WO2014019503A1 - N型晶硅太阳能电池及其制备方法 - Google Patents

N型晶硅太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2014019503A1
WO2014019503A1 PCT/CN2013/080443 CN2013080443W WO2014019503A1 WO 2014019503 A1 WO2014019503 A1 WO 2014019503A1 CN 2013080443 W CN2013080443 W CN 2013080443W WO 2014019503 A1 WO2014019503 A1 WO 2014019503A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
back field
silicon wafer
region
selective
Prior art date
Application number
PCT/CN2013/080443
Other languages
English (en)
French (fr)
Inventor
杨德成
郎芳
李高非
胡志岩
熊景峰
Original Assignee
英利集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英利集团有限公司 filed Critical 英利集团有限公司
Priority to DE112013003789.0T priority Critical patent/DE112013003789T5/de
Publication of WO2014019503A1 publication Critical patent/WO2014019503A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of solar cells, and in particular to an N-type crystalline silicon solar cell and a method of fabricating the same.
  • Monocrystalline silicon solar cells have been applied to various fields on a large scale, and their good stability and mature process flow are the basis of their large-scale application.
  • the production process of monocrystalline silicon solar cells is shown in Figure 1. Firstly, the silicon wafer needs to be cleaned, and the surface of the silicon wafer is structured by chemical cleaning; then the cleaned silicon wafer is subjected to a diffusion process, and the silicon wafer is subjected to a boron diffusion process to form a PN junction; then the silicon wafer forming the PN junction is formed.
  • the single crystal silicon solar cell meets the requirements.
  • the emitter is an N-type surface formed by phosphorus diffusion, and is also the light-receiving surface of the battery.
  • the selective emitter technology is usually used to improve the surface passivation performance of the silicon wafer.
  • the basic principle is that the activity is active.
  • the region is shallowly doped at a lower concentration (square resistance is between 20 and 90 ohms), while a larger concentration of heavy doping is performed in the region below the metal electrode.
  • Reducing the doping concentration of the optically active region can reduce the surface recombination on the one hand, thereby obtaining a higher open circuit voltage, and on the other hand, by reducing the thickness of the surface dead layer and thereby improving the quantum efficiency, it is advantageous to obtain a higher short circuit.
  • Increasing the doping concentration of the region under the metal electrode can reduce the sheet resistance of the region on the one hand, thereby reducing the metal contact resistance, and also increasing the emitter thickness of the region as the doping concentration increases, thereby Increase the battery sintering process window.
  • N-type solar cells For N-type solar cells, it has a back surface field formed by phosphorus diffusion. In order to improve the passivation performance of the back field, a selective back field process can also be used, the basic principle and structure of which are the same as the selective emitter. Taking N-type crystalline silicon solar cells as an example, the etching paste technology is widely used to prepare selective back-field. As shown in Fig. 2, the basic principle is to use screen printing technology to print a layer of corrosion on the back surface of the silicon wafer. The slurry, wherein the pattern of the screen corresponds to the screen used in the future printing of the metal paste, to ensure that the etching slurry is present only in the photoactive region.
  • the etching slurry reacts on the surface of the silicon wafer to lower the concentration of phosphorus in these regions, correspondingly increasing the sheet resistance of the back field, while the phosphorus in the metal gate region of the etching paste is not printed. Concentration No change. This forms a relatively highly doped deep diffusion region in the metal gate line region and a relatively low doped shallow diffusion region in other regions.
  • the sheet resistance from the metal gate line region to the active region is gradually increased.
  • the electrode is often contacted due to the falling of these high resistance regions. The resistance rises so that the fill factor of the battery drops significantly.
  • the present invention is directed to an N-type crystalline silicon solar cell and a method of fabricating the same to solve the problem that the selective back field in the prior art causes a decrease in the fill factor.
  • a method for preparing an N-type crystalline silicon solar cell including a diffusion bonding, etching, deposition anti-reflection layer, printing and sintering step, before the diffusion-knotting step
  • the preparation process including the selective back field includes: 1) diffusing a shallow doped phosphorus back field on the silicon substrate; and 2) vertically irradiating the phosphorus back field with the laser
  • the region on which the metal gate line region is to be formed enriches the doped phosphorus element in the region to form a selective back field.
  • the laser used in the above step 2) has a power of 0.5 10 W, a pulse width of 100 ps to 500 ns, a wavelength of 300 to 1600 nm, a frequency of 100 Hz to 200 KHz, and a spot diameter of 5 to 100 ⁇ m.
  • the laser irradiation time in the above step 2) is 4 to 10 s.
  • the above preparation method further comprises: forming a pyramidal suede on the surface of the silicon wafer by etching the silicon wafer with an alkali solution before preparing the selective back field, and cleaning the etched silicon wafer to obtain a silicon wafer substrate.
