WO2014020634A1 - コンタクトレンズおよびコンタクトレンズの製造方法 - Google Patents

コンタクトレンズおよびコンタクトレンズの製造方法 Download PDF

Info

Publication number
WO2014020634A1
WO2014020634A1 PCT/JP2012/004844 JP2012004844W WO2014020634A1 WO 2014020634 A1 WO2014020634 A1 WO 2014020634A1 JP 2012004844 W JP2012004844 W JP 2012004844W WO 2014020634 A1 WO2014020634 A1 WO 2014020634A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
contact lens
shape
peripheral portion
lift amount
Prior art date
Application number
PCT/JP2012/004844
Other languages
English (en)
French (fr)
Inventor
後藤 裕二
山口 博之
Original Assignee
株式会社メニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコン filed Critical 株式会社メニコン
Priority to PCT/JP2012/004844 priority Critical patent/WO2014020634A1/ja
Priority to JP2013557972A priority patent/JP5642895B2/ja
Publication of WO2014020634A1 publication Critical patent/WO2014020634A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/047Contact lens fitting; Contact lenses for orthokeratology; Contact lenses for specially shaped corneae
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/048Means for stabilising the orientation of lenses in the eye

Definitions

  • the present invention relates to a contact lens including a soft type and a hard type, and particularly relates to a contact lens having a novel structure capable of exhibiting a particularly excellent wearing feeling and a manufacturing method thereof.
  • Contact lenses are worn by being superimposed on the cornea of the human eye, and are particularly sensitive to sensory nerves on the cornea surface.
  • the feeling of wearing is also regarded as important.
  • the positional stability of the contact lens on the eyeball is also important, and in general, the appearance and wearing feeling can be reduced by suppressing the displacement amount of the contact lens on the eyeball. Improvement can be achieved.
  • suppressing the amount of displacement of the contact lens on the eyeball is also effective in reducing the problem of eyeball staining caused by fine scratches on the surface of the eyeball that are rubbed when the contact lens is displaced.
  • a contact lens having directionality in the optical characteristics of the optical unit it is important to secure stability in the circumferential direction by suppressing not only the lens radial direction but also the circumferential displacement.
  • the lens power in the circumferential direction around the optical center such as for correcting astigmatism with an axial angle of a cylindrical lens, or for correcting presbyopia with a non-concentric correction area, etc.
  • a contact lens having an optical characteristic with a non-uniform distribution requires a stable circumferential positioning in a worn state.
  • the present inventor first studied by focusing on increasing the lens outer diameter (DIA) for the purpose of improving the positional stability of the contact lens in a worn state.
  • DIA lens outer diameter
  • the lens displacement area is limited by the upper and lower eyelids, and the position stability in the wearing state of the contact lens is improved, and as a result, improvement in wearing feeling is also achieved. is there.
  • the outer diameter of the contact lens is increased to cover the conjunctiva (referred to as a bulbar conjunctiva in the present specification, hereinafter the same), at least three new problems that occur with it must be solved.
  • the first problem is that the present inventor newly found that even when the outer diameter of the contact lens is large enough to cover even the conjunctiva, it is difficult to obtain the stability of the lens position in the wearing state as expected. It is a problem as a fact.
  • the second problem was newly found by the present inventor that even when the outer diameter of the contact lens is made large enough to cover even the conjunctiva, it is difficult to obtain as much as expected in the wearing state. It is a matter of fact.
  • the third problem is a problem newly found by the present inventor that eyeball staining tends to occur in the conjunctiva when the outer diameter of the contact lens is large enough to cover the conjunctiva.
  • the third problem is considered to be due to eye staining that occurs when the contact lens rubs against the conjunctival surface in the wearing state because of insufficient lens positioning, which is the first problem.
  • eye staining that occurs when the contact lens rubs against the conjunctival surface in the wearing state because of insufficient lens positioning, which is the first problem.
  • corneal cells and stem cells that produce conjunctival cells, so if the conjunctival surface is damaged by eyeball staining, good corneal cells and conjunctival cells are generated. This may make it difficult to cause serious problems in the future for the user's eye optical system.
  • the present invention has been made against the background of the above-mentioned circumstances, and the problem to be solved is that it is sized to cover even the conjunctiva of the human eye in a worn state, and has excellent lens position stability. It is an object of the present invention to provide a contact lens having a novel structure and a method of manufacturing a contact lens, which can realize excellent wearing feeling and can effectively suppress conjunctival damage due to eyeball staining.
  • a feature of the first aspect of the present invention relating to a contact lens made to solve such a problem is that it has a front surface of a convex lens and a rear surface of a concave lens, and is arranged around the optical portion in the central portion.
  • the peripheral part covers up to a part of the conjunctiva on the outer peripheral side of the cornea, and the lift amount of the peripheral part on the rear surface of the lens is different on the circumference
  • the left and right portions are larger than at least one of the upper and lower portions in the wearing state, and the thickness change is applied in the circumferential direction on the front surface of the lens in the peripheral portion.
  • the contact lens is provided with a thick portion and a thin portion that are positioned in the circumferential direction in the state.
  • the outer diameter of the lens covering up to the conjunctiva is adopted, and the rear surface of the peripheral portion overlapped with the conjunctiva is formed into an aspherical shape, with respect to the surface shape of the conjunctiva having an aspherical shape.
  • the rear surface shape of the lens periphery is matched. That is, as a result of studies by the present inventor, the surface shape of the human eye has a greater degree of asphericity in the conjunctiva than the cornea, and on the conjunctival surface, the left and right direction is made gentler than the up and down direction. It became clear that when it was easy to understand and exaggerated, it looked like a horizontally placed rugby ball.
  • the thick-walled portion and the thin-walled portion provided in the peripheral portion constitute the circumferential positioning means in the wearing state, and the lift amount of the rear surface of the peripheral portion of the contact lens is set to the left and right as compared with the upper and lower portions. It was set large in at least one of the parts.
  • the conjunctival surface which has a greater degree of asphericity compared to the cornea
  • the rear surface of the lens is matched to the aspheric shape of the conjunctival surface, so that both the stability and wearing feeling when wearing a contact lens are achieved. It was possible to improve it effectively.
  • the first problem with the contact lens covering up to the conjunctiva is due to the fact that the contact lens surface shape and the rear surface shape of the lens are largely inconsistent, so that the contact lens is difficult to stabilize on the eyeball and easily displaces during wearing. It is thought.
  • the lens rear surface shape is close to the conjunctival surface shape, so that the effect of increasing the diameter to cover the conjunctiva is combined with the effect of shape approximation, and the lens position stability in the wearing state is greatly increased. It could be improved.
  • the second problem with contact lenses that cover up to the conjunctiva is that there is a large discrepancy between the shape of the conjunctival surface and the shape of the rear surface of the lens. This is thought to be due to the increase in the maximum value of.
  • the lens rear surface shape is close to the conjunctival surface shape, so that the lens contact pressure on the conjunctiva in the worn state is uniform, in addition to the effect of improving the positional stability of the large-diameter contact lens covering up to the conjunctiva.
  • the improvement of wearing feeling can be achieved by reducing the maximum compression force.
  • the stability of the contact lens is improved and the displacement is suppressed, and the contact pressure on the conjunctiva is reduced, so that the conjunctiva caused by the rubbing of the lens is reduced.
  • the eyeball staining can be effectively reduced, and the concern of conjunctival damage associated with wearing contact lenses can be avoided.
  • a contact lens considering the conjunctival surface shape of a general human eye, for example, the following second to ninth aspects may be suitably combined and used as appropriate.
  • a contact lens that has a lens rear surface that is more suitable for statistically general conjunctival surface shape of the human eye and that can exhibit the technical effects of the present invention more advantageously as described above. Can be efficiently manufactured and provided.
  • a second aspect of the present invention is the contact lens according to the first aspect, wherein the lift amount is increased at least one of the left and right parts as compared to the upper and lower parts in the wearing state. It is what.
  • a third aspect of the present invention is the contact lens according to the first or second aspect, wherein the maximum value of the lift amount is at least one position in the radial direction which is the left-right direction in the worn state. It is set.
  • the maximum value of the lift amount is set at both radial positions that are the left and right directions in the worn state.
  • a fifth aspect of the present invention is the contact lens according to any one of the first to fourth aspects, wherein the minimum value of the lift amount is at least one position in the radial direction which is the vertical direction in the worn state. It is set.
  • the minimum value of the lift amount is set to a position that is upward when worn.
  • a seventh aspect of the present invention is the contact lens according to any one of the first, second, third, fifth, and sixth aspects, wherein the left and right sides of the left and right directions in the wearing state are related to the lift amount.
  • One of the portions is larger than the other of the left and right portions on the ear side and the upper and lower portions.
  • an eighth aspect of the present invention is the contact lens according to the first or second aspect, wherein the maximum value of the lift amount is one of the radial directions that becomes the left and right nose sides in the wearing state.
  • the position is set at a position biased upward from the position.
  • a ninth aspect of the present invention is the contact lens according to any one of the first, second, and eighth aspects, wherein the minimum value of the lift amount is the radial direction in the left-right direction when worn. It is set at a position biased downward from one position.
  • a tenth aspect of the present invention is the contact lens according to any one of the first to tenth aspects, wherein the change in the circumferential direction of the lift amount is set as a rational function with respect to the lift amount in the peripheral portion. It is what has been. According to this aspect, by setting the change in the circumferential direction of the lift amount with a surface shape represented by a continuous function expression such as a trigonometric function, a conic curve, or a multi-order function, the shape design of the lens rear surface is facilitated, Manufacturing operations such as cutting by NC control of the mold and the lens surface can be easily performed.
  • a continuous function expression such as a trigonometric function, a conic curve, or a multi-order function
  • An eleventh aspect of the present invention is the contact lens according to any one of the first to fifth and tenth aspects, wherein the shape of the rear surface of the lens in the peripheral portion is horizontal when worn.
  • the shape is axisymmetric with respect to the radial line.
  • the contact lens according to any one of the first to eleventh aspects, wherein the positioning in the circumferential direction includes a thick part and a thin part formed in the peripheral part.
  • a double thin, a periballast, or a prism ballast is configured.
  • the double thin has a structure in which thin portions are provided on both the upper and lower sides and a circumferential positioning action is exerted by using the upper and lower eyelid pressure etc., and the periballast is provided with a pair of thick portions on both the left and right sides.
  • a thirteenth aspect of the present invention is the contact lens according to any one of the first to twelfth aspects, wherein the minimum position of the lens thickness dimension is determined by the thickness change of the lens front surface in the peripheral portion. However, it is set to the position which becomes an upper direction in a wearing state. By providing the minimum thickness portion in the upward direction in the wearing state, the improvement of the stability in the circumferential direction due to the weight action can be effectively exhibited.
  • the fourteenth aspect of the present invention is the contact lens according to any one of the first to thirteenth aspects, wherein the rate of change in the thickness change of the lens front surface of the peripheral portion is the peripheral portion.
  • the rate of change in the thickness change of the lens front surface of the peripheral portion is the peripheral portion.
  • a fifteenth aspect of the present invention is the contact lens according to any one of the first to fourteenth aspects, wherein the optical characteristic of the optical unit has a specific direction in the circumferential direction. It is what. That is, in the contact lens according to the present invention, the circumferential position in the wearing state is specified by the circumferential positioning means including the thick part and the thin part formed in the peripheral part.
  • a directional optical unit can be used. Examples of the optical unit include those having correction optical characteristics for astigmatism and presbyopia.
  • a feature of the present invention relating to a method of manufacturing a contact lens is that a contact lens having a front surface of a convex lens and a rear surface of a concave lens and having a peripheral portion around an optical portion at a central portion is provided.
  • the outer diameter of the peripheral portion is set to a size that covers the conjunctiva on the outer peripheral side of the cornea
  • the lift amount on the rear surface of the lens in the peripheral portion is set to a different shape on the periphery
  • the shape of the rear surface of the lens in the peripheral part is made to conform to the surface shape of the conjunctiva rather than the spherical surface
  • the lens front surface of the peripheral part is changed in the thickness direction in the circumferential direction to set a thick part and a thin part that exert a circumferential positioning action in the wearing state.
  • the contact lens having a size that covers the conjunctiva by changing the lift amount in the circumferential direction in the peripheral portion of the contact lens and specifying the circumferential position in the wearing state. It is possible to advantageously manufacture a contact lens with a novel structure that exhibits excellent positional stability and wearing feeling due to the interaction between the conjunctiva and the rear surface of the lens, and avoids the problem of eyeball staining. .
  • the lens position stability and wearing feeling in the wearing state are achieved by a synergistic effect of having a large diameter enough to cover the conjunctiva and approximating the rear surface of the lens to the conjunctival surface having a large asphericity.
  • a contact lens with a novel structure that can be significantly improved and effectively avoids eye staining that is a concern in the conjunctiva can be advantageously provided.
  • FIG. 4 is an explanatory diagram showing the vertical cross section shown in FIG. 2 and the horizontal cross section shown in FIG. Explanatory drawing which expands and shows the principal part in FIG.
  • the average value of the measurement results of the cornea and conjunctiva shape in a plurality of human eyes is shown, (a) shows the measurement points in the measurement together with a photograph of the human eye, (b) is a graph of the measurement results, (c ) Indicates specific values of the measurement results.
  • FIG. 14 is an explanatory diagram showing the vertical cross section shown in FIG. 12 and the horizontal cross section shown in FIG. 13 superimposed on a common lens geometric center axis. Explanatory drawing which expands and shows the principal part in FIG.
  • the front view corresponding to FIG. 1 which shows the contact lens as 3rd embodiment of this invention.
  • FIG. 17 is a vertical sectional view corresponding to FIG. 2 showing a contact lens as a third embodiment of the present invention, and is a sectional view taken along line XVII-XVII in FIG. 16.
  • FIG. 17 is a horizontal sectional view corresponding to FIG.
  • FIG. 7 which shows another example of the measurement result in the conjunctival shape of a human eye.
  • the graph corresponding to FIG. 8 which shows the circumferential direction lift amount of 3rd embodiment of this invention.
  • the vertical sectional view corresponding to FIG. 17 which shows the contact lens as 4th embodiment of this invention.
  • the horizontal sectional view corresponding to FIG. 18 which shows the contact lens as 4th embodiment of this invention.
  • FIG. 19 The principal part expanded sectional explanatory view corresponding to FIG. 19 which shows the contact lens as 4th embodiment of this invention.
  • the front view corresponding to FIG. 1 which shows the contact lens as 5th embodiment of this invention.
  • FIG. 26 is a vertical sectional view corresponding to FIG. 2 and showing a contact lens as a fifth embodiment of the present invention, and is a sectional view taken along the line XXVI-XXVI in FIG. 25.
  • FIG. 26 is a horizontal sectional view corresponding to FIG. 3 and showing a XXVII-XXVII sectional view of FIG. 25, showing a contact lens as a fifth embodiment of the present invention.
  • the principal part expanded sectional explanatory drawing corresponding to FIG. 19 which shows the contact lens as 5th embodiment of this invention.
  • FIG. 25 which shows the contact lens as 6th embodiment of this invention.
  • FIG. 1 which shows the contact lens as 7th embodiment of this invention.
  • FIG. 31 is a vertical sectional view corresponding to FIG. 2, showing a contact lens as a seventh embodiment of the present invention, and a sectional view taken along the line XXXI-XXXI in FIG. 30.
  • FIG. 30 is a horizontal sectional view corresponding to FIG. 3 and showing a XXXII-XXXII sectional view of FIG. 30 showing a contact lens as a seventh embodiment of the present invention.
  • the principal part expanded sectional explanatory drawing corresponding to FIG. 19 which shows the contact lens as 7th embodiment of this invention.
  • the graph corresponding to FIG. 7 which shows the further another example of the lift amount in the contact lens of 1st embodiment as 8th embodiment of this invention.
  • the figure corresponding to FIG. 7 which shows another example of the measurement result in the conjunctival shape of a human eye.
  • FIGS. 1 to 3 show a contact lens 10 having a structure according to the present invention.
  • the contact lens 10 has a substantially spherical crown shape as a whole, and is used by being worn over the surface of the cornea in the eyeball, as is well known.
  • the lead diameter direction line 14 and the horizontal diameter direction line 16 that are orthogonal to each other through the lens geometric center axis 12 that is the center axis of the lens outer shape are vertically and horizontally in the worn state. It is said.
