WO2014019299A1 - 阵列基板及液晶显示装置 - Google Patents

阵列基板及液晶显示装置 Download PDF

Info

Publication number
WO2014019299A1
WO2014019299A1 PCT/CN2012/084702 CN2012084702W WO2014019299A1 WO 2014019299 A1 WO2014019299 A1 WO 2014019299A1 CN 2012084702 W CN2012084702 W CN 2012084702W WO 2014019299 A1 WO2014019299 A1 WO 2014019299A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel region
pixel
diffuse reflection
array substrate
liquid crystal
Prior art date
Application number
PCT/CN2012/084702
Other languages
English (en)
French (fr)
Inventor
林允植
田正牧
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/995,597 priority Critical patent/US9459485B2/en
Publication of WO2014019299A1 publication Critical patent/WO2014019299A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure

Definitions

  • Embodiments of the present invention relate to an array substrate and a liquid crystal display device. Background technique
  • the display panel used in mobile phone products is mainly a Thin Film Transistor-Liquid Crystal Display (TFT-LCD).
  • TFT-LCD Thin Film Transistor-Liquid Crystal Display
  • Notebooks, monitors, and TVs are mostly indoor display panels, so transmissive TFT-LCD products are often used.
  • mobile phone products are used not only indoors but also outdoors.
  • semi-transflective technology is often used.
  • the transflective technique means that a part of a pixel is a reflection area and the other part is a transmission area.
  • a display panel using transflective technology can be used indoors/outdoors.
  • an array substrate of a conventional transflective liquid crystal display panel includes a glass substrate 1 on which a TFT device 8 is disposed, and the TFT device 8 includes a gate electrode 2, a source electrode 81, and a drain electrode 82.
  • An active layer 4 is disposed between the source electrode 81 and the drain electrode 82.
  • the source electrode 81 and the drain electrode 82 are formed with a passivation layer 7 and a pixel electrode layer 15.
  • the pixel electrode layer 15 has a resin layer 9 on a partial region thereof.
  • An embossing structure 52 is formed on the surface of the resin layer 9, and a metal layer having a reflective property is coated on the embossed structure 52, and the resin layer 9 forms a reflective layer with the metal layer having the reflective property.
  • the reflective surface formed by the embossed structure 52 has excellent diffuse reflection properties that allow light to be reflected to the liquid crystal and a wider range of angles in front of the display.
  • FIG. 2 is a schematic view showing a state in which a liquid crystal molecule of the display panel shown in FIG. 1 is white gray scale
  • FIG. 3 is a view showing a state in which liquid crystal molecules of the display panel shown in FIG. 1 are changed from a white gray scale state shown in FIG. State diagram
  • Both the display panel of FIG. 2 and the display panel of FIG. 3 include an array substrate 21 and a color filter (CF) substrate 22 opposite the array substrate, and the array substrate and the CF substrate are filled with liquid crystal.
  • the liquid crystal molecules change from a white gray scale (as shown in FIG. 2) to an intermediate gray scale (as shown in FIG. 3)
  • the anisotropy of the liquid crystal refractive index becomes large, and at the same time, the red pixel of the longer wavelength light is transparent.
  • the over-rate is also increased, so that the ideal white color is not formed, and a pale yellow phenomenon appears, that is, the appearance of the color Color shift phenomenon. This reduces the quality of the picture of the display panel.
  • the gray scale here generally means that each sub-pixel exhibits a different brightness level.
  • One point visible to the naked eye on the LCD screen is a pixel consisting of three sub-pixels of red, green, and blue (RGB).
  • the gray scale represents the level of the different brightness between the darkest and the brightest, and the more intermediate the level, the more delicate the picture can be rendered.
  • Each pixel on the LCD screen is composed of red, green, and blue of different brightness levels, eventually forming different color points. That is to say, the color change of each point on the screen is actually caused by the grayscale changes of the three RGB sub-pixels that make up this point. Summary of the invention
  • Embodiments of the present invention provide an array substrate and a liquid crystal display device, which can reduce or eliminate a color shift phenomenon occurring in an intermediate gray scale, thereby improving the picture quality of the display device.
  • An embodiment of the present invention provides an array substrate, including: a first substrate and an array structure and a pixel electrode formed on the first substrate; at least a portion of the pixel region corresponding to the pixel electrode has an optical diffuse reflection structure;
  • the pixel area includes a pixel area corresponding to a different color pixel;
  • the optical diffuse reflection structure is configured to: the optical diffuse reflection structure of the pixel area corresponding to the color pixel of the longest light wavelength has a reflectance to light lower than that of other color pixels The reflectivity of the optical diffuse structure of the pixel region to light.
  • the optical diffuse reflection structure of the pixel region corresponding to the other color pixels may be set as follows: the optical diffuse reflection structure of the pixel region corresponding to the color pixel of the first light wavelength has a lower reflectance to light than other The reflectivity of the optical diffuse reflection structure of the pixel region corresponding to the color pixel of the light wavelength to the light, wherein the first light wavelength is greater than the other light wavelength.
  • the optical diffuse reflection structure is an embossed structure.
  • the pixel region includes a red pixel region, a blue pixel region, and a green pixel region; a convex angle of the embossed structure of the red pixel region is smaller than the blue pixel region and the green color, respectively The convex angle of the embossed structure of the pixel region.
  • the convex structure of the red pixel region may have a convex angle of 1 to 7 degrees.
  • the protrusion height of the embossed structure of the red pixel region may be It is from 1.5 mils to 3.5 mils.
  • the convex angle of the embossed structure of the blue pixel region is greater than or equal to the convex angle of the embossed structure of the green pixel region.
  • the convex angles of the embossed structures of the blue pixel region and the green pixel region may be 5 to 13 degrees.
  • Another embodiment of the present invention further provides a liquid crystal display device, including: an array substrate, a color filter substrate opposite the array substrate, and a liquid crystal layer between the array substrate and the color filter substrate;
  • the array substrate includes: a first substrate and an array structure and a pixel electrode formed on the first substrate; at least a portion of the pixel region corresponding to the pixel electrode has an optical diffuse reflection structure; and the pixel region includes different colors a pixel area corresponding to the pixel;
  • the optical diffuse reflection structure is configured to: the optical diffuse reflection structure of the pixel area corresponding to the color pixel of the longest light wavelength has an optical diffuse reflection structure lower than that of the pixel area corresponding to the other color pixels The reflectivity of light.
  • the optical diffuse reflection structure of the pixel region corresponding to the other color pixels may be set as follows: the reflectance of the optical diffuse reflection structure of the pixel region corresponding to the color pixel of the first light wavelength is lower than The reflectivity of the optical diffuse reflection structure of the pixel region corresponding to the color pixel of the other light wavelength to the light, wherein the first light wavelength is greater than the other light wavelength.