  • the steps of the above preparation method after the preparation process of the selective back field include: A.
  • an N-type crystalline silicon solar cell prepared by the above-described preparation method.
  • FIG. 1 shows a manufacturing process flow of a single crystal silicon solar cell in the prior art
  • FIG. 2 shows a schematic structural view of an N-type crystalline silicon solar cell obtained by using a corrosion paste technology in the prior art
  • 3 shows a method of preparing an N-type crystalline silicon solar cell of the present invention
  • FIG. 4 shows a schematic structural view of an N-type crystalline silicon solar cell obtained by the production method of the present invention.
  • a method for preparing an N-type crystalline silicon solar cell including a diffusion bonding, etching, deposition anti-reflection layer, printing and sintering step, including before the diffusion-forming step
  • the preparation process of the selective back field includes: 1) diffusing a shallow doped phosphorus back field on the silicon substrate; and 2) using a laser to irradiate the phosphorus back field to form The region of the metal gate line region enriches the doped phosphorus elements in the region to form a selective back field.
  • Figure 4 shows the selective back field prepared according to the above preparation process.
  • the production time further improves the production efficiency of the N-type crystalline silicon solar cell; the laser irradiation causes the phosphorus in the irradiated region to be locally concentrated and diffused into the silicon substrate, and the selective back field is formed from the active region to the metal gate line.
  • the sheet resistance gradually decreases, which makes it easier to form a good ohmic contact and obtain a better filling factor when preparing a metal electrode.
  • the use of a laser to irradiate the silicon substrate is simple in operation and does not produce harmful pollutants.
  • the power of the laser used in the above step 2) is 0.5 ⁇ 10W
  • the pulse width is 100ps ⁇ 500ns
  • the wavelength is 300 ⁇ 1600nm
  • the frequency is 100Hz ⁇ 200KHz
  • the diameter of the spot is 5 ⁇ 100 ⁇ .
  • the preferred preparation method further comprises etching the silicon wafer with an alkali solution to form a pyramidal suede on the surface of the silicon wafer before preparing the selective back field, and The etched silicon wafer is cleaned to obtain a silicon wafer substrate.
  • the alkali liquid which can be used in the present invention includes, but is not limited to, an inorganic alkali liquid such as a sodium hydroxide solution or a potassium hydroxide solution, and an organic alkali liquid such as tetraethylammonium hydroxide or ethylenediamine.
  • an inorganic alkali liquid such as a sodium hydroxide solution or a potassium hydroxide solution
  • an organic alkali liquid such as tetraethylammonium hydroxide or ethylenediamine.
  • the steps of the above preparation method after the preparation process of the selective back field include: A.
  • an N-type crystalline silicon solar cell is further provided. As shown in FIG.
  • the N-type crystalline silicon solar cell is prepared by the preparation method of the present invention.
  • the N-type crystalline silicon solar cell prepared by the method of the invention has a selective back field formed by laser irradiation, and has better passivation performance, so that it has better photoelectric conversion efficiency.
  • Advantageous effects of the present invention will be further described below in conjunction with the examples and comparative examples.
  • Example 1 etching a silicon wafer with a sodium hydroxide solution having a mass concentration of 5% to form a pyramidal suede on the surface of the silicon wafer, and cleaning the etched silicon wafer with hydrofluoric acid to obtain a silicon wafer substrate;
  • the gas of POCl 3 diffuses on the silicon substrate to form a shallow doped back field;
  • the laser is irradiated on the back field with a laser having a power of 5.0 W, a pulse width of 200 ns, a wavelength of 1000 nm, a frequency of 90 kHz, and a spot diameter of 50 ⁇ m.
  • a selective back field is formed after 10 s; a boron diffusion is formed on the front side of the silicon substrate having a selective back field to form a pn junction; and the silicon substrate having a pn junction is sequentially plasma-etched Eclipse, chemical cleaning and sedimentation A SiNx anti-reflection layer was formed; the silver paste was printed and sintered in a region of the selective back field of the silicon wafer substrate subjected to the above-described step to form a gate line region, and the N-type crystalline silicon solar cell of Example 1 was formed.
  • Example 2 etching a silicon wafer with a potassium hydroxide solution having a mass concentration of 5% to form a pyramidal suede on the surface of the silicon wafer, and cleaning the etched silicon wafer with hydrofluoric acid to obtain a silicon wafer substrate;
  • the gas of P0C1 3 diffuses on the silicon substrate to form a shallow doped back field with a square resistance of about 30 ⁇ .
  • the power is 8.0W
  • the pulse width is 500ns
  • the wavelength is 500nm
  • the frequency is 200KHz
  • the spot diameter is 5 ⁇ .