  • the contact lens 10 of the present embodiment may be either a soft type or a hard type contact lens.
  • the material is not limited.
  • a soft type contact lens conventionally known water-containing materials such as PHEMA (polyhydroxyethyl methacrylate) and PVP (polyvinylpyrrolidone), acrylic rubber, silicone and the like Non-hydrous materials can also be used.
  • a hard contact lens a material such as a gas permeable lens (RGP lens) such as PMMA (polymethyl methacrylate) or SiMA / MMA polymer can be adopted.
  • RGP lens gas permeable lens
  • the contact lens 10 of the present embodiment has a circular shape in a front view shown in FIG. 1, and has a substantially convex spherical crown surface as shown in FIGS.
  • the contact lens 10 is structurally structured such that an optical part 22 spreading in a substantially circular shape in front view in a central part, and a peripheral part 24 spreading in a substantially annular shape in front view so as to surround the optical part 22; It is comprised by the edge part 26 which is located in the outermost periphery part of a lens around the periphery part 24, and connects a lens front-back surface.
  • the optical unit 22 has an appropriate curvature radius with respect to the lens front surface 18 and the lens rear surface 20 so as to realize, for example, a single focal point or two or more multifocal lens powers as required optical characteristics such as a vision correction function.
  • An optical surface shape based on a spherical surface or an aspherical surface is provided.
  • the optical unit 22 may have a specific directionality in the circumferential direction of the optical unit 22, for example, for correcting astigmatism having a cylindrical lens power in addition to optical characteristics for correcting myopia and hyperopia having a spherical lens power. It may have the following optical characteristics. Alternatively, it may be an optical characteristic such as a bifocal lens or a multifocal lens for correcting presbyopia having a plurality of lens powers, or a progressive lens whose focus changes continuously.
  • the geometric center axis of the optical unit 22 is made equal to the lens geometric center axis 12, and the thickness dimension of the optical unit 22 is substantially equal at a symmetrical position with respect to the lens geometric center axis 12.
  • the center of gravity of the optical unit 22 is positioned on the geometric center axis of the optical unit 22.
  • the optical unit 22 of the contact lens 10 is not provided with a prism for the purpose of stabilizing the circumferential position by biasing the center of gravity downward.
  • the peripheral portion 24 has an outer diameter dimension and a radial width dimension extending from the cornea of the human eye to the outer peripheral side and covering the conjunctiva in a worn state, and is formed in an annular band shape in a front view shown in FIG. Yes.
  • the inner diameter dimension: ⁇ Pa, the outer diameter dimension: ⁇ Pb, and the radial width dimension: Bp are set within the ranges represented by the following expressions, respectively. 6mm ⁇ ⁇ Pa ⁇ 10mm 10mm ⁇ ⁇ Pb ⁇ 18mm 1mm ⁇ Bp ⁇ 5mm
  • the inner diameter dimension of the peripheral portion 24 is less than 6 mm, it is difficult to set a sufficient area area in the optical portion 22.
  • the inner diameter dimension of the peripheral portion 24 is more than 10 mm, the peripheral portion It is difficult to set a sufficient radial width dimension to 24.
  • the outer diameter dimension of the peripheral portion 24: ⁇ Pb is less than 10 mm, it is difficult to set a sufficient radial width dimension in the peripheral portion 24, and the conjunctiva of the human eye can be stably provided with a sufficient area in the worn state.
  • the outer diameter dimension of the peripheral portion 24: ⁇ Pb exceeds 18 mm
  • the wear on the human eye may be hindered or excessive interference with the eyelid may be a problem.
  • the radial width dimension of the peripheral portion 24: Bp is less than 1 mm, it is difficult to stably cover the conjunctiva of the human eye with a sufficient area in a worn state, while the radial width of the peripheral portion 24 Dimension: When Bp exceeds 5 mm, it is difficult to set a sufficient area area in the optical unit 22, or problems such as a problem in wearing due to an excessive lens outer diameter occur.
  • a transition region 28 that is smoothly connected in the radial direction to the outer peripheral edge of the optical unit 22 is formed on both the lens front surface 18 and the lens rear surface 20 at the inner peripheral edge of the peripheral portion 24.
  • a transition region 28 is not essential, but the transition region 28 is provided to connect the optical portion 22 and the peripheral portion 24 with a surface shape that smoothly connects without having a break point in the lens radial direction. As a result, the feeling of wearing can be further improved.
  • the peripheral portion 24 since the peripheral portion 24 does not affect the optical characteristics of the contact lens 10, the shape thereof can be set without being restricted by the required optical characteristics.
  • the shape of the lens front surface 18 and the lens rear surface 20 of the peripheral portion 24 is set so that the contact lens 10 can be satisfactorily exhibited positional stability and a feeling of wearing.
  • the peripheral portion 24 is connected to the optical portion 22 with a smooth surface shape without a break point by providing the above-described transition region 28 on the inner peripheral side thereof. It is desirable. Further, at the outer peripheral edge portion of the peripheral portion 24, it is desirable that both the lens front and rear surfaces 18 and 20 are connected to the edge portion 26 in a smooth shape without a break point.
  • the lens rear surface 20 of the peripheral portion 24 in the lens circumferential direction cross section is set so that the lift amount can be changed in the circumferential direction.
  • the lens rear surface 20 of the peripheral portion 24 is apparent from FIG. 4 in which the lead diameter direction cross section of FIG. 2 and the horizontal diameter direction cross section of FIG. 3 are superimposed and FIG.
  • FIG. 4 the lead diameter direction cross section of FIG. 2 and the horizontal diameter direction cross section of FIG. 3 are superimposed and FIG.
  • the position in the lens geometric central axis 12 direction differs depending on the circumferential position.
  • the lift amount is the position of the lens rear surface 20 in the radial cross section expressed by the amount of deviation in the direction of the lens geometric central axis 12 with respect to a reference surface such as an extension surface of the lens rear surface 20 in the optical unit 22. .
  • a reference surface such as an extension surface of the lens rear surface 20 in the optical unit 22.
  • the reference surface 20 a the surface located closest to the rear surface side (the lower side in FIG. 5) in the direction of the lens geometric central axis 12 is defined as the reference surface 20 a.
  • the amount of positional displacement of the lens rear surface 20 relative to the reference surface 20a in the direction of the lens geometric central axis 12 at the intermediate portion in the radial direction 24 is defined as a lift amount: ⁇ x (see FIG. 5).
  • the radial cross-sectional shape of the lens rear surface 20 may also vary in the circumferential direction.
  • the inclination of the lens rear surface 20 changes to change the edge lift amount (the lens geometry of the edge portion 26).
  • the position in the direction of the central axis 12) is also different.
  • a lift amount: ⁇ x and a radial cross-sectional shape that realizes the lift amount are set at a plurality of locations such as every 10 degrees around the lens geometric central axis 12.
  • the radial cross-sectional shape can be set by a complementing method such as linear interpolation, polynomial interpolation, or spline interpolation between the circumferential directions of the plurality of locations.
  • the change in the circumferential direction of the lift amount: ⁇ x is not particularly limited, and can be set by an arbitrary rational function, for example.
  • FIGS. 6A to 6C show changes in the surface shape of the general cornea and conjunctiva, that is, the ocular optical system corresponding to the direction of the lens geometric central axis 12 with respect to the center of the cornea. The depth of the peripheral region of the cornea in the optical axis direction is shown.
  • FIG. 6A is a photograph of the human eye and shows measurement points when measuring the surface shape.
  • 135 above the ears
  • 180 (ears) 180 (ears), 225 (below the ears), 270 (below), and 315 (below the nose).
  • 135 above the ears
  • 180 (ears) 180 (ears), 225 (be
  • 6 (b) and 6 (c) show the depth in the optical axis direction of each point when the center of the cornea is 0 as a result of such measurement.
  • the cornea region of the eye has a spherical shape with a substantially constant curvature.
  • FIG. 7 and FIGS. 20 and 34 to be described later show three eyes characteristic of the shape of the conjunctiva among the 141 eyes measured.
  • FIG. 7A is a graph showing the values of FIG. 7B.
  • the lens rear surface 20 can be made into a shape corresponding to the surface shape of the conjunctiva of the human eye.
  • the magnitude of the lift amount: ⁇ x may be a shape corresponding to the individual conjunctival shape of the contact lens user, or may be obtained from an average value of a plurality of human eyes. Further, it may be obtained from the bending rigidity of the lens based on the lens material or the processing conditions of the contact lens. Further, it is preferable that the maximum value of ⁇ x at the position of the diameter ⁇ 11 mm centering on the lens geometric center axis 12 of the contact lens 10 is set to be in the range of 0.03 ⁇ ⁇ x ⁇ 0.45 mm. More preferably, the maximum value of ⁇ x is set in a range of 0.05 ⁇ ⁇ x ⁇ 0.35 mm.
  • the maximum value of ⁇ x is less than 0.03 mm, the shape of the lens rear surface 20 at the peripheral portion 24 is difficult to follow the surface shape of the conjunctiva, and the effect of improving the wearing feeling described later may not be sufficiently exhibited. Moreover, when the maximum value of ⁇ x exceeds 0.45 mm, the peripheral portion 24 is lifted, and there is a possibility that bubbles may enter between the contact lens 10 and the conjunctiva.
  • the lens front surface 18 in the peripheral portion 24 of the contact lens 10 is thin-walled to position the contact lens 10 in the circumferential direction in a worn state by subjecting the thickness change to the circumferential direction.
  • the part 30 and the thick part 32, and the change area 34 located between them are provided.
  • Each of the thin portion 30, the thick portion 32, and the change region 34 extends in the circumferential direction at a predetermined angle around the lens geometric central axis 12, and has a different peripheral lens thickness: t. Yes.
  • the peripheral lens thickness: t represents the distance between the lens front surface 18 and the lens rear surface 20 in the normal direction of the radially intermediate portion in the peripheral portion 24.
  • FIG. 5 is an enlarged view of a main part of FIG.
  • the solid line represents the thin portion 30, and the two-dot chain line represents the thick portion 32.
  • the peripheral lens thickness: t can be set in consideration of the eyelid shape of the individual contact lens user and the thickness or pressure of the eyelid, but the eyelid shape of the plurality of human eyes and the thickness or pressure of the eyelid You may obtain
  • the position of the center of gravity of the lens based on the shape of the lens and the bending rigidity of the lens based on the lens material may be considered together.
  • the maximum value of the lens thickness: Ta (see FIG. 5) of the thin portion 30 is preferably set within a range of 0.04 ⁇ Ta ⁇ 0.2 mm, and more preferably 0.06. ⁇ Ta ⁇ 0.15 mm.
  • the maximum value of the lens thickness Tb (see FIG.
  • Tb ⁇ Ta is preferably set within a range of 0.1 ⁇ (Tb ⁇ Ta) ⁇ 0.4 mm, and more preferably is set to a value of 0.0. 15 ⁇ (Tb ⁇ Ta) ⁇ 0.3 mm.
  • the maximum thickness of the lens portion: Ta of the thin portion 30 is less than 0.04 mm, the strength of the thin portion 30 of the contact lens 10 becomes insufficient, wrinkles occur, or the contact lens 10 is damaged. There is a risk of If the maximum value of the lens thickness: Ta of the thin portion 30 exceeds 0.2 mm, the difference from the thick portion 32 becomes insufficient, and the circumferential positioning effect described later may not be sufficiently exhibited. Similarly, if the maximum value of the lens thickness: Tb of the thick portion 32 is less than 0.2 mm, the difference from the thin portion 30 becomes insufficient, and the circumferential positioning effect described later may not be sufficiently exhibited. .
  • the wearing feeling of the contact lens 10 may be deteriorated or the oxygen transmission rate may be lowered.
  • the difference in lens thickness between the thin portion 30 and the thick portion 32 If Tb ⁇ Ta is less than 0.1 mm, the difference in thickness between the thin portion 30 and the thick portion 32 becomes insufficient, and a circumferential thickness described later. The direction positioning effect may not be fully exhibited.
  • Tb ⁇ Ta exceeds 0.4 mm, the change in the change region 34 between the thin portion 30 and the thick portion 32 becomes steep. The wearing feeling of the contact lens 10 may be deteriorated.
  • the so-called double thin structure is formed.
  • These thin-walled portions 30, 30 are line symmetrical with respect to the horizontal radial direction line 16, and extend to the left and right sides in the circumferential direction across the lead diameter direction line 14.
  • the thick portions 32 and 32 are line symmetrical with respect to the lead diameter direction line 14, and extend to the upper and lower sides in the circumferential direction across the horizontal diameter direction line 16.
  • the distance between the opposing surfaces of 18 and the reference surface 20a, the distance between the opposing surfaces of the lens rear surface 20 and the reference surface 20a, and the change in the peripheral lens thickness: t, which is the difference between them, are shown.
  • the change in the thickness in the circumferential direction of the lens front surface 18 is indicated by a solid line
  • the change in the thickness in the circumferential direction of the lens rear surface 20 is indicated by an alternate long and short dash line.
  • S: t is shown.
  • the pair of thin portions 30, 30 extend from the lead diameter direction line 14 to the left and right sides in the circumferential direction with the same dimension (angle). 14 also has a line-symmetric shape. Further, the pair of thick portions 32, 32 extend from the horizontal radial line 16 to the upper and lower sides in the circumferential direction with the same dimension (angle), and are also symmetrical with respect to the horizontal radial line 16. Yes.
  • each change region 34 positioned between the pair of thin portions 30, 30 and the pair of thick portions 32, 32 is also the lead diameter direction line 14 and the horizontal diameter direction line 16.
  • the shape is line symmetrical.
  • the lens front surface 18 in the peripheral portion 24 of the contact lens 10 is axisymmetric with respect to the lead diameter direction line 14 and the horizontal radial direction line 16, and as described above, the lens rear surface in the peripheral portion 24. 20 is also symmetrical with respect to the lead diameter direction line 14 and the horizontal diameter direction line 16.
  • the peripheral portion 24 of the contact lens 10 is axisymmetric with respect to the lead diameter direction line 14 and the horizontal diameter direction line 16.
  • the lens front surface 18 as a whole is substantially curved in an arc shape in the radial cross section in both the thin portion 30 and the thick portion 32.
  • the rear surface 20 of the lens is an arc-shaped substantially curved concave surface as a whole. Note that a concave portion may be partially provided on the lens front surface 18 of the peripheral portion 24 and a convex portion may be partially provided on the lens rear surface 20 due to a change in curvature in the radial direction.
  • the lens front surface 18 in the thin portion 30 and the thick portion 32 has substantially the same thickness as the thickness change of the lens rear surface 20 corresponding to each region. There is a change.
  • the peripheral lens thickness: t (Ta in the thin portion 30 and Tb in the thick portion 32) is constant.
  • Each of the thin portion 30 and the thick portion 32 having such a shape extends in the circumferential direction around the lens geometric center axis 12 at predetermined angles ⁇ a and ⁇ b (see FIG. 1).
  • These ⁇ a and ⁇ b are preferably set in the ranges of 0 ° ⁇ ⁇ a ⁇ 80 ° and 0 ° ⁇ ⁇ b ⁇ 80 °, respectively, and more preferably 30 ° ⁇ ⁇ a ⁇ 60.
  • the change region 34 provided between the thin portion 30 and the thick portion 32 extends at a predetermined angle ⁇ ab (see FIG.
  • the lens front surface 18 of each of the thin portion 30 and the thick portion 32 does not necessarily have a constant thickness in the circumferential direction, and the thickness may change in the circumferential direction. .
  • the specific inclination angle and shape of the lens front surface 18 in the change region 34 are not limited, but the aspect of the inclination angle in the circumferential direction of the lens front surface 18 in the change region 34 is expressed by an appropriate function. It is desirable. Specifically, in addition to a linear function and a constant inclination angle, for example, a spline function that is smoothly connected to the thin portion 30 and the thick portion 32, a trigonometric function such as sin and sin 2, and the like. May be. As shown in FIG. 9, the change area 34 of the present embodiment is represented by a linear function.
  • each change region 34 of the present embodiment has a line symmetrical shape with respect to the lead diameter direction line 14 and the horizontal radial direction line 16, whereby the peripheral portion 24 also has the lead diameter direction line 14 and the horizontal radial direction line.
  • the shape is line-symmetric with respect to 16
  • the change regions 34 are not necessarily line-symmetric in the present invention. That is, as in the embodiment described later, the shapes of the lens front surface 18 and the lens rear surface 20 in each change region 34 may be different.
  • the contact lens 10 having the peripheral portion 24 having such a structure can be formed by directly cutting a block preliminarily polymerized with an appropriate material. In order to achieve high quality stability, it is desirable to manufacture by molding.
  • a male die 38 having a substantially spherical convex shaped molding surface 36 corresponding to the lens rear surface 20 and a substantially spherical concave shaped molding surface 40 corresponding to the lens front surface 18 are provided.
  • a molding method for manufacturing the contact lens 10 having the objective lens front and rear surfaces 18 and 20 by polymer molding the monomer is suitably employed.
  • the molding surfaces 40 and 36 of the male and female molds 42 and 38 are respectively provided with molding surfaces that give the optical portion 22 and the peripheral portion 24 of a desired shape.
  • An optical part 22 having both predetermined spherical lens characteristics and cylindrical lens characteristics is formed, and a peripheral part 24 to which a change in the circumferential direction of the predetermined thickness as described above is formed. Yes.
  • the circumferential shape of the rear surface 20 of the lens that is, the circumferential shape of the lift amount: ⁇ x is designed according to the surface shape of the conjunctiva.
  • the circumferential shape of each of the thin portion 30, the thick portion 32, and the change region 34 that is, the peripheral lens thickness: t is designed.
  • the dimensions of the lift amount: ⁇ x and the peripheral lens thickness: t are set in consideration of the shape in the circumferential direction and the thickness of the contact lens 10 based on the lens material and oxygen permeability.
  • the shape of the lens front and back surfaces 18, 20 of the peripheral portion 24 is determined, and the contact lens 10 is manufactured with these shapes. Since the lens front and rear surfaces 18 and 20 of the peripheral portion 24 are provided with predetermined inclined surfaces or the like at positions corresponding to each other, the male and female molds 42 and 38 are circumferentially engaged with each other. Relative positioning means are provided.