  • the optical diffuse reflection structure may be an embossed structure.
  • the pixel region includes a red pixel region, a blue pixel region, and a green pixel region;
  • the convex angle of the embossed structure of the region is smaller than the convex angle of the embossed structure of the blue pixel region and the green pixel region, respectively.
  • the convex structure of the embossed structure of the red pixel region may be 1 to 7 degrees.
  • the embossed structure of the red pixel region may have a bump height of 1.5 ⁇ m to 3.5 ⁇ m.
  • the convex angle of the embossed structure of the blue pixel region is greater than or equal to the convex angle of the embossed structure of the green pixel region.
  • the convex angles of the embossed structures of the blue pixel region and the green pixel region may be 5 to 13 degrees.
  • FIG. 1 is a schematic structural view of an array substrate of a conventional transflective liquid crystal display panel
  • FIG. 2 is a schematic view showing a state in which a liquid crystal molecule of the display panel shown in FIG. 1 is white gray scale
  • FIG. 3 is a display shown in FIG. Schematic diagram of the state of the liquid crystal molecules of the panel from the white gray-scale state shown in FIG. 2 to the intermediate gray scale;
  • FIG. 4 is a schematic view showing the structure of a display device of the present invention. detailed description
  • the array substrate of the embodiment of the present invention may include a plurality of gate lines and a plurality of data lines, the gate lines and the data lines crossing each other thereby defining pixel regions arranged in a matrix, each of the pixel regions including a thin film transistor as a switching element and A pixel electrode for controlling the arrangement of liquid crystals.
  • each of the pixel regions including a thin film transistor as a switching element and A pixel electrode for controlling the arrangement of liquid crystals.
  • the gate of the thin film transistor is electrically connected or integrally formed with the corresponding gate line
  • the source is electrically connected or integrally formed with the corresponding data line
  • the drain is electrically connected or integrally formed with the corresponding pixel electrode.
  • the following description is mainly made for a single or a plurality of pixel regions, but other pixel regions may be formed identically.
  • the embodiment provides an array substrate, the array substrate is provided with an array structure and a plurality of pixel regions; each pixel region includes a pixel electrode; at least a portion of the pixel region corresponding to the pixel electrode has an optical diffuse reflection structure; The pixel area includes pixel areas corresponding to different color pixels; the optical diffuse reflection structure is configured to: the optical diffuse reflection structure of the pixel area corresponding to the color pixel of the longest light wavelength has a reflectance to light lower than that of the other color pixels The reflectivity of the optical diffuse reflection structure of the pixel region to light.
  • the array structure is a transflective array structure
  • only a part of the pixel area may be an optical diffuse reflection structure, and another part is a light transmissive structure; if it is a total reflection type array structure, the pixel areas are all optical diffuse reflections. structure.
  • the optical diffuse reflection structure may be a convex structure, a concave structure, or various combined structures of irregularities, or other forms of rough surface structures that allow light to be diffusely reflected.
  • the pixel area includes pixel areas corresponding to different color pixels, for example, there may be a red pixel area, a blue pixel area, and a green pixel area. Of course, depending on the actual situation, it may also be a combination of other color category numbers, such as only two color pixel regions, or three other color pixel regions, or more color pixel regions, and the like.
  • the optical diffuse reflection structure is configured to: the optical diffuse reflection structure of the pixel region corresponding to the color pixel of the longest light wavelength has a reflectance to light lower than that of the pixel region corresponding to the other color pixels.
  • the reflectivity of the diffuse structure to light For example, if the wavelength of the selected color pixel is the longest red pixel, the optical diffuse reflection structure of the pixel region corresponding to the pixel electrode of the red pixel is set to a structure having a low reflectance to light.
  • the convex angle of the convex structure is set lower, so that the reflectance of the red light on the diffuse reflection structure is corresponding to the diffuse reflection of the other colors.
  • the structural reflectivity is low, thereby eliminating or mitigating color shifting.
  • the diffuse reflection structures corresponding to all the color pixels can also be adjusted and improved according to the wavelength of the light corresponding thereto, so that the colors are various.
  • the relative color shift phenomenon can be alleviated, so as to achieve better the purpose of overcoming the color shift.
  • the display substrate includes pixel electrodes of three colors of red, green, and blue, that is, pixel regions of three colors of red, green, and blue, and the embossed structure is selected as the optical diffuser.
  • the reflection structure is taken as an example, and the technical solution will be described. It will be apparent to those skilled in the art that this is only a preferred embodiment, the selection of the type and number of pixel colors therein, the particular structural choice of the optical diffuse reflectance structure, and other equivalent alternative technical features, or reasonable variations and modifications will be apparent to those skilled in the art. Known.
  • a schematic structural diagram of a display panel includes: a first substrate 11; an array structure 12 formed on the first substrate 11 (shown by a dashed box in the figure) And the pixel electrode 13.
  • the pixel area corresponding to the pixel electrode 13 has an embossed structure 14; the pixel area is a red pixel area, a blue pixel area or a green pixel area; the embossed structure of the red pixel area has a convex angle smaller than the blue
  • the convex angle of the embossed structure of the color pixel region is also smaller than the convex angle of the embossed structure of the green pixel region.
  • the projection angles described in the present specification indicate the degree of projection of the relief structure, and the projection angle is small to make the relief structure flat.
  • the cross-section of the embossed structure 14 is a circular arc shape, and the size of the convex angle of the embossed structure 14 can be characterized by the magnitude of the angle ⁇ ;
  • the point is an end point of the arc, that is, the point at which the outer edge of the arc intersects the upper surface of the pixel electrode 13, and the angle ⁇ is the tangent angle of the arc at the point A, that is, the tangent at point A (shown in the figure) It is the angle between the straight line L1) and the straight line representing the upper surface of the pixel electrode 13.
  • the first substrate 11 has a plurality of array structures such as an array structure 12, each of which has its corresponding pixel area, which may be a red pixel area, a blue pixel area or a green pixel area.
  • the convex angle of the embossed structure of the red pixel region is smaller than the convex angle of the embossed structure of the blue pixel region, and is also smaller than the convex angle of the embossed structure of the green pixel region.