  • the laser illuminates the region on the back field where the metal gate line region is to be formed, and forms a selective back field after 5 s; the boron diffusion is formed on the front side of the silicon wafer substrate having the selective back field to form a pn junction; the silicon wafer having the pn junction is to be formed
  • the substrate is sequentially subjected to plasma etching, chemical cleaning, and deposition to form a SiNx anti-reflection layer; the silver paste is printed and sintered in a region of the selective back field of the silicon wafer substrate subjected to the above-mentioned step to form a gate line region, and is formed into Embodiment 2 N-type crystalline silicon solar cells.
  • Example 3 etching a silicon wafer with a solution of ethylenediamine having a mass concentration of 10% to form a pyramidal suede on the surface of the silicon wafer, and cleaning the etched silicon wafer with hydrofluoric acid to obtain a silicon wafer substrate;
  • the gas of P0C1 3 diffuses on the silicon substrate to form a shallow doped back field;
  • the laser is irradiated on the back field by a laser with a power of 6.0 W, a pulse width of 100 ps, a wavelength of 1500 nm, a frequency of 100 Hz, and a spot diameter of ⁇ .
  • a selective back field is formed after 6 seconds; a boron diffusion is formed on the front surface of the silicon substrate having a selective back field to form a pn junction; and the silicon substrate having a pn junction is sequentially plasma-etched Etching, chemical cleaning and deposition to form a SiNx anti-reflective layer; the silver paste is printed and sintered in the region of the selective back field of the silicon wafer substrate subjected to the above-described processing to form the gate line region, and the N-type crystalline silicon of Example 3 is formed.
  • Example 4 etching a silicon wafer with a sodium hydroxide solution having a mass concentration of 5% to form a pyramidal suede on the surface of the silicon wafer, and cleaning the etched silicon wafer with hydrofluoric acid to obtain a silicon wafer substrate;
  • the gas of P0C1 3 diffuses on the silicon substrate to form a shallow doped back field;
  • the laser is irradiated on the back field by a laser with a power of 2.0 W, a pulse width of 80 ps, a wavelength of 1800 nm, a frequency of 100 Hz, and a spot diameter of 80 ⁇ m.
  • a selective back field is formed after 12 seconds; a boron diffusion is formed on the front surface of the silicon substrate having a selective back field to form a pn junction; and the silicon substrate having a pn junction is sequentially plasma-etched Etching, chemical cleaning and deposition to form a SiNx anti-reflective layer; the silver paste is printed and sintered in the region of the selective back field of the silicon wafer substrate subjected to the above-described processing to form the gate line region, and the N-type crystalline silicon of Example 4 is formed.
  • Solar battery is
  • Comparative example 1 The silicon wafer is etched by using a potassium hydroxide solution with a mass concentration of 5% to form a pyramidal suede on the surface of the silicon wafer, and the silicon wafer substrate is cleaned by hydrofluoric acid to obtain a silicon wafer substrate; using pure P0C1 3
  • the gas diffuses on the silicon substrate to form a shallow doped back field with a square resistance of about 30 ⁇ ; boron diffusion is formed on the front side of the silicon substrate to form a pn junction; and the silicon substrate having the pn junction is sequentially plasma etched , chemical cleaning and deposition to form a SiNx anti-reflection layer; the silver paste is printed and sintered in the region of the silicon wafer substrate subjected to the above-mentioned steps to form a gate line region, and the N-type crystalline silicon solar energy of Comparative Example 1 is formed.
  • Comparative Example 2 The silicon wafer was etched by using a potassium hydroxide solution having a mass concentration of 5% to form a pyramidal suede on the surface of the silicon wafer, and the silicon wafer substrate was cleaned by hydrofluoric acid to obtain a silicon wafer substrate; The gas of POCl 3 diffuses on the silicon substrate to form a shallow doped back field with a square resistance of about 30 ⁇ . The boron diffusion is formed on the front side of the silicon substrate to form a pn junction; the back surface of the silicon wafer is coated with a layer of corrosion. The slurry is only present outside the region on the back side of the silicon wafer where the metal electrode is to be formed and is corroded to increase the square resistance.
  • the fill factor and photoelectric conversion efficiency of the N-type crystalline silicon solar cell of Comparative Example 1 were defined as 100% and as a reference, compared with the N-type crystalline silicon solar cell of Comparative Example 2,
  • the filling factor and photoelectric conversion efficiency of the N-type crystalline silicon solar cells of Example 1, Example 2, Example 3 and Example 4 were significantly improved, and both were larger than the filling factor of the N-type crystalline silicon solar cell of Comparative Example 1.
  • Photoelectric conversion efficiency, and therefore the present invention solves the problem that the selective back field in the prior art causes a decrease in the fill factor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供一种N型晶硅太阳能电池及其制备方法。该制备方法包括扩散制结、刻蚀、沉积减反射层、印刷及烧结步骤,在扩散制结步骤之前包括选择性背场的制备过程,选择性背场的制备过程包括:1)、在硅片基体上扩散形成一层浅掺杂的磷背场;以及2)、利用激光垂直照射磷背场上欲形成金属栅极线区的区域使区域内掺杂的磷元素富集,形成选择性背场。在制备背场时只需要在硅片基体的背面制备浅掺杂的背场,节约了磷的使用量,缩短了扩散时间;采用激光照射使照射区域的磷向局部富集并向硅片基体内扩散,形成的选择性背场从活性区到金属栅线区薄层电阻逐渐降低,进而在制备金属电极时更容易形成良好的欧姆接触并获得更好的填充因子。

