WO2014020900A1 - メネジの加工法及びその装置 - Google Patents

メネジの加工法及びその装置 Download PDF

Info

Publication number
WO2014020900A1
WO2014020900A1 PCT/JP2013/004607 JP2013004607W WO2014020900A1 WO 2014020900 A1 WO2014020900 A1 WO 2014020900A1 JP 2013004607 W JP2013004607 W JP 2013004607W WO 2014020900 A1 WO2014020900 A1 WO 2014020900A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
axis
hole
female
thread
Prior art date
Application number
PCT/JP2013/004607
Other languages
English (en)
French (fr)
Inventor
剛 青山
Original Assignee
株式会社エムエイチセンター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エムエイチセンター filed Critical 株式会社エムエイチセンター
Priority to CA2879532A priority Critical patent/CA2879532A1/en
Priority to EP13825071.7A priority patent/EP2881203A4/en
Priority to JP2014527984A priority patent/JPWO2014020900A1/ja
Priority to CN201380040162.1A priority patent/CN104507614B/zh
Priority to US14/414,572 priority patent/US20150165535A1/en
Priority to KR1020157002328A priority patent/KR20150032882A/ko
Publication of WO2014020900A1 publication Critical patent/WO2014020900A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/16Thread cutting; Automatic machines specially designed therefor in holes of workpieces by taps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/08Making helical bodies or bodies having parts of helical shape internal screw-threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G7/00Forming thread by means of tools similar both in form and in manner of use to thread-cutting tools, but without removing any material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G7/00Forming thread by means of tools similar both in form and in manner of use to thread-cutting tools, but without removing any material
    • B23G7/02Tools for this purpose