  • the angle ⁇ in FIG. 4 in this embodiment is merely an exemplary description, and is not limited to the convex angle of the embossed structure of the red pixel region, and may also be used to represent the embossed structure of the blue pixel region or the green pixel region. Raised angle.
  • the reflectance of the reflective layer of the red pixel region is reduced by reducing the convex angle of the embossed structure of the reflective region of the red pixel region, that is, the reflectance of the red pixel region is relative to the blue
  • the color and green pixel regions have lower reflectance, so it is possible to reduce or eliminate the Yellowish color shift that occurs due to an increase in refractive index anisotropy in the intermediate gray scale. Image, thereby improving the quality of the picture. Since the problem of the Yellowish color shift phenomenon exists in both the transflective liquid crystal display panel and the total reflection liquid crystal display panel, the application of the technical solution of the present invention is not limited to the transflective array of FIG. The structure is equally applicable to the total reflection array structure and can achieve the same technical effect.
  • a pixel region for an embodiment of the present invention may include at least one pixel region, one pixel region corresponding to one pixel electrode, and when a plurality of pixel regions are included, a plurality of embossed structures on the pixel region are also included;
  • the convex angles of the convex structures are smaller than the convex angles of all the embossed structures of the blue pixel regions, and are also smaller than the convex angles of all the embossed structures of the green pixel regions.
  • the convex structure of the embossed structure of the red pixel region may be 1 to 7 degrees.
  • the raised height of the embossed structure of the red pixel region may be from 1.5 micrometers to 3.5 micrometers.
  • the convex angle of the embossed structure of the blue pixel region may be greater than or equal to the convex angle of the embossed structure of the green pixel region.
  • the convex angle of the embossed structure of the blue pixel region is greater than the convex angle of the embossed structure of the green pixel region, and the color shift is also eliminated due to the difference between the wavelength of the blue light and the wavelength of the green light.
  • Phenomenon considerations; definitions and descriptions of the convex angles of the embossed structures of the blue pixel region and the green pixel region can be referred to the definition and description of the above-mentioned angle ⁇ , including equivalent alternatives and variations of the same principle .
  • the convex angles of the embossed structures of the blue pixel region and the green pixel region are all selectable within a range of 5 to 13 degrees.
  • the portion indicated by the array structure 12 is the same as the array structure of the conventional array substrate, and will not be described in detail herein.
  • the convex angle of the embossed structure is not limited to being expressed in one of the above manners.
  • any other point on the outer edge of the arc may be selected, represented by its tangent and corresponding angle.
  • the selected points of each embossed structure should be corresponding, for example, the same orientation on the arc is selected. Point.
  • the height of the protrusion may also be used.
  • the ratio of the horizontal width between the highest point of the protrusion to the edge point of the protrusion is used as a comparison factor.
  • the height of the protrusion may be a vertical distance between a horizontal line of the highest point of the protrusion of the embossed structure and a horizontal line of the lowest point of the recess of the embossed structure; correspondingly, the embossed structure of the red pixel area Corresponding to the ratio d, the ratio corresponding to the embossed structure of the blue and green pixel regions, preferably, the ratio corresponding to the embossed structure of the blue pixel region is greater than the embossed structure of the green pixel region Corresponding to this ratio.
  • the principle of comparison is the same, which makes the convexity of the embossed structure of the red pixel region smaller than that of the blue and green pixel regions, and preferably floats the blue pixel region.
  • the convexity of the convex structure is greater than the convexity of the green pixel region, so that the color shift phenomenon can be well eliminated or alleviated, and a better technical effect can be obtained.
  • FIG. 4 is only a schematic illustration and is not intended to limit the technical solution of the present invention.
  • the array structure included in the embodiment is not limited to such a transflective structure, and may be a total reflection type structure; the cross-sectional shape of the embossed structure is not limited to the regular arc shape presented in the drawing. It may also be a protrusion of other shapes; the size of the protrusion angle is also not limited to the angle size presented in the figure.
  • an embodiment of the present invention further provides a liquid crystal display device, including: an array substrate, a color filter substrate 22 opposite to the array substrate, and the array substrate and the color filter substrate.
  • the liquid crystal layer 17 between the two; the array substrate comprises: a first substrate 11; an array structure 12 formed on the first substrate; and a pixel electrode 13.
  • a portion of the pixel region corresponding to the pixel electrode 13 has an embossed structure 14; the pixel region is a red pixel region, a blue pixel region, or a green pixel region; and the embossed structure of the red pixel region has a convex angle smaller than The convex angle of the embossed structure of the blue pixel region is also smaller than the convex angle of the embossed structure of the green pixel region.
  • the convex structure of the embossed structure of the red pixel region may be 1 to 7 degrees.
  • the raised height of the embossed structure of the red pixel region may be 1.5 micrometers to 3.5 Micron.
  • the convex angle of the embossed structure of the blue pixel region may be greater than or equal to a convex angle of the embossed structure of the green pixel region, wherein the embossed structure of the blue pixel region has a convexity
  • An angle greater than a convex angle of the embossed structure of the green pixel region is also used to eliminate a color shift phenomenon caused by a difference between a blue light wavelength and a green light wavelength; regarding the blue pixel region and the
  • the definition and description of the convex angle of the embossed structure of the green pixel region can be referred to the definition and description of the above-mentioned angle ⁇ , including equivalent modifications thereof and variations of the same principle.
  • the convex angles of the embossed structures of the blue pixel region and the green pixel region may be 5 to 13 degrees.
  • the reflectance of the reflective layer of the red pixel region is reduced by reducing the convex angle of the embossed structure of the reflective region of the red pixel region, that is, the reflectance of the red pixel region is relative to the blue
  • the color and green pixel regions have a low reflectance, so that the Yellowish color shift phenomenon occurring due to an increase in refractive index anisotropy in the intermediate gray scale can be reduced or eliminated, thereby improving the quality of the picture.
  • the liquid crystal display device of this embodiment may be a transflective liquid crystal display device or a total reflection liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种阵列基板及液晶显示装置,该阵列基板包括:形成于所述第一基板(11)上的阵列结构(12)以及像素电极(13);所述像素电极(13)对应的像素区域的至少一部分具有光学漫反射结构(14);所述像素区域包括不同颜色像素对应的像素区域;所述光学漫反射结构(14)设置为:最长光波长的颜色像素对应的像素区域的光学漫反射结构(14)对光的反射率,低于其他颜色像素对应的像素区域的光学漫反射结构(14)对光的反射率。

