucked by the fan 5. Then, the heat is exchanged with the heat and cooled and sent to the chamber 6. The heated air is released outside the refrigerator.
[0007]
[Patent Document 1]
JP 2001-133104 A (Page 6, FIG. 1)
[0008]
[Problems to be solved by the invention]
However, in the above-described conventional heat radiator of the electronic refrigerator, the brine stored in the chamber 6 is circulated by using the electric pump 3, and the fin tube type radiator 4 exchanges heat with the air sucked by the fan 5. However, there are drawbacks in that the apparatus becomes large and heavy, the capacity inside the refrigerator becomes small, and there is a lot of unnecessary space outside the refrigerator.
[0009]
Further, since the electric pump 3 is used, there is a problem that a noise value is increased due to a motor noise of the electric pump 3 and a sliding noise of the pump.
[0010]
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a small, lightweight, low-noise electronic refrigerator heat radiator.
[0011]
[Means for Solving the Problems]
The invention of the heat radiating device for an electronic refrigerator according to claim 1 of the present invention uses a heat pipe extending vertically in a meandering manner a plurality of times and having a lower end portion thermally coupled to a heat radiating surface of the thermoelectric conversion device as an outside heat exchanger. The large capacity heat pipe radiator is housed in the minimum space to reduce the number of parts including the parts with sliding parts. Noise can be reduced and production work efficiency can be improved. That is, if the capacity is the same, the size of the refrigerator can be reduced, and if the outer shape is the same, the capacity can be increased. Further, since the cooling unit can be configured to be small, the area of the opening of the heat insulating box can be reduced, so that the amount of power consumption can be reduced by reducing the amount of heat entering from the outside. In addition, since the heat pipe can be bent three-dimensionally, the degree of freedom in designing the heat radiation space is increased, so that heat radiation can be performed in a limited space.
[0012]
According to a second aspect of the present invention, there is provided a heat radiating device for an electronic refrigerator, wherein a cross flow fan is used as a blower for cooling the heat pipe according to the first aspect of the present invention. Since it is possible to realize a two-dimensional flow with an optimal air volume distribution from the suction of the air to the blowing of the air, it has an effect that heat can be efficiently dissipated by effectively utilizing the small external space.
[0013]
According to a third aspect of the present invention, there is provided a heat radiating device for an electronic refrigerator according to the first or second aspect, wherein the heat pipe is held by a through hole and is fixed to a heat radiating surface of the thermoelectric conversion device. It is provided with a block, and a relief groove for storing a remainder of the heat diffusion compound for thermally coupling the metal block and the heat pipe is formed in the through hole, so that optimal application of the heat diffusion compound is possible. This has the effect of reducing the thermal resistance between the metal block and the heat pipe.
[0014]
According to a fourth aspect of the present invention, there is provided a heat radiating device for an electronic refrigerator according to the first or second aspect, wherein the heat pipe is directly thermally coupled to an insulating film of an electrode of the thermoelectric conversion device. In addition, since the thermal resistance from the thermoelectric semiconductor to the heat pipe of the thermoelectric conversion device can be suppressed as small as possible and the heat can be efficiently radiated, a refrigerator having low power consumption can be provided.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a heat radiating device for an electronic refrigerator according to the present invention will be described with reference to the drawings. The same components as those in the related art are denoted by the same reference numerals, and detailed description is omitted.
[0016]
(Embodiment 1)
FIG. 1 is a schematic rear view of the heat radiating device of the electronic refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a schematic vertical sectional view of the heat radiating device of the electronic refrigerator according to the embodiment. FIG. 3 is a schematic vertical sectional view of a heat transfer module installed in the heat radiating device of the electronic refrigerator according to the embodiment. FIG. 4 is a schematic vertical sectional view of a heat radiating unit around a thermoelectric module of the heat radiating device of the electronic refrigerator according to the embodiment. FIG. 5 is a schematic cross-sectional view of a heat radiating unit around a thermoelectric module of the heat radiating device of the electronic refrigerator according to the embodiment.
[0017]
As shown in FIG. 3, a thermoelectric module 7 as a thermoelectric conversion device installed in the heat radiating device of the electronic refrigerator according to the present embodiment has a plurality of P-type semiconductors 8 and N-type semiconductors 9 installed, and The copper electrode 11 is bonded to two alumina ceramics 12.
[0018]
The P-type semiconductor 8 and the N-type semiconductor 9 constitute an electric circuit such that a direct current flows alternately. When a current flows from the N-type semiconductor 9 to the P-type semiconductor 8, a copper electrode 11 connecting the two semiconductors is formed. Heat is absorbed on the surface, and heat is released on the opposite surface. That is, the thermoelectric module has a first surface (heat absorbing surface) 13 and a second surface (heat releasing surface) 14 that have opposing actions of heat absorption and heat radiation in accordance with the polarity of current flow.