Definitions

  • the present invention relates to a method and an apparatus for machining a female screw into a hole made of a metal material having a hole for female screw machining.
  • the internal thread constitutes one side of the screw, which is the most universal fastening element.
  • a female screw is processed by a tabbing process.
  • machining of a relatively large diameter female screw has not been generally performed by tapping.
  • a cutting process using a single point tool is mainly used (for example, see Patent Document 1).
  • the thread processing method that does not generate chips as well as the grooveless tap, which is effective may be applied to relatively large diameter products where the application of grooveless taps is not common. Conceivable.
  • the radial load required for the male screw-shaped tool varies depending on conditions such as the desired effective length of the female screw, the hardness of the material, and the diameter of the male screw-shaped tool. For this reason, the radial load necessary for the male threaded tool is required to be at least 10 times that of a process for cutting with a single point tool (thread cutting tool).
  • the male screw-like tool is very similar to the NC milling machine in which the rotation of the main shaft is stopped in terms of motion function, but the main shaft radial load (for example, 50 kNf or more) is much larger than the main shaft radial load allowed for a normal milling machine. )Is required.
  • the radial load of the main shaft was 50 kNf or more. Therefore, it has not been possible to apply the threading method that does not generate chips using a conventional method and apparatus to a relatively large diameter product in which application of a grooveless tap is not common.
  • the present invention was made in order to solve the problems of the conventional method, and its purpose is a female thread processing that does not generate chips as well as a grooveless tap that is effective for relatively small diameter screws.
  • An object of the present invention is to provide a female thread processing method and apparatus capable of adapting to a relatively large diameter product in which application of a grooveless tap is not common.
  • another object of the present invention is that it is possible to process internal threads without generating cutting chips and ignoring any obstacle such as a key groove provided in the inner diameter portion of the material hole. It is to provide a method and apparatus thereof.
  • the internal thread processing method is a method of processing a female thread in a hole of a metal material having a hole for internal thread processing.
  • the shape of the processed part is transferred to the inner periphery of the hole with the movement of only the above revolution, and the shape of the processed part is transferred to form a screw groove.
  • the diameter of the hole is an intermediate diameter between a desired thread crest diameter and trough diameter.
  • the male threaded tool has the same pitch as the female thread to be machined and a small diameter.
  • the female thread processing device of the present invention includes a processing machine main body for gripping or fixing a metal material having a female thread processing hole, and an arc swinging by exerting a necessary pressing force on the processing machine main body. It has an X-axis-Y-axis table that can be controlled and a male-screw-like tool fixed on the X-axis-Y-axis table, and the male-screw tool fixed on the X-axis-Y-axis table does not rotate.
  • a thread groove is formed by transferring the shape of the processed portion while successively pressing the processed portion of the male screw-like tool on the inner periphery of the hole with a motion of only revolution on a certain horizontal plane.
  • the present invention includes a control device that controls the X-axis-Y-axis table so that the processing machine main body swings in a circular arc while exhibiting a necessary pressing force.
  • the male thread-like tool for forming a desired female thread by transfer must naturally have the same pitch length as the desired female thread.
  • the screw diameter of the male screw-like tool is smaller than the screw diameter of the desired female screw, the twist angle formed by the screw thread is larger than that of the female screw. For example, if the diameter of the male threaded tool is half that of the female thread diameter, the twist angle is almost doubled. In order to overcome this gap and form the same pitch as the male thread-like tool on the female thread, it is necessary to ensure a constant slip at the contact portion, that is, to firmly synchronize with each other.
  • the measure taken by the present invention was to maintain the above-mentioned synchronization firmly as a result.
  • the diameter difference between the female screw and the male screw-shaped tool is large, the male screw-shaped tool is released from the processed female screw at an early stage and has little interference with the formed female screw.
  • the occurrence of problems does not become apparent, but in reality, the occurrence of inclination due to the bending of the male screw-shaped tool becomes remarkable, and it becomes a weak point for transfer molding of a female screw with good accuracy. If the diameter difference between the female screw and the male screw-shaped tool is reduced, the inclination of the male screw-shaped tool is reduced.
  • the X-axis / Y-axis table of the female thread processing machine of the present invention has a very short stroke in which only the difference between the desired female thread radius and the male thread radius is within the operating range.
  • it was designed in a direction that minimizes the height difference in the Z direction between the X-axis rail and the Y-axis rail to ensure the necessary rigidity.
  • the female screw hole is a blind hole or the tact during mass production
  • a cantilevered shaft is convenient for male screw tools.
  • the male screw tool is supported and fixed at two points straddling the female thread processing region. In that case, a machine in which two similarly designed X-axis and Y-axis tables are linked may be required.
  • the present invention is a processing machine that ensures the necessary rigidity by designing with a short stroke and reducing the height difference in the Z direction between the X-axis rail and the Y-axis rail, and succeeded in overcoming the twist angle gap.
  • the generated radial load is large, in principle, it is possible to complete machining of female threads within a few rotations, regardless of the number of screw threads and the effective screw length, even if they are operated in a single rotation or sequential machining. .
  • the present invention does not suffer from the processing of chips generated by cutting with a single point tool (thread cutting tool) even for a relatively large diameter female thread for which tapping is not common. Further, from the viewpoint of machining principle, it is possible to obtain the merit that machining is completed in a short time, as symbolized by a simple movement in which the male threaded tool revolves on a single horizontal plane.
  • FIG. 7 is a side view of FIG. 6. It is a front view which shows the male screw-shaped tool which processes the nut member for ball screws of FIG. It is a side view of FIG.
  • FIG. 1 shows a method of processing a female screw 60 according to an embodiment of the present invention
  • FIG. 2 shows a main part of FIG. 3 to 5 show the female screw machining apparatus 1 used for the machining method of the female screw 60 according to the present embodiment.
  • FIG. 2 shows only the element part.
  • the female thread processing apparatus 1 according to the present embodiment includes a processing machine main body 10, an X-axis table 20 mounted on the processing machine main body 10, and an X-axis so that the Y-axis table 33 is positioned on the X-axis table 20. And a Y-axis frame 30 fixed to the table 20.
  • the processing machine body 10 is fixed to a table (not shown) having an appropriate height in consideration of the working height and the like.
  • a material fixing base 11 for fixing a metal material 50 having a hole 51 is arranged on the upper surface of the processing machine body 10.
  • the material fixing base 11 includes a hole 12 for inserting a metal material 50.
  • the metal material 50 has, for example, three holes 52 around it.