Description

阵列基板及液晶显示装置 技术领域
本发明的实施例涉及一种阵列基板及液晶显示装置。 背景技术
目前手机产品中使用的显示面板主要是薄膜晶体管液晶显示器 ( Thin Film Transistor-Liquid Crystal Display, TFT - LCD )。 笔记本、 监视器、 电视 机等产品多为室内使用的显示面板, 因此多使用透过型 TFT - LCD产品。但 手机产品不仅在室内,同时也在室外使用。为满足室内 /室外两用的需求特性, 常使用半透射半反射技术。 半透半反技术是指像素的一部分为反射区, 另一 部分为透过区。 使用半透射半反射技术的显示面板在室内 /室外都可以使用。
如图 1所示, 现有的半透射半反射液晶显示面板的阵列基板包括玻璃基 板 1 , 在玻璃基板 1上设置有 TFT器件 8 , TFT器件 8包括栅电极 2、 源电 极 81、 漏电极 82 , 源电极 81与漏电极 82之间设置有有源层 4, 源电极 81、 漏电极 82上形成有钝化层 7和像素电极层 15 ,像素电极层 15的部分区域上 具有树脂层 9, 树脂层 9的表面上形成有一层浮凸(embossing )结构 52, 在 浮凸结构 52上涂覆有一层具备反射特性的金属层,该树脂层 9与该具备反射 特性的金属层形成了可反射外界光线的反射层 5 ,该像素电极层 15的另一部 分未涂覆树脂层 9的区域形成透射区。浮凸结构 52形成的反射表面具有很好 的漫反射特性, 可使光线反射到液晶以及显示屏前更广阔的角度范围。
图 2为图 1所示的显示面板的液晶分子白色灰阶时的状态示意图, 图 3 为图 1所示的显示面板的液晶分子从图 2所示的白色灰阶状态变为中间灰阶 时的状态示意图;
图 2中的显示面板和图 3中的显示面板都包括阵列基板 21和与该阵列基 板对盒的彩膜(Color Filter, CF )基板 22 , 该阵列基板与该 CF基板之间填 充有液晶。 当液晶分子从白色灰阶变化(如图 2所示)至中间灰阶(如图 3 所示) 时, 液晶折射率的各向异性变大, 同时对于波长更长的光的红色像素 的透过率也增大, 因此不形成理想的白色, 而出现浅黄色的现象, 即出现颜 色偏移现象。 这降低了显示面板的画面的品质。 全反射式的液晶显示面板也 存在类似问题。
这里的灰阶通常来说是指每一个子像素显现出不同的亮度级别。 液晶屏 幕上人们肉眼所见的一个点, 即一个像素, 它是由红、 绿、 蓝(RGB )三个 子像素组成的。 灰阶则代表了画面由最暗到最亮之间不同亮度的层次级别, 这中间层级越多,所能够呈现的画面效果也就越细腻。 LCD屏幕上每个像素, 均由不同亮度层次的红、 绿、 蓝组合起来, 最终形成不同的色彩点。 也就是 说, 屏幕上每一个点的色彩变化, 其实都是由构成这个点的三个 RGB子像 素的灰阶变化所带来的。 发明内容
本发明的实施例提供一种阵列基板及液晶显示装置, 可以减小或者消除 在中间灰阶下发生的颜色偏移现象, 从而提升显示装置的画面品质。
本发明的一个实施例提供一种阵列基板, 包括: 第一基板和形成于所述 第一基板上的阵列结构以及像素电极; 所述像素电极对应的像素区域的至少 一部分具有光学漫反射结构; 所述像素区域包括不同颜色像素对应的像素区 域; 所述光学漫反射结构设置为: 最长光波长的颜色像素对应的像素区域的 光学漫反射结构对光的反射率, 低于其他颜色像素对应的像素区域的光学漫 反射结构对光的反射率。
对于该阵列基板, 例如, 所述其他颜色像素对应的像素区域的光学漫反 射结构可以设置为: 第一光波长的颜色像素对应的像素区域的光学漫反射结 构对光的反射率, 低于其他光波长的颜色像素对应的像素区域的光学漫反射 结构对光的反射率, 其中, 所述第一光波长大于所述其它光波长。
对于该阵列基板, 例如, 所述光学漫反射结构为浮凸结构。
对于该阵列基板, 例如, 所述像素区域包括红色像素区域、 蓝色像素区 域和绿色像素区域; 所述红色像素区域的浮凸结构的凸起角度分别小于所述 蓝色像素区域和所述绿色像素区域的浮凸结构的凸起角度。
对于该阵列基板, 例如, 所述红色像素区域的浮凸结构的凸起角度可以 为 1 ~ 7度。
对于该阵列基板, 例如, 所述红色像素区域的浮凸结构的凸起高度可以 为 1.5 敖米到 3.5敖米。
对于该阵列基板, 例如, 所述蓝色像素区域的浮凸结构的凸起角度大于 或等于所述绿色像素区域的浮凸结构的凸起角度。
对于该阵列基板, 例如, 所述蓝色像素区域和所述绿色像素区域的浮凸 结构的凸起角度可以均为 5 ~ 13度。
本发明的另一个实施例还提供一种液晶显示装置, 包括: 阵列基板、 与 所述阵列基板对盒的彩膜基板, 以及位于所述阵列基板和所述彩膜基板之间 的液晶层; 所述阵列基板, 包括: 第一基板和形成于所述第一基板上的阵列 结构以及像素电极; 所述像素电极对应的像素区域的至少一部分具有光学漫 反射结构; 所述像素区域包括不同颜色像素对应的像素区域; 所述光学漫反 射结构设置为: 最长光波长的颜色像素对应的像素区域的光学漫反射结构对 光的反射率低于其他颜色像素对应的像素区域的光学漫反射结构对光的反射 率。
对于该液晶显示装置, 例如, 所述其他颜色像素对应的像素区域的光学 漫反射结构可以设置为: 第一光波长的颜色像素对应的像素区域的光学漫反 射结构对光的反射率, 低于其他光波长的颜色像素对应的像素区域的光学漫 反射结构对光的反射率, 其中, 所述第一光波长大于所述其它光波长。
对于该液晶显示装置, 例如, 所述光学漫反射结构可以为浮凸结构. 对于该液晶显示装置, 例如, 所述像素区域包括红色像素区域、 蓝色像 素区域和绿色像素区域; 所述红色像素区域的浮凸结构的凸起角度分别小于 所述蓝色像素区域和所述绿色像素区域的浮凸结构的凸起角度。