  • the contact lens 10 having such a shape is worn so as to cover the surface of the conjunctiva from the cornea of the human eye 46 as shown in FIG.
  • the lens rear surface 20 is not shaped to correspond to the conjunctiva surface. Therefore, when the conventional soft contact lens is worn on the human eye where the nose side of the conjunctiva is relatively raised, the contact force of the contact lens tends to concentrate and act on this relatively raised portion. There was a possibility that the feeling of wearing was worsened by being pressed.
  • the conjunctival pressure that deteriorates the wearing feeling can be reduced or avoided, and the wearing feeling can be improved.
  • the peripheral portion 24 of the contact lens 10 of the present embodiment has a line-symmetric shape with respect to the lead diameter direction line 14 and the horizontal diameter direction line 16. This eliminates the need for the contact lens user to wear by discriminating the vertical and horizontal directions. Furthermore, the shape of the contact lens 10 can be reduced by such a line-symmetric shape, and the contact lens manufacturer, seller, and user can be used in the manufacture, management, stock, and wear of the contact lens 10. The labor burden can be greatly reduced.
  • the pair of thick portions 32, 32 are located on the left and right sides, and the pair of thin portions 30, 30 are located on the upper and lower sides. Then, the circumferential positioning of the contact lens 10 is realized by the mass balancing action of the pair of thick portions 32, 32 located on the left and right sides.
  • the eyelid pressure exerted on the change region 34 and the thick portions 32 and 32 of the contact lens 10 and the pushing action from the eyelid (lens slide-out action) due to blinking and biting under the eyelids are also caused by the contact lens 10.
  • the stabilizing effect to the expected circumferential position (the position shown in FIG.
  • the peripheral lens thickness: t is not increased, the pushing action by the further eyelid can be exhibited and the circumferential stability can be improved. Furthermore, since the peripheral lens thickness: t does not increase, the oxygen permeability of the contact lens 10 is not impaired.
  • FIGS. 12 to 15 show a contact lens 48 as a second embodiment of the present invention.
  • the same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the front view of the contact lens 48 of the present embodiment is substantially the same as the front view (FIG. 1) of the contact lens 10 of the first embodiment, and therefore will be omitted.
  • FIGS. 12 to 15 in the present embodiment correspond to FIGS. 2 to 5 in the first embodiment, respectively.
  • the contact lens 48 of the present embodiment is a lens in which the position of the lens geometric central axis 12 in the circumferential direction is different in the edge portion 26 of the contact lens 10 of the first embodiment. That is, the contact lens 48 of this embodiment employs an edge lift at the edge portion 26.
  • An edge lift is set on the edge portion 26 extending continuously from the pair of thick portions 32, 32 in FIG.
  • the edge portion 26 of the contact lens 48 of the present embodiment changes by a predetermined edge lift amount ⁇ y (see FIG. 15) in the circumferential direction. That is, the edge lift amount: ⁇ y is the amount of change in the edge portion 26 when the rearmost side (downward in FIG. 15) is the reference position in the lens geometric central axis 12 direction.
  • the change shape of the edge lift amount ⁇ y in the circumferential direction of the present embodiment is the change shape of the lift amount ⁇ x of the circumferential direction (the change in the lift amount in the circumferential direction of the present embodiment conforms to the first embodiment. Therefore, it corresponds to the shape of FIG.
  • each edge portion 26 extending continuously from each change region 34 has a line-symmetric shape with respect to the lead diameter direction line 14 and the horizontal diameter direction line 16.
  • the peripheral portion 24 of the contact lens 48 of the present embodiment has a line-symmetric shape with respect to the lead diameter direction line 14 and the horizontal diameter direction line 16.
  • the maximum value of ⁇ y at the position of the diameter ⁇ 14 mm is preferably set to 0.05 ⁇ ⁇ y ⁇ 0.7 mm, more preferably 0.3 ⁇ ⁇ y ⁇ 0.6 mm.
  • the maximum value of ⁇ y is less than 0.05 mm, the shape of the lens rear surface 20 in the peripheral portion 24 is difficult to follow the surface shape of the conjunctiva. There is a possibility that the feeling improving effect may not be sufficiently exhibited.
  • the maximum value of ⁇ y exceeds 0.7 mm the peripheral portion 24 may be lifted by tears or the like, and air bubbles may enter between the contact lens 48 and the conjunctiva.
  • the shape may further correspond to the surface shape of the conjunctiva of the human eye that is relatively raised on the side. From this, the contact lens 48 of this embodiment can reduce the conjunctival pressure more than the contact lens 10 of the first embodiment, and can further improve wearing feeling.
  • the pair of thin portions 30 and 30 are formed in the up and down direction in the worn state, and the pair of thick portions 32 and 32 are formed in the left and right direction in the worn state. For this reason, the effect of stabilizing the circumferential direction is exhibited as in the first embodiment.
  • the peripheral portion 24 of the contact lens 48 of the present embodiment has a line-symmetric shape with respect to the lead diameter direction line 14 and the horizontal diameter direction line 16 as in the first embodiment. Therefore, as in the first embodiment, an effect of reducing the labor burden in manufacturing, management, stocking, and wearing of the contact lens 48 can be exhibited.
  • the edge portion 26 is axisymmetric with respect to the lead diameter direction line 14 and the horizontal diameter direction line 16, but this is not necessarily required in the present invention.
  • FIGS. 16 to 19 show a contact lens 50 as a third embodiment of the present invention. 16 to 19 in the present embodiment correspond to FIGS. 1 to 3 and FIG. 5 in the first embodiment, respectively.
  • ⁇ x is set to 0 which is the minimum value.
  • the position of the front face 18 is different.
  • the solid line is the thin part 30
  • lens rear surfaces 20 of the both thick portions 32 and 32a are shown overlapping, these lens rear surfaces 20 are indicated by alternate long and short dash lines.
  • it is a line symmetrical shape.
  • the peripheral portion 24 of the contact lens 50 of the present embodiment is axisymmetric with respect to the horizontal radial direction line 16, while being asymmetrical with respect to the lead diameter direction line 14.
  • FIG. 20A is a graph showing the values in FIG.
  • the contact lens 50 of the present embodiment can be improved in wearing feeling compared to the contact lens 10 of the first embodiment.
  • the first embodiment Similar to the embodiment, circumferential stability can be achieved.
  • the position of the lens front surface 18 of the pair of thick portions 32 and 32a is different, but the effect of the circumferential stability is sufficiently exhibited.
  • the positions of the lens front surface 18 in the pair of thin portions 30 and 30 or the pair of thick portions 32 and 32 are not necessarily the same.
  • FIGS. 22 to 24 show a contact lens 52 as a fourth embodiment of the present invention.
  • the front view of the contact lens 52 of the present embodiment is substantially the same as the front view (FIG. 16) of the contact lens 50 of the third embodiment, and will not be described.
  • 22 to 24 in this embodiment correspond to FIGS. 17 to 19 in the third embodiment, respectively.
  • 32a is shown.
  • the lens rear surfaces 20 of the thin portion 30 and the thick portion 32a are shown to overlap, these lens rear surfaces 20 are indicated by solid lines.
  • the contact lens 52 of the present embodiment employs an edge lift for the contact lens 50 of the third embodiment.
  • the change shape of the edge lift amount ⁇ y in the circumferential direction of this embodiment is the change shape of the lift amount ⁇ x in the circumferential direction (the change in the lift amount in the circumferential direction of this embodiment conforms to the third embodiment. ).
  • the shape may further correspond to the surface shape of the conjunctiva of the human eye in which the nose side is relatively raised.
  • the lens rear surface 20 of the peripheral portion 24 of the present embodiment can have a shape more corresponding to the surface shape of the conjunctiva.
  • the contact lens 52 of the present embodiment can be further improved in wear feeling compared to the contact lenses 10, 48, 50 in the first to third embodiments.
  • the pair of thin portions 30 and 30 are formed in the vertical direction in the wearing state, and the pair of thick portions 32 and 32a are formed in the left and right direction. Similar to the embodiment, the effect of circumferential stability can be exhibited.
  • FIGS. 25 to 28 show a contact lens 54 as a fifth embodiment of the present invention.
  • 25 to 28 in the present embodiment correspond to FIGS. 1 to 3 and FIG. 5 in the first embodiment, respectively.
  • the thin portion 56 and the thick portion 58 extend in the circumferential direction, straddle the lead diameter direction line 14, and have a line symmetrical shape with respect to the lead diameter direction line 14.
  • the change regions 60 and 60 extend in the circumferential direction, and the lens front surface 18 in each change region 60 and 60 straddles the horizontal radial line 16 and is symmetrical with respect to the horizontal radial line 16.
  • the change regions 60 and 60 are symmetrical with respect to the lead diameter direction line 14.
  • the lens front surface 18 in the peripheral portion 24 of the present embodiment is axisymmetric with respect to the lead diameter direction line 14 and is asymmetric with respect to the horizontal diameter direction line 16.
  • the thin portion 56 and the thick portion 58 extend at predetermined angles ⁇ a ′ and ⁇ b ′ (see FIG. 25), respectively, around the lens geometric center axis 12 as in the first embodiment. Yes.
  • These ⁇ a ′ and ⁇ b ′ are preferably set within the ranges of 0 degrees ⁇ ⁇ a ′ ⁇ 120 degrees and 20 degrees ⁇ ⁇ b ′ ⁇ 120 degrees, and more preferably 30 degrees ⁇ ⁇ a ′ ⁇ 80 degrees and 40 degrees ⁇ ⁇ b ′ ⁇ 100 degrees.
  • each change region 60 provided between the thin portion 56 and the thick portion 58 extends at a predetermined angle ⁇ ab ′ (see FIG.
  • FIG. 28 is an enlarged view of a main part of the figure in which the thin-walled portion 56, the thick-walled portion 58, and the change region 60 are overlapped with the lens geometric center axis 12 in each of the cross-sectional views of FIGS. Has been.
  • the solid line indicates the change region 60
  • the alternate long and short dash line indicates the thin portion 56
  • the alternate long and two short dashes line indicates the thick portion 58.
  • the lens rear surface 20 in the thin portion 56 and the thick portion 58 is shown overlapping, these lens rear surfaces 20 are indicated by alternate long and short dash lines. As shown in FIG.
  • a pair of thin portions 30, 30 are provided in the up-down direction in the wearing state, and a pair of thick portions 32, 32 are provided in the left-right direction.
  • the effect of circumferential positioning is demonstrated based on the weight balance.
  • the so-called prism ballast structure in which the thin portion 56 is provided on the upper side and the thick portion 58 is provided on the lower side as in the contact lens 54 of the present embodiment, based on the weight balance.
  • the circumferential positioning effect can be exhibited.
  • peripheral portion 24 of the contact lens 54 of the present embodiment has a left-right symmetrical shape in the worn state, the contact lens user can wear it without discriminating the left and right of the contact lens 54. .
  • FIG. 29 shows a contact lens 62 as a sixth embodiment of the present invention.
  • the contact lens 62 according to the present embodiment is arranged in the horizontal direction with the boundaries between the thin portion 56 and the change region 60 and between the thick portion 58 and the change region 60 in the contact lens 54 of the fifth embodiment (see FIG. 29). It extends in the left-right direction).
  • a cross-sectional view and a vertical cross-sectional view of the contact lens 62 in this embodiment, and a view obtained by superimposing the respective cross-sectional views are substantially the same as FIGS. 26 to 28 of the fifth embodiment, and are omitted. To do.
  • the thin wall portion 56 and the change region 60 and the boundary between the thick wall portion 58 and the change region 60 are set in the horizontal direction (left-right direction in FIG. 29) in the worn state, thereby reducing the thickness.
  • the area of the part 56 and the thick part 58 can be widened.
  • the weight difference of the thin part 56 and the thick part 58 can be enlarged, and the further improvement of the circumferential direction positioning effect of the contact lens 62 can be aimed at.
  • the boundaries between the thin portion 56 and the change region 60 and between the thick portion 58 and the change region 60 do not need to extend in the radial direction.
  • all the boundaries may extend in the horizontal direction, or some boundaries may extend in the horizontal direction. Alternatively, these boundaries may extend in the vertical direction (vertical direction in FIG. 29) in a worn state.
  • the peripheral portion 24 of the contact lens 62 of the present embodiment is symmetric in the wearing state, so that the contact lens user discriminates the left and right of the contact lens 62. It is possible to wear without doing.
  • FIGS. 30 to 33 show a contact lens 64 as a seventh embodiment of the present invention.
  • 30 to 33 in the present embodiment correspond to FIGS. 1 to 3 and FIG. 5 in the first embodiment, respectively.
  • the thin portion 56, the thick portion 58, the intermediate portion 66, and the change regions 60 and 68 extend in the circumferential direction.
  • the thin portion 56 and the intermediate portion 66 straddle the lead diameter direction line 14 and are symmetrical with respect to the lead diameter direction line 14.
  • each of the pair of thick portions 58, 58, the change regions 60, 60, and the change regions 68, 68 are symmetrical with respect to the lead diameter direction line 14, respectively.
  • the lens front surface 18 in the peripheral portion 24 of the present embodiment is axisymmetric with respect to the lead diameter direction line 14 and is asymmetric with respect to the horizontal diameter direction line 16.
  • the intermediate portion 66 has a predetermined lens thickness: Tc, and extends in the circumferential direction with a fixed shape.
  • the lens thickness Tc of the intermediate portion 66 is Tc ⁇ Tb as compared with the lens thickness Tb of the thick portion 58. Further, the lens thickness Tc of the intermediate portion 66 does not depend on the lens thickness Ta of the thin portion 56, and Tc may be made smaller, larger, or equal to Ta. Note that the lens thickness Tc of the intermediate portion 66 of the present embodiment is set to the middle of the lens thickness Ta of the thin portion 56 and the lens thickness Tb of the thick portion 58, that is, Ta ⁇ Tc ⁇ Tb. .
  • the maximum value of the lens thickness Tc of the intermediate portion 66 is preferably 0.2 ⁇ Tc ⁇ 0.5 mm, and more preferably 0.25 ⁇ Tc ⁇ 0.4 mm. . If the maximum value of Tc is less than 0.2 mm, the difference between the intermediate portion 66 and the pair of thick portions 58 and 58 becomes large, and the change regions 68 and 68 may have a steep shape. In addition, when the maximum value of Tc exceeds 0.5 mm, the difference between the intermediate portion 66 and the pair of thick portions 58 and 58 is reduced, and a substantially thick region is widened, so that wearing feeling may be deteriorated. There is.
  • the thin portion 56 and the pair of thick portions 58 and 58 are respectively formed at predetermined angles ⁇ a ′′ and ⁇ b ′′ around the lens geometric central axis 12 as in the fifth embodiment (see FIG. 30).
  • These ⁇ a ′′ and ⁇ b ′′ are preferably set within the ranges of 0 degrees ⁇ ⁇ a ′′ ⁇ 80 degrees and 0 degrees ⁇ ⁇ b ′′ ⁇ 60 degrees, and more preferably 30 degrees ⁇ ⁇ a ′′ ⁇ 60 degrees and 20 degrees ⁇ ⁇ b ⁇ 40 degrees.
  • each change region 60 provided between the thin portion 56 and each thick portion 58 extends at a predetermined angle ⁇ ab ′′ (see FIG.
  • the intermediate portion 66 extends around the lens geometric center axis 12 at a predetermined angle ⁇ c (see FIG. 30), and is preferably in the range of 0 ° ⁇ ⁇ c ⁇ 60 °, and more preferably. 20 degrees ⁇ ⁇ c ⁇ 40 degrees.
  • Each change region 68 provided between the intermediate portion 66 and each thick portion 58 extends around the lens geometric center axis 12 at a predetermined angle ⁇ bc (see FIG.
  • FIG. 33 shows an enlarged view of the main part of the figure in which the lens geometric center axis 12 in each of the sectional views of FIGS. Has been.
  • the intermediate portion 66 is not shown.
  • the solid line indicates the change region 60
  • the alternate long and short dash line indicates the thin portion 56
  • the alternate long and two short dashes line indicates the thick portion 58.
  • the lens rear surface 20 in the thin portion 56 and the thick portion 58 is shown overlapping, the lens rear surface 20 is indicated by a one-dot chain line. As shown in FIG.
  • Lift amount: ⁇ x is set.
  • the contact lens 64 of the present embodiment has a so-called periballast structure in which a pair of thick portions 58, 58 are provided on the left and right in the horizontal radial direction in the worn state, and further, the thin portion 56 is disposed on the upper side in the worn state. Is provided. Thereby, the circumferential positioning effect based on these weight balances can be exhibited like the said 5th embodiment.
  • the peripheral portion 24 of the contact lens 64 of the present embodiment is symmetrical in the worn state, so that the contact lens user discriminates the left and right of the contact lens 64. It is possible to wear without doing.
  • FIG. 34 shows a circumferential change of the lift amount: ⁇ x of the lens rear surface 20 in the contact lens according to the eighth embodiment of the present invention.
  • the shape of the lens front surface 18 is omitted in this embodiment because any of the lens front surfaces 18 in the first to seventh embodiments can be adopted.
  • FIG. 35A is a graph showing the values of FIG.
  • the lens rear surface 20 in the peripheral portion 24 of the contact lens of the present embodiment having the above-described shape further corresponds to the average surface shape of the conjunctiva of the human eye, and the feeling of wearing is further increased. Improvement can be achieved.
  • each aspect of the embodiment can be arbitrarily combined.
  • the edge lift employed in the second embodiment or the like may be combined with the contact lens that is asymmetric in the vertical direction in the wearing state as in the fifth to seventh embodiments.
  • a guide mark for determining the circumferential position of the lens may be attached to each contact lens of the embodiment as necessary.
  • the guide mark is not particularly limited as long as it does not affect the visual field and wearing feeling of the contact lens user and can be visually recognized, and examples thereof include a dot-like mark made of a pigment or the like. .
  • the shape of the lens front surface 18 in the thin portion 30 and the thick portion 32 is substantially the same as the shape of the corresponding lens rear surface 20, so that each peripheral lens thickness: t was assumed to be constant.
  • the present invention is not limited to this shape, and the peripheral lens thickness t in the thin portion 30 and the thick portion 32 does not necessarily have to be constant. That is, the thickness of the thin portion 30 and the thick portion 32 may change in the circumferential direction.
  • a perfect circle is shown as the contact lens, but the present invention is not limited to this and may be oval. Furthermore, the present invention can be applied to a lens by a truncation method in which a part of the outer periphery of the lens is linearly formed in the chord direction.