  • the material fixing base 11 includes a screw hole 13 for fixing the metal material 50 with the fastening bolt 53 after the metal material 50 is inserted into the hole 12.
  • the material fixing base 11 is fixed to the processing machine body 10 so as to be positioned on the X-axis table 20.
  • the X-axis table 20 is arranged on the processing machine main body 10 so as to move on the X-axis via a propulsion screw portion 22 rotated by a servo motor (X-axis motor) 21 arranged on the processing machine main body 10. Yes.
  • the Y-axis frame 30 is fixed to the X-axis table 20 so as to be positioned on the X-axis table 20.
  • the Y-axis frame 30 includes a Y-axis table 33 that moves on the Y-axis via a propulsion screw portion 32 that is rotated by a servo motor (Y-axis motor) 31. At this time, the Y-axis table 33 moves in the Y-axis direction along a guide member 34 such as a cross roller guide provided on the X-axis table 20.
  • a guide member 34 such as a cross roller guide provided on the X-axis table 20.
  • the Y-axis table 33 functions as a tool mounting base for fixing the male screw tool 35.
  • the male screw-shaped tool 35 includes a processing portion 35a having a screw shape having the same pitch and a small diameter as the female screw 60 to be processed.
  • the male screw-shaped tool 35 has a plurality of holes 36 at the bottom and is fixed to the Y-axis table 33 through holes 34 provided in the Y-axis table 33 by fastening bolts 37.
  • the processing machine body 10 is positioned so as to be positioned on the X-axis table 20.
  • the distance between the material fixing base 11 fixed to the Y-axis table 33 and the Y-axis table 33 (the vertical direction in FIG. 2, that is, the Z-axis direction) is unchanged.
  • the servo motor (X-axis motor) 21 and the servo motor (Y-axis motor) 31 communicate with the control device 40 and move the X-axis table 20 and the Y-axis table 33 in the X-axis direction and the Y-axis direction, respectively.
  • the operation is controlled based on the above. That is, the control device 40 controls the X-axis table 20 and the Y-axis table 33 so that the processing machine main body 10 swings in a circular arc while exhibiting a necessary pressing force.
  • the male screw-shaped tool 35 includes a machining portion 35 a that has the same pitch as the female screw 60 to be machined and has a smaller screw shape than the female screw 60 to be machined. Yes.
  • the male screw tool 35 is fixed on the Y-axis table 33 by a fastening screw 37.
  • the metal material 50 is inserted into the hole 12 of the material fixing base 11 so that the hole 51 is inserted from above the male screw-shaped tool 35, the metal material 50 is fixed by the fastening screw 53. It is fixed on the base 11.
  • control device 40 sets the X-axis table 20 and the Y-axis table so that the point W of the male screw-like tool 35 is positioned at the point W of the hole 51 of the metal material 50. 33 is moved in the X-axis direction and the Y-axis direction, respectively.
  • the control device 40 As shown in FIG. 1, the control device 40, as shown in FIG. Are moved along a movement locus indicated by an arrow 35A.
  • the control device 40 then forms the servo motor (X-axis motor) 21 and the servo motor (Y-axis motor) 31 so that the hole 51 of the metal material 50 before forming the female screw is deformed into the female screw 60. To control the movement.
  • trajectory shown by the arrow 35A of the external thread tool 35 is shown as 180 degrees for description.
  • the control device 40 changes the entire trajectory of the hole 51 of the metal material 50 before the female thread formation into the female thread 60, that is, the movement locus indicated by the arrow 35A of the male threaded tool 35 is 360.
  • the male screw-shaped tool 35 is moved until it reaches °. Therefore, the control device 40 circularly moves the screw-shaped tool 35 while controlling the movement of the servo motor (X-axis motor) 21 and the servo motor (Y-axis motor) 31, so that the screw-shaped tool is formed on the inner periphery of the hole 51.
  • the processed portions 35a of 35 are sequentially pressed to transfer the shape of the processed portions 35a to form screw grooves.
  • the point N of the hole 51 of the metal material 50 and the point N of the male screw-shaped tool 35 contact each other.
  • the point E of the hole 51 of the metal material 50 and the point E of the male screw-shaped tool 35 come into contact with each other.
  • the point S of the hole 51 of the metal material 50 and the point S of the male screw-shaped tool 35 come into contact with each other.
  • the point W of the hole 51 of the metal material 50 and the point W of the male screw-shaped tool 35 come into contact with each other.
  • Each rotation phase does not change. That is, the hole 51 of the metal material 50 and the point NESW of the male tool 35 do not rotate.
  • the metal material 50 and the male screw-shaped tool 35 do not move relative to each other in the Z-axis direction, and do not need to move relative to each other in the Z-axis direction (the vertical direction of the paper in FIG. 2).
  • the ring-shaped metal material 50 is gripped and fixed to the material fixing base 11, and the male screw-shaped tool 35 is inserted from the inside of the hole 51 of the ring-shaped metal material 50.
  • the processed portion 35a can be pressed successively to transfer the shape of the processed portion 35a to form a screw groove. Therefore, it is possible to finally form a relatively large diameter female screw 60 such as M40-P1.5 (outer diameter 40 mm, pitch 1.5 mm) inside the hole 51 of the metal material 50. Become.
  • the female thread processing apparatus 1 has, for example, a molding process in which the hole diameter R of the female thread 60 starts from a slightly smaller radius R and is sequentially molded to reach the finished thread within a few rounds. Can also be programmed.
  • the metal raw material 50 was fixed to the raw material fixing base 11 with the fastening bolt 53, this invention is not limited to this, The metal raw material 50 is fixed to the raw material fixing base 11 via the securing means. It may be fixed to.
  • control apparatus 40 is It is also possible to control the male screw-shaped tool 35 so as to rotate a plurality of holes 51 of the metal material 50.
  • the single thread internal thread has been described.
  • the present invention is not limited to this, and a double thread internal thread can be formed by using a double thread external thread tool.
  • a groove having a groove depth that is deeper than other parts, such as a ball circulation bypass can be formed depending on the tool.
  • an inner diameter surface having a plurality of the closed loop grooves can be formed at the same time.
  • FIGS. 6 to 9 for a ball screw nut member 80 in which a female circulation path 81 having an S-shaped bypass 82 formed to return a ball one pitch before is processed.
  • 8 and 9 show a male threaded tool 70 for machining a ball screw nut member 80 having a female circulation path 81 provided with an S-shaped bypass 82.
  • the processing portion 72 that processes the S-shaped bypass 82 protrudes outward from the processing portion 71 that forms the female circulation path 81.
  • the male screw tool 70 is used, for example, in place of the male screw tool 35 fixed to the Y-axis table 33 in FIGS.
  • the metal material before processing the nut member 80 is a metal material having a hole corresponding to the hole of the nut member 80, similarly to the metal material 50 having the hole 51 in the above embodiment. Prepared and fixed to the material fixing base 11. Also in this example, the processing method is the same as in the above embodiment.
  • one S-shaped bypass 82 is formed by using a male thread-like processing tool 70 that includes a processing portion 71 that forms a pair of female circulation paths 81 and a processing portion 72 that processes an S-shaped bypass 82.
  • the nut member 80 for ball screw which processed the female circulation path 81 provided was demonstrated.
  • the present invention is not limited to this, and the S-shaped bypass 82 is formed by using a male thread-like processing tool 70 including a processing section 71 that forms a plurality of sets of female circulation paths 81 and a processing section 72 that processes the S-shaped bypass 82. It is also possible to process a ball screw nut member 80 obtained by processing a plurality of sets of female circulation paths 81 provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Forging (AREA)