[0019]
As shown in FIG. 4, the heat radiating device of the electronic refrigerator according to the present embodiment is configured such that a heat sink 15 in a refrigerator is tightly fixed to a first surface (heat absorbing surface) 13 of the thermoelectric module as a heat action promoting medium and thermally bonded. A metal block 17 in which a heat pipe 16 is tightly fixed inside is tightly fixed to a second surface (heat radiating surface) 14 and thermally bonded to each other. Although a thermal diffusion compound (not shown) is used as an example of the thermal bonding method, the thermal bonding may be performed using materials having the same performance.
[0020]
As shown in FIGS. 1 and 2, the heat radiating device of the electronic refrigerator according to the present embodiment has a symmetrical R-bendable fin tube type heat pipe 16 curved in a direction extending vertically upward from a heat radiating unit 18. It is installed in. A cross flow fan 19 is provided above the heat pipe 16.
[0021]
Further, as shown in FIG. 5, the heat radiating device of the electronic refrigerator according to the present embodiment has a relief groove 20 at a part of the outer periphery of the cylindrical hole of the metal block 17.
[0022]
The operation of the heat radiator of the electronic refrigerator according to the present embodiment configured as described above will be described below.
[0023]
First, as shown in the heat dissipation unit 18 around the thermoelectric module 7 in FIG. 4, the heat generated on the second surface (heat dissipation surface) 14 of the thermoelectric module 7 is transferred to the thermally coupled metal block 17, and furthermore, The heat is transferred to the heat pipe 16 which is thermally coupled.
[0024]
The working liquid (pure water) in the heat pipe 16 evaporates and evaporates after receiving the heat, and moves to a low pressure part due to the differential pressure in the heat pipe 16.
[0025]
In FIG. 1, the evaporated working liquid passes through an R-bendable fin tube type symmetrical heat pipe 16 which is curved in a direction extending vertically upward from the heat radiating unit 18, and the upper part of the heat insulating box 22. Is cooled and condensed by the air sucked from the lower portion of the housing by the cross flow fan 19 installed in the housing.
[0026]
The condensed liquid returns to the lowermost portion through the narrow groove in the inner surface of the heat pipe by capillary action.
[0027]
As shown in FIGS. 1 and 2, since the heat pipe 16 is curved, the heat pipe 16 having a long overall length can be efficiently stored, so that the volume outside the refrigerator can be greatly reduced.
[0028]
Further, since the small-diameter cross flow fan 19 is installed over the entire width of the heat-dissipating air path, a two-dimensional flow of wind can be obtained in a small space, so that the heat pipe 16 can be efficiently cooled.
[0029]
Further, as shown by the heat radiating unit 18 around the thermoelectric module 7 in FIG. 5, the escape groove 20 is provided in a part of the outer periphery of the cylindrical hole of the metal block 17, so that heat for coupling with the heat pipe 16 is formed. The diffusion compound can be applied efficiently.
[0030]
That is, since the heat diffusion compound for thermally coupling the metal block 17 and the heat pipe 16 needs to fill the space where the metals are not in contact with each other without any gap, too much or too little affects the heat conduction, Thermal resistance will be improved. Since the escape groove stores the excess heat diffusion compound, the heat resistance can be suppressed as small as possible.
[0031]
As described above, the heat radiator of the electronic refrigerator according to the present embodiment accommodates the large-capacity heat pipe heat radiator in the minimum space, reduces the number of parts including the parts having sliding parts, and optimizes the wind circuit. Therefore, it is possible to save space, reduce weight, reduce noise, and improve production work efficiency on the outside of the warehouse.
[0032]
That is, if the capacity is the same, the size of the refrigerator can be reduced, and if the outer shape is the same, the capacity can be increased. Further, since the cooling unit can be made compact, the area of the opening of the heat insulating box can be reduced, so that the amount of power consumption can be reduced by reducing the amount of heat that enters from the outside. Further, since the heat pipe can be bent three-dimensionally, the degree of freedom in designing the heat radiation space is increased, so that heat radiation in a restricted space is possible.
[0033]
Furthermore, since a two-dimensional flow, which is an optimal air volume distribution, can be realized from the suction of the air in the heat-dissipating air path to the blow-out, the heat can be efficiently dissipated by effectively utilizing the small external space.
[0034]
Furthermore, since the thermal diffusion compound can be optimally applied, the thermal resistance of the metal block and the heat pipe can be reduced.
[0035]
In the present embodiment, the heat pipe is bent two-dimensionally, but may be bent three-dimensionally.
[0036]
Further, in the present embodiment, the heat receiving portion of the heat pipe is in the vertical direction, but may be inclined or horizontal, and the configuration of the heat pipe may not be symmetrical.
[0037]
Also, although the present embodiment is configured with a cross-flow fan, it may be configured with a propeller fan.Alternatively, the fan may be forcibly ventilated, but may be naturally cooled without a fan. Although it was from the bottom to the top, it does not matter what direction it is.
[0038]
Further, in the present embodiment, the relief groove has a rectangular cross-sectional shape, but may have a polygonal shape such as a triangle or a plurality of shapes.
[0039]
In this embodiment, the working liquid is pure water, but another liquid may be used.