Abstract

 装用状態で人眼の結膜までも覆う大きさとされることにより、優れたレンズ位置の安定性と優れた装用感とがそれぞれ実現され得ると共に、眼球ステイニングによる結膜損傷も効果的に抑えられ得る、新規な構造のコンタクトレンズおよびコンタクトレンズの製造方法を提供する。 凸状のレンズ前面18と凹状のレンズ後面20を有しており、中央部分の光学部22の周りに周辺部24が設けられたコンタクトレンズ10において、前記周辺部24が角膜の外周側の結膜の一部まで覆うものであって、該周辺部24の前記レンズ後面20におけるリフト量が周上で異ならされており、該リフト量が装用状態での上下部分の少なくとも一方に比して左右部分が少なくとも一方で大きくされていると共に、該周辺部24の前記レンズ前面18において厚さ変化が周方向に付されており、装用状態で周方向に位置決めされる厚肉部32と薄肉部30が設けられている。

Description

コンタクトレンズおよびコンタクトレンズの製造方法
 本発明は、ソフトタイプおよびハードタイプを含むコンタクトレンズに係り、特に優れた装用感を発揮し得る新規な構造のコンタクトレンズとその製造方法に関する。
 コンタクトレンズは、人眼の角膜に重ね合わされて装用されるものであり、特に角膜表面の知覚神経が敏感であることから、装用した際の見え方に加えて異物感や圧迫感などで表される装用感も重要視される。
 そして、良好な見え方や装用感を得るには、眼球上でのコンタクトレンズの位置安定性も重要であり、一般に、眼球上でのコンタクトレンズの変位量を抑えることにより見え方や装用感の向上が図られ得る。特に、眼球上でのコンタクトレンズの変位量を抑えることは、コンタクトレンズが変位する際に擦れる眼球表面における微細な傷付き等に起因する眼球ステイニングの問題低減にも効果的である。
 また、光学部の光学特性に方向性があるコンタクトレンズの場合には、レンズ径方向だけでなく周方向の変位も抑えて、周方向位置の安定性を確保することも重要となる。即ち、光学特性に方向性があるコンタクトレンズとしては、円柱レンズの軸角度を設定した乱視矯正用や、同心的でない矯正領域をもった老視矯正用など、光学中心回りの周方向のレンズ度数分布が一様でない光学特性のコンタクトレンズでは、装用状態で安定した周方向の位置決めが必要とされる。
 ところで、このようなレンズ径方向やレンズ周方向における位置決めを目的として、従来から、各種のレンズの形状や、各種の位置決め手段が提案されている(特許文献1~3)。尤も、従来から提案されているこれら各種のレンズ形状や位置決め手段では、未だ、満足できる装用感を達成するには至っていないのが実情であった。
 そこで、本発明者は、先ず、コンタクトレンズの装用状態での位置安定性の向上を目的として、レンズ外径(DIA)を大きくすることに着目し、検討を加えた。レンズ外径を大きくすることで、レンズ変位領域が上下眼瞼で制限されて、コンタクトレンズの装用状態での位置安定性が向上し、その結果、装用感の向上も達成されると考えられるからである。
 ところが、本発明者が検討を重ねたところ、そこにおける新たな且つ重大な問題の存在が明らかとなった。
 すなわち、コンタクトレンズの外径を大きくして、結膜(本明細書では球結膜をいう。以下、同じ)までも覆うことにすると、それに伴って発生する新たな問題を、少なくとも三つ解決しなければならないことがわかった。一つめの問題は、コンタクトレンズの外径を結膜までも覆う大きさにした場合でも、装用状態でのレンズ位置の安定性が期待する程には得られ難いという、本発明者が新たに見い出した事実としての問題である。二つめの問題は、コンタクトレンズの外径を結膜までも覆う大きさにした場合でも、装用状態での装用感の向上が期待する程には得られ難いという、本発明者が新たに見い出した事実としての問題である。三つめの問題は、コンタクトレンズの外径を結膜までも覆う大きさにすると、結膜に眼球ステイニングが発生し易いという、本発明者が新たに見い出した事実としての問題である。
 特に三つめの問題は、一つめの問題である不充分なレンズ位置決め性故に、装用状態でコンタクトレンズが結膜表面に擦れることで発生する眼球ステイニングによると考えられる。そして、特に角膜表面に隣接している結膜表面は、角膜細胞および結膜細胞を産生する素になる幹細胞が存在するため、眼球ステイニングによって結膜表面が損傷すると、良好な角膜細胞および結膜細胞が生成され難くなって、ユーザーの眼光学系に対して将来的に大きな不具合が惹起されるおそれもある。
特開平11-258553号公報 特開平8-304745号公報 米国特許第5100225号明細書
 本発明は上述の如き事情を背景として為されたものであり、その解決課題とするところは、装用状態で人眼の結膜までも覆う大きさとされることにより、優れたレンズ位置の安定性と優れた装用感とがそれぞれ実現され得ると共に、眼球ステイニングによる結膜損傷も効果的に抑えられ得る、新規な構造のコンタクトレンズおよびコンタクトレンズの製造方法を提供することにある。
 かかる課題を解決するためになされた、コンタクトレンズに関する本発明の第一の態様の特徴とするところは、凸状のレンズ前面と凹状のレンズ後面を有しており、中央部分の光学部の周りに周辺部が設けられたコンタクトレンズにおいて、前記周辺部が角膜の外周側の結膜の一部まで覆うものであって、該周辺部の前記レンズ後面におけるリフト量が周上で異ならされており、該リフト量が装用状態での上下部分の少なくとも一方に比して左右部分が少なくとも一方で大きくされていると共に、該周辺部の前記レンズ前面において厚さ変化が周方向に付されており、装用状態で周方向に位置決めされる厚肉部と薄肉部が設けられているコンタクトレンズにある。
 本発明に従う構造とされたコンタクトレンズでは、結膜まで覆うレンズ外径寸法を採用したうえで、結膜に重ね合わされる周辺部の後面を非球面形状とし、非球面形状を有する結膜の表面形状に対してレンズ周辺部の後面形状を合わせるようにした。即ち、本発明者が検討したところ、人眼の表面形状は角膜よりも結膜において非球面度合いが大きくなっており、結膜の表面では、上下方向に比して左右方向がなだらかとされることにより、判りやすく誇張表現すると横置きしたラグビーボールのようになっていることが明らかとなった。
 而して、本発明では、周辺部に設けた厚肉部と薄肉部によって装用状態での周方向位置決め手段を構成すると共に、コンタクトレンズにおける周辺部後面のリフト量を上下部分に比して左右部分の少なくとも一方において大きく設定した。これにより、角膜に比して非球面度合いが大きい結膜表面を巧く利用して、レンズ後面を結膜表面の非球面形状に合わせることで、コンタクトレンズの装用時における安定性と装用感を何れも効果的に向上せしめ得たのである。
 すなわち、前述の結膜まで覆うコンタクトレンズにおける一つめの問題は、結膜表面形状とレンズ後面形状との不一致が大きいことにより、眼球上でコンタクトレンズが安定し難く装用時に変位し易いことに起因していたと考えられる。一方、本発明では、レンズ後面形状を結膜表面形状に近づけたことにより、結膜まで覆う程に大径とした効果が形状近似による効果と相俟って、装用状態におけるレンズ位置安定性が大幅に向上され得たのである。
 また、前述の結膜まで覆うコンタクトレンズにおける二つめの問題は、結膜表面形状とレンズ後面形状との不一致が大きいことにより、結膜表面に対してレンズの当接圧が局部的に大きくなって圧迫力の最大値が増加することに起因していたと考えられる。一方、本発明では、レンズ後面形状を結膜表面形状に近づけたことにより、結膜まで覆う大径のコンタクトレンズにおける位置安定性の向上効果と併せて、装用状態での結膜に対するレンズ当接圧の均一化を図り、最大圧迫力を低減することで装用感の向上が達成され得たのである。
 更にまた、本発明のコンタクトレンズでは、上述のようにコンタクトレンズの安定性を向上させて変位量を抑えると共に、結膜への当接圧を低減させたことにより、レンズの擦れに起因する結膜における眼球ステイニングが効果的に軽減されて、コンタクトレンズ装用に伴う結膜損傷の懸念も回避され得るのである。
 ところで、コンタクトレンズに関する本発明では、一般的な人眼の結膜表面形状を考慮すると、例えば以下の第二~九の各態様が好適に且つ必要に応じて適宜に組み合わされて採用され得る。これらの態様を採用することにより、統計上で一般的な人眼の結膜表面形状に対して一層適合したレンズ後面を備え、上述の如き本発明の技術的効果をより有利に発揮し得るコンタクトレンズを、効率的に製造および提供することが可能になる。
 すなわち、本発明の第二の態様は、前記第一の態様に係るコンタクトレンズであって、前記リフト量が、装用状態での上下何れの部分に比しても左右部分の少なくとも一方で大きくされているものである。
 また、本発明の第三の態様は、前記第一又は第二の態様に係るコンタクトレンズであって、前記リフト量の最大値が、装用状態で左右方向となる径方向の少なくとも一方の位置に設定されているものである。
 本発明の第四の態様は、この第三の態様に係るコンタクトレンズにおいて、前記リフト量の最大値が、装用状態で左右方向となる径方向の両方の位置に設定されているものである。
 また、本発明の第五の態様は、前記第一~四の何れかに係るコンタクトレンズであって、前記リフト量の最小値が、装用状態で上下方向となる径方向の少なくとも一方の位置に設定されているものである。
 本発明の第六の態様は、この第五の態様に係るコンタクトレンズにおいて、前記リフト量の最小値が、装用状態で上方向となる位置に設定されているものである。
 さらに、本発明の第七の態様は、前記第一,二,三,五,六の何れの態様に係るコンタクトレンズであって、前記リフト量に関し、装用状態で左右方向の鼻側となる左右部分の一方が、耳側となる左右部分の他方と上下部分との何れに比しても大きくされているものである。
 また、本発明の第八の態様は、前記第一又は第二の態様に係るコンタクトレンズであって、前記リフト量の最大値が、装用状態で左右方向の鼻側となる径方向の一方の位置よりも上方に偏倚した位置に設定されているものである。
 更にまた、本発明の第九の態様は、前記第一,二,八の何れかの態様に係るコンタクトレンズにおいて、前記リフト量の最小値が、装用状態で左右方向の耳側となる径方向一方の位置よりも下方に偏倚した位置に設定されているものである。
 さらに、本発明の第十の態様は、前記第一~十の何れかの態様に係るコンタクトレンズであって、周辺部におけるリフト量に関して、かかるリフト量の周方向での変化が有理関数で設定されているものである。本態様に従って、リフト量の周方向変化を、例えば三角関数や円錐曲線、多次関数などの連続関数式で表される表面形状をもって設定することにより、レンズ後面の形状設計が容易になると共に、成形型やレンズ面のNC制御による切削加工等の製造作業も容易に行うことが可能になる。
 また、本発明の第十一の態様は、前記第一~五,十の何れかの態様に係るコンタクトレンズであって、前記周辺部の前記レンズ後面の形状が、装用状態で水平方向となる径方向線に関して線対称形状とされているものである。本態様に従えば、厚肉部と薄肉部からなる周方向の位置決め手段においても、上下の区別なく設定することが可能になる。そして、このように径方向線に関して線対称形状とされることにより、右眼用と左眼用の区別もなくなることから、市場に提供するコンタクトレンズの種類ひいては成形型も少なくなり、ストック量も少なくできて、製造や提供、流通、管理、使用も容易になる。
 また、本発明の第十二の態様は、前記第一~第十一の何れかの態様に係るコンタクトレンズであって、周辺部に形成された厚肉部と薄肉部からなる周方向の位置決め手段として、ダブルシン、ペリバラスト、プリズムバラストの何れかが構成されているものである。なお、ダブルシンは、上下両側に薄肉部が設けられて上下眼瞼圧等を利用して周方向位置決め作用が発揮される構造であり、ペリバラストは左右両側に一対の厚肉部が設けられて重力の釣り合い作用等を利用して周方向位置決め作用が発揮される構造であり、プリズムバラストは下部に厚肉部が設けられることで上部に比して下部が肉厚とされて重力作用を利用して周方向位置決め作用が発揮される構造である。
 さらに、本発明の第十三の態様は、前記第一~第十二の何れかに係るコンタクトレンズであって、前記周辺部の前記レンズ前面の厚さ変化によって、レンズ厚さ寸法の最小位置が、装用状態で上方向となる位置に設定されているものである。装用状態での上方向に最小厚さ部分を設けることにより、重量作用による周方向の安定性の向上が効果的に発揮され得る。
 更にまた、本発明の第十四の態様は、前記第一~第十三の何れかに係るコンタクトレンズであって、前記周辺部の前記レンズ前面の厚さ変化における変化率が、該周辺部におけるレンズ厚さ寸法の変化率に比べて、少なくとも周方向の一部において大きくされているものである。本態様に従えば、コンタクトレンズの厚さを増加させることなく、眼瞼の押出し効果の向上、即ち周方向の位置決め安定性が向上され得る。また、コンタクトレンズの厚さを薄く保つことが出来るため、コンタクトレンズの酸素透過性を損なうおそれを回避できる。
 さらに、本発明の第十五の態様は、前記第一~第十四の何れかの態様に係るコンタクトレンズであって、前記光学部における光学特性が周方向で特定の方向性を有しているものである。即ち、本発明に係るコンタクトレンズでは、周辺部に形成された厚肉部と薄肉部からなる周方向の位置決め手段で装用状態下での周方向位置が特定されることから、周方向で特定の方向性をもつ光学部が採用可能である。なお、かかる光学部としては、乱視用や老視用の矯正用光学特性を備えたものが例示される。
 一方、コンタクトレンズの製造方法に関する本発明の特徴とするところは、凸状のレンズ前面と凹状のレンズ後面を有しており、中央部分の光学部の周りに周辺部が設けられたコンタクトレンズを製造するに際して、前記周辺部の外径寸法を角膜の外周側の結膜まで覆う大きさに設定すると共に、該周辺部の前記レンズ後面におけるリフト量を周上で異なる形状に設定し、且つ、該リフト量を装用状態での下部分に比して左右部分の少なくとも一方で大きく設定することにより、該周辺部の該レンズ後面の形状を、球面よりも該結膜の表面形状に沿わせた非球面形状をもって設定すると共に、該周辺部の前記レンズ前面を周方向において厚さ方向で変化させることにより装用状態で周方向の位置決め作用を発揮する厚肉部と薄肉部を設定し、それによって得られた該周辺部の該レンズ後面およびレンズ前面の形状をもってコンタクトレンズを製造するコンタクトレンズの製造方法にある。
 このような本発明方法に従えば、コンタクトレンズの周辺部においてリフト量が周方向で異ならされて、装用状態での周方向位置が特定されることで、結膜までも覆う大きさのコンタクトレンズにおいて、極めて結膜とレンズ後面との相互作用で優れた位置安定性と装用感が発揮されて、眼球ステイニングの問題も回避される、新規な構造のコンタクトレンズを有利に製造することが可能になる。
 本発明に従えば、結膜まで覆う程に大径としたことと、非球面度の大きい結膜表面にレンズ後面を近似させたこととの相乗作用により、装用状態におけるレンズ位置安定性および装用感が大幅に向上されて、結膜において危惧される眼球ステイニングも効果的に回避され得る、新規な構造のコンタクトレンズが有利に提供され得る。
本発明の第一の実施形態としてのコンタクトレンズを示す正面図。 図1におけるII-II断面図。 図1におけるIII-III断面図。 図2に示された鉛直断面と図3に示された水平断面とをレンズ幾何中心軸を共通にして重ね合わせて示す説明図。 図4における要部を拡大して示す説明図。 複数の人眼における角膜および結膜形状の測定結果の平均値を示すものであり、(a)は人眼の写真と共に測定における測定点を示しており、(b)は測定結果のグラフ、(c)は測定結果の具体的な値を示している。 人眼における結膜形状の測定結果の1例であり、(a)は測定結果のグラフ、(b)は測定結果の具体的な値を示している。 図1に示されたコンタクトレンズにおける周辺部のレンズ後面のリフト量の設定値の周方向変化を示すグラフ。 図1に示されたコンタクトレンズにおける周辺部の径方向中央部分でのレンズ前後面の厚さ形状および周辺部レンズ厚さの周方向変化を示すグラフ。 図1に示されたコンタクトレンズを製造するための成形型を示す断面図。 図1に示されたコンタクトレンズの装用状態を説明するための説明図。 本発明の第二の実施形態としてのコンタクトレンズを示す、図2に対応する鉛直断面図。 本発明の第二の実施形態としてのコンタクトレンズを示す、図3に対応する水平断面図。 図12に示された鉛直断面と図13に示された水平断面とをレンズ幾何中心軸を共通にして重ね合わせて示す説明図。 図14における要部を拡大して示す説明図。 本発明の第三の実施形態としてのコンタクトレンズを示す、図1に対応する正面図。 本発明の第三の実施形態としてのコンタクトレンズを示す、図2に対応する鉛直断面図であり、図16のXVII-XVII断面図。 本発明の第三の実施形態としてのコンタクトレンズを示す、図3に対応する水平断面図であり、図16のXVIII-XVIII断面図。 図17に示された鉛直断面と図18に示された水平断面の左右両側とをレンズ幾何中心軸を共通にして重ね合わせたものの要部を拡大して示す説明図。 人眼の結膜形状における測定結果の別の1例を示すものであり、図7に対応する図。 本発明の第三の実施形態の周方向リフト量を示す、図8に対応するグラフ。 本発明の第四の実施形態としてのコンタクトレンズを示す、図17に対応する鉛直断面図。 本発明の第四の実施形態としてのコンタクトレンズを示す、図18に対応する水平断面図。 本発明の第四の実施形態としてのコンタクトレンズを示す、図19に対応する要部拡大断面説明図。 本発明の第五の実施形態としてのコンタクトレンズを示す、図1に対応する正面図。 本発明の第五の実施形態としてのコンタクトレンズを示す、図2に対応する鉛直断面図であり、図25のXXVI-XXVI断面図。 本発明の第五の実施形態としてのコンタクトレンズを示す、図3に対応する水平断面図であり、図25のXXVII-XXVII断面図。 本発明の第五の実施形態としてのコンタクトレンズを示す、図19に対応する要部拡大断面説明図。 本発明の第六の実施形態としてのコンタクトレンズを示す、図25に対応する正面図。 本発明の第七の実施形態としてのコンタクトレンズを示す、図1に対応する正面図。 本発明の第七の実施形態としてのコンタクトレンズを示す、図2に対応する鉛直断面図であり、図30のXXXI-XXXI断面図。 本発明の第七の実施形態としてのコンタクトレンズを示す、図3に対応する水平断面図であり、図30のXXXII-XXXII断面図。 本発明の第七の実施形態としてのコンタクトレンズを示す、図19に対応する要部拡大断面説明図。 本発明の第八の実施形態として、第一の実施形態のコンタクトレンズにおけるリフト量の更なる別例を示す、図7に対応するグラフ。 人眼の結膜形状における測定結果の更に別の1例を示すものであり、図7に対応する図。