Abstract

 メネジ加工用の穴を有する金属製の素材の穴にメネジを加工するに際し、金属製の素材を把持又は固定した状態でオネジ状工具が自転はせず一定水平面上の公転のみの運動をもって穴の内周にオネジ状工具の加工部を逐次押圧しながら加工部の形状を転写してネジ溝を成形する。メネジ加工用の穴を有する金属製の素材を把持又は固定する加工機本体と、加工機本体に対し、必要な押圧力を発揮して円弧揺動することを制御運動可能なX軸-Y軸テーブルと、X軸-Y軸テーブル上に固定されるオネジ状工具とを有し、X軸-Y軸テーブル上に固定されたオネジ状工具が自転はせず一定水平面上の公転のみの運動をもって穴の内周にオネジ状工具の加工部を逐次押圧しながら加工部の形状を転写してネジ溝を成形する。

Description

メネジの加工法及びその装置
 本発明は、メネジ加工用の穴を有する金属製の素材の穴にメネジを加工する方法及びその装置に関する。
 周知のように、メネジは、最も普遍的な締結要素であるネジの一方側を構成する。
 従来、メネジはタッビング加工によって加工されることが知られている。
 しかし、比較的大径のメネジの加工は、タッピング加工では、一般的に行われていなかった。
 比較的大径のメネジの加工法は、シングルポイント工具(ねじ切りバイト)による切削加工が主流(例えば、特許文献1参照)である。
 しかし、シングルポイント工具(ねじ切りバイト)による切削加工は、発生する切り屑の処理と切り屑発生に起因する工具刃先の損傷などの問題があるにも拘わらず、代替工法が存在しなかった。
 なお、このメネジ切削法として、例えば、通常、チェザーと呼ばれるねじ切削用刃物を管体の被切削面に押し当て、管体を回転させつつ管軸方向に前後進させる方法が採用されている。
 また、シングルポイント工具(ねじ切りバイト)にしろタッピングにしろ所望するメネジに対し、メネジの軸方向にその相対的一回転につきそのネジのピッチ分だけ相対移動することが余儀なくされている。従って、制御可動部分が増加し、結果として強度、剛性ともに高い加工機の設計ができなかった。
 また、ネジ山の数に対応した工具の回転を必要とする(例えば、特許文献1参照)ため、その加工時間は自ずから限界があった。
特開2012-30349号公報
 そこで、比較的小径ネジにおいては効力を発揮している溝なしタップと同様切り屑を発生しないネジ加工法を、溝なしタップの適用が一般的でない比較的大径品に適応しようとすることが考えられる。しかし、オネジ状工具に必要なラジアル荷重は、所望するメネジの有効長さをはじめ、素材の硬さ、オネジ状工具の径など都度起因する条件により変化する。そのため、オネジ状工具に必要なラジアル荷重は、シングルポイント工具(ねじ切りバイト)による切削加工を目的とした加工と比較すると、少なくとも10倍以上は必要となる。
 しかも、オネジ状工具は、運動機能上は主軸の回転を止めたNCフライス盤と酷似しているが、通常のフライス盤に許容される主軸のラジアル荷重より遙かに大きな主軸のラジアル荷重(例えば50kNf以上)が必要となる。
 このように、主軸のラジアル荷重が50kNf以上となる機械は、存在しなかった。
 従って、従来工法及び装置を用いて、切り屑を発生しないネジ加工法を溝なしタップの適用が一般的でない比較的大径品に適応することはできなかった。
 本発明は、斯かる従来工法の問題点を解消するために為されたもので、その目的は、比較的小径ネジにおいては効力を発揮している溝なしタップと同様切り屑を発生しないメネジ加工法を、溝なしタップの適用が一般的でない比較的大径品に適応することができるメネジの加工法及びその装置を提供することにある。
 また、本発明の別の目的は、切削切り屑を発生させず、素材穴内径部に設けられた例えばキー溝のごとき障害物があってもこれを無視してメネジを加工することが可能な方法及びその装置を提供することにある。
 本発明のメネジの加工法は、メネジ加工用の穴を有する金属製の素材の穴にメネジを加工するに際し、金属製の素材を把持又は固定した状態でオネジ状工具が自転はせず一定水平面上の公転のみの運動をもって穴の内周にオネジ状工具の加工部を逐次押圧しながら加工部の形状を転写してネジ溝を成形する。
 また、本発明において、穴の径は、所望するネジの山径と谷径の中間径である。
 また、本発明において、オネジ状工具は、加工しようとするメネジとピッチが同一で、径が小さい。
 本発明のメネジの加工装置は、メネジ加工用の穴を有する金属製の素材を把持又は固定する加工機本体と、加工機本体に対し、必要な押圧力を発揮して円弧揺動することを制御運動可能なX軸-Y軸テーブルと、X軸-Y軸テーブル上に固定されるオネジ状工具とを有し、X軸-Y軸テーブル上に固定されたオネジ状工具が自転はせず一定水平面上の公転のみの運動をもって穴の内周にオネジ状工具の加工部を逐次押圧しながら加工部の形状を転写してネジ溝を成形する。
 また、本発明は、X軸-Y軸テーブルを、加工機本体に対し、必要な押圧力を発揮して円弧揺動するように制御する制御装置を備える。
 本発明において、所望するメネジをその転写で成形するためのオネジ状工具は、当然所望するメネジと同一のピッチ長さを有していなければならない。然るに、オネジ状工具のネジ径は、所望するメネジのネジ径より小さいため、そのネジ山の為すネジレ角はメネジのそれと比較して大きくなる。例えば、メネジ径に対するオネジ状工具の径が半分であれば、そのネジレ角はほぼ倍になる。このギャップを乗り越え、メネジにオネジ状工具と同一のピッチを成形するには、接触部では常々一定のスベリを確保すること、即ち共に自転しないという強固な同期が必要になる。
 前述のネジレ角ギャップを解消するために、本発明が取った手段は、結果的には強固に前述の同期を維持することであった。メネジとオネジ状工具との径差が大きい場合、オネジ状工具は早々に加工されたメネジから離脱し成形されたメネジとの干渉は少ない。理論上は問題発生が顕わにはならないが、現実にはオネジ状工具の撓みによる傾斜の発生が顕著になり、精度の良好なメネジの転写成形には弱点となる。
