WO2014013614A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2014013614A1
WO2014013614A1 PCT/JP2012/068477 JP2012068477W WO2014013614A1 WO 2014013614 A1 WO2014013614 A1 WO 2014013614A1 JP 2012068477 W JP2012068477 W JP 2012068477W WO 2014013614 A1 WO2014013614 A1 WO 2014013614A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
power converter
disconnection
detection unit
current
Prior art date
Application number
PCT/JP2012/068477
Other languages
English (en)
French (fr)
Inventor
庸泰 柿崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/068477 priority Critical patent/WO2014013614A1/ja
Priority to JP2013504042A priority patent/JP5296942B1/ja
Priority to US14/415,303 priority patent/US9793843B2/en
Priority to DE112012006581.6T priority patent/DE112012006581T5/de
Publication of WO2014013614A1 publication Critical patent/WO2014013614A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/50Vector control arrangements or methods not otherwise provided for in H02P21/00- H02P21/36
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0243Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a broken phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P31/00Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00

Definitions

  • the present invention relates to a control device that controls a power converter that converts electric power to drive an electric motor, and detects a disconnection between the power converter and the electric motor.
  • An electric vehicle travels by converting electric power taken from an overhead line by a current collector with a power converter and driving an electric motor with the converted power.
  • a disconnection occurs between the power converter and the electric motor, electric power cannot be supplied to the electric motor, and the traction force of the electric vehicle is lost.
  • one power converter supplies power to a plurality of motors, if the power converter continues to operate in a state where a disconnection has occurred between the power converter and one motor, the power converter is applied to the other motors.
  • the voltage may increase, overloading other motors may cause the motors to break down. Therefore, it is necessary to detect the disconnection that occurs between the power converter and the electric motor.
  • the drive control device disclosed in Patent Literature 1 calculates an average value of three-phase currents output to the electric motor by the drive control device, and when the difference between the average value and each phase current exceeds a predetermined value, It is determined that the cable for supplying the phase current is disconnected.
  • the power conversion device disclosed in Patent Document 2 includes a power converter, an electric motor, and a motor when the fluctuation of the output current of the power converter exceeds a predetermined value and the minimum value of the output current is lower than a predetermined value. It is determined that a disconnection has occurred between the two.
  • the electric vehicle control device disclosed in Patent Document 3 determines that a disconnection has occurred between the power converter and the electric motor when the torque fluctuation of the electric motor exceeds a predetermined value.
  • the electric motor drive device disclosed in Patent Document 4 determines whether or not a disconnection occurs between the output circuit and the electric motor based on each phase voltage output by the output circuit within a predetermined time after activation.
  • the electric vehicle control device disclosed in Patent Document 3 requires a torque calculation circuit, which complicates the circuit.
  • the electric motor drive device disclosed in Patent Document 4 requires a monitor for detecting the voltage supplied to the electric motor, which complicates the circuit. With the technique disclosed in Patent Document 5, a disconnection cannot be detected after the motor is started.
  • the present invention has been made in view of the circumstances as described above, and an object thereof is to improve the detection accuracy of disconnection between a power converter and an electric motor with a simple configuration.
  • the control device of the present invention includes a power converter, a current detection unit, a voltage control unit, a disconnection detection unit, and a gate control unit.
  • the power converter converts the input power by switching on and off of the switching element, and drives the AC motor.
  • the current detection unit detects a current output from the power converter to the AC motor.
  • a voltage control part produces
  • the disconnection detection unit determines that a disconnection has occurred between the power converter and the AC motor when the state where the absolute value of the combined vector of the voltage command values is not within the predetermined range continues for a predetermined time or longer.
  • the gate control unit outputs a gate command for controlling on / off switching of the switching element included in the power converter based on the voltage command value.
  • FIG. 1 is a block diagram showing a configuration example of a control device according to an embodiment of the present invention.
  • FIG. 1 shows an example in which the control device 1 is used for a train.
  • the control device 1 takes in power from the overhead line 2 by the current collector 3, converts the power, and drives the AC motor 4 with the converted power.
  • the AC motor 4 is an electric motor that generates a driving force for running the vehicle.
  • a three-phase induction motor is used as the AC motor 4.
  • the control device 1 includes a power converter 11, current detection units 12a, 12b, and 12c, a voltage control unit 13, a disconnection detection unit 14, and a gate control unit 15.
  • the power converter 11 converts the taken-in power into three-phase AC power supplied to the AC motor 4 by switching on and off of the switching element based on the gate command GATE output from the gate control unit 15, and the AC motor 4 is driven.