[0040]
Further, the present embodiment is limited to refrigerators, but may be applied to mobile objects such as in-vehicle articles.
[0041]
(Embodiment 2)
FIG. 6 is a schematic longitudinal sectional view around a thermoelectric module of a heat radiating device of an electronic refrigerator according to Embodiment 2 of the present invention.
[0042]
In this specification, the alumina ceramic 12 and the metal block 17 of the thermoelectric module 7 in FIG. A heat sink 15 as a heat-promoting medium is tightly fixed to the first surface (heat absorbing surface) 13 via an insulating film 23 and thermally bonded to the first surface (heat absorbing surface) 13. A heat pipe 16 is connected to the second surface (radiating surface) 14. They are tightly fixed via an insulating film 23 and are thermally coupled to each other. Although an insulating film is used as an example of the thermal coupling method, the thermal coupling may be performed using materials having the same performance.
[0043]
The operation of the heat radiator of the electronic refrigerator according to the present embodiment configured as described above will be described below.
[0044]
The heat generated in the thermoelectric semiconductors 8 and 9 is transferred to the heat pipe 16 via the solder 10, the copper electrode 11, and the insulating film 23. Since the thickness of the insulating film is about 50 μm, the heat resistance from the thermoelectric semiconductors 8 and 9 to the heat pipe 16 is minimized, so that heat can be efficiently radiated.
[0045]
As described above, the heat dissipating device for an electronic refrigerator according to the present embodiment can provide a refrigerator with low power consumption in order to efficiently transfer heat generated from a thermoelectric semiconductor to a heat pipe.
[0046]
【The invention's effect】
As described above, the invention of the heat dissipating device for an electronic refrigerator according to claim 1 of the present invention includes a heat pipe extending vertically in a meandering manner a plurality of times and having a lower end portion thermally coupled to a heat dissipating surface of the thermoelectric conversion device. It is provided as a heat exchanger on the outside of the warehouse, and accommodates a large capacity heat pipe radiator in the minimum space, reduces the number of parts including parts with sliding parts, and saves heat radiation air passages on the outside of the warehouse. It is possible to reduce the space, weight, noise, and production efficiency. That is, if the capacity is the same, the size of the refrigerator can be reduced, and if the outer shape is the same, the capacity can be increased. Further, since the cooling unit can be configured to be small, the area of the opening of the heat insulating box can be reduced, so that the amount of power consumption can be reduced by reducing the amount of heat entering from the outside. Further, since the heat pipe can be bent three-dimensionally, the degree of freedom in designing a heat radiation space is increased, so that heat radiation in a restricted space is possible.
[0047]
According to a second aspect of the present invention, there is provided a heat radiating device for an electronic refrigerator, wherein a cross flow fan is used as a blower for cooling the heat pipe according to the first aspect of the present invention. Since it is possible to realize a two-dimensional flow with an optimal air volume distribution from the suction of the air to the blowing of the air, the heat can be efficiently radiated by effectively utilizing the small external space.
[0048]
According to a third aspect of the present invention, there is provided a heat radiating device for an electronic refrigerator according to the first or second aspect, wherein the heat pipe is held by a through hole and is fixed to a heat radiating surface of the thermoelectric conversion device. It is provided with a block, and a relief groove for storing a remainder of the heat diffusion compound for thermally coupling the metal block and the heat pipe is formed in the through hole, so that optimal application of the heat diffusion compound is possible. In addition, the thermal resistance between the metal block and the heat pipe can be reduced.
[0049]
According to a fourth aspect of the present invention, there is provided a heat radiating device for an electronic refrigerator according to the first or second aspect, wherein the heat pipe is directly thermally coupled to an insulating film of an electrode of the thermoelectric conversion device. In addition, since the thermal resistance from the thermoelectric semiconductor to the heat pipe of the thermoelectric conversion device can be minimized and heat can be efficiently radiated, a refrigerator with low power consumption can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic rear view of a heat radiating device of an electronic refrigerator according to a first embodiment of the present invention. FIG. 2 is a schematic longitudinal sectional view of a heat radiating device of an electronic refrigerator of the same embodiment. FIG. 4 is a schematic longitudinal sectional view of a heat transfer module installed in a heat radiating device of a refrigerator. FIG. 4 is a schematic longitudinal sectional view of a heat radiating unit around a thermoelectric module of the heat radiating device of the electronic refrigerator of the embodiment. FIG. 6 is a schematic cross-sectional view of a heat dissipating unit around a thermoelectric module of a refrigerator heat dissipating device. FIG. 6 is a schematic longitudinal sectional view of a heat dissipating device for an electronic refrigerator according to a second embodiment of the present invention. Schematic diagram of the heat dissipation device
7 Thermoelectric module (thermoelectric conversion device)
14 Second surface (heat dissipation surface)
Reference Signs List 16 heat pipe 17 metal block 19 cross flow fan 20 escape groove 23 insulating film