 メネジとオネジ状工具との径差が少なくなれば、オネジ状工具の傾斜発生は少なくなる。しかし、メネジとオネジ状工具との係合を解くまでの公転角度は大きくなり、メネジとオネジ状工具との干渉、係合の距離が長くなる。従って、オネジ状工具公転の抵抗が増す。この抵抗にも拘わらず、スリップ-スティック現象を伴わない滑らかな公転を保障するのには、加工機の剛性を高める以外にない。
 斯かる状況を踏まえて本発明のメネジ加工機のX軸-Y軸テーブルは、所望するメネジの半径とオネジ状工具の半径との差のみを稼動範囲とする極めてショートストロークである。また、X軸レールとY軸レールとのZ方向の高低差を極力少なくする方向で設計し、必要な剛性を確保した。
 また、メネジ穴が止り穴であるとか、量産時のタクトを考えると、オネジ状工具は片持ち軸が便利である。要求される転写成形に必要なスラスト荷重が高い場合は、メネジ加工域を跨ぐ2点でオネジ状工具を支持固定する。その場合は、同様設計のX軸-Y軸テーブルを2台連動させた機械が必要になることもある。
 本発明は、ショートストロークと、X軸レールとY軸レールとのZ方向の高低差低減に徹して設計することにより、必要な剛性を確保した加工機とし、ネジレ角ギャップの乗り越えに成功した。発生するラジアル荷重は大きいが、ネジの山数や有効ネジ長さに関係なく、原理的には一回転、逐次加工的に運転しても、数回転以内でメネジの加工を完了させることができる。
 本発明は、タッピング加工が一般的でない、比較的大径のメネジに対しても、シングルポイント工具(ねじ切りバイト)による切削加工で発生する切り屑の処理に悩まされることがない。また、加工原理から見ても、オネジ状工具が単一水平面上で公転するのみというシンプルな動きに象徴されるように、短時間で、加工が完了するというメリットを得ることができる。
本発明の一実施形態に係るメネジの加工法を示す説明図である。 図1の要部を示す断面図である。 本発明の一実施形態に係るメネジの加工装置を示す平面図である。 図3のA矢視図である。 図3のB矢視図である。 本発明の別の実施形態で加工されたボールネジ用のナット部材の断面図である。 図6の側面図である。 図6のボールネジ用のナット部材を加工するオネジ状工具を示す正面図である。 図8の側面図である。
 以下、本発明を図面に示す実施形態に基づいて説明する。
 図1は、本発明の一実施形態に係るメネジ60の加工法を示し、図2は、図1の要部を示す。図3~図5は、本実施形態に係るメネジ60の加工法に用いるメネジ加工装置1を示す。なお、図2には要素部分のみを表している。
 本実施形態に係るメネジ加工装置1は、加工機本体10と、この加工機本体10に搭載されるX軸テーブル20と、このX軸テーブル20上にY軸テーブル33が位置するようにX軸テーブル20に固定されるY軸フレーム30とを備えている。
 加工機本体10は、作業高さなどを考慮して、然るべき高さのテーブル(図示せず)に固定されている。
 加工機本体10の上面には、穴51を有する金属製の素材50を固定する素材固定台11が配置されている。素材固定台11は、金属製の素材50を嵌入させるための穴12を備えている。金属製の素材50は、例えば、周囲に3カ所の穴52を備えている。素材固定台11は、穴12に金属製の素材50を嵌入後に、締結ボルト53によって金属製の素材50を固定するためのねじ穴13を備えている。
 素材固定台11は、X軸テーブル20上に位置するように加工機本体10に固定されている。X軸テーブル20は、加工機本体10に配置されたサーボモータ(X軸用モータ)21によって回転する推進ネジ部22を介してX軸上を移動するように、加工機本体10に配置されている。
 Y軸フレーム30は、このX軸テーブル20上に位置するようにX軸テーブル20に固定されている。Y軸フレーム30は、X軸テーブル20と同様にサーボモータ(Y軸用モータ)31によって回転する推進ネジ部32を介してY軸上を移動するY軸テーブル33を備えている。この際、Y軸テーブル33は、X軸テーブル20に設けた例えばクロスローラガイドなどの案内部材34に沿ってY軸方向に移動する。
 Y軸テーブル33は、オネジ状工具35を固定する工具搭載台として機能する。オネジ状工具35は、加工しようとするメネジ60とピッチが同一で、径が小さいネジ形状を為す加工部35aを備えている。オネジ状工具35は、裾部に複数の穴36を備え、締結ボルト37によってY軸テーブル33に設けた穴34を介してY軸テーブル33に固定される。
 以上のように、Y軸フレーム30は、X軸テーブル20上にY軸テーブル33が位置するようにX軸テーブル20に固定されるので、X軸テーブル20上に位置するように加工機本体10に固定されている素材固定台11とY軸テーブル33との距離(図2の紙面の上下方向、即ちZ軸方向)は不変である。
 サーボモータ(X軸用モータ)21及びサーボモータ(Y軸用モータ)31は、制御装置40に連絡し、X軸テーブル20及びY軸テーブル33をそれぞれX軸方向及びY軸方向に移動させる。サーボモータ(X軸用モータ)21及びサーボモータ(Y軸用モータ)31は、Y軸テーブル33が式(X2+Y2=R2)により画かれる軌跡を踏襲するように制御装置40の指令に基づいて運転が制御されている。即ち、制御装置40は、X軸テーブル20及びY軸テーブル33を、加工機本体10に対し、必要な押圧力を発揮して円弧揺動させるように制御する。
 次に、本実施形態の作用について説明する。
 先ず、図1、図2に示すように、オネジ状工具35は、加工しようとするメネジ60とピッチが同一で、径が加工しようとするメネジ60より小さいネジ形状を為す加工部35aを備えている。オネジ状工具35は、Y軸テーブル33上に締結ネジ37によって固定される。
 次に、金属製の素材50が、オネジ状工具35の上方から穴51を挿通するように、素材固定台11の穴12に嵌入された後、金属製の素材50が締結ネジ53によって素材固定台11上に固定される。