 以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 先ず、図1~3に、本発明に従う構造とされたコンタクトレンズ10を示す。コンタクトレンズ10は、全体として略球冠形状を有しており、良く知られているように、眼球における角膜の表面に重ねて装用されることによって使用されるようになっている。そして、本実施形態のコンタクトレンズ10は、レンズ外形の中心軸であるレンズ幾何中心軸12を通って互いに直交する鉛直径方向線14および水平径方向線16が、装用状態において鉛直方向および水平方向とされる。なお、以下の説明において、図1中の水平径方向右方を鼻側(θ=0,360)として表す。さらに、ここからレンズ幾何中心軸12回りにそれぞれ90度、180度、270度だけ左方向に回転させた方向、即ち、鉛直径方向上方、水平径方向左方、鉛直径方向下方をそれぞれ、上側(θ=90)、耳側(θ=180)、下側(θ=270)として表す。
 なお、本実施形態のコンタクトレンズ10は、ソフトタイプおよびハードタイプの何れのコンタクトレンズであっても良い。その材質も限定されるものでなく、例えばソフトタイプのコンタクトレンズとしては、従来から公知のPHEMA(ポリヒドロキシエチルメタクリレート)やPVP(ポリビニルピロリドン)等の含水性材料の他、アクリルゴムやシリコーン等の非含水性材料等も採用可能である。また、ハードコンタクトレンズとしては、PMMA(ポリメチルメタアクリレート)やSiMA/MMAポリマー等のガス透過性レンズ(RGPレンズ)等の材料が採用され得る。
 より詳細には、本実施形態のコンタクトレンズ10は、図1に示された正面視において円形状とされており、図2~3に示されているように、略凸状球冠面とされたレンズ前面18と、略凹状球冠面とされたレンズ後面20を有している。
 また、かかるコンタクトレンズ10は、構造上、中央部分において正面視で略円形に広がる光学部22と、光学部22の周囲を取り囲むようにして正面視で略円環形状に広がる周辺部24と、周辺部24の周囲でレンズ最外周縁部に位置してレンズ前後面を接続するエッジ部26とによって構成されている。
 光学部22は、要求される視力矯正機能等の光学特性として、例えば単一焦点や二以上の多焦点のレンズ度数を実現するように、レンズ前面18とレンズ後面20に対して適切な曲率半径の球面や非球面をベースとした光学面形状が与えられる。かかる光学部22は光学特性が周方向で特定の方向性を有していても良く、例えば、球面レンズ度数を有する近視や遠視の矯正用の光学特性の他、円柱レンズ度数を有する乱視矯正用の光学特性を有していても良い。または、複数のレンズ度数を有する老視矯正用のバイフォーカルレンズやマルチフォーカルレンズ、或いは焦点が連続的に変化するようなプログレッシブレンズ等の光学特性などであっても良い。
 具体的に例示すると、光学部22のレンズ前面18とレンズ後面20の一方の面が角膜曲率半径等を考慮した曲率半径の球冠面形状とされると共に、他方の面が必要とされるレンズ度数を与える曲率半径の球冠面形状とされる。また、それらレンズ前後面18,20の一方において、必要に応じて特定の径方向軸をもつトーリック面が付加される。
 なお、本実施形態における光学部22は、光学部22の幾何中心軸がレンズ幾何中心軸12と等しくされていると共に、光学部22の厚さ寸法がレンズ幾何中心軸12に関する対称位置において略等しくされていることによって、光学部22の重心位置が光学部22の幾何中心軸上に位置せしめられるようにされている。即ち、本実施形態では、コンタクトレンズ10の光学部22には、重心を下方に偏倚させて周方向位置を安定させる目的でのプリズムが設定されていない。
 一方、周辺部24は、装用状態で人眼の角膜から更に外周側に広がって結膜までも覆う外径寸法と径方向幅寸法をもって、図1に示される正面視において円環帯状で形成されている。好適には、周辺部24について、内径寸法:φPa、外径寸法:φPbおよび径方向幅寸法:Bpが、それぞれ、下式で表される範囲内に設定される。
  6mm≦φPa≦10mm
 10mm≦φPb≦18mm
  1mm≦Bp≦5mm
 蓋し、周辺部24の内径寸法:φPaが6mmに満たないと、光学部22に充分な領域面積を設定し難くなり、一方、周辺部24の内径寸法:φPaが10mmを超えると、周辺部24に充分な径方向幅寸法を設定し難くなる。また、周辺部24の外径寸法:φPbが10mmに満たないと、周辺部24に充分な径方向幅寸法を設定し難くなると共に、装用状態で人眼の結膜を充分な面積で安定して覆うことが難しくなり、一方、周辺部24の外径寸法:φPbが18mmを超えると、人眼への装用に支障が発生したり眼瞼への過干渉が問題となるおそれがある。更にまた、周辺部24の径方向幅寸法:Bpが1mmに満たないと、装用状態で人眼の結膜を充分な面積で安定して覆うことが難しくなり、一方、周辺部24の径方向幅寸法:Bpが5mmを超えると、光学部22に充分な領域面積を設定し難くなったり、レンズ外径が過大となって装用への支障が発生する等の問題が発生し易い。
 なお、本実施形態では、周辺部24の内周縁部において、レンズ前面18およびレンズ後面20の両方で、光学部22の外周端縁に対して径方向で滑らかに繋がる移行領域28が形成されている。本発明では、このような移行領域28は必須でないが、移行領域28を設けて、光学部22と周辺部24とをレンズ径方向で折れ点をもたないで滑らかに繋がる表面形状をもって接続することにより、装用感の更なる向上が図られ得る。
 ところで、周辺部24は、コンタクトレンズ10の光学特性に影響を与えるものではないことから、その形状を、要求される光学特性による拘束を受けることなく設定することが出来る。そして、周辺部24のレンズ前面18およびレンズ後面20は、コンタクトレンズ10に対して装用時の位置安定性や装用感が良好に発揮されるように、形状設定されている。
 先ず、レンズ径方向断面における周辺部24のレンズ前後面18,20の形状としては、装用時の角膜へのフィッティングや涙液交換性能等の他、設計および製作の作業性等を考慮すると、例えば円弧形状の他、二次曲線形状や円錐曲線形状等が、好適に採用される。なお、一層良好な装用感を実現するために、周辺部24は、その内周側において上述の移行領域28を設けることにより光学部22に対して折れ点のない滑らかな表面形状で接続されることが望ましい。また、周辺部24の外周縁部においても、エッジ部26に対して、レンズ前後面18,20が、何れも、折れ点のない滑らかな形状で接続されることが望ましい。
 次に、レンズ周方向断面における周辺部24のレンズ後面20は、そのリフト量が周方向で変化せしめられるように形状設定されている。
 具体的には、周辺部24のレンズ後面20は、図2の鉛直径方向断面と図3の水平径方向断面とを重ね合わせて示す図4およびその要部を拡大して示す図5から明らかなように、レンズ幾何中心軸12回りの同一円周上に位置する同一の径方向位置であっても、周方向位置に応じて、レンズ幾何中心軸12方向での位置が異ならされている。
 ここにおいて、径方向断面におけるこのレンズ後面20の位置を、光学部22におけるレンズ後面20の延長面等の基準面に対するレンズ幾何中心軸12方向でのずれ量で表したものがリフト量とされる。本実施形態では、理解し易いように、周辺部24のレンズ後面20において、レンズ幾何中心軸12方向で最も後面側(図5中の下側)に位置する面を基準面20aとし、周辺部24の径方向中間部分におけるレンズ後面20のレンズ幾何中心軸12方向での該基準面20aに対する相対的な位置ずれ量を、リフト量:Δx(図5参照)とする。
 また、かかるリフト量:Δxを周方向で異ならせることに伴って、レンズ後面20の径方向断面形状も、周方向で異ならせても良い。例えば、レンズ後面20の径方向断面形状を全周に亘って同一としつつ、リフト量:Δxを周方向で変化させるとレンズ後面20の傾きが変化してエッジリフト量(エッジ部26のレンズ幾何中心軸12方向の位置)も異なる。従って、エッジ部26のレンズ幾何中心軸12方向の位置を一定に保ちつつ、レンズ後面20のリフト量:Δxを周方向で変化させるには、レンズ後面20の径方向における曲率半径等の断面形状を変化させることが必要となる。
 具体的には、周辺部24のレンズ後面20に関し、例えばレンズ幾何中心軸12回りにおける10度毎等の複数箇所で、それぞれ、リフト量:Δxとそれを実現する径方向断面形状を設定すると共に、それら複数箇所の周方向間では、線形補完や多項式補完、スプライン補完などの補完法で径方向断面形状を設定することができる。なお、リフト量:Δxの周方向変化は特に限定されるものではなく、例えば任意の有理関数で設定することができる。
 そして、前述のように、周辺部24は人眼の結膜を覆うように広がって延びている。即ち、コンタクトレンズ10の装用の際には、結膜の表面に周辺部24におけるレンズ後面20が涙液等を介して当接することとなる。ここで、図6(a)~(c)には、一般的な角膜、結膜の表面形状の周方向変化、即ち角膜の中心に対して、レンズ幾何中心軸12方向に対応する眼光学系の光軸方向における角膜の周辺領域の深さが示されている。図6(a)は人眼の写真であり、表面形状の測定の際における測定点が示されている。かかる測定では、角膜の中心から半径r=1,2,3,4,5,6,7mmの7つの同心円において、それぞれθ=0,360(鼻)、45(鼻上)、90(上)、135(耳上)、180(耳)、225(耳下)、270(下)、315(鼻下)の8点について測定した。なお、測定には株式会社トーメーコーポレーション製「前眼部OCT SS-1100」を使用した。
 図6(b),(c)には、かかる測定の結果である、角膜の中心を0としたときの各点の光軸方向における深さが示されている。なお、これらの値は、サンプル数N=141個の人眼の値の平均値である。ここで、角膜の半径rの平均値はr=5.75mmであったため、r=1~5mmが角膜の形状を示しており、r=6,7mmが角膜の外周側である結膜の形状を示している。図6(b)のグラフから明らかであるように、r=1~5mmの各点では半径rが大きくなるにつれて、周上の各点の深さが略同様に大きくなっており、従って、人眼の角膜の領域は曲率が略一定の球面形状となっている。一方、r=6,7mmにおける各点を比較すると、耳側(θ=180)~下側(θ=270)に比べて、鼻側(θ=0,360)において深さが小さくなっている。従って、人眼の結膜の領域では曲率が一定ではなく、非球面形状となっている。
 図7および後述する図20,34には、測定を行った141眼のうち、結膜の形状が特徴的な3眼が示されている。特に、図7(a),(b)に示される結膜の形状は、鼻側(θ=0,360)および耳側(θ=180)において深さが小さくなっている一方、上側(θ=90)および下側(θ=270)において深さが大きくされている。なお、図7(b)は、角膜中心から半径r=6.0mmの周上のθ=0,360(鼻)、45(鼻上)、90(上)、135(耳上)、180(耳)、225(耳下)、270(下)、315(鼻下)の各点における、角膜中心に対する深さの具体的な数値を示している。例えば、鼻側(θ=0,360)において深さが-2.53mmとされているが、これは角膜中心に対して結膜の鼻側が眼光学系の光線入射方向奥側に2.53mmだけ離隔していることを表している。そして、これら図7(b)の値をグラフにしたものが図7(a)である。
 本実施形態では、図7のような結膜の形状を考慮して、図8のような周方向リフト量:Δxが周辺部24のレンズ後面20に設定されている。即ち、角膜中心に対する深さが大きくなっている上側(θ=90)および下側(θ=270)が、レンズ幾何中心軸12方向において最も後面(基準面20a)とされており、要するにリフト量:Δxが0とされている。一方、角膜中心に対する深さが小さくなっている鼻側(θ=0,360)および耳側(θ=180)においては、所定のリフト量:Δxが設定されている。これにより、レンズ後面20を人眼の結膜の表面形状に対応した形状とすることが出来る。
 ここにおいて、図8に示されているように、本実施形態のリフト量:Δxは周上で異ならされており、この周方向変化は略sin波形状とされている。具体的には、鼻側(θ=0,360)および耳側(θ=180)でリフト量:Δxが最大とされている一方、上側(θ=90)および下側(θ=270)でリフト量:Δxが0とされている。このことから明らかなように、周辺部24のレンズ後面20は、鉛直径方向線14および水平径方向線16に関して線対称形状とされている。
 なお、リフト量:Δxの大きさは、コンタクトレンズ使用者個人の結膜形状に対応する形状とされても良いし、複数の人眼の平均値から求められても良い。また、レンズの材料に基づくレンズの曲げ剛性や、或いはコンタクトレンズの加工条件等から求められても良い。さらに、コンタクトレンズ10のレンズ幾何中心軸12を中心として、直径φ11mmの位置におけるΔxの最大値が、0.03≦Δx≦0.45mmの範囲となるように設定されることが好ましい。より好適には、Δxの最大値が、0.05≦Δx≦0.35mmの範囲となるように設定される。蓋し、Δxの最大値が0.03mmに満たないと、周辺部24におけるレンズ後面20の形状が結膜の表面形状に沿い難く、後述する装用感の向上効果が十分に発揮されないおそれがある。また、Δxの最大値が0.45mmを超えると、周辺部24が浮き上がり、コンタクトレンズ10と結膜の間に気泡が入り込むおそれがある。
 一方、図1~5に示されるように、コンタクトレンズ10の周辺部24におけるレンズ前面18には、厚さ変化を周方向に付すことによりコンタクトレンズ10を装用状態で周方向に位置決めする、薄肉部30と厚肉部32と、それらの間に位置する変化領域34が設けられている。これら薄肉部30、厚肉部32、変化領域34はそれぞれ、レンズ幾何中心軸12を中心に所定の角度で周方向に延びていると共に、それぞれ異なった周辺部レンズ厚さ:tを有している。なお、周辺部レンズ厚さ:tとは、周辺部24における径方向中間部分の法線方向においてのレンズ前面18とレンズ後面20の離隔距離を表している。具体的には、薄肉部30のレンズ厚さをTa、厚肉部32のレンズ厚さをTbとすると、Ta<Tbであり、変化領域34は、薄肉部30と厚肉部32との間を、折れ点を持たずに滑らかに接続している。なお、図4は、図2および図3の各断面図をレンズ幾何中心軸12を一致させて重ね合わせた図であり、図5は図4の要部拡大図である。また、図5において、実線が薄肉部30を、二点鎖線が厚肉部32を表している。
 この周辺部レンズ厚さ:tは、コンタクトレンズ使用者個人の眼瞼形状や眼瞼の厚さまたは圧力を考慮して設定することも出来るが、複数の人眼の眼瞼形状や眼瞼の厚さまたは圧力の平均値から求めても良い。また、周辺部レンズ厚さ:tの設定に際しては、レンズの形状に基づくレンズの重心位置や、レンズの材料に基づくレンズの曲げ剛性を、併せて考慮しても良い。更に具体的には、薄肉部30のレンズ厚さ:Ta(図5参照)の最大値は、好ましくは0.04≦Ta≦0.2mmの範囲内に設定されて、更に好ましくは0.06≦Ta≦0.15mmとされる。また、厚肉部32のレンズ厚さ:Tb(図5参照)の最大値は、好ましくは0.2≦Tb≦0.5mmの範囲内に設定されて、更に好ましくは0.25≦Tb≦0.4mmとされる。さらに、薄肉部30と厚肉部32のレンズ厚さの差:Tb-Taは、好ましくは0.1≦(Tb-Ta)≦0.4mmの範囲内に設定されて、更に好ましくは0.15≦(Tb-Ta)≦0.3mmとされる。
 蓋し、薄肉部30のレンズ厚さ:Taの最大値が0.04mmに満たないと、コンタクトレンズ10の薄肉部30における強度が不十分となり、しわが発生したり、コンタクトレンズ10が破損したりするおそれがある。また、薄肉部30のレンズ厚さ:Taの最大値が0.2mmを超えると、厚肉部32との差が不十分となり、後述する周方向位置決め効果が十分に発揮されないおそれがある。同様に、厚肉部32のレンズ厚さ:Tbの最大値が0.2mmに満たないと、薄肉部30との差が不十分となり、後述する周方向位置決め効果が十分に発揮されないおそれがある。また、厚肉部32のレンズ厚さ:Tbの最大値が0.5mmを超えると、コンタクトレンズ10の装用感の悪化や酸素透過率の低下が惹起されるおそれがある。さらに、薄肉部30と厚肉部32のレンズ厚さの差:Tb-Taが0.1mmに満たないと、薄肉部30と厚肉部32の厚さの差が不十分となり、後述する周方向位置決め効果が十分に発揮されないおそれがある。一方、薄肉部30と厚肉部32のレンズ厚さの差:Tb-Taが0.4mmを超えると、薄肉部30と厚肉部32の間の変化領域34における変化が急峻なものとなり、コンタクトレンズ10の装用感が悪化するおそれがある。
 特に、本実施形態のコンタクトレンズ10は、図1等に表されるように、鉛直径方向線14上で対向位置する上側(θ=90)および下側(θ=270)の所定領域に一対の薄肉部30,30が形成されている、いわゆるダブルシン構造とされている。それと共に、水平径方向線16上で対向位置する鼻側(θ=0,360)および耳側(θ=180)の所定領域には、一対の厚肉部32,32が形成されている。これらの薄肉部30,30はそれぞれ水平径方向線16を挟んで線対称形状とされており、鉛直径方向線14を跨いで周方向の左右両側に延び出している。また、厚肉部32,32はそれぞれ鉛直径方向線14を挟んで線対称形状とされており、水平径方向線16を跨いで周方向の上下両側に延び出している。
 図9には、本実施形態におけるコンタクトレンズ10のレンズ幾何中心軸12回りの角度:θをθ=0からθ=360まで変化させた時の、周辺部24の径方向中央部分における、レンズ前面18と基準面20aとの対向面間距離およびレンズ後面20と基準面20aとの対向面間距離、さらにこれらの差である周辺部レンズ厚さ:tの変化が示されている。なお、図9中においては、実線でレンズ前面18の周方向厚さ変化が、一点鎖線でレンズ後面20の周方向厚さ変化が示されており、破線でこれらの差である周辺部レンズ厚さ:tが示されている。この図9から明らかなように、本実施形態では、一対の薄肉部30,30は、鉛直径方向線14から周方向で左右両側に同じ寸法(角度)で延び出しており、鉛直径方向線14に対しても線対称形状とされている。さらに、一対の厚肉部32,32は、水平径方向線16から周方向で上下両側に同じ寸法(角度)で延び出しており、水平径方向線16に対しても線対称形状とされている。