对于该液晶显示装置, 例如, 所述红色像素区域的浮凸结构的凸起角度 可以为 1 ~ 7度。
对于该液晶显示装置, 例如, 所述红色像素区域的浮凸结构的凸起高度 可以为 1.5微米到 3.5微米。
对于该液晶显示装置, 例如, 所述蓝色像素区域的浮凸结构的凸起角度 大于或等于所述绿色像素区域的浮凸结构的凸起角度。
对于该液晶显示装置, 例如, 所述蓝色像素区域和所述绿色像素区域的 浮凸结构的凸起角度可以均为 5 ~ 13度。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有的半透射半反射液晶显示面板的阵列基板的结构示意图; 图 2为图 1所示的显示面板的液晶分子白色灰阶时的状态示意图; 图 3为图 1所示的显示面板的液晶分子从图 2所示的白色灰阶状态变为 中间灰阶时的状态示意图;
图 4是本发明的显示装置的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。同样, "一个 "或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包 含" 等类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵 盖出现在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排 除其他元件或者物件。 "连接" 或者 "相连" 等类似的词语并非限定于物理 的或者机械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。 "上" 、 "下" 、 "左" 、 "右" 等仅用于表示相对位置关系, 当被描述对 象的绝对位置改变后, 则该相对位置关系也可能相应地改变。
本发明实施例的阵列基板可包括多条栅线和多条数据线, 这些栅线和数 据线彼此交叉由此限定了排列为矩阵的像素区域, 每个像素区域包括作为开 关元件的薄膜晶体管和用于控制液晶的排列的像素电极。 例如, 每个像素的 薄膜晶体管的栅极与相应的栅线电连接或一体形成, 源极与相应的数据线电 连接或一体形成, 漏极与相应的像素电极电连接或一体形成。 下面的描述主 要针对单个或多个像素区域进行, 但是其他像素区域可以相同地形成。
本实施方式提供了一种阵列基板, 该阵列基板上设置有阵列结构以及多 个像素区域; 每个像素区域包括像素电极; 像素电极对应的像素区域的至少 一部分具有光学漫反射结构; 所述多个像素区域包括不同颜色像素对应的像 素区域; 所述光学漫反射结构设置为: 最长光波长的颜色像素对应的像素区 域的光学漫反射结构对光的反射率, 低于其他颜色像素对应的像素区域的光 学漫反射结构对光的反射率。
如果阵列结构是半透半反式阵列结构, 所述像素区域可能只有一部分是 光学漫反射结构, 另一部分是光透射结构; 如果是全反射式阵列结构, 则所 述像素区域全部为光学漫反射结构。
所述光学漫反射结构可以是凸起的结构, 也可以是凹陷结构, 或者凹凸 的各种结合的结构, 又或者其他形式的可使光进行漫反射的粗糙表面结构。
所述像素区域包括与不同颜色像素对应的像素区域, 例如, 可以有红色 像素区域、 蓝色像素区域和绿色像素区域。 当然, 根据实际情况的不同, 也 可以是其他的颜色种类数的组合, 比如只包括两种颜色像素区域, 或者三种 其他颜色的像素区域, 或更多种颜色的像素区域等。
当液晶分子从白色灰阶变化至中间灰阶时, 由于液晶折射率各向异性变 大同时长波红色像素的透过率也增大, 导致出现颜色偏移现象。 因此, 本实 施方式中, 将所述光学漫反射结构设置为: 最长光波长的颜色像素对应的像 素区域的光学漫反射结构对光的反射率, 低于其他颜色像素对应的像素区域 的光学漫反射结构对光的反射率。 例如, 所选择的颜色像素中波长最长的为 红色像素, 则将红色像素对应像素电极的像素区域的光学漫反射结构设置成 对光的反射率较低的结构。 比如, 当该光学漫反射结构为凸起结构时, 将该 凸起结构的凸起角度设置得较低一些, 以使红色光线在漫反射结构上的反射 率相对于其他颜色在其对应漫反射结构上的反射率要低, 从而消除或緩解颜 色偏移现象。
优选地, 为了达到更好地消除色偏的效果, 还可以将所有的颜色像素对 应的漫反射结构都根据其所对应的光波长进行调整和改进, 使得各种颜色的 相对色偏现象都能够得到緩解, 从而达到更好地克服色偏的目的。
示例性地, 下面的实施例中, 显示基板包括有红、 绿、 蓝三种颜色的像 素电极, 也就有红、 绿、 蓝三种颜色的像素区域, 选择浮凸结构作为所述光 学漫反射结构为例, 对技术方案进行说明。 本领域技术人员明了这只是优选 的实施例, 对于其中的像素颜色种类和数目的选择、 光学漫反射结构的具体 结构选择, 以及其他的等同替代技术特征, 或者合理变型和修改是本领域技 术人员所知道的。
如图 4所示, 本发明实施例所提供的显示面板的结构示意图, 阵列基板 包括: 第一基板 11 ; 形成于所述第一基板 11上的阵列结构 12 (图中以虚线 框所示) 以及像素电极 13。 所述像素电极 13对应的像素区域具有浮凸结构 14; 所述像素区域为红色像素区域、 蓝色像素区域或绿色像素区域; 所述红 色像素区域的浮凸结构的凸起角度小于所述蓝色像素区域的浮凸结构的凸起 角度, 也小于所述绿色像素区域的浮凸结构的凸起角度。
本说明书中所述的凸起角度表示的是浮凸结构的凸起的程度, 凸起角度 小则浮凸结构较扁平。本实施例中,如图 4所示, 4叚设浮凸结构 14的截面为 圓弧形,浮凸结构 14的凸起角度的大小可以用角 α的大小来表征; 图中示出 的 Α点为圓弧的一个端点, 即该圓弧外边缘与像素电极 13上表面相交的点, 角 α为该圓弧在 A点处的弦切角, 即 A点处的切线(图中示出为直线 L1 ) 与代表像素电极 13上表面的直线之间的夹角。