 次に、制御装置40は、サーボモータ(X軸用モータ)21及びサーボモータ(Y軸用モータ)31を駆動して、X軸テーブル20及びY軸テーブル33をそれぞれX軸方向及びY軸方向に移動させる。
 次に、制御装置40は、Y軸テーブル33が式(X2+Y2=R2)により画かれる軌跡を踏襲するようにサーボモータ(X軸用モータ)21及びサーボモータ(Y軸用モータ)31の動きを制御する。
 次に、制御装置40は、例えば、図1に示すように、金属製の素材50の穴51の点Wにオネジ状工具35の点Wが位置するように、X軸テーブル20及びY軸テーブル33をそれぞれX軸方向及びY軸方向に移動させる。
 次に、制御装置40は、図1に示すように、Y軸テーブル33に固定されたオネジ状工具35を、素材固定台11上に固定された金属製の素材50の有する穴51の内周に矢印35Aで示す移動軌跡に沿って移動させる。そして、制御装置40は、メネジ成形前の金属製の素材50の穴51をメネジ60に変形させながら成形するように、サーボモータ(X軸用モータ)21及びサーボモータ(Y軸用モータ)31の動きを制御する。
 なお、図1では、説明のため、オネジ状工具35の矢印35Aで示す移動軌跡を180°として示している。勿論、本実施形態では、制御装置40は、メネジ成形前の金属製の素材50の穴51の全周をメネジ60に変形させるまで、即ち、オネジ状工具35の矢印35Aで示す移動軌跡が360°になるまでオネジ状工具35を移動させる。そのため、制御装置40は、サーボモータ(X軸用モータ)21及びサーボモータ(Y軸用モータ)31の動きを制御しながらオネジ状工具35を円運動させ、穴51の内周にオネジ状工具35の加工部35aを逐次押圧して加工部35aの形状を転写しネジ溝を成形する。
 この過程で、図1に示すように、先ず、金属製の素材50の穴51の点Nとオネジ状工具35の点Nとがコンタクトする。次に、金属製の素材50の穴51の点Eとオネジ状工具35の点Eとがコンタクトする。次に、金属製の素材50の穴51の点Sとオネジ状工具35の点Sとがコンタクトする。次に、金属製の素材50の穴51の点Wとオネジ状工具35の点Wとがコンタクトする。それぞれの回転位相は変わらない。即ち、金属製の素材50の穴51及びオネジ状工具35の点N-E-S-Wは自転していない。
 この間、金属製の素材50とオネジ状工具35はZ軸方向には相対移動しないし、またZ軸方向(図2の紙面の上下方向)には相対移動する必要もない。
 以上のように、本実施形態によれば、リング状品の金属製の素材50が素材固定台11に把持固定され、リング状品の金属製の素材50の穴51の内側からオネジ状工具35の加工部35aを逐次押圧して加工部35aの形状を転写しネジ溝を成形することができる。そのため、最終的に金属製の素材50の穴51の内側に、例えば、M40-P1.5(外径40mm、ピッチ1.5mm)などの比較的大径のメネジ60を成形することが可能となる。
 なお、本発明のメネジ加工装置1は、例えば、メネジ60の穴径Rは幾分小さめのRから出発し、幾周かの中に完成ネジ山に到達すべく逐次成形するように、成形工程をプログラムすることも可能である。
 また、上記実施形態では、金属製の素材50を締結ボルト53で素材固定台11に固定したが、本発明はこれに限らず、金属製の素材50を固縛手段を介して素材固定台11に固定しても良い。
 また、上記実施形態では、オネジ状工具35が金属製の素材50の穴51を一回転することによってメネジ60を成形する場合について説明したが、本発明はこれに限らず、制御装置40は、オネジ状工具35が金属製の素材50の穴51を複数回転するように制御することも可能である。
 また、上記実施形態では、1条メネジについて説明したが、本発明はこれに限らず、2条ネジのオネジ状工具を用いることによって、2条メネジを成形することが可能である。
 さらにまた、ボールネジ用の1条毎にクローズとなるループ溝においてはボール循環用バイパスなど一部の溝深さが他の部分より深い溝も工具次第で成形可能である。勿論、そのクロースドループ溝が複数条存在する内径面も同時に成形可能である。
 その一例を、図6~図9を用いて、1ピッチ前にボールを戻すために形成されるS字形バイパス82を備えた雌循環路81を加工したボールネジ用のナット部材80について説明する。
 図8、図9は、S字形バイパス82を設けた雌循環路81を有するボールネジ用のナット部材80を加工するオネジ状工具70を示す。S字形バイパス82を加工する加工部72は雌循環路81を形成する加工部71よりも外方に突出している。
 オネジ状工具70は、例えば、図1、図2において、Y軸テーブル33に固定されたオネジ状工具35と取り替えて使用される。
 また、ナット部材80を加工する前の金属製の素材には、上記実施形態における穴51を有する金属製の素材50と同様に、ナット部材80の穴に見合った穴を有する金属製の素材を用意し、素材固定台11に固定される。
 本例においても、加工法は上記実施形態と同じである。
 なお、本例では、1組の雌循環路81を形成する加工部71とS字形バイパス82を加工する加工部72とを備えたオネジ状加工具70を用いて、1つのS字形バイパス82を備えた雌循環路81を加工したボールネジ用のナット部材80について説明した。本発明はこれに限らず、複数組の雌循環路81を形成する加工部71とS字形バイパス82を加工する加工部72とを備えたオネジ状加工具70を用いて、S字形バイパス82を備えた複数組の雌循環路81を加工したボールネジ用のナット部材80を加工することも可能である。
1 メネジ加工装置
10 加工機本体
11 素材固定台
12 穴
20 X軸テーブル
21 サーボモータ(X軸用モータ)
22 推進ネジ部
30 Y軸フレーム
31 サーボモータ(Y軸用モータ)
32 推進ネジ部
33 Y軸テーブル
34 案内部材
35 オネジ状工具
40 制御装置
50 金属製の素材
51 穴
60 メネジ
                                                                            