Description

N型晶硅太阳能电池及其制备方法
技术领域 本发明涉及太阳能电池领域, 具体而言, 涉及一种 N型晶硅太阳能电池及其制备 方法。 背景技术 单晶硅太阳能电池已经被大规模应用到各个领域, 其良好的稳定性和成熟的工艺 流程是其大规模应用的基础。 单晶硅太阳能电池的生产工艺流程如图 1所示。 首先需 要对硅片进行清洗, 通过化学清洗达到对硅片表面的结构化处理; 然后将清洗后的硅 片进行扩散工艺, 硅片经硼扩散工艺形成 P-N结; 之后对形成 P-N结的硅片进行周边 刻蚀工艺, 以去掉在扩散工艺中硅片边缘所形成的导电层; 然后经过化学清洗工艺, 以除去在扩散过程中在硅片表面形成的玻璃层;然后经 PECVD (等离子体增强化学气 相沉积法) 工艺沉积减反射膜一氮化硅膜; 最后再依次经丝网印刷工艺、 烧结工艺等 制作得到符合要求的单晶硅太阳能电池。 对于传统的 P型太阳能电池, 其发射极是经磷扩散形成的 N型表面, 亦是电池的 受光面, 通常采用选择性发射极技术来提高硅片表面钝化性能, 其基本原理是在活性 区域进行较小浓度的浅掺杂(方阻在 20~90欧姆之间),而在金属电极下方区域进行较 大浓度的重掺杂。 减小光学活性区域的掺杂浓度一方面可以减小表面复合, 从而获得 更高的开路电压, 另一方面因为缩减了表面死层的厚度从而提高了量子效率, 所以有 利于获得更高的短路电流; 而提高金属电极下方区域的掺杂浓度一方面可以降低该区 域的薄层电阻, 从而减小金属接触电阻, 另外由于该区域发射极厚度也会随掺杂浓度 的增加而增加, 从而可以增大电池烧结工艺窗口。 对于 N型太阳能电池, 它具有磷扩 散形成的背表面场, 为了提高背场的钝化性能, 同样可以采用选择性背场工艺, 其基 本原理和结构与选择性发射极一样。 以 N型晶硅太阳能电池为例, 目前广泛使用腐蚀浆料技术来制备选择性背场, 如 图 2所示, 其基本原理是在硅片的背场表面使用丝网印刷技术印刷一层腐蚀性浆料, 其中丝网的图案要与将来印刷金属浆料时所用丝网相对应, 以保证腐蚀浆料只存在于 光活性区域。 硅片经加热后, 腐蚀浆料在硅片表面发生反应, 使这些区域的磷的浓度 下降, 相应的提高了背场的薄层电阻, 而未印刷腐蚀浆料的金属栅线区内磷的浓度则 不发生变化。 这样就在金属栅线区形成了相对高掺杂的深扩散区, 而在其它区域形成 了相对低掺杂浅扩散区。 使用如上所述的腐蚀浆料技术制备的选择性背场, 从金属栅线区到活性区薄层电 阻逐渐升高, 在制作金属电极时, 往往由于电极落在这些高方阻区域而导致接触电阻 升高, 以致电池的填充因子下降明显。 而且, 由于腐蚀浆料只能降低活性区域的掺杂 浓度, 而不会改变金属栅线区的掺杂浓度, 所以从一开始就需要制备有较高浓度的磷 背场, 这样就提高了磷扩散工艺的生产时间和原料成本, 同时为了制备有较高均勾性 的背场也对扩散技术提出了更高的要求。 另外制备和清洗腐蚀浆料的过程, 会消耗大 量的水, 也会产生大量有害有毒的污染物。 发明内容 本发明旨在提供一种 N型晶硅太阳能电池及其制备方法, 以解决现有技术中的选 择性背场导致填充因子下降的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种 N型晶硅太阳能电池的 制备方法, 包括扩散制结、 刻蚀、 沉积减反射层、 印刷及烧结步骤, 在扩散制结步骤 之前包括选择性背场的制备过程, 该选择性背场的制备过程包括: 1 )、 在硅片基体上 扩散形成一层浅掺杂的磷背场; 以及 2)、 利用激光垂直照射磷背场上欲形成金属栅线 区的区域使区域内所掺杂的磷元素富集, 形成选择性背场。 进一步地,上述步骤 2)中采用的激光的功率为 0.5 10W,脉冲宽度为 100ps~500ns, 波长为 300~1600nm, 频率为 100 Hz ~200KHz, 光斑的直径为 5~100μηι。 进一步地, 上述步骤 2) 中激光照射的时间为 4~10s。 进一步地, 上述制备方法在制备选择性背场之前还包括采用碱液对硅片进行腐蚀 在硅片的表面形成金字塔形绒面, 并对经过腐蚀的硅片进行清洗得到硅片基体。 