第一基板 11上有多个如阵列结构 12的阵列结构, 每个阵列结构都有其 对应的像素区域, 可能为红色像素区域、 蓝色像素区域或绿色像素区域。 红 色像素区域的浮凸结构的凸起角度小于蓝色像素区域的浮凸结构的凸起角 度, 也小于绿色像素区域的浮凸结构的凸起角度。
本实施例中图 4中的角度 α仅为示例性描述, 并不限于是红色像素区域 的浮凸结构的凸起角度, 也可以用来表示蓝色像素区域或绿色像素区域的浮 凸结构的凸起角度。
本发明的该实施例中, 通过降低红色像素区域的反射区域的浮凸结构的 凸起角度, 从而降低红色像素区域的反射层的反射率, 也就是说因红色像素 区域的反射率相对于蓝色和绿色像素区域的反射率较低, 因此可以减小或者 消除在中间灰阶下由于折射率各向异性的增加导致发生的 Yellowish 色偏现 象, 从而提升画面的质量。 由于所述 Yellowish 色偏现象的问题在半透半反 式液晶显示面板和全反射式液晶显示面板中都存在, 本发明的技术方案的应 用并不限于图 4所式的半透半反式阵列结构, 对于全反射式阵列结构也同样 适用并能达到同样的技术效果。
本发明的实施例所针对的像素区域可以包括至少一个像素区域, 一个像 素区域对应一个像素电极, 当包括多个像素区域时, 像素区域上的浮凸结构 也是多个; 红色像素区域的所有浮凸结构的凸起角度均小于蓝色像素区域的 所有浮凸结构的凸起角度, 也均小于绿色像素区域的所有浮凸结构的凸起角 度。
优选的, 在上述实施例中, 所述红色像素区域的浮凸结构的凸起角度可 以为 1 ~ 7度。
优选地,所述红色像素区域的浮凸结构的凸起高度可以为 1.5微米到 3.5 微米。
优选的, 所述蓝色像素区域的浮凸结构的凸起角度可以大于或等于所述 绿色像素区域的浮凸结构的凸起角度。
使所述蓝色像素区域的浮凸结构的凸起角度大于所述绿色像素区域的浮 凸结构的凸起角度, 也^^于消除因蓝色光波长与绿色光波长不同而导致颜 色偏移现象的考虑; 关于所述蓝色像素区域和所述绿色像素区域的浮凸结构 的凸起角度的定义及描述可参照上述的角 α的定义和描述, 包括其等同替代 方式和相同原理的变型。
优选地, 所述蓝色像素区域和所述绿色像素区域的浮凸结构的凸起角度 均可以在 5 ~ 13度的范围内选择。
另外, 需要说明的是: 上述阵列基板中, 阵列结构 12所指示的部分与传 统的阵列基板的阵列结构相同, 在此不再详述。
应注明的是,所述浮凸结构的凸起角度并不限于用上述一种方式来表示。 例如, 可以选用所述圓弧外边缘线上的其他任意点, 利用其切线以及对应的 角度来表示。 当然, 此时将红色像素区域对应的凸起角度和其他颜色像素区 域对应的凸起角度相比较时, 各浮凸结构所选用的点应当是相对应的, 比如 都选用弧线上相同方位上的点。
也不限于仅用角度比较的方式来表示浮凸结构凸起的程度, 用角度比较 的方式, 比较适合于凸起的形状近似于是圓弧或大体上是圓弧形的情况, 当 所述浮凸结构的凸起形状为不规则的起伏时, 也可以用凸起的高度与该凸起 最高点到该凸起的边缘点之间的水平宽度的比值, 来作为比较的因素。 凸起 的高度如可以是浮凸结构的凸起的最高点所在水平线到所述浮凸结构的凹陷 的最低点所在水平线之间的垂直距离; 此时相应地, 红色像素区域的浮凸结 构所对应的该比值要 d、于蓝色和绿色像素区域的浮凸结构所对应的该比值, 优选地, 蓝色像素区域的浮凸结构所对应的该比值要大于绿色像素区域的浮 凸结构所对应的该比值。
无论选择哪种比较方式, 其比较的原理是相通的, 都是使红色像素区域 的浮凸结构的凸起程度小于蓝色和绿色像素区域的凸起程度, 优选地使蓝色 像素区域的浮凸结构的凸起程度大于绿色像素区域的凸起程度, 这样才能够 良好地消除或緩解所述颜色偏移现象, 得到更好的技术效果, 本领域技术人 员能够明了上述类似的变换和合理的变型。
还应注明的是, 附图 4仅为示意性图示, 并非用于对本发明技术方案的 限制。 例如, 本实施方式所包括的阵列结构不限于这种半透半反式结构, 也 可以为全反射式结构; 所述浮凸结构的截面形状并不限于图中所呈现的规则 的圓弧形状, 也可以为其他形状的凸起; 所述凸起角度的大小也并不限于图 中所呈现的角度大小。
再如图 4所示, 本发明的实施例还提供一种液晶显示装置, 包括: 阵列 基板、 与所述阵列基板对盒的彩膜基板 22、 以及位于所述阵列基板和所述彩 膜基板 22之间的液晶层 17; 所述阵列基板包括: 第一基板 11 ; 形成于所述 第一基板上的阵列结构 12以及像素电极 13。所述像素电极 13对应的像素区 域的一部分具有浮凸结构 14; 所述像素区域为红色像素区域、 蓝色像素区域 或绿色像素区域; 所述红色像素区域的浮凸结构的凸起角度分别小于所述蓝 色像素区域的浮凸结构的凸起角度, 也小于所述绿色像素区域的浮凸结构的 凸起角度。
所述凸起角度如上述显示面板的实施例中所述凸起角度的描述, 再次不 再赘述。
优选的, 所述红色像素区域的浮凸结构的凸起角度可以为 1 ~ 7度。 优选地,所述红色像素区域的浮凸结构的凸起高度可以为 1.5微米到 3.5 微米。
优选的, 所述蓝色像素区域的浮凸结构的凸起角度可以大于或等于所述 绿色像素区域的浮凸结构的凸起角度其中, 使所述蓝色像素区域的浮凸结构 的凸起角度大于所述绿色像素区域的浮凸结构的凸起角度, 也^^于消除因 蓝色光波长与绿色光波长不同而导致颜色偏移现象的考虑; 关于所述蓝色像 素区域和所述绿色像素区域的浮凸结构的凸起角度的定义及描述可参照上述 的角 α的定义和描述, 包括其等同替代方式和相同原理的变型。