 さらに、図9から明らかなように、一対の薄肉部30,30と一対の厚肉部32,32の間に位置する各変化領域34の形状も、鉛直径方向線14および水平径方向線16に対して線対称形状とされている。これにより、コンタクトレンズ10の周辺部24におけるレンズ前面18が、鉛直径方向線14および水平径方向線16に対して線対称形状とされていると共に、前述のように、周辺部24におけるレンズ後面20も鉛直径方向線14および水平径方向線16に対して線対称形状とされている。このことから、コンタクトレンズ10の周辺部24が鉛直径方向線14および水平径方向線16に対して線対称形状とされている。
 また、図2および図3に示されているように、本実施形態では、薄肉部30と厚肉部32の何れにおいても、径方向断面形状では、レンズ前面18が全体として円弧状の略湾曲凸面とされていると共に、レンズ後面20が全体として円弧状の略湾曲凹面とされている。なお、径方向の曲率変化によって、周辺部24のレンズ前面18には部分的に凹部が、レンズ後面20には部分的に凸部が設けられていても良い。
 さらに、本実施形態では、図9に示されているように、薄肉部30と厚肉部32におけるレンズ前面18では、それぞれの領域に対応するレンズ後面20の厚さ変化と略同様な厚さ変化が付されている。これにより、薄肉部30および厚肉部32では、周辺部レンズ厚さ:t(薄肉部30においてはTa、厚肉部32においてはTb)が一定とされている。
 更にまた、図9に示されるように、一対の薄肉部30,30と一対の厚肉部32,32の間に位置する各変化領域34では、それぞれにおけるレンズ後面20の単位角度当たりの周方向変化率に比べて、レンズ前面18の単位角度当たりの周方向変化率が著しく大きくされている。これにより、各変化領域34では、レンズ前面18の単位角度当たりの周方向変化率が、各変化領域34全体の単位角度当たりの周方向変化率((Tb-Ta)/角度)を超えるものとされている。
 このような形状とされている薄肉部30と厚肉部32のそれぞれは、レンズ幾何中心軸12回りにそれぞれ所定の角度θ、θ(図1参照)で周方向に延びている。これらθ、θはそれぞれ、0度≦θ≦80度、および0度≦θ≦80度の範囲内に設定されることが望ましく、より好適には、30度≦θ≦60度、および30度≦θ≦60度とされる。また、薄肉部30と厚肉部32との間に設けられた変化領域34は、レンズ幾何中心軸12回りに所定の角度θa-b (図1参照)で延びており、20度≦θa-b ≦90度の範囲内とされることが望ましく、より好適には、30度≦θa-b ≦60度とされる。このように、θ、θ、θa-b の角度範囲を好適なものとすることにより、装用時における周方向位置の安定性の向上や装用感の更なる向上が図られ得る。なお、本発明においては、薄肉部30と厚肉部32のそれぞれのレンズ前面18は、周方向において、必ずしも一定の厚さである必要はなく、周方向において厚さが変化していても良い。
 更にまた、変化領域34におけるレンズ前面18の具体的な傾斜角度や形状は、限定されるものでないが、変化領域34のレンズ前面18における周方向での傾斜角度の態様は適切な関数で表されることが望ましい。具体的には、一次関数で一定の傾斜角度をもって形成される他、例えば薄肉部30や厚肉部32に対して滑らかに接続されるスプライン関数や、sin、sin等の三角関数等をもって形成されていても良い。なお、図9に示されるように、本実施形態の変化領域34は一次関数により表されている。また、本実施形態の各変化領域34は鉛直径方向線14および水平径方向線16に対して線対称形状とされており、これにより、周辺部24も鉛直径方向線14および水平径方向線16に対して線対称形状とされているが、本発明においては必ずしも各変化領域34が線対称形状とされる必要はない。即ち、後述の実施形態のように、各変化領域34におけるレンズ前面18およびレンズ後面20のそれぞれの形状を異ならせても良い。
 このような構造とされた周辺部24を有するコンタクトレンズ10は、適当な材料で予め重合成形されたブロックを直接に切削加工することで形成することも可能であるが、良好な量産性と優れた品質安定性の実現には、モールド成形によって製造することが望ましい。
 具体的には、一般に、図10に示すように、レンズ後面20に対応した略球状凸面形状の成形面36を有する雄型38と、レンズ前面18に対応した略球状凹面形状の成形面40を有する雌型42とを用い、それら雌雄両型42,38を相互に型合わせすることによってそれぞれの成形面40,36間に画成された略密閉状の成形キャビティ44内で、所定の重合用モノマーを重合成形することによって、目的とするレンズ前後面18,20を備えたコンタクトレンズ10を製造する成形方法が、好適に採用される。
 ここにおいて、雌雄両型42,38のそれぞれ成形面40,36は、目的とする形状の光学部22と周辺部24を与える成形面を備えており、それによって、製造されるコンタクトレンズ10において、所定の球面レンズ特性と円柱レンズ特性とを併せ備えた光学部22が形成されると共に、前述の如き所定の厚さ寸法の周方向変化が付された周辺部24が形成されるようになっている。その際、先ず、図8に示されるように、結膜の表面形状に応じてレンズ後面20の周方向形状、即ちリフト量:Δxの周方向形状を設計する。続いて、周辺部24のレンズ前面18において、薄肉部30、厚肉部32、変化領域34のそれぞれの周方向形状、即ち周辺部レンズ厚さ:tを設計する。これらの周方向形状と、レンズ材料や酸素透過率に基づくコンタクトレンズ10の全体の厚さ等を併せて考慮して、リフト量:Δxおよび周辺部レンズ厚さ:tの各寸法を設定する。これにより、周辺部24のレンズ前後面18,20の形状が決定されて、これらの形状をもってコンタクトレンズ10が製造される。なお、周辺部24のレンズ前後面18,20には、互いに対応する位置に所定の傾斜面等が付されていることから、雌雄両型42,38には相互に係止等される周方向の相対位置合わせ手段が設けられる。
 このような形状とされたコンタクトレンズ10は、図11に示されるように、人眼46の角膜から結膜の表面を覆うように装用される。従来のソフトコンタクトレンズでは、光学部22の周囲の周辺部24が結膜まで覆うサイズとされていても、レンズ後面20が結膜表面に対応する形状とされていなかった。そのため、結膜の鼻側が相対的に隆起している人眼に従来のソフトコンタクトレンズを装用すると、この相対的に隆起している部分にコンタクトレンズの当接力が集中して作用し易く、この部分が圧迫されて装用感を悪化させるおそれがあった。本実施形態のコンタクトレンズ10の周辺部24におけるレンズ後面20では、鼻側(θ=0,360)におけるリフト量:Δxが大きくされていることにより、結膜において相対的に隆起している部分への局所的な当接が回避されて、従来のコンタクトレンズでは集中し易かった当接力を分散させることが出来る。これにより、装用感を悪化させる結膜の圧迫を軽減または回避することが出来て、装用感の向上が図られ得る。
 また、本実施形態のコンタクトレンズ10の周辺部24は、鉛直径方向線14および水平径方向線16に対して線対称形状とされている。これにより、コンタクトレンズ使用者が上下方向および左右方向を判別して装用するという手間を必要としない。さらに、このように線対称形状とされることにより、コンタクトレンズ10の種類を少なくすることが出来て、コンタクトレンズ10の製造や管理、ストック、装用において、コンタクトレンズのメーカーや販売者、使用者の労力負担を大幅に軽減させることが出来る。
 なお、図6(b)等から明らかなように、平均的な人眼の結膜の形状は、耳側(θ=180)から下側(θ=270)(特に耳下(θ=225))で深さが大きくなっており、図8におけるΔx=0がこの位置に設定されることがより好適である。しかしながら、前述のように、鼻側(θ=0,360)でΔxが最大となるように設定されること、および周辺部24が鉛直径方向線14および水平径方向線16に対して線対称形状とされることを考慮して、本実施形態では、鼻側(θ=0,360)および耳側(θ=180)でΔxが最大、上側(θ=90)および下側(θ=270)でΔxが0となる形状を採用している。
 さらに、本実施形態のコンタクトレンズ10の装用状態では、左右両側に一対の厚肉部32,32が位置していると共に、上下両側に一対の薄肉部30,30が位置している。そして、これら左右両側に位置する一対の厚肉部32,32のマス釣り合い作用によって、コンタクトレンズ10における周方向の位置決めが実現される。また、瞬目や眼瞼下への食い込みに伴って、コンタクトレンズ10の変化領域34や厚肉部32,32に及ぼされる眼瞼圧や眼瞼からの押出し作用(レンズの滑り出し作用)も、コンタクトレンズ10に対して、所期の周方向位置(水平径方向線16が水平状態に位置せしめられた、図11に示す位置)への安定化作用が発揮される。特に本実施形態では、一対の厚肉部32,32がコンタクトレンズ10の左右に形成されていることから、瞬目に際して及ぼされる下方への押し出し力を、コンタクトレンズ10のレンズ幾何中心軸12から離れた左右それぞれに及ぼすことが出来て、左右の押し出し力の釣り合いによっても優れた周方向安定性が発揮され得る。また、各変化領域34におけるレンズ前面18の単位角度当たりの周方向変化率が各変化領域34全体の単位角度当たりの周方向変化率((Tb-Ta)/角度)を超えるものとされることにより、周辺部レンズ厚さ:tを増やさずとも、更なる眼瞼による押出し作用が発揮されて、周方向安定性が向上され得る。更に、周辺部レンズ厚さ:tが増加することがないことから、コンタクトレンズ10の酸素透過性も損なわれることがない。
 以上、本発明の第一の実施形態について詳述してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。
 次に、図12~15には、本発明の第二の実施形態としてのコンタクトレンズ48が示されている。なお、以下の説明において、前記第一の実施形態と同一の部位に対して同一の符号を付すことにより詳細な説明を省略する。また、本実施形態のコンタクトレンズ48の正面図は前記第一の実施形態のコンタクトレンズ10の正面図(図1)と実質的に同一であるから省略する。さらに、本実施形態における図12~15は、それぞれ前記第一の実施形態における図2~5に対応するものである。
 本実施形態のコンタクトレンズ48は、前記第一の実施形態のコンタクトレンズ10のエッジ部26において、周方向でレンズ幾何中心軸12方向の位置を異ならせたものである。即ち、本実施形態のコンタクトレンズ48はエッジ部26において、エッジリフトを採用している。特に、本実施形態のコンタクトレンズ48では、図13等に示されるように、鼻側(θ=0,360)および耳側(θ=180)のエッジ部26、要するにコンタクトレンズ48の周辺部24における一対の厚肉部32,32から続いて延びるエッジ部26にエッジリフトが設定されている。一方、図12等に示されるように、上側(θ=90)および下側(θ=270)のエッジ部26、要するに周辺部24における一対の薄肉部30,30から続いて延びるエッジ部26の位置は前記第一の実施形態と同一とされている。その結果、図14,15に示されるように、本実施形態のコンタクトレンズ48のエッジ部26は、周方向で所定のエッジリフト量:Δy(図15参照)だけ変化している。即ち、エッジリフト量:Δyとは、エッジ部26において、レンズ幾何中心軸12方向で最も後面側(図15中の下方)を基準位置としたときの変化量である。特に、本実施形態の周方向のエッジリフト量:Δyの変化形状は、周方向のリフト量:Δxの変化形状(本実施形態の周方向のリフト量変化は、前記第一の実施形態に準ずるものであり、従って図8の形状)に対応している。
 また、エッジリフトが設定されている鼻側(θ=0,360)および耳側(θ=180)と、エッジリフトが設定されていない上側(θ=90)および下側(θ=270)との間のエッジ部26、要するに周辺部24における各変化領域34から続いて延びる各エッジ部26は、位置の異なる周方向両端を、折れ点を形成せずに滑らかに接続している。特に、本実施形態においては、各変化領域34から続いて延びる各エッジ部26は鉛直径方向線14および水平径方向線16に対して線対称形状とされている。これにより、本実施形態のコンタクトレンズ48の周辺部24は、鉛直径方向線14および水平径方向線16に対して線対称形状とされている。
 なお、直径φ14mmの位置におけるΔyの最大値は、好ましくは0.05≦Δy≦0.7mmに設定されて、より好ましくは0.3≦Δy≦0.6mmとされる。蓋し、前記第一の実施形態におけるリフト量:Δxと同様に、Δyの最大値が0.05mmに満たないと、周辺部24におけるレンズ後面20の形状が結膜の表面形状に沿い難く、装用感の向上効果が十分に発揮されないおそれがある。また、Δyの最大値が0.7mmを超えると、涙液等により周辺部24が浮き上がり、コンタクトレンズ48と結膜の間に気泡が入り込むおそれがある。
 このような形状とされた本実施形態のコンタクトレンズ48は、鼻側(θ=0,360)にエッジリフトが設定されているため、前記第一の実施形態のコンタクトレンズ10に比べて、鼻側が相対的に隆起している人眼の結膜の表面形状に更に対応した形状とされ得る。このことから、本実施形態のコンタクトレンズ48は前記第一の実施形態のコンタクトレンズ10に比べて、結膜の圧迫がより軽減され得て、更なる装用感の向上を図ることが出来る。
 また、前記第一の実施形態と同様に、一対の薄肉部30,30が装用状態で上下方向に形成されると共に、一対の厚肉部32,32が装用状態で左右方向に形成されていることから、前記第一の実施形態と同様に周方向の安定効果が発揮される。さらに、前述のように、本実施形態のコンタクトレンズ48の周辺部24は前記第一の実施形態と同様に、鉛直径方向線14および水平径方向線16に対して線対称形状とされていることから、前記第一の実施形態と同様にコンタクトレンズ48の製造や管理、ストック、装用における労力負担の軽減効果が発揮され得る。
 なお、本実施形態において、エッジ部26は鉛直径方向線14および水平径方向線16に対して線対称形状とされているが、本発明においては必ずしもその必要はない。
 次に、図16~19には、本発明の第三の実施形態としてのコンタクトレンズ50が示されている。なお、本実施形態における図16~19は、それぞれ前記第一の実施形態における図1~3、および図5に対応するものである。
 本実施形態のコンタクトレンズ50では、前記第一の実施形態とは異なり、耳側(θ=180)のリフト量:Δxが0とされている。要するに、鼻側(θ=0,360)のレンズ後面20において所定のリフト量:Δxが最大値として設定されている一方、上側(θ=90)の薄肉部30、耳上側(θ=135)の変化領域34、耳側(θ=180)の厚肉部32a、耳下側(θ=225)の変化領域34、下側(θ=270)の薄肉部30におけるレンズ後面20において、リフト量:Δxが最小値の0とされている。
 ここで、図19に示されるように、本実施形態の周辺部24におけるレンズ前面18には、それぞれ鼻側(θ=0,360)と耳側(θ=180)に同じ周辺部レンズ厚さ:t(Tb)を有する厚肉部32,32aが設けられているが、鼻側(θ=0,360)と耳側(θ=180)においてレンズ後面20の位置が異なるため、それぞれのレンズ前面18の位置が異なっている。なお、図19の周辺部24においては、実線が薄肉部30、一点鎖線が鼻側(θ=0,360)の厚肉部32、二点鎖線が耳側(θ=180)の厚肉部32aを示している。ここで、両厚肉部32,32aのそれぞれのレンズ後面20は重なって示されるため、これらのレンズ後面20は一点鎖線で示している。そして、鼻側(θ=0,360)の厚肉部32の周方向両側における変化領域34,34(鼻上側および鼻下側(それぞれθ=45,315))が、水平径方向線16に対して線対称形状とされている。このため、本実施形態のコンタクトレンズ50の周辺部24は、水平径方向線16に対して線対称形状とされている一方、鉛直径方向線14に対しては非対称形状とされている。
 さらに、図20(a),(b)には、前記第一の実施形態の図7に示された結膜とは別の特徴を有する結膜の形状が示されている。即ち、結膜の鼻側(θ=0,360)で角膜中心に対する深さが小さくなっている一方、上側(θ=90)から下側(θ=270)で角膜中心に対する深さが大きくなっている。なお、図20(b)は、角膜中心から半径r=6.0mmの周上の各点における、角膜中心に対する深さの具体的な数値を示している。そして、これら図20(b)の値をグラフにしたものが図20(a)である。
 本実施形態では、図20のような結膜の形状を考慮して、図21のような周方向リフト量:Δxが周辺部24のレンズ後面20に設定されている。即ち、角膜中心に対する深さが大きくなっている上側(θ=90)から下側(θ=270)が、レンズ幾何中心軸12方向において最も後面(基準面20a)とされており、要するにリフト量:Δxが0とされる。一方、角膜中心に対する深さが小さくなっている鼻側(θ=0,360)においては、所定のリフト量:Δxが設定されている。
 このような形状とされた本実施形態のコンタクトレンズ50では、前記第一の実施形態に比べて、周辺部24におけるレンズ後面20の形状が、図6(b)等に示される平均的な結膜の表面形状に更に対応したものとされている。即ち、図6(b)に示されるように、平均的な人眼の結膜は耳側(θ=180)から下側(θ=270)にかけて深さが大きくなっている一方、鼻側(θ=0,360)で相対的に隆起している形状となっている。これに対して、前記第一の実施形態のコンタクトレンズ10では鼻側(θ=0,360)のレンズ後面20において、所定のリフト量:Δxが設定されて結膜の鼻側における圧迫を回避している一方、対称性を考慮に入れて、耳側(θ=180)のレンズ後面20にも所定のリフト量:Δxが設定されていた。ここにおいて、本実施形態のコンタクトレンズ50においては、鼻側(θ=0,360)のレンズ後面20では第一の実施形態と同様に所定のリフト量:Δxを設定する一方、少なくとも上側(θ=90)から下側(θ=270)にかけて、レンズ後面20のリフト量:Δxを0、即ち同一面とすることにより、周辺部24のレンズ後面20が更に結膜表面に対応した形状とされている。
 このことから、本実施形態のコンタクトレンズ50は、前記第一の実施形態のコンタクトレンズ10に比べて、装用感の向上が図られ得る。また、前記第一の実施形態と同様に、装用状態において上下方向に一対の薄肉部30,30が、左右方向に一対の厚肉部32,32aが設けられていることから、前記第一の実施形態と同様に周方向の安定性が図られ得る。なお、前述のように、一対の厚肉部32,32aのレンズ前面18の位置が異ならされているが、周方向安定性の効果は十分に発揮される。このように、本発明においては、一対の薄肉部30,30、或いは一対の厚肉部32,32におけるそれぞれレンズ前面18の位置は必ずしも同じでなくても良い。