进一步地, 上述制备方法在选择性背场的制备过程之后的步骤包括: A、 在具有 选择性背场的硅片基体的正面进行硼扩散制结形成 p-n结; B、将具有 p-n结的硅片基 体依次进行刻蚀、 清洗和减反射层沉积; 以及 C、 在经过步骤 B处理的硅片基体的选 择性背场的欲形成金属栅线区的区域印刷金属浆料并烧结,形成 N型晶硅太阳能电池。 根据本发明的另一方面, 还提供了一种 N型晶硅太阳能电池, 该 N型晶硅太阳能 电池通过上述的制备方法制备而成。 应用本发明的技术方案, 在制备背场时只需要在硅片基体的背面制备浅掺杂的背 场, 从而节约了磷的使用量, 缩短了磷扩散工艺的生产时间, 进而提高了 N型晶硅太 阳能电池的生产效率;采用激光照射使照射区域的磷向局部富集并向硅片基体内扩散, 形成的选择性背场从活性区到金属栅线区薄层电阻逐渐降低, 进而在制备金属电极时 更容易形成良好的欧姆接触并获得更好的填充因子; 此外, 使用激光照射硅片基体, 操作简单, 不会产生对人有害的污染物。 附图说明 构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出了现有技术中单晶硅太阳能电池的制作工艺流程; 图 2示出了现有技术中采用腐蚀浆料技术得到的 N型晶硅太阳能电池的结构示意 图; 图 3示出了本发明的 N型晶硅太阳能电池的制备方法; 以及 图 4示出了采用本发明的制备方法得到的 N型晶硅太阳能电池的结构示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 在本发明一种典型的实施方式中, 提供了一种 N型晶硅太阳能电池的制备方法, 包括扩散制结、 刻蚀、 沉积减反射层、 印刷及烧结步骤, 在扩散制结步骤之前包括选 择性背场的制备过程, 选择性背场的制备过程包括: 1 )、 在硅片基体上扩散形成一层 浅掺杂的磷背场; 以及 2)、 利用激光照射磷背场上欲形成金属栅线区的区域使区域内 所掺杂的磷元素富集, 形成选择性背场。 图 4示出了按照上述制备过程制备的选择性背场, 在制备背场时只需要在硅片基 体的背面制备浅掺杂的背场, 从而节约了磷的使用量,缩短了磷扩散工艺的生产时间, 进而提高了 N型晶硅太阳能电池的生产效率; 采用激光照射使照射区域的磷向局部富 集并向硅片基体内扩散,形成的选择性背场从活性区到金属栅线区薄层电阻逐渐降低, 进而在制备金属电极时更容易形成良好的欧姆接触并获得更好的填充因子; 此外, 使 用激光照射硅片基体, 操作简单, 不会产生对人有害的污染物。 在本发明一种优选的实施例中, 上述步骤 2) 中采用的激光的功率为 0.5~10W, 脉冲宽度为 100ps~500ns, 波长为 300~1600nm, 频率为 100Hz~200KHz, 光斑的直径 为 5~100μηι。 当采用上述参数限定的激光对硅片基体进行照射时, 既能实现快速形成 选择性背场的目的, 又不会对活性区、 生长在硅片基体表面的磷背场产生影响。 适当调节激光照射的时间能够得到不同性能表现的选择性背场, 优选激光照射的 时间为 4~10s。 经过 4~10s 照射后, 该区域内的富集后的磷的浓度以及向硅片基体内 延伸的深度能够很好地降低该区域的薄层电阻。 为了增加 N型晶硅太阳能电池的受光面积并降低反射率, 优选制备方法在制备选 择性背场之前还包括采用碱液对硅片进行腐蚀在硅片的表面形成金字塔形绒面, 并对 经过腐蚀的硅片进行清洗得到硅片基体。 其中, 可用于本发明的碱液包括但不限于氢 氧化钠溶液、 氢氧化钾溶液等无机碱液和四乙基氢氧化氨、 乙二胺等有机碱液。 在本发明另一种优选的实施例中, 如图 3所示, 上述制备方法在选择性背场的制 备过程之后的步骤包括: A、 在具有选择性背场的硅片基体的正面进行硼扩散制结形 成 p-n结; B、将具有 p-n结的硅片基体依次进行刻蚀、清洗和减反射层沉积; 以及 C、 在经过步骤 B处理的硅片基体的选择性背场的欲形成栅线区的区域印刷金属浆料并烧 结, 形成 N型晶硅太阳能电池。 制备的减反射层可以有效地降低光反射率, 从而提高 N型晶硅太阳能电池的光电转换效率。 在本发明另一种典型的实施方式中, 还提供了一种 N型晶硅太阳能电池, 如图 4 所示, 该 N型晶硅太阳能电池通过本发明的制备方法制备而成。 