Claims (4)

複数回蛇行しながら上下方向に延び下端部が熱電変換デバイスの放熱面と熱結合されたヒートパイプを庫外側熱交換器として備えた電子冷蔵庫の放熱装置。A heat dissipating device for an electronic refrigerator, comprising a heat pipe as a heat exchanger outside the refrigerator, the heat pipe extending vertically while meandering a plurality of times and having a lower end thermally coupled to a heat dissipating surface of the thermoelectric conversion device. 前記ヒートパイプを冷却するための送風機にクロスフローファンを用いた請求項1に記載の電子冷蔵庫の放熱装置。The heat radiator of an electronic refrigerator according to claim 1, wherein a cross flow fan is used as a blower for cooling the heat pipe. 前記ヒートパイプを貫通孔で保持し前記熱電変換デバイスの放熱面に密着固定される金属ブロックを備え、前記金属ブロックと前記ヒートパイプとを熱結合させるための熱拡散コンパウンドの余りを貯留する逃がし溝を前記貫通孔に形成した請求項1または2に記載の電子冷蔵庫の放熱装置。An escape groove for holding a heat pipe in a through hole and closely fixing the heat pipe to a heat dissipation surface of the thermoelectric conversion device, and storing a remainder of a heat diffusion compound for thermally coupling the metal block and the heat pipe. The heat radiating device for an electronic refrigerator according to claim 1 or 2, wherein a through hole is formed in the through hole. 前記ヒートパイプが、前記熱電変換デバイスの電極の絶縁膜に直接熱結合されている請求項1または2に記載の電子冷蔵庫の放熱装置。The heat radiator of an electronic refrigerator according to claim 1, wherein the heat pipe is directly thermally coupled to an insulating film of an electrode of the thermoelectric conversion device.
JP2003134109A 2003-05-13 2003-05-13 Heat radiator for electronic refrigerator Pending JP2004340404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134109A JP2004340404A (en) 2003-05-13 2003-05-13 Heat radiator for electronic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134109A JP2004340404A (en) 2003-05-13 2003-05-13 Heat radiator for electronic refrigerator

Publications (1)

Publication Number Publication Date
JP2004340404A true JP2004340404A (en) 2004-12-02

Family

ID=33524763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134109A Pending JP2004340404A (en) 2003-05-13 2003-05-13 Heat radiator for electronic refrigerator

Country Status (1)

Country Link
JP (1) JP2004340404A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073050A1 (en) * 2005-12-22 2007-06-28 Byoung-Goan Park Thermoelectrical work plate
CN102216706A (en) * 2008-10-20 2011-10-12 应用科学研究Tno荷兰组织 Container for storing articles at a predetermined temperature
CN102878756A (en) * 2012-08-31 2013-01-16 河南新飞电器有限公司 Thawing device and refrigerator with thawing device
CN104329866A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator and cold end heat exchange device thereof
CN104329868A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator and cold-end heat exchange device thereof
CN104329828A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator and hot-end heat exchange device thereof
CN104329848A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator
CN104329827A (en) * 2014-03-28 2015-02-04 海尔集团公司 Heat exchange device and semiconductor refrigerator
CN104329850A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator and hot-end heat exchange device thereof
CN106642897A (en) * 2016-12-26 2017-05-10 青岛海尔股份有限公司 Refrigerator with semiconductor direct-cooling chambers

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073050A1 (en) * 2005-12-22 2007-06-28 Byoung-Goan Park Thermoelectrical work plate
CN102216706A (en) * 2008-10-20 2011-10-12 应用科学研究Tno荷兰组织 Container for storing articles at a predetermined temperature
CN102878756A (en) * 2012-08-31 2013-01-16 河南新飞电器有限公司 Thawing device and refrigerator with thawing device
CN102878756B (en) * 2012-08-31 2014-10-15 河南新飞电器有限公司 Thawing device and refrigerator with thawing device
CN104329866A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator and cold end heat exchange device thereof
CN104329868A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator and cold-end heat exchange device thereof
CN104329828A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator and hot-end heat exchange device thereof
CN104329848A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator
CN104329827A (en) * 2014-03-28 2015-02-04 海尔集团公司 Heat exchange device and semiconductor refrigerator
CN104329850A (en) * 2014-03-28 2015-02-04 海尔集团公司 Semiconductor refrigeration refrigerator and hot-end heat exchange device thereof
CN104329827B (en) * 2014-03-28 2017-01-11 海尔集团公司 Heat exchange device and semiconductor refrigerator
CN104329850B (en) * 2014-03-28 2017-03-01 海尔集团公司 Semiconductor freezer and its hot junction heat-exchanger rig
CN104329848B (en) * 2014-03-28 2017-03-29 海尔集团公司 Semiconductor freezer
CN106642897A (en) * 2016-12-26 2017-05-10 青岛海尔股份有限公司 Refrigerator with semiconductor direct-cooling chambers

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
JP4391366B2 (en) Heat sink with heat pipe and method of manufacturing the same
US6988535B2 (en) Channeled flat plate fin heat exchange system, device and method
US6256201B1 (en) Plate type heat pipe method of manufacturing same and cooling apparatus using plate type heat pipe
JP5070014B2 (en) Heat dissipation device
JP2003188321A (en) Heat sink
CN213816733U (en) Heat dissipation device and laser light source
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
JP4953075B2 (en) heatsink
JP2004340404A (en) Heat radiator for electronic refrigerator
JP5667739B2 (en) Heat sink assembly, semiconductor module, and semiconductor device with cooling device
JP2007263427A (en) Loop type heat pipe
JP2007115917A (en) Thermal dissipation plate
US20140054009A1 (en) Cooling plate and water cooling device having the same
CN1179188C (en) Plate type radiating pipe and its cooling structure
US20100073879A1 (en) Thermal module
JP4391351B2 (en) Cooling system
TWM609021U (en) Liquid cooling heat dissipation device and liquid cooling heat dissipation system with the same
JP2005210088A (en) Cooling device in closed cabinet
JP2008021697A (en) Heat dispersion radiator
JP2005005483A (en) High luminance light emitting device
JP3850319B2 (en) Semiconductor cooling device for vehicle
JP2001274304A (en) Heat sink
JP2008244320A (en) Cooling apparatus
CN216903299U (en) Heat abstractor and phased array radar antenna