优选地, 所述蓝色像素区域和所述绿色像素区域的浮凸结构的凸起角度 可以均为 5 ~ 13度。
本发明的该实施例中, 通过降低红色像素区域的反射区域的浮凸结构的 凸起角度, 从而降低红色像素区域的反射层的反射率, 也就是说因红色像素 区域的反射率相对于蓝色和绿色像素区域的反射率较低, 因此可以减小或者 消除在中间灰阶下由于折射率各向异性的增加导致发生的 Yellowish 色偏现 象, 从而提升画面的质量。
关于本实施例中关于凸起角度的定义和描述, 以及除了角度以外的其他 可选的比较方式的描述, 与上述显示面板的实施例中的相应描述相同。
相应地, 本实施例的液晶显示装置可以为半透半反式液晶显示装置, 也 可以为全反射式液晶显示装置。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1. 一种阵列基板, 包括:
第一基板;
形成于所述第一基板上的阵列结构以及像素电极;
所述像素电极对应的像素区域的至少一部分具有光学漫反射结构; 所述像素区域包括不同颜色像素对应的像素区域;
其中, 所述光学漫反射结构设置为: 最长光波长的颜色像素对应的像素 区域的光学漫反射结构对光的反射率, 低于其他颜色像素对应的像素区域的 光学漫反射结构对光的反射率。
2. 根据权利要求 1所述的阵列基板, 其中, 所述其他颜色像素对应的像 素区域的光学漫反射结构设置为: 第一光波长的颜色像素对应的像素区域的 光学漫反射结构对光的反射率, 低于其他光波长的颜色像素对应的像素区域 的光学漫反射结构对光的反射率, 其中, 所述第一光波长大于所述其它光波 长。
3. 根据权利要求 1所述的阵列基板, 其中, 所述光学漫反射结构为浮凸 结构。
4. 根据权利要求 3所述的阵列基板, 其中, 所述像素区域包括红色像素 区域、 蓝色像素区域和绿色像素区域;
所述红色像素区域的浮凸结构的凸起角度分别小于所述蓝色像素区域和 所述绿色像素区域的浮凸结构的凸起角度。
5. 根据权利要求 4所述的阵列基板, 其中, 所述红色像素区域的浮凸结 构的凸起角度为 1 ~ 7度。
6. 根据权利要求 4的阵列基板, 其中, 所述红色像素区域的浮凸结构的 凸起高度为 1.5微米到 3.5微米。
7. 根据权利要求 4所述的阵列基板, 其中, 所述蓝色像素区域的浮凸结 构的凸起角度大于或等于所述绿色像素区域的浮凸结构的凸起角度。
8. 根据权利要求 4所述的阵列基板, 其中, 所述蓝色像素区域和所述绿 色像素区域的浮凸结构的凸起角度均在 5 ~ 13度的范围内选择。
9. 一种液晶显示装置, 包括: 阵列基板;
与所述阵列基板对盒的彩膜基板; 以及
位于所述阵列基板和所述彩膜基板之间的液晶层;
其中, 所述阵列基板包括: 第一基板, 形成于所述第一基板上的阵列结 构以及像素电极;
所述像素电极对应的像素区域的至少一部分具有光学漫反射结构; 所述 像素区域包括不同颜色像素对应的像素区域; 其中, 所述光学漫反射结构设 置为: 最长光波长的颜色像素对应的像素区域的光学漫反射结构对光的反射 率低于其他颜色像素对应的像素区域的光学漫反射结构对光的反射率。
10. 根据权利要求 9所述的液晶显示装置, 其中, 所述其他颜色像素对 应的像素区域的光学漫反射结构设置为: 第一光波长的颜色像素对应的像素 区域的光学漫反射结构对光的反射率, 低于其他光波长的颜色像素对应的像 素区域的光学漫反射结构对光的反射率, 其中, 所述第一光波长大于所述其 它光波长。
11. 根据权利要求 9所述的液晶显示装置, 其中, 所述光学漫反射结构 为浮凸结构.
12. 根据权利要求 11所述的液晶显示装置, 其中, 所述像素区域包括红 色像素区域、 蓝色像素区域和绿色像素区域;
所述红色像素区域的浮凸结构的凸起角度分别小于所述蓝色像素区域和 所述绿色像素区域的浮凸结构的凸起角度。
13. 根据权利要求 12所述的液晶显示装置, 其中, 所述红色像素区域的 浮凸结构的凸起角度为 1 ~ 7度。
14. 根据权利要求 12的液晶显示装置, 其中, 所述红色像素区域的浮凸 结构的凸起高度为 1.5微米到 3.5微米。
15. 根据权利要求 12所述的液晶显示装置, 其中, 所述蓝色像素区域的 浮凸结构的凸起角度大于或等于所述绿色像素区域的浮凸结构的凸起角度。
16. 根据权利要求 12所述的液晶显示装置, 其中, 所述蓝色像素区域和 所述绿色像素区域的浮凸结构的凸起角度均在 5 ~ 13度的范围内选择。
PCT/CN2012/084702 2012-07-31 2012-11-15 阵列基板及液晶显示装置 WO2014019299A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/995,597 US9459485B2 (en) 2012-07-31 2012-11-15 Array substrate comprising optical diffusion structures having different reflectivities for light reflected from different pixel regions and liquid crystal display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210270446.7 2012-07-31
CN201210270446.7A CN102809858B (zh) 2012-07-31 2012-07-31 阵列基板及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2014019299A1 true WO2014019299A1 (zh) 2014-02-06