通过本发明的方法制 备得到 N 型晶硅太阳能电池具有采用激光照射形成的选择性背场具有较好的钝化性 能, 从而使其具有较好的光电转化效率。 以下将结合实施例和对比例, 进一步说明本发明的有益效果。 实施例 1 采用质量浓度为 5%的氢氧化钠溶液对硅片进行腐蚀在硅片的表面形成金字塔形 绒面, 并采用氢氟酸对经过腐蚀的硅片进行清洗得到硅片基体; 采用纯 POCl3的气体 在硅片基体上扩散形成一层浅掺杂的背场; 利用功率为 5.0W、 脉冲宽度为 200ns、 波 长为 1000nm、频率为 90KHz、光斑的直径为 50μηι的激光照射背场上欲形成金属栅线 区的区域, 10s 后形成选择性背场; 在具有选择性背场的硅片基体的正面进行硼扩散 制结形成 p-n结; 将具有 p-n结的硅片基体依次进行等离子刻蚀、 化学清洗和沉积形 成 SiNx减反射层;在经过上述步骤处理的硅片基体的选择性背场的欲形成栅线区的区 域印刷银浆料并烧结, 形成实施例 1的 N型晶硅太阳能电池。 实施例 2 采用质量浓度为 5%的氢氧化钾溶液对硅片进行腐蚀在硅片的表面形成金字塔形 绒面, 并采用氢氟酸对经过腐蚀的硅片进行清洗得到硅片基体; 采用纯 P0C13的气体 在硅片基体上扩散形成一层浅掺杂的背场, 方阻约 30Ω; 利用功率为 8.0W、 脉冲宽度 为 500ns、 波长为 500nm、 频率为 200KHz、 光斑的直径为 5μηι的激光照射背场上欲 形成金属栅线区的区域, 5s后形成选择性背场; 在具有选择性背场的硅片基体的正面 进行硼扩散制结形成 p-n结; 将具有 p-n结的硅片基体依次进行等离子刻蚀、 化学清 洗和沉积形成 SiNx减反射层;在经过上述步骤处理的硅片基体的选择性背场的欲形成 栅线区的区域印刷银浆料并烧结, 形成实施例 2的 N型晶硅太阳能电池。 实施例 3 采用质量浓度为 10%的乙二胺溶液对硅片进行腐蚀在硅片的表面形成金字塔形绒 面, 并采用氢氟酸对经过腐蚀的硅片进行清洗得到硅片基体; 采用纯 P0C13的气体在 硅片基体上扩散形成一层浅掺杂的背场; 利用功率为 6.0W、 脉冲宽度为 100ps、 波长 为 1500nm、 频率为 100Hz、 光斑的直径为 ΙΟΟμηι的激光照射背场上欲形成金属栅线 区的区域, 6s后形成选择性背场; 在具有选择性背场的硅片基体的正面进行硼扩散制 结形成 p-n结; 将具有 p-n结的硅片基体依次进行等离子刻蚀、 化学清洗和沉积形成 SiNx减反射层;在经过上述步骤处理的硅片基体的选择性背场的欲形成栅线区的区域 印刷银浆料并烧结, 形成实施例 3的 N型晶硅太阳能电池。 实施例 4 采用质量浓度为 5%的氢氧化钠溶液对硅片进行腐蚀在硅片的表面形成金字塔形 绒面, 并采用氢氟酸对经过腐蚀的硅片进行清洗得到硅片基体; 采用纯 P0C13的气体 在硅片基体上扩散形成一层浅掺杂的背场; 利用功率为 2.0W、脉冲宽度为 80ps、波长 为 1800nm、 频率为 100Hz、 光斑的直径为 80μηι的激光照射背场上欲形成金属栅线区 的区域, 12s后形成选择性背场; 在具有选择性背场的硅片基体的正面进行硼扩散制 结形成 p-n结; 将具有 p-n结的硅片基体依次进行等离子刻蚀、 化学清洗和沉积形成 SiNx减反射层;在经过上述步骤处理的硅片基体的选择性背场的欲形成栅线区的区域 印刷银浆料并烧结, 形成实施例 4的 N型晶硅太阳能电池。 对比例 1 采用质量浓度为 5%的氢氧化钾溶液对硅片进行腐蚀在硅片的表面形成金字塔形 绒面, 并采用氢氟酸对经过腐蚀的硅片进行清洗得到硅片基体; 采用纯 P0C13的气体 在硅片基体上扩散形成一层浅掺杂的背场, 方阻约 30Ω; 在硅片基体的正面进行硼扩 散制结形成 p-n结; 将具有 p-n结的硅片基体依次进行等离子刻蚀、 化学清洗和沉积 形成 SiNx减反射层;在经过上述步骤处理的硅片基体的均勾背场的欲形成栅线区的区 域印刷银浆料并烧结, 形成对比例 1的 N型晶硅太阳能电池。 