 次に、図22~24には、本発明の第四の実施形態としてのコンタクトレンズ52が示されている。なお、本実施形態のコンタクトレンズ52の正面図は前記第三の実施形態のコンタクトレンズ50の正面図(図16)と実質的に同一であるから省略する。また、本実施形態における図22~24は、それぞれ前記第三の実施形態における図17~19に対応するものである。さらに、図24の周辺部24においては、実線が薄肉部30、一点鎖線が鼻側(θ=0,360)の厚肉部32、二点鎖線が耳側(θ=180)の厚肉部32aを示している。ここで、薄肉部30と厚肉部32aのそれぞれのレンズ後面20は重なって示されるため、これらのレンズ後面20は実線で示している。
 本実施形態のコンタクトレンズ52は、前記第三の実施形態のコンタクトレンズ50にエッジリフトを採用したものである。本実施形態におけるエッジリフトは、鼻側(θ=0,360)のエッジ部26、要するにコンタクトレンズ52の周辺部24における鼻側(θ=0,360)の厚肉部32から続いて延びるエッジ部26にのみ所定のエッジリフト量:Δyだけ設けられている。そして、図22,23に示されるように、少なくとも上側(θ=90)から下側(θ=270)にかけてはエッジリフト量:Δyは0とされている。従って、本実施形態の周方向のエッジリフト量:Δyの変化形状は、周方向のリフト量:Δxの変化形状(本実施形態の周方向のリフト量変化は、前記第三の実施形態に準ずる)に対応している。
 このような形状とされたコンタクトレンズ52は、前記第二の実施形態と同様に、鼻側(θ=0,360)にエッジリフトが設定されているため、前記第三の実施形態のコンタクトレンズ50に比べて、鼻側が相対的に隆起している人眼の結膜の表面形状に更に対応した形状とされ得る。また、前記第三の実施形態と同様に、耳側(θ=180)におけるリフト量:Δxが0とされている。即ち、鼻側(θ=0,360)に所定のリフト量:Δxが設定される一方、少なくとも上側(θ=90)から下側(θ=270)にかけてはリフト量:Δxが0とされていることから、前記第一および第二の実施形態に比べて、本実施形態の周辺部24のレンズ後面20をより結膜の表面形状に対応した形状とすることが出来る。これにより、本実施形態のコンタクトレンズ52は、前記第一~第三の実施形態におけるコンタクトレンズ10,48,50に比べて、更なる装用感の向上が図られ得る。
 また、前記第三の実施形態と同様に、装用状態における上下方向に一対の薄肉部30,30が、左右方向に一対の厚肉部32,32aが形成されていることから、前記第三の実施形態と同様に、周方向安定性の効果が発揮され得る。
 次に、図25~28には、本発明の第五の実施形態としてのコンタクトレンズ54が示されている。なお、本実施形態における図25~28は、それぞれ前記第一の実施形態における図1~3、および図5に対応するものである。
 本実施形態におけるコンタクトレンズ54は、図25~27に示されるように、周辺部24の上側(θ=90)に薄肉部56が、下側(θ=270)に厚肉部58が、更にこれら薄肉部56と厚肉部58の間である鼻側(θ=0,360)および耳側(θ=180)のそれぞれには、変化領域60,60が形成されている。これらの薄肉部56および厚肉部58は周方向に延びており、鉛直径方向線14に跨っていると共に、鉛直径方向線14に対して線対称形状とされている。また、各変化領域60,60は周方向に延びており、各変化領域60,60におけるレンズ前面18はそれぞれが水平径方向線16に跨っていると共に、水平径方向線16に対して線対称形状とされている。さらに、各変化領域60,60は相互に鉛直径方向線14に対して線対称形状とされている。これらのことから、本実施形態の周辺部24におけるレンズ前面18は、鉛直径方向線14に対して線対称形状とされている一方、水平径方向線16に対して非対称形状とされている。
 また、これらの薄肉部56および厚肉部58は、前記第一の実施形態と同様に、レンズ幾何中心軸12回りにそれぞれ所定の角度θ’、θ’(図25参照)で延びている。これらθ’、θ’はそれぞれ、0度≦θ’≦120度、および20度≦θ’≦120度の範囲内に設定されることが望ましく、より好適には、30度≦θ’≦80度、および40度≦θ’≦100度とされる。また、薄肉部56と厚肉部58との間に設けられた各変化領域60は、レンズ幾何中心軸12回りに所定の角度θa-b ’(図25参照)で延びており、120度≦θa-b ’≦180度の範囲内とされることが望ましく、より好適には、140度≦θa-b ’≦160度とされる。このように、θ’、θ’、θa-b ’の角度範囲を好適なものとすることにより、装用時における周方向位置の安定性の向上や装用感の更なる向上が図られ得る。
 さらに、図28には、図26,27の各断面図におけるレンズ幾何中心軸12を一致させて、薄肉部56、厚肉部58、変化領域60を重ね合わせた図の要部拡大図が示されている。なお、図28においては、実線が変化領域60を、一点鎖線が薄肉部56を、二点鎖線が厚肉部58を示している。また、薄肉部56と厚肉部58におけるレンズ後面20が重なって示されるため、これらのレンズ後面20は一点鎖線で示している。この図28に示されるように、上側(θ=90)および下側(θ=270)である薄肉部56および厚肉部58のレンズ後面20が基準面20a、即ちリフト量:Δxが0とされて、鼻側(θ=0,360)および耳側(θ=180)である各変化領域60,60のレンズ後面20には所定のリフト量:Δxが設定されている。
 このような形状とされた本実施形態のコンタクトレンズ54は、前述のように、周辺部24のレンズ後面20における鼻側(θ=0,360)に所定のリフト量:Δxが設定されていることから、レンズ後面20の形状を鼻側が相対的に隆起している人眼の結膜の表面形状に対応させることが出来る。これにより、装用感の向上が図られ得る。
 また、前記第一~第四の実施形態においては、装用状態で上下方向に一対の薄肉部30,30が設けられると共に、左右方向に一対の厚肉部32,32が設けられて、これらの重量バランスに基づいて周方向位置決めの効果が発揮されている。一方、本実施形態のコンタクトレンズ54のように、装用状態で上方に薄肉部56が設けられると共に、下方に厚肉部58が設けられている、いわゆるプリズムバラスト構造でも、これらの重量バランスに基づいた周方向位置決め効果が発揮され得る。
 さらに、本実施形態のコンタクトレンズ54の周辺部24は、装用状態で左右対称形状とされていることから、コンタクトレンズ使用者がコンタクトレンズ54の左右を判別することなく装用することが可能である。
 次に、図29には、本発明の第六の実施形態としてのコンタクトレンズ62が示されている。本実施形態におけるコンタクトレンズ62は、前記第五の実施形態のコンタクトレンズ54における薄肉部56と変化領域60、および厚肉部58と変化領域60のそれぞれの境界が装用状態で水平方向(図29中の左右方向)に延びているものである。なお、本実施形態におけるコンタクトレンズ62の横断面図および縦断面図、さらに各断面図を重ね合わせた図は、前記第五の実施形態の図26~28と実質的に略同一であるため省略する。
 このような形状とされた本実施形態のコンタクトレンズ62において、周辺部24のレンズ後面20の形状は前記第五の実施形態に準ずるものである。即ち、上側(θ=90)および下側(θ=270)でリフト量:Δxが0とされていると共に、鼻側(θ=0,360)および耳側(θ=180)で所定のリフト量:Δxが設定されている。このことから、前記第五の実施形態と同様に、周辺部24のレンズ後面20を結膜の表面形状に対応させることが出来て、装用感の向上が図られ得る。
 また、本実施形態のように、薄肉部56と変化領域60、および厚肉部58と変化領域60のそれぞれの境界を装用状態で水平方向(図29中の左右方向)とすることにより、薄肉部56と厚肉部58の領域を広く取ることが出来る。これにより、薄肉部56と厚肉部58の重量差を大きくすることが出来て、コンタクトレンズ62の周方向位置決め効果の更なる向上が図られ得る。なお、このように、本発明において薄肉部56と変化領域60、および厚肉部58と変化領域60のそれぞれの境界は、径方向に延びている必要はない。例えば、本実施形態のように、全ての境界が水平方向に延びていても良いし、一部の境界が水平方向に延びていても良い。或いは、これらの境界が装用状態で鉛直方向(図29中の上下方向)に延びていても良い。
 さらに、前記第五の実施形態と同様に、本実施形態のコンタクトレンズ62の周辺部24は、装用状態で左右対称形状とされていることから、コンタクトレンズ使用者がコンタクトレンズ62の左右を判別することなく装用することが可能である。
 次に、図30~33には、本発明の第七の実施形態としてのコンタクトレンズ64が示されている。なお、本実施形態における図30~33は、それぞれ前記第一の実施形態における図1~3、および図5に対応するものである。
 本実施形態のコンタクトレンズ64における周辺部24には、上側(θ=90)に薄肉部56が設けられていると共に、耳下側(θ=225)および鼻下側(θ=315)に一対の厚肉部58,58が設けられている。また、これら薄肉部56と一対の厚肉部58,58の間には一対の変化領域60,60が設けられている。さらに、下側(θ=270)、即ち一対の厚肉部58,58の周方向中間部分には、中間部66が設けられていると共に、この中間部66の周方向両端、即ち中間部66と一対の厚肉部58,58の間には、一対の変化領域68,68が設けられている。
 具体的には、これら薄肉部56、厚肉部58、中間部66、変化領域60,68は周方向に延びている。そして、薄肉部56および中間部66は鉛直径方向線14に跨っていると共に、鉛直径方向線14に対して線対称形状とされている。一方、各一対の厚肉部58,58、変化領域60,60、変化領域68,68はそれぞれ、相互に鉛直径方向線14に対して線対称形状とされている。これらのことから、本実施形態の周辺部24におけるレンズ前面18は、鉛直径方向線14に対して線対称形状とされている一方、水平径方向線16に対して非対称形状とされている。
 なお、中間部66は所定のレンズ厚さ:Tcを有しており、一定形状で周方向に延びている。この中間部66のレンズ厚さ:Tcは、厚肉部58のレンズ厚さ:Tbと比較して、Tc<Tbとされている。また、中間部66のレンズ厚さ:Tcは薄肉部56のレンズ厚さ:Taには依存しておらず、TcはTaより小さくされても、大きくされても、等しくされても良い。なお、本実施形態の中間部66のレンズ厚さ:Tcは、薄肉部56のレンズ厚さ:Taと厚肉部58のレンズ厚さ:Tbの中間、即ちTa<Tc<Tbとされている。ここにおいて、中間部66のレンズ厚さ:Tcの最大値は、好適には0.2≦Tc≦0.5mmとされており、更に好適には0.25≦Tc≦0.4mmとされる。蓋し、Tcの最大値が0.2mmに満たないと、中間部66と一対の厚肉部58,58との差が大きくなり、変化領域68,68が急峻な形状となるおそれがある。また、Tcの最大値が0.5mmを超えると、中間部66と一対の厚肉部58,58との差が小さくなり、実質的に厚肉な領域が広がるため、装用感が悪化するおそれがある。
 また、これらの薄肉部56および一対の厚肉部58,58は、前記第五の実施形態と同様に、レンズ幾何中心軸12回りにそれぞれ所定の角度θ’’、θ’’(図30参照)で延びている。これらθ’’、θ’’はそれぞれ、0度≦θ’’≦80度、および0度≦θ’’≦60度の範囲内に設定されることが望ましく、より好適には、30度≦θ’’≦60度、および20度≦θ≦40度とされる。さらに、薄肉部56と各厚肉部58との間に設けられた各変化領域60は、レンズ幾何中心軸12回りに所定の角度θa-b ’’(図30参照)で延びており、60度≦θa-b ’’≦140度の範囲内とされることが望ましく、より好適には、80度≦θa-b ’’≦120度とされる。そして、中間部66はレンズ幾何中心軸12回りに所定の角度θ(図30参照)で延びており、0度≦θ≦60度の範囲内とされることが望ましく、より好適には、20度≦θ≦40度とされる。また、中間部66と各厚肉部58との間に設けられた各変化領域68は、レンズ幾何中心軸12回りに所定の角度θb-c (図30参照)で延びており、10度≦θb-c ≦60度の範囲内とされることが望ましく、より好適には、20度≦θb-c ≦40度とされる。このように、θ’’、θ’’、θa-b ’’、θ、θb-c の角度範囲を好適なものとすることにより、装用時における周方向位置の安定性の向上や装用感の更なる向上が図られ得る。
 さらに、図33には、図31,32の各断面図におけるレンズ幾何中心軸12を一致させて、薄肉部56、厚肉部58、変化領域60を重ね合わせた図の要部拡大図が示されている。なお、図33において中間部66の図示は省略している。また、図33においては、実線が変化領域60を、一点鎖線が薄肉部56を、二点鎖線が厚肉部58を示している。ここで、薄肉部56と厚肉部58におけるレンズ後面20が重なって示されるため、これらのレンズ後面20は一点鎖線で示している。この図33に示されるように、上側(θ=90)と耳下側(θ=225)および鼻下側(θ=315)である薄肉部56および一対の厚肉部58,58のレンズ後面20が基準面20a、即ちリフト量:Δxが0とされて、鼻側(θ=0,360)および耳側(θ=180)を含む各変化領域60,60のレンズ後面20には所定のリフト量:Δxが設定されている。
 このような形状とされた本実施形態のコンタクトレンズ64は、前述のように、周辺部24のレンズ後面20における鼻側(θ=0,360)に所定のリフト量:Δxが設定されていることから、レンズ後面20の形状を鼻側が相対的に隆起している人眼の結膜の表面形状に対応させることが出来る。これにより、装用感の向上が図られ得る。
 また、本実施形態のコンタクトレンズ64は、装用状態で水平径方向左右に一対の厚肉部58,58が設けられた、いわゆるペリバラスト構造とされており、更に装用状態で上方に薄肉部56が設けられている。これにより、前記第五の実施形態と同様に、これらの重量バランスに基づいた周方向位置決め効果が発揮され得る。
 さらに、前記第五の実施形態と同様に、本実施形態のコンタクトレンズ64の周辺部24は、装用状態で左右対称形状とされていることから、コンタクトレンズ使用者がコンタクトレンズ64の左右を判別することなく装用することが可能である。
 次に、図34には、本発明の第八の実施形態としてのコンタクトレンズにおけるレンズ後面20のリフト量:Δxの周方向変化が示されている。なお、レンズ前面18の形状は、前記第一~第七の実施形態におけるレンズ前面18の何れもが採用され得るため、本実施形態では省略する。本実施形態では、鼻上側(θ=45)のレンズ後面20におけるリフト量:Δxが最大とされると共に、耳下側(θ=225)のレンズ後面20においてリフト量:Δxが最小の0とされている。
 ここで、図35(a),(b)には、前記第一および第三の実施形態の、それぞれ図7および図20に示された結膜とは別の特徴を有する結膜の形状が示されている。即ち、結膜の鼻上側(θ=45)で角膜中心に対する深さが小さくなっている一方、耳下側(θ=225)で角膜中心に対する深さが大きくなっている。なお、図35(b)は、角膜中心から半径r=6.0mmの周上の各点における、角膜中心に対する深さの具体的な数値を示している。そして、これら図35(b)の値をグラフにしたものが図35(a)である。
 本実施形態では、図35のような結膜の形状を考慮して、図34のような周方向リフト量:Δxが周辺部24のレンズ後面20に設定されている。即ち、角膜中心に対する深さが大きくなっている耳下側(θ=225)が、レンズ幾何中心軸12方向において最も後面(基準面20a)とされており、要するにリフト量:Δxが0とされる。一方、角膜中心に対する深さが小さくなっている鼻上側(θ=45)においては、所定のリフト量:Δxが設定されている。
 図6(b)に示されるように、平均的な人眼の結膜の表面形状は鼻側(θ=0,360)から鼻上側(θ=45)にかけて相対的に隆起している。また一方、耳下側(θ=225)では相対的に深さが大きくなっている。従って、前述のような形状とされた本実施形態のコンタクトレンズの周辺部24におけるレンズ後面20は、平均的な人眼の結膜の表面形状に更に一層対応しており、より一層の装用感の向上が図られ得る。
 その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
 さらに、前記実施形態の各態様は任意に組み合わせることが可能である。例えば、前記第五~第七の実施形態のような装用状態で上下非対称とされるコンタクトレンズに、前記第二の実施形態等で採用されているエッジリフトを組み合わせる等をしても良い。
 また、前記実施形態の各コンタクトレンズには、必要に応じて、レンズの周方向位置を判別するためのガイドマークが付され得る。このガイドマークはコンタクトレンズ使用者の視界や装用感に影響を与えることなく、且つ目視により視認可能であれば、特に限定されるものではないが、例えば顔料等によるドット状のマーク等が挙げられる。これにより、コンタクトレンズ使用者が本発明に従うコンタクトレンズを装用する際に、上下或いは左右の判別を容易に行うことが出来る。このように、コンタクトレンズの装用状態での方向とは、コンタクトレンズ使用者が装用することのみによって判別されるものではなく、非装用状態であってもガイドマーク等により判別可能である。
 更にまた、前記実施形態では、薄肉部30および厚肉部32におけるレンズ前面18の形状は対応するレンズ後面20の形状と略同様とされており、これにより、それぞれの周辺部レンズ厚さ:tが一定とされていた。本発明は、この形状に限定されるものではなく、必ずしも薄肉部30および厚肉部32における周辺部レンズ厚さ:tが一定とされている必要はない。即ち、薄肉部30および厚肉部32は、周方向において、厚さが変化していても良い。
 また、前記実施形態においては、コンタクトレンズとして真円のものが示されているが、これに限定されず、楕円形であっても良い。更にまた、レンズの外周の一部を弦方向に直線形状とした、トランケーション法によるレンズについても、本発明は実施可能である。
10,48,50,52,54,62,64:コンタクトレンズ、18:レンズ前面、20:レンズ後面、20a:基準面、22:光学部、24:周辺部、30,56:薄肉部、32,32a,58:厚肉部

Claims (16)

  1.  凸状のレンズ前面と凹状のレンズ後面を有しており、中央部分の光学部の周りに周辺部が設けられたコンタクトレンズにおいて、
     前記周辺部が角膜の外周側の結膜の一部まで覆うものであって、
     該周辺部の前記レンズ後面におけるリフト量が周上で異ならされており、該リフト量が装用状態での上下部分の少なくとも一方に比して左右部分が少なくとも一方で大きくされていると共に、
     該周辺部の前記レンズ前面において厚さ変化が周方向に付されており、装用状態で周方向に位置決めされる厚肉部と薄肉部が設けられている
    ことを特徴とするコンタクトレンズ。
  2.  前記リフト量が、装用状態での上下何れの部分に比しても左右部分の少なくとも一方で大きくされている請求項1に記載のコンタクトレンズ。
  3.  前記リフト量の最大値が、装用状態で左右方向となる径方向の少なくとも一方の位置に設定されている請求項1又は2に記載のコンタクトレンズ。
  4.  前記リフト量の最大値が、装用状態で左右方向となる径方向の両方の位置に設定されている請求項3に記載のコンタクトレンズ。
  5.  前記リフト量の最小値が、装用状態で上下方向となる径方向の少なくとも一方の位置に設定されている請求項1~4の何れか一項に記載のコンタクトレンズ。
  6.  前記リフト量の最小値が、装用状態で上方向となる位置に設定されている請求項5に記載のコンタクトレンズ。
  7.  前記リフト量に関し、装用状態で左右方向の鼻側となる左右部分の一方が、耳側となる左右部分の他方と上下部分との何れに比しても大きくされている請求項1,2,3,5,6の何れか一項に記載のコンタクトレンズ。
  8.  前記リフト量の最大値が、装用状態で左右方向の鼻側となる径方向の一方の位置よりも上方に偏倚した位置に設定されている請求項1又は2に記載のコンタクトレンズ。
  9.  前記リフト量の最小値が、装用状態で左右方向の耳側となる径方向一方の位置よりも下方に偏倚した位置に設定されている請求項1,2,8の何れか一項に記載のコンタクトレンズ。
  10.  前記リフト量の周方向での変化が有理関数で設定されている請求項1~9の何れか一項に記載のコンタクトレンズ。
  11.  前記周辺部の前記レンズ後面の形状が、装用状態で水平方向となる径方向線に関して線対称形状とされている請求項1~5,10の何れか一項に記載のコンタクトレンズ。
  12.  前記周辺部の前記レンズ前面の厚さ変化によってダブルシン、ペリバラスト、プリズムバラストの何れかが構成されている請求項1~11の何れか一項に記載のコンタクトレンズ。
  13.  前記周辺部の前記レンズ前面の厚さ変化によって、レンズ厚さ寸法の最小位置が、装用状態で上方向となる位置に設定されている請求項1~12の何れか一項に記載のコンタクトレンズ。
  14.  前記周辺部の前記レンズ前面の厚さ変化における変化率が、該周辺部におけるレンズ厚さ寸法の変化率に比べて、少なくとも周方向の一部において大きくされている請求項1~13の何れか一項に記載のコンタクトレンズ。
  15.  前記光学部における光学特性が周方向で特定の方向性を有している請求項1~14の何れか一項に記載のコンタクトレンズ。
  16.  凸状のレンズ前面と凹状のレンズ後面を有しており、中央部分の光学部の周りに周辺部が設けられたコンタクトレンズを製造するに際して、
     前記周辺部の外径寸法を角膜の外周側の結膜まで覆う大きさに設定すると共に、該周辺部の前記レンズ後面におけるリフト量を周上で異なる形状に設定し、且つ、該リフト量を装用状態での下部分に比して左右部分の少なくとも一方で大きく設定することにより、該周辺部の該レンズ後面の形状を、球面よりも該結膜の表面形状に沿わせた非球面形状をもって設定すると共に、該周辺部の前記レンズ前面を周方向において厚さ方向で変化させることにより装用状態で周方向の位置決め作用を発揮する厚肉部と薄肉部を設定し、それによって得られた該周辺部の該レンズ後面およびレンズ前面の形状をもってコンタクトレンズを製造することを特徴とするコンタクトレンズの製造方法。
PCT/JP2012/004844 2012-07-30 2012-07-30 コンタクトレンズおよびコンタクトレンズの製造方法 WO2014020634A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/004844 WO2014020634A1 (ja) 2012-07-30 2012-07-30 コンタクトレンズおよびコンタクトレンズの製造方法
JP2013557972A JP5642895B2 (ja) 2012-07-30 2012-07-30 コンタクトレンズおよびコンタクトレンズの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004844 WO2014020634A1 (ja) 2012-07-30 2012-07-30 コンタクトレンズおよびコンタクトレンズの製造方法

Publications (1)

Publication Number Publication Date
WO2014020634A1 true WO2014020634A1 (ja) 2014-02-06

Family

ID=50027370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004844 WO2014020634A1 (ja) 2012-07-30 2012-07-30 コンタクトレンズおよびコンタクトレンズの製造方法

Country Status (2)

Country Link
JP (1) JP5642895B2 (ja)
WO (1) WO2014020634A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002357B1 (ja) * 2015-10-01 2016-10-05 株式会社メニコン コンタクトレンズ
JP2017227663A (ja) * 2016-06-20 2017-12-28 Hoya株式会社 コンタクトレンズおよびその製造方法
WO2018105640A1 (ja) * 2016-12-07 2018-06-14 興和株式会社 トーリック眼用レンズ
WO2020066473A1 (ja) * 2018-09-25 2020-04-02 株式会社アイメディ商事 スマートコンタクトレンズ用レンズ
JP2021140125A (ja) * 2020-03-04 2021-09-16 株式会社アイメディ商事 スマートコンタクトレンズ用レンズ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212925A (ja) * 1990-01-29 1992-08-04 Schering Plough Corp 乱視矯正用コンタクトレンズ
WO2006134649A1 (ja) * 2005-06-15 2006-12-21 Menicon Co., Ltd. 多種材コンタクトレンズ
WO2009034602A1 (ja) * 2007-09-13 2009-03-19 Menicon Co., Ltd. 酸素透過性ハードコンタクトレンズ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500551B2 (ja) * 2002-04-12 2010-07-14 株式会社メニコン コンタクトレンズおよびコンタクトレンズの製造方法
WO2004109368A2 (en) * 2003-05-30 2004-12-16 Scientific Optics, Inc. Contact lens with shaped periphery
US20060264917A1 (en) * 2005-05-20 2006-11-23 Visx, Incorporated Scleral lenses for custom optic evaluation and visual performance improvement
US7360890B2 (en) * 2005-08-11 2008-04-22 Coopervision, Inc Contact lenses and methods for reducing conjunctival pressure in contact lens wearers
US20110037942A1 (en) * 2008-04-01 2011-02-17 Scientific Optics, Inc. Universal contact lens posterior surface construction
US8113652B2 (en) * 2009-03-27 2012-02-14 Crt Technology, Inc. Contact lens with meridional sagittal variation and methods for making and using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212925A (ja) * 1990-01-29 1992-08-04 Schering Plough Corp 乱視矯正用コンタクトレンズ
WO2006134649A1 (ja) * 2005-06-15 2006-12-21 Menicon Co., Ltd. 多種材コンタクトレンズ
WO2009034602A1 (ja) * 2007-09-13 2009-03-19 Menicon Co., Ltd. 酸素透過性ハードコンタクトレンズ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056306A1 (ja) * 2015-10-01 2017-04-06 株式会社メニコン コンタクトレンズ
JP6002357B1 (ja) * 2015-10-01 2016-10-05 株式会社メニコン コンタクトレンズ
US10175504B2 (en) 2015-10-01 2019-01-08 Menicon Co., Ltd. Contact Lens
EP3358394A4 (en) * 2015-10-01 2019-08-07 Menicon Co., Ltd. CONTACT LENS
US11231598B2 (en) 2016-06-20 2022-01-25 Hoya Corporation Contact lens and method for manufacturing the same
JP2017227663A (ja) * 2016-06-20 2017-12-28 Hoya株式会社 コンタクトレンズおよびその製造方法
KR20190019048A (ko) * 2016-06-20 2019-02-26 호야 가부시키가이샤 콘택트 렌즈 및 그 제조 방법
KR102553989B1 (ko) * 2016-06-20 2023-07-10 호야 가부시키가이샤 콘택트 렌즈 및 그 제조 방법
WO2018105640A1 (ja) * 2016-12-07 2018-06-14 興和株式会社 トーリック眼用レンズ
JP7045323B2 (ja) 2016-12-07 2022-03-31 興和株式会社 トーリック眼内レンズ
US11366336B2 (en) 2016-12-07 2022-06-21 Kowa Company, Ltd. Toric ophthalmic lens
JPWO2018105640A1 (ja) * 2016-12-07 2019-10-24 興和株式会社 トーリック眼用レンズ
WO2020066473A1 (ja) * 2018-09-25 2020-04-02 株式会社アイメディ商事 スマートコンタクトレンズ用レンズ
JP2021140125A (ja) * 2020-03-04 2021-09-16 株式会社アイメディ商事 スマートコンタクトレンズ用レンズ

Also Published As

Publication number Publication date
JPWO2014020634A1 (ja) 2016-07-11
JP5642895B2 (ja) 2014-12-17

Similar Documents

Publication Publication Date Title
JP4442927B2 (ja) 傾斜装用型コンタクトレンズ
JP5335099B2 (ja) コンタクトレンズ
JP4575997B2 (ja) コンタクトレンズ
JP4500551B2 (ja) コンタクトレンズおよびコンタクトレンズの製造方法
CN109073914B (zh) 隐形眼镜及其制造方法
JP2022505332A (ja) 光学レンズ
JP2008508567A (ja) 補剛リブ形体を中に備えたソフトコンタクトレンズ
JP5642895B2 (ja) コンタクトレンズおよびコンタクトレンズの製造方法
US10175504B2 (en) Contact Lens
JP5946981B2 (ja) ディセンタタイプのコンタクトレンズおよびディセンタタイプのコンタクトレンズセット
JP5026291B2 (ja) 装用方向選択型コンタクトレンズ
JP5536289B1 (ja) コンタクトレンズおよびコンタクトレンズの製造方法
US20210318556A1 (en) Ophthalmic lens, design method for the same, manufacturing method for the same, and ophthalmic lens set
CN112684611A (zh) 角膜塑形镜设计方法、制造方法以及角膜塑形镜
CN212965668U (zh) 一种用于延缓近视加深的环焦近视镜片及其制备模具
CN210982947U (zh) 角膜塑形镜
CN210155447U (zh) 一种多功能硬性角膜接触镜
JP5536265B2 (ja) コンタクトレンズ
TWI839248B (zh) 隱形眼鏡
CN218728420U (zh) 一种多向差异化离焦眼镜片及眼镜
TW202041924A (zh) 體積變量減少的軟式隱形眼鏡

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013557972

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882275

Country of ref document: EP

Kind code of ref document: A1