  • the current detection units 12 a, 12 b, and 12 c detect the phase currents Iu, Iv, and Iw that the power converter 11 supplies to the AC motor 4, and send them to the voltage control unit 13.
  • the current detection units 12 a, 12 b, and 12 c are not limited to CT (Current Transformer) that detects a current flowing in the connection between the power converter 11 and the AC motor 4.
  • the current detection unit 12c may be omitted, and the phase current Iw may be calculated from the phase currents Iu and Iv detected by the current detection units 12a and 12b, respectively.
  • the voltage control unit 13 is input with an operation command signal S1 for commanding the rotational operation of the AC motor 4. Based on the operation command signal S1, for example, the angular velocity and the output torque of the AC motor 4 are determined.
  • the angular speed of the AC motor 4 is the angular speed of the rotor of the AC motor 4.
  • the driving command signal S1 is a signal for controlling the running of the vehicle, and is a powering command signal and a brake command signal that are command signals from the cab. including.
  • the signal levels of the power running command signal and the brake command signal change depending on the input or release of the power running command and the brake command in the cab.
  • the voltage control unit 13 generates the d-axis current command value Id * and the q-axis current command value Iq * on the rotation coordinates based on the operation command signal S1 using the conventional technique.
  • the voltage control unit 13 performs coordinate conversion from the drive coordinates, which are the determined coordinates for driving the AC motor 4, to the rotation coordinates for the phase currents Iu, Iv, and Iw using the conventional technique, D-axis current Id and q-axis current Iq are generated.
  • the rotation coordinates are coordinates that rotate in synchronization with a rotating magnetic field generated in the AC motor 4.
  • the d-axis is in the same direction as the main magnetic flux of the rotating magnetic field, and the q-axis is the direction orthogonal to the d-axis.
  • the drive coordinates are coordinates having a U-phase axis, a V-phase axis, and a W-phase axis.
  • the voltage control unit 13 determines the deviation between the d-axis current command value Id * and the d-axis current Id and The d-axis voltage command value Vd * and the q-axis voltage command value Vq * are generated so as to eliminate the deviation between the q-axis current command value Iq * and the q-axis current Iq, and sent to the disconnection detection unit 14 and the gate control unit 15. .
  • the disconnection detector 14 is input with a driving command signal S1 and a speed signal S2 that is a signal indicating the speed of the vehicle.
  • a speed signal S2 for example, the vehicle speed based on the angular speed detected by the angular speed sensor attached to the AC motor 4 and the speed information of ATC (Automatic Train Control) can be used.
  • the angular speed of the AC motor 4 is calculated, and the vehicle is calculated from the angular speed.
  • a speed calculation unit that calculates a speed may be provided, and the speed calculated by the speed calculation unit may be sent to the disconnection detection unit 14 as a speed signal S2.
  • the speed signal S2 may be an angular speed detected by the angular speed sensor or an angular speed calculated as described above, and the disconnection detection unit 14 may calculate the vehicle speed from the angular speed.
  • the disconnection detection unit 14 It is determined that a disconnection has occurred with the electric motor 4.
  • the predetermined range is a function of the speed of the vehicle, for example.
  • the predetermined time is an arbitrary time provided to prevent erroneous detection of disconnection due to fluctuations in the d-axis voltage command value Vd * and the q-axis voltage command value Vq *.
  • the disconnection detection unit 14 sends a disconnection signal OFF to the gate control unit 15.
  • the disconnection signal OFF is H (High) level when the disconnection detection unit 14 determines that a disconnection occurs between the power converter 11 and the AC motor 4. This is a signal that is at the L (Low) level when it is determined that no disconnection has occurred.
  • the gate control unit 15 switches the switching element included in the power converter 11 on and off based on the d-axis voltage command value Vd * and the q-axis voltage command value Vq *. Is sent to the power converter 11.
  • the gate control unit 15 sends a gate command GATE for turning off the switching element included in the power converter 11 to the power converter 11. By turning off the switching element included in the power converter 11, the power supply to the AC motor 4 is stopped, and it is possible to prevent the AC motor 4 from being overloaded.
  • FIG. 2 is a diagram illustrating a relationship between the motor voltage and the motor current in the embodiment.
  • the absolute value of the combined vector of the U-phase, V-phase, and W-phase voltages is called a motor voltage.
  • the absolute value of the combined vector of the phase currents Iu, Iv, and Iw is called a motor current. Since the actual motor voltage cannot be detected, the absolute value of the combined vector of the d-axis voltage command value Vd * and the q-axis voltage command value Vq * is regarded as the motor voltage.
  • the motor current is kept constant, and when the vehicle speed exceeds a certain speed, it gradually decreases as the vehicle speed increases.
  • the motor voltage gradually increases and is kept constant when the limit voltage is reached.
  • the limit voltage is a value determined by the maximum value of the voltage that can be output by the power converter 11.
  • FIG. 3 is a diagram illustrating an example of a predetermined range of absolute values of a combined vector of voltage command values in the embodiment. A range that is equal to or less than the value indicated by the solid line in FIG.
  • the current detection unit 12 a detects it.
  • the phase current Iu temporarily decreases. Since control device 1 performs vector control so that the current supplied to AC motor 4 is constant, the values of d-axis voltage command value Vd * and q-axis voltage command value Vq * increase. Thereafter, when the state where the absolute value of the combined vector of the d-axis voltage command value Vd * and the q-axis voltage command value Vq * is not within a predetermined range continues for a predetermined time or longer, the disconnection detection unit 14 is connected to the power converter 11. It is determined that a disconnection has occurred with the AC motor 4.
  • the disconnection detection unit 14 determines that no disconnection has occurred between the power converter 11 and the AC motor 4. As indicated by white circles in FIG. 3, when the vehicle speed is V2 and the motor voltage is Vm2, the motor voltage is not within a predetermined range. When this state continues for a predetermined time or more, the disconnection detection unit 14 determines that a disconnection has occurred between the power converter 11 and the AC motor 4.
  • the upper limit value of the predetermined range is, for example, a value obtained by multiplying a constant in the motor voltage when there is no disconnection indicated by a dotted line in FIG. Further, the upper limit value of the predetermined range may be defined so that the difference between the upper limit value of the predetermined range and the motor voltage at the time of disconnection increases at a constant rate as the vehicle speed increases.
  • the disconnection detector 14 determines whether or not the power converter 11 and the AC motor 4 are disconnected based on the absolute value of the combined vector of the d-axis voltage command value Vd * and the q-axis voltage command value Vq *. Therefore, even when the cables of all the phases of one AC motor 4 are disconnected, it is possible to detect the disconnection.
  • the absolute value of the combined vector of the d-axis voltage command value Vd * and the q-axis voltage command value Vq * becomes 0, so that 0 in a predetermined range. In such a case, it is possible to detect a disconnection.
  • a predetermined range may be defined for each operation command.
  • FIG. 4 is a diagram illustrating an example of a predetermined range corresponding to the operation command in the embodiment.
  • the operation command signal S1 includes, for example, a stepless power running command signal and a stepped power running command signal.
  • the one-dot chain line graph is the upper limit value of the predetermined range when the operation command signal S1 is the pattern 1
  • the two-dot chain line graph is the upper limit value of the predetermined range when the operation command signal S1 is the pattern 2 It is.
  • the vehicle speed is V3
  • the motor voltage is Vm3
  • the disconnection detection unit 14 indicates that there is no disconnection between the power converter 11 and the AC motor 4. to decide.
  • the disconnection detection unit 14 has a disconnection between the power converter 11 and the AC motor 4.
  • control device 1 According to the control device 1 according to the present embodiment, it is possible to improve the detection accuracy of the disconnection between the power converter and the electric motor with a simple configuration.
  • the disconnection detection unit 14 may be configured not to use the operation command signal S1. In that case, when the state where the absolute value of the combined vector of the d-axis voltage command value Vd * and the q-axis voltage command value Vq * is not within the predetermined range is continued for a predetermined time or more regardless of the type of operation command signal. In addition, it is determined that the power converter 11 and the AC motor 4 are disconnected.
  • the disconnection detection unit 14 is configured to output a disconnection signal OFF to the outside of the control device 1 instead of the gate control unit 15 when it is determined that the disconnection has occurred between the power converter 11 and the AC motor 4. May be.
  • a disconnection signal OFF may be sent to the display device of the cab and the driver may be notified that the power converter 11 and the AC motor 4 are disconnected.
  • AC motor 4 is not limited to a three-phase induction motor, and may be a single-phase induction motor. Further, the AC motor 4 is not limited to a plurality, and may be one. The AC motor 4 may be an induction motor or a rotary motor. Further, instead of the AC motor 4, a linear induction motor, a linear synchronous motor, a solenoid, or the like may be used.
  • AC motor 4 driven by control device 1 is not limited to an electric motor that generates a driving force for running a vehicle.
  • the predetermined range may be a function of the angular speed of the AC motor 4 instead of a function of the speed of the vehicle.
  • the speed signal S ⁇ b> 2 input to the disconnection detection unit 14 is the angular speed of the AC motor 4.
  • the disconnection detection unit 14 continues the state where the absolute value of the combined vector of the d-axis voltage command value Vd * and the q-axis voltage command value Vq * is not within a predetermined range that is a function of the angular velocity of the AC motor 4 for a predetermined time or longer. In this case, it is determined that the power converter 11 and the AC motor 4 are disconnected.
  • the present invention can be suitably employed in a control device that controls a power converter that converts electric power to drive an electric motor and detects a disconnection between the power converter and the electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

 電圧制御部(13)は、運転指令信号および三相電流に基づき、d軸電圧指令値およびq軸電圧指令値を生成する。断線検知部(14)は、d軸電圧指令値およびq軸電圧指令値の合成ベクトルの絶対値が定めた所定範囲でない状態が、所定時間以上継続した場合に、電力変換器(11)と交流電動機(4)との間が断線していると判断する。ゲート制御部(15)は、断線検知部(14)が電力変換器(11)と交流電動機(4)との間が断線していると判断した場合には、電力変換器(11)が備えるスイッチング素子をオフにするためのゲート指令を電力変換器(11)に送る。

Description

制御装置
 この発明は、電動機を駆動するために電力を変換する電力変換器を制御し、電力変換器と電動機との間の断線を検知する制御装置に関する。
 電気車は、集電装置により架線から取り入れた電力を電力変換器で変換し、変換した電力で電動機を駆動させて走行する。電力変換器と電動機との間で断線が生じた場合には、電動機に電力を供給することができなくなるため、電気車の牽引力が失われる。また1つの電力変換器が複数の電動機に電力を供給する場合に、電力変換器と1つの電動機との間で断線が生じた状態で電力変換器が作動し続けると、他の電動機に印加される電圧が上昇し、他の電動機に過負荷がかかって電動機が故障する恐れがある。そこで電力変換器と電動機との間で生じた断線を検知する必要がある。
 特許文献1に開示される駆動制御装置は、駆動制御装置が電動機へ出力する三相電流の平均値を算出し、平均値とそれぞれの相電流との差が定めた値を超えた場合に、その相電流を供給するためのケーブルが断線していると判断する。特許文献2に開示される電力変換装置は、電力変換器の出力電流の変動が定めた値を超え、かつ、該出力電流の最小値が定めた値を下回る場合に、電力変換器と電動機との間で断線が生じていると判断する。
 特許文献3に開示される電気車制御装置は、電動機のトルクの変動が定めた値を超えた場合に、電力変換器と電動機との間で断線が生じていると判断する。特許文献4に開示される電動機駆動装置は、起動後の定めた時間内における出力回路が出力する各相電圧に基づき、出力回路と電動機との間で断線が生じているか否かを判断する。特許文献5に開示される技術では、電動機の始動前に、電力変換器の各相のアームの中点電圧に基づき、各相のアームと電動機との間で断線が生じているか否かを判断する。
特開平6-245301号公報 特開2003-304634号公報 特開2005-176571号公報 特開2006-50707号公報 特開2010-233343号公報
 特許文献1に開示される駆動制御装置は、三相全てのケーブルが断線している場合には、三相電流の対称性が失われず、三相電流の平均値と各相電流との差が定めた値を超えないため、断線を検知することができない。同様に、特許文献2に開示される電力変換装置は、三相全てのケーブルが断線している場合には、電力変換器の出力電流の変動が定めた値を超えないため、断線を検知することができない。
 特許文献3に開示される電気車制御装置ではトルク演算回路が必要であり、回路が複雑化する。同様に、特許文献4に開示される電動機駆動装置は、電動機に供給される電圧を検出するモニタが必要であり、回路が複雑化する。特許文献5に開示される技術では、電動機の始動後に断線を検知することができない。
 本発明は、上述のような事情に鑑みてなされたものであり、簡易な構成で電力変換器と電動機との間における断線の検知精度を向上させることを目的とする。
 上記目的を達成するために、本発明の制御装置は、電力変換器、電流検出部、電圧制御部、断線検知部、およびゲート制御部を備える。電力変換器は、スイッチング素子のオンとオフを切り替えることにより、入力された電力を変換し、交流電動機を駆動する。電流検出部は、電力変換器が交流電動機に対して出力する電流を検出する。電圧制御部は、交流電動機の回転動作を指令する運転指令および電流検出部が検出した電流に基づき、電力変換器の制御に用いる電圧指令値を生成する。断線検知部は、電圧指令値の合成ベクトルの絶対値が所定範囲にない状態が、所定時間以上継続した場合には、電力変換器と交流電動機との間で断線が生じていると判断する。ゲート制御部は、電圧指令値に基づき、電力変換器が備えるスイッチング素子のオンとオフの切り替えを制御するゲート指令を出力する。
 本発明によれば、簡易な構成で電力変換器と電動機との間における断線の検知精度を向上させることが可能となる。
本発明の実施の形態に係る制御装置の構成例を示すブロック図である。 実施の形態におけるモータ電圧とモータ電流との関係を示す図である。 実施の形態における電圧指令値の合成ベクトルの絶対値の所定範囲の例を示す図である。 実施の形態における運転指令に対応する所定範囲の例を示す図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
 図1は、本発明の実施の形態に係る制御装置の構成例を示すブロック図である。図1は、制御装置1を電車に用いた例である。制御装置1は、架線2から集電装置3によって電力を取り入れ、電力を変換し、変換した電力で交流電動機4を駆動する。交流電動機4は、車両を走行させる駆動力を生じる電動機である。図1の例においては、交流電動機4として三相誘導電動機を用いる。制御装置1は、電力変換器11、電流検出部12a、12b、12c、電圧制御部13、断線検知部14およびゲート制御部15を備える。
 電力変換器11は、ゲート制御部15が出力するゲート指令GATEに基づいてスイッチング素子のオンとオフを切り替えることにより、取り入れた電力を交流電動機4に供給する三相交流電力に変換し、交流電動機4を駆動する。電流検出部12a、12b、12cは、それぞれ電力変換器11が交流電動機4に供給する相電流Iu、Iv、Iwを検出し、電圧制御部13に送る。電流検出部12a、12b、12cは、電力変換器11と交流電動機4との結線に流れる電流を検出するCT(Current Transformer)に限られない。また相電流はIu+Iv+Iw=0という関係を満たすので、例えば電流検出部12cを省略し、電流検出部12a、12bがそれぞれ検出した相電流Iu、Ivから相電流Iwを算出してもよい。
 電圧制御部13には、交流電動機4の回転動作を指令する運転指令信号S1が入力される。運転指令信号S1に基づき、例えば交流電動機4の角速度や出力トルクが決定される。交流電動機4の角速度とは、交流電動機4の回転子の角速度である。図1のように制御装置1を電車に用いる場合には、運転指令信号S1は、車両の走行を制御するための信号であって、運転台からの指令信号である力行指令信号およびブレーキ指令信号を含む。力行指令信号およびブレーキ指令信号は、運転台における力行指令およびブレーキ指令の入力または解除によりそれぞれ信号レベルが変化する。
 電圧制御部13は、従来技術を用いて、運転指令信号S1に基づき、回転座標上のd軸電流指令値Id*およびq軸電流指令値Iq*を生成する。また電圧制御部13は、従来技術を用いて、相電流Iu、Iv、Iwについて、交流電動機4を駆動するための定めた座標である駆動座標から回転座標への座標変換を行い、回転座標上のd軸電流Idおよびq軸電流Iqを生成する。回転座標とは、交流電動機4において生じる回転磁界に同期して回転する座標である。d軸は回転磁界の主磁束と同方向であり、q軸はd軸に直交する方向である。交流電動機4が三相誘導電動機である場合は、駆動座標は、U相軸、V相軸およびW相軸を有する座標である。
 電圧制御部13は、d軸電流指令値Id*、q軸電流指令値Iq*、d軸電流Idおよびq軸電流Iqに基づき、d軸電流指令値Id*とd軸電流Idとの偏差およびq軸電流指令値Iq*とq軸電流Iqとの偏差がなくなるように、d軸電圧指令値Vd*およびq軸電圧指令値Vq*を生成し、断線検知部14およびゲート制御部15に送る。
 断線検知部14には、運転指令信号S1および車両の速度を示す信号である速度信号S2が入力される。速度信号S2には、例えば交流電動機4に取り付けた角速度センサが検出した角速度に基づく車両速度、ATC(Automatic Train Control:自動列車制御装置)の速度情報を用いることができる。またd軸電圧指令値Vd*、q軸電圧指令値Vq*、d軸電流Id、q軸電流Iq、および交流電動機4の一次抵抗値に基づき、交流電動機4の角速度を算出し、角速度から車両速度を算出する速度算出部を設け、速度算出部が算出する速度を速度信号S2として断線検知部14に送るよう構成してもよい。また速度信号S2を、角速度センサが検出した角速度または上述のように算出した角速度とし、断線検知部14が角速度から車両速度を算出するよう構成してもよい。
 断線検知部14は、d軸電圧指令値Vd*およびq軸電圧指令値Vq*の合成ベクトルの絶対値が所定範囲にない状態が、所定時間以上継続した場合には、電力変換器11と交流電動機4との間で断線が生じていると判断する。所定範囲は、例えば車両の速度の関数である。所定時間は、d軸電圧指令値Vd*およびq軸電圧指令値Vq*の変動による断線の誤検知を防止するために設けられた任意の時間である。
 断線検知部14は、ゲート制御部15に断線信号OFFを送る。例えば断線信号OFFは、断線検知部14が電力変換器11と交流電動機4との間で断線が生じていると判断した場合にH(High)レベルであり、電力変換器11と交流電動機4との間で断線が生じていないと判断した場合にL(Low)レベルである信号である。
 ゲート制御部15は、断線信号OFFがLレベルである場合には、d軸電圧指令値Vd*およびq軸電圧指令値Vq*に基づき、電力変換器11が備えるスイッチング素子のオンとオフの切り替えを制御するゲート指令GATEを電力変換器11に送る。ゲート制御部15は、断線信号OFFがHレベルである場合には、電力変換器11が備えるスイッチング素子をオフにするゲート指令GATEを電力変換器11に送る。電力変換器11が備えるスイッチング素子をオフにすることで、交流電動機4への電力供給が停止し、交流電動機4に過負荷がかかるのを防止することが可能となる。
 断線検知部14が、電力変換器11と交流電動機4との間で断線が生じているか否かを判断する動作について以下に説明する。図2は、実施の形態におけるモータ電圧とモータ電流との関係を示す図である。U相、V相及びW相の電圧の合成ベクトルの絶対値をモータ電圧という。また相電流Iu、Iv、Iwの合成ベクトルの絶対値をモータ電流という。実際のモータ電圧を検出することはできないため、d軸電圧指令値Vd*およびq軸電圧指令値Vq*の合成ベクトルの絶対値をモータ電圧とみなす。
 図2に示すように、交流電動機4の始動直後は、モータ電流は一定に保たれ、車両速度がある速度を超えると、車両速度が増すにつれて徐々に減少する。交流電動機4の始動後、モータ電圧は徐々に増加していき、リミット電圧に達すると、一定に保たれる。リミット電圧は、電力変換器11が出力することができる電圧の最大値によって決定される値である。
 断線検知部14は、交流電動機4の始動からモータ電圧がリミット電圧に到達するまでの間において、モータ電圧が所定範囲にない状態が、所定時間以上継続した場合には、電力変換器11と交流電動機4との間で断線が生じていると判断する。図3は、実施の形態における電圧指令値の合成ベクトルの絶対値の所定範囲の例を示す図である。図3の実線で示す値以下であって0より大きい範囲を所定範囲とする。
 図1に示すように、1つの制御装置1が複数の交流電動機4を駆動する場合であって、例えば1つの交流電動機のU相のケーブルが断線した場合には、電流検出部12aが検出する相電流Iuは一時的に減少する。制御装置1は、交流電動機4に供給する電流が一定となるようベクトル制御を行うため、d軸電圧指令値Vd*およびq軸電圧指令値Vq*の値が大きくなる。その後d軸電圧指令値Vd*およびq軸電圧指令値Vq*の合成ベクトルの絶対値が所定範囲にない状態が、所定時間以上継続した場合には、断線検知部14は、電力変換器11と交流電動機4との間で断線が生じていると判断する。
 図3において黒丸で示すように、車両の速度がV1でモータ電圧がVm1である場合には、モータ電圧が所定範囲にある。この場合には、断線検知部14は、電力変換器11と交流電動機4との間に断線が生じていないと判断する。図3において白丸で示すように、車両の速度がV2でモータ電圧がVm2である場合には、モータ電圧が所定範囲にない。この状態が所定時間以上継続した場合には、断線検知部14は、電力変換器11と交流電動機4との間に断線が生じていると判断する。
 所定範囲の上限値は、例えば図3において点線で示す非断線時のモータ電圧にある定数を乗算した値とする。また所定範囲の上限値と非断線時のモータ電圧との差が車両の速度の増加に伴って一定の割合で増加するように、所定範囲の上限値を定義してもよい。
 断線検知部14は、d軸電圧指令値Vd*およびq軸電圧指令値Vq*の合成ベクトルの絶対値に基づき、電力変換器11と交流電動機4との間が断線しているか否かを判断するため、1つの交流電動機4の全ての相のケーブルが断線した場合でも、断線を検知することが可能である。また全ての交流電動機4の全ての相のケーブルが断線した場合には、d軸電圧指令値Vd*およびq軸電圧指令値Vq*の合成ベクトルの絶対値が0になるため、所定範囲に0を含まないようにすることで、そのような場合でも断線を検知することが可能である。
 交流電動機4の始動後のモータ電圧の上昇の仕方は、運転指令信号S1の種類によって異なるので、所定範囲を運転指令ごとに定義してもよい。
 図4は、実施の形態における運転指令に対応する所定範囲の例を示す図である。例えば運転指令信号S1がパターン1である場合、パターン2である場合のそれぞれに対応する所定範囲を定義する。運転指令信号S1には、例えば無段階の力行指令信号や段階的な力行指令信号などの種類がある。図4において、一点鎖線のグラフが運転指令信号S1がパターン1である場合の所定範囲の上限値であり、二点鎖線のグラフが運転指令信号S1がパターン2である場合の所定範囲の上限値である。運転指令信号S1がパターン1であり、車両の速度がV3でモータ電圧がVm3である場合には、断線検知部14は、電力変換器11と交流電動機4との間に断線が生じていないと判断する。
 一方、運転指令信号S1がパターン2であり、車両の速度がV3でモータ電圧がVm3である場合には、断線検知部14は、電力変換器11と交流電動機4との間に断線が生じていると判断する。運転指令に対応する所定範囲を定義することで、電力変換器11と交流電動機4との間における断線の検知精度を向上させることが可能となる。
 以上説明したとおり、本実施の形態に係る制御装置1によれば、簡易な構成で電力変換器と電動機との間における断線の検知精度を向上させることが可能となる。
 断線検知部14は、運転指令信号S1を用いないように構成してもよい。その場合には、運転指令信号の種類によらず、d軸電圧指令値Vd*およびq軸電圧指令値Vq*の合成ベクトルの絶対値が定めた所定範囲にない状態が所定時間以上継続した場合に、電力変換器11と交流電動機4との間で断線していると判断する。
 また断線検知部14は、電力変換器11と交流電動機4との間で断線していると判断した場合には、断線信号OFFをゲート制御部15ではなく制御装置1の外部に出力するよう構成してもよい。例えば断線信号OFFを運転台の表示装置に送り、運転手に電力変換器11と交流電動機4との間で断線していることを通知するよう構成してもよい。
 交流電動機4は、三相誘導電動機に限られず、単相誘導電動機であってもよい。また交流電動機4は複数個に限られず、1つでもよい。交流電動機4は、誘導電動機でもよいし、回転電動機でもよい。また交流電動機4の代わりに、リニア誘導電動機、リニア同期電動機、およびソレノイドなどを用いるよう構成してもよい。
 制御装置1が駆動する交流電動機4は、車両を走行させる駆動力を生じる電動機に限られない。所定範囲は、車両の速度の関数ではなく、交流電動機4の角速度の関数としてもよい。その場合、断線検知部14に入力される速度信号S2は、交流電動機4の角速度である。そして断線検知部14は、d軸電圧指令値Vd*およびq軸電圧指令値Vq*の合成ベクトルの絶対値が、交流電動機4の角速度の関数である所定範囲にない状態が所定時間以上継続した場合に、電力変換器11と交流電動機4との間で断線していると判断する。
 上記実施の形態は、いずれも本発明の趣旨の範囲内で各種の変形が可能である。上記実施の形態は本発明を説明するためのものであり、本発明の範囲を限定することを意図したものではない。本発明の範囲は実施形態よりも添付した請求項によって示される。請求項の範囲内、および発明の請求項と均等の範囲でなされた各種変形は本発明の範囲に含まれる。
 本発明は、電動機を駆動するために電力を変換する電力変換器を制御し、電力変換器と電動機との間の断線を検知する制御装置に好適に採用され得る。
           1  制御装置
           2  架線
           3  集電装置
           4  交流電動機
          11  電力変換器
  12a、12b、12c 電流検出部
          13  電圧制御部
          14  断線検知部
          15  ゲート制御部

Claims (6)

  1.  スイッチング素子のオンとオフを切り替えることにより、入力された電力を変換し、交流電動機を駆動する電力変換器と、
     前記電力変換器が交流電動機に対して出力する電流を検出する電流検出部と、
     前記交流電動機の回転動作を指令する運転指令および前記電流検出部が検出した前記電流に基づき、前記電力変換器の制御に用いる電圧指令値を生成する電圧制御部と、
     前記電圧指令値の合成ベクトルの絶対値が所定範囲にない状態が、所定時間以上継続した場合には、前記電力変換器と前記交流電動機との間で断線が生じていると判断する断線検知部と、
     前記電圧指令値に基づき、前記電力変換器が備える前記スイッチング素子のオンとオフの切り替えを制御するゲート指令を出力するゲート制御部と、
     を備える制御装置。
  2.  前記断線検知部は、前記交流電動機の角速度を取得し、前記電圧指令値の合成ベクトルの絶対値が前記角速度の関数である前記所定範囲にない状態が、前記所定時間以上継続した場合には、前記電力変換器と前記交流電動機との間で断線が生じていると判断する請求項1に記載の制御装置。
  3.  前記交流電動機は車両を走行させる駆動力を生じる電動機であって、
     前記電圧制御部は、前記運転指令として、前記車両の走行を制御する運転指令を用い、
     前記断線検知部は、前記車両の速度を取得し、前記電圧指令値の合成ベクトルの絶対値が前記車両の速度の関数である前記所定範囲にない状態が、前記所定時間以上継続した場合には、前記電力変換器と前記交流電動機との間で断線が生じていると判断する、
     請求項1に記載の制御装置。
  4.  前記断線検知部は、前記運転指令に基づき、前記電圧指令値の合成ベクトルの絶対値が前記運転指令に対応する前記所定範囲にない状態が、前記所定時間以上継続した場合には、前記電力変換器と前記交流電動機との間で断線が生じていると判断する請求項1ないし3のいずれか1項に記載の制御装置。
  5.  前記ゲート制御部は、前記断線検知部が前記電力変換器と前記交流電動機との間で断線が生じていると判断した場合に、前記電力変換器が備える前記スイッチング素子をオフにする前記ゲート指令を出力する請求項1ないし4のいずれか1項に記載の制御装置。
  6.  前記電力変換器は複数の三相電動機を駆動し、
     前記電流検出部は、前記電力変換器が出力する三相それぞれの電流を検出する、
     請求項1ないし5のいずれか1項に記載の制御装置。
PCT/JP2012/068477 2012-07-20 2012-07-20 制御装置 WO2014013614A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/068477 WO2014013614A1 (ja) 2012-07-20 2012-07-20 制御装置
JP2013504042A JP5296942B1 (ja) 2012-07-20 2012-07-20 制御装置
US14/415,303 US9793843B2 (en) 2012-07-20 2012-07-20 Control device for detecting disconnection
DE112012006581.6T DE112012006581T5 (de) 2012-07-20 2012-07-20 Steuerung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/068477 WO2014013614A1 (ja) 2012-07-20 2012-07-20 制御装置

Publications (1)

Publication Number Publication Date
WO2014013614A1 true WO2014013614A1 (ja) 2014-01-23

Family

ID=49396803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068477 WO2014013614A1 (ja) 2012-07-20 2012-07-20 制御装置

Country Status (4)

Country Link
US (1) US9793843B2 (ja)
JP (1) JP5296942B1 (ja)
DE (1) DE112012006581T5 (ja)
WO (1) WO2014013614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143988B1 (ja) * 2016-09-05 2017-06-07 三菱電機株式会社 モータ制御装置
WO2019155585A1 (ja) * 2018-02-08 2019-08-15 三菱電機株式会社 電動機の制御装置およびケーブル断線検出方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150153400A1 (en) * 2013-12-03 2015-06-04 Hyundai Motor Company Detection system and method of disconnection of motor power cable and motor control method
US11396236B2 (en) * 2017-12-28 2022-07-26 Mitsubishi Electric Corporation Electric vehicle control device
JP6851504B2 (ja) * 2017-12-28 2021-03-31 三菱電機株式会社 電気車制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176571A (ja) * 2003-12-15 2005-06-30 Mitsubishi Electric Corp 電気車制御装置
JP2006203958A (ja) * 2005-01-18 2006-08-03 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2011139559A (ja) * 2009-12-28 2011-07-14 Hitachi Ltd インバータ制御装置
JP2012029347A (ja) * 2010-07-20 2012-02-09 Nissan Motor Co Ltd 欠相診断装置及び欠相診断方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054788U (ja) 1991-04-09 1993-01-22 三菱電機株式会社 電力回生装置
JPH06245301A (ja) 1993-02-17 1994-09-02 Hitachi Ltd 電気車制御装置の欠相検知方式
US6462491B1 (en) * 1999-01-27 2002-10-08 Matsushita Electric Industrial Co., Ltd. Position sensorless motor control apparatus
JP2003230283A (ja) 2002-01-31 2003-08-15 Murata Mach Ltd 