对比例 2 采用质量浓度为 5%的氢氧化钾溶液对硅片进行腐蚀在硅片的表面形成金字塔形 绒面, 并采用氢氟酸对经过腐蚀的硅片进行清洗得到硅片基体; 采用纯 POCl3的气体 在硅片基体上扩散形成一层浅掺杂的背场, 方阻约 30Ω; 在硅片基体的正面进行硼扩 散制结形成 p-n结; 在硅片背表面涂上一层腐蚀性浆料, 该腐蚀浆料只存在于硅片背 面欲形成金属电极的区域以外并腐蚀这些区域使其方阻升高, 经过烘干、 清洗等步骤 后, 制得选择性背场。 将具有 p-n结的硅片基体依次进行等离子刻蚀、 化学清洗和沉 积形成 SiNx减反射层;在经过上述步骤处理的硅片基体的选择性背场的欲形成栅线区 的区域印刷银浆料并烧结, 形成对比例 2的 N型晶硅太阳能电池。 对实施例 1至 4以及对比例 1和对比例 2的 N型晶硅太阳能电池进行性能测试, 测试结果见表 1。 表 1
Figure imgf000008_0001
由表 1中的数据可以看出, 将对比例 1的 N型晶硅太阳能电池的填充因子和光电 转换效率定义为 100%并作为基准,与对比例 2的 N型晶硅太阳能电池相比,实施例 1、 实施例 2、 实施例 3和实施例 4的 N型晶硅太阳能电池的填充因子和光电转换效率得 到明显改善,并且都大于对比例 1的 N型晶硅太阳能电池的填充因子和光电转换效率, 因此本发明解决了现有技术中的选择性背场导致填充因子下降的问题。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种 N型晶硅太阳能电池的制备方法, 包括扩散制结、 刻蚀、 沉积减反射层、 印刷及烧结步骤, 其特征在于, 在所述扩散制结步骤之前包括选择性背场的制 备过程, 所述选择性背场的制备过程包括:
1 )、 在硅片基体上扩散形成一层浅掺杂的磷背场; 以及
2)、 利用激光垂直照射所述磷背场上欲形成金属栅线区的区域使所述区域 内所掺杂的磷元素富集, 形成所述选择性背场。
2. 根据权利要求 1所述的制备方法, 其特征在于, 所述步骤 2) 中采用的激光的 功率为 0.5~10W,脉冲宽度为 100ps~500ns,波长为 300~1600nm,频率为 100 Hz ~200KHz, 光斑的直径为 5~100μηι。
3. 根据权利要求 2所述的制备方法, 其特征在于, 所述步骤 2) 中所述激光照射 的时间为 4~10s。
4. 根据权利要求 1所述的制备方法, 其特征在于, 所述制备方法在制备所述选择 性背场之前还包括采用碱液对硅片进行腐蚀以在所述硅片的表面形成金字塔形 绒面, 并对经过腐蚀的硅片进行清洗得到所述硅片基体。
5. 根据权利要求 1至 4中任一项所述的制备方法, 其特征在于, 所述制备方法在 所述选择性背场的制备过程之后的步骤包括:
A、 在具有所述选择性背场的硅片基体的正面进行硼扩散制结形成 p-n结;
B、将具有所述 p-n结的硅片基体依次进行刻蚀、清洗和减反射层沉积; 以 及
C、 在经过所述步骤 B处理的硅片基体的选择性背场的欲形成金属栅线区 的区域印刷金属浆料并烧结, 形成所述 N型晶硅太阳能电池。
6. 一种 N型晶硅太阳能电池,其特征在于,所述 N型晶硅太阳能电池通过权利要 求 1至 5中任一项所述的制备方法制备而成。
PCT/CN2013/080443 2012-07-31 2013-07-30 N型晶硅太阳能电池及其制备方法 WO2014019503A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013003789.0T DE112013003789T5 (de) 2012-07-31 2013-07-30 Kristalline N-Silikon-Solarzelle und deren Herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210271346.6 2012-07-31
CN201210271346.6A CN102769072B (zh) 2012-07-31 2012-07-31 N型晶硅太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2014019503A1 true WO2014019503A1 (zh) 2014-02-06

Family

ID=47096388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080443 WO2014019503A1 (zh) 2012-07-31 2013-07-30 N型晶硅太阳能电池及其制备方法

Country Status (3)

Country Link
CN (1) CN102769072B (zh)
DE (1) DE112013003789T5 (zh)
WO (1) WO2014019503A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185850A (zh) * 2015-08-17 2015-12-23 英利集团有限公司 选择性背场结构的制备工艺与n型太阳能电池的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769072B (zh) * 2012-07-31 2014-12-10 英利集团有限公司 N型晶硅太阳能电池及其制备方法
CN103077975B (zh) * 2013-01-05 2015-07-08 中山大学 一种低成本n型双面太阳电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050172996A1 (en) * 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
CN101800266A (zh) * 2010-03-12 2010-08-11 上海太阳能电池研究与发展中心 一种选择性发射极晶体硅太阳能电池的制备方法
CN101853899A (zh) * 2010-03-31 2010-10-06 晶澳(扬州)太阳能光伏工程有限公司 一种利用局域背场制备太阳能电池的方法
CN102487102A (zh) * 2010-12-03 2012-06-06 上海凯世通半导体有限公司 太阳能电池及其制备方法
CN102769072A (zh) * 2012-07-31 2012-11-07 英利集团有限公司 N型晶硅太阳能电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145928B1 (ko) * 2009-03-11 2012-05-15 엘지전자 주식회사 태양 전지 및 태양 전지의 제조 방법
CN102437238A (zh) * 2011-11-30 2012-05-02 晶澳(扬州)太阳能科技有限公司 一种用于晶体硅太阳电池硼掺杂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050172996A1 (en) * 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
CN101800266A (zh) * 2010-03-12 2010-08-11 上海太阳能电池研究与发展中心 一种选择性发射极晶体硅太阳能电池的制备方法
CN101853899A (zh) * 2010-03-31 2010-10-06 晶澳(扬州)太阳能光伏工程有限公司 一种利用局域背场制备太阳能电池的方法
CN102487102A (zh) * 2010-12-03 2012-06-06 上海凯世通半导体有限公司 太阳能电池及其制备方法
CN102769072A (zh) * 2012-07-31 2012-11-07 英利集团有限公司 N型晶硅太阳能电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185850A (zh) * 2015-08-17 2015-12-23 英利集团有限公司 选择性背场结构的制备工艺与n型太阳能电池的制备方法

Also Published As

Publication number Publication date
CN102769072B (zh) 2014-12-10
CN102769072A (zh) 2012-11-07
DE112013003789T5 (de) 2015-06-25

Similar Documents

Publication Publication Date Title
TWI443162B (zh) 膠以及使用其製備太陽能電池之方法
JP2022501837A (ja) 結晶シリコン太陽電池およびその製造方法
CN103996746B (zh) 一种可量产的perl晶体硅太阳电池的制作方法
CN110265497B (zh) 一种选择性发射极的n型晶体硅太阳电池及其制备方法
CN105826409B (zh) 一种局部背场n型太阳能电池的制备方法
CN106653942A (zh) 一种n型单晶硅双面电池的制作方法
JP5991945B2 (ja) 太陽電池および太陽電池モジュール
Yadav et al. c-Si solar cells formed from spin-on phosphoric acid and boric acid
CN113809205A (zh) 太阳能电池的制备方法
CN111106188A (zh) N型电池及其选择性发射极的制备方法、以及n型电池
TWI390755B (zh) 太陽能電池的製造方法
KR101383940B1 (ko) 실리콘 태양전지 및 그 제조 방법
CN104362219B (zh) 一种晶体硅太阳能电池制造工艺
JPWO2012102368A1 (ja) 太陽電池素子の製造方法、太陽電池素子、および太陽電池モジュール
CN102315317A (zh) 反应离子刻蚀制绒结合选择性发射极太阳能电池制造工艺
WO2014019503A1 (zh) N型晶硅太阳能电池及其制备方法
CN103618025B (zh) 一种晶体硅背结太阳能电池制备方法
JP5623131B2 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
JP4712073B2 (ja) 太陽電池用拡散層の製造方法および太陽電池セルの製造方法
JP2012094739A (ja) 製膜方法および半導体装置の製造方法
TWI415272B (zh) 太陽能電池背面點接觸的製造方法
JP2015109364A (ja) 太陽電池の製造方法
JP6224513B2 (ja) 太陽電池素子の製造方法
CN107611197B (zh) 一种ibc电池及其制备方法
CN104393067B (zh) 一种纳米结构太阳电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824899

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1120130037890

Country of ref document: DE

Ref document number: 112013003789

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824899

Country of ref document: EP

Kind code of ref document: A1