Claims (5)

  1.  メネジ加工用の穴を有する金属製の素材の前記穴にメネジを加工するに際し、前記素材を把持又は固定した状態でオネジ状工具が自転はせず一定水平面上の公転のみの運動をもって前記穴の内周に前記オネジ状工具の加工部を逐次押圧しながら前記加工部の形状を転写してネジ溝を成形することを特徴とするメネジの加工法。
  2.  請求項1記載のメネジの加工法において、前記穴の径は、所望するネジの山径と谷径の中間径であることを特徴とするメネジの加工法。
  3.  請求項1又は2記載のメネジの加工法において、前記オネジ状工具は、加工しようとするメネジとピッチが同一で、径が小さいことを特徴とするメネジの加工法。
  4.  メネジ加工用の穴を有する金属製の素材を把持又は固定する加工機本体と、
     前記加工機本体に対し、必要な押圧力を発揮して円弧揺動することを制御運動可能なX軸-Y軸テーブルと、
     前記X軸-Y軸テーブル上に固定されるオネジ状工具とを有し、
     前記X軸-Y軸テーブル上に固定された前記オネジ状工具が自転はせず一定水平面上の公転のみの運動をもって前記穴の内周に前記オネジ状工具の加工部を逐次押圧しながら前記加工部の形状を転写してネジ溝を成形する
     ことを特徴とするメネジの加工装置。
  5.  請求項4記載のメネジの加工装置において、前記X軸-Y軸テーブルを、前記加工機本体に対し、必要な押圧力を発揮して円弧揺動するように制御する制御装置を更に備える
     ことを特徴とするメネジの加工装置。
                                                                                
PCT/JP2013/004607 2012-08-01 2013-07-30 メネジの加工法及びその装置 WO2014020900A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2879532A CA2879532A1 (en) 2012-08-01 2013-07-30 Machining method for female screw and device for same
EP13825071.7A EP2881203A4 (en) 2012-08-01 2013-07-30 MACHINING METHOD FOR JACKS AND DEVICE THEREFOR
JP2014527984A JPWO2014020900A1 (ja) 2012-08-01 2013-07-30 メネジの加工法及びその装置
CN201380040162.1A CN104507614B (zh) 2012-08-01 2013-07-30 内螺纹的加工方法及其装置
US14/414,572 US20150165535A1 (en) 2012-08-01 2013-07-30 Method of processing female screw and apparatus therefor
KR1020157002328A KR20150032882A (ko) 2012-08-01 2013-07-30 암나사의 가공법 및 그 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012171384 2012-08-01
JP2012-171384 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014020900A1 true WO2014020900A1 (ja) 2014-02-06

Family

ID=50027605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004607 WO2014020900A1 (ja) 2012-08-01 2013-07-30 メネジの加工法及びその装置