Family

ID=47233590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084702 WO2014019299A1 (zh) 2012-07-31 2012-11-15 阵列基板及液晶显示装置

Country Status (3)

Country Link
US (1) US9459485B2 (zh)
CN (1) CN102809858B (zh)
WO (1) WO2014019299A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287130A (ja) * 2001-03-27 2002-10-03 Dainippon Printing Co Ltd 透過型兼反射型液晶表示装置
US20020167743A1 (en) * 2001-05-01 2002-11-14 Mutsumi Matsuo Electro-optic device, manufacturing method therefor, and electronic equipment
CN1700066A (zh) * 2004-05-21 2005-11-23 三洋电机株式会社 半穿透型液晶显示装置及彩色液晶显示装置
JP2006154583A (ja) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd 半透過型カラー液晶表示装置及びその製造方法
CN101261406A (zh) * 2007-03-05 2008-09-10 东芝松下显示技术有限公司 能防止反射率和白色平衡值偏移的液晶显示装置
JP2011008295A (ja) * 2010-09-27 2011-01-13 Kyocera Corp 液晶表示装置およびそれを用いた表示体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888678B2 (en) * 2000-02-16 2005-05-03 Matsushita Electric Industrial Co., Ltd. Irregular-shape body, reflection sheet and reflection-type liquid crystal display element, and production method and production device therefor
TWI243265B (en) * 2002-02-27 2005-11-11 Chi Mei Optoelectronics Corp Method for forming a reflection-type light diffuser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287130A (ja) * 2001-03-27 2002-10-03 Dainippon Printing Co Ltd 透過型兼反射型液晶表示装置
US20020167743A1 (en) * 2001-05-01 2002-11-14 Mutsumi Matsuo Electro-optic device, manufacturing method therefor, and electronic equipment
CN1700066A (zh) * 2004-05-21 2005-11-23 三洋电机株式会社 半穿透型液晶显示装置及彩色液晶显示装置
JP2006154583A (ja) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd 半透過型カラー液晶表示装置及びその製造方法
CN101261406A (zh) * 2007-03-05 2008-09-10 东芝松下显示技术有限公司 能防止反射率和白色平衡值偏移的液晶显示装置
JP2011008295A (ja) * 2010-09-27 2011-01-13 Kyocera Corp 液晶表示装置およびそれを用いた表示体

Also Published As

Publication number Publication date
US20140055729A1 (en) 2014-02-27
CN102809858A (zh) 2012-12-05
US9459485B2 (en) 2016-10-04
CN102809858B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
TWI645237B (zh) 含有光閥板的液晶顯示器
CN1251010C (zh) 液晶显示器及其制造方法
CN102087446B (zh) 透反电光特性曲线相匹配的单盒厚透反蓝相液晶显示器
JP4364536B2 (ja) 液晶表示装置
WO2021018024A1 (zh) 显示基板、显示面板和显示装置
WO2013159508A1 (zh) 半透半反彩色像素结构、彩膜基板、液晶面板及显示装置
EP2453299A2 (en) Display device having color filter
TW201229628A (en) Transflective LCD with arcuate pixel portions
JP2007140089A (ja) 液晶表示装置
US10895779B2 (en) Liquid crystal display with red, green, blue, and white subpixels having reflective and transmissive areas
US20060221276A1 (en) Transflective liquid crystal display panel and color liquid crystal display device
JP2006078742A (ja) 液晶表示装置および電子機器
TWI382236B (zh) 可防止反射率及白平衡之值的偏差之液晶顯示裝置
JP2004198919A (ja) 液晶表示装置および電子機器
CN101308297B (zh) 液晶显示面板及应用其的液晶显示装置
US20120147306A1 (en) Liquid crystal display device
JPWO2014045988A1 (ja) 液晶表示装置
CN106959544B (zh) 一种背光模组、液晶显示器及其制备工艺
WO2014019299A1 (zh) 阵列基板及液晶显示装置
TWI416176B (zh) 顯示面板及彩色濾光基板
CN202041748U (zh) 半透射半反射式液晶显示器
JP4407258B2 (ja) 半透過型液晶表示装置
US20090290112A1 (en) Display device
CN100535728C (zh) 半穿透半反射型液晶显示面板
TWI431332B (zh) 規則圖案光學片

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13995597

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17-06-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12882186

Country of ref document: EP

Kind code of ref document: A1