Country Status (8)

Country Link
US (1) US20150165535A1 (ja)
EP (1) EP2881203A4 (ja)
JP (1) JPWO2014020900A1 (ja)
KR (1) KR20150032882A (ja)
CN (1) CN104507614B (ja)
CA (1) CA2879532A1 (ja)
TW (1) TW201420240A (ja)
WO (1) WO2014020900A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110788262A (zh) * 2019-08-23 2020-02-14 南通福乐华机械有限公司 一种用于薄壁件大螺距内螺纹面成型装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123023A (ja) * 1995-11-02 1997-05-13 Enomoto Kogyo Kk 容器の口金の製造装置
JP2004322285A (ja) * 2003-04-28 2004-11-18 Nisshin Kogu Kk エンドミル型タップおよびそれを用いたねじ穴加工方法
JP2006159405A (ja) * 2004-12-08 2006-06-22 Emuge-Werk Richard Glimpel Gmbh & Co Kg 工具にねじ山を生成する工具および方法
JP2006524139A (ja) * 2003-04-22 2006-10-26 ギューリング,イェルク ネジ山の形成のための方法、工具および装置
JP2012030349A (ja) 2010-06-30 2012-02-16 Jfe Steel Corp ねじ切削方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE457038A (ja) * 1943-04-14 1944-08-31
DE3786096T2 (de) * 1986-03-13 1993-10-14 Turchan Manuel C Methode und Werkzeug zum Gewindeschneidbohren.
JP2541667B2 (ja) * 1989-09-28 1996-10-09 オークマ株式会社 ねじ切り加工装置
DE3939795A1 (de) * 1989-12-01 1991-06-06 Schmitt M Norbert Dipl Kaufm D Verfahren zur herstellung einer gewindebohrung
JP2880122B2 (ja) * 1995-10-02 1999-04-05 株式会社田野井製作所 盛上げタップ
CN1147435A (zh) * 1995-10-06 1997-04-16 胡彦群 一次成型内螺纹铣削技术
JP2001276956A (ja) * 2000-03-30 2001-10-09 Somic Ishikawa Inc ボールジョイントおよびそのハウジングの製造方法
JP3609366B2 (ja) * 2001-10-22 2005-01-12 オーエスジー株式会社 盛上げタップ
CN101386094A (zh) * 2008-10-16 2009-03-18 中冶陕压重工设备有限公司 大直径锥管内螺纹的加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123023A (ja) * 1995-11-02 1997-05-13 Enomoto Kogyo Kk 容器の口金の製造装置
JP2006524139A (ja) * 2003-04-22 2006-10-26 ギューリング,イェルク ネジ山の形成のための方法、工具および装置
JP2004322285A (ja) * 2003-04-28 2004-11-18 Nisshin Kogu Kk エンドミル型タップおよびそれを用いたねじ穴加工方法
JP2006159405A (ja) * 2004-12-08 2006-06-22 Emuge-Werk Richard Glimpel Gmbh & Co Kg 工具にねじ山を生成する工具および方法
JP2012030349A (ja) 2010-06-30 2012-02-16 Jfe Steel Corp ねじ切削方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2881203A4

Also Published As

Publication number Publication date
JPWO2014020900A1 (ja) 2016-07-21
TW201420240A (zh) 2014-06-01
EP2881203A4 (en) 2016-04-06
US20150165535A1 (en) 2015-06-18
EP2881203A1 (en) 2015-06-10
CA2879532A1 (en) 2014-02-06
KR20150032882A (ko) 2015-03-30
CN104507614A (zh) 2015-04-08
CN104507614B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
KR101843668B1 (ko) R-θ 테이블장치 및 암나사의 가공장치
JP7187912B2 (ja) 歯車加工装置及び歯車加工方法
EP2792430B1 (en) Gear rolling method using circular dies
JP6833710B2 (ja) 工作機械及び工作機械による加工方法
CN114871822B (zh) 一种无离心力切削装置
JP2005211969A (ja) スピニング加工装置
JP2012086296A (ja) 溝加工方法
JP2005297041A (ja) パイプ成形方法及びパイプ成形装置
JP7470812B2 (ja) 工作物におけるタップ孔の加工方法
US4606683A (en) Method and device for producing thread
JP5504994B2 (ja) タップホルダー
WO2014020900A1 (ja) メネジの加工法及びその装置
JP2017185540A (ja) 管体のねじ切り法
JP5262576B2 (ja) ねじ溝研削装置用レスト装置及びねじ溝研削装置
WO2016060036A1 (ja) ねじ軸の研削方法、ねじ軸の研削装置
JP2007519528A (ja) 工作物に歯状の成形部を製作する装置及び方法
EP3677366B1 (en) Turret tool post
JP6155877B2 (ja) ねじの転造方法
JP2009095895A (ja) 歯付部材の噛合案内面形成方法および形成装置
KR20140143871A (ko) 수치 제어 선반
CN112975179B (zh) 一种动车组型材型腔焊接变形控制装置及控制方法
US20230001530A1 (en) Machine tool and control method and control program thereof
JP6471504B2 (ja) クラウンギヤの製造装置
JP2017047437A (ja) ねじの転造装置およびねじの転造方法
JP2006192492A (ja) 転造装置及びシャフトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527984

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414572

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2879532

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013825071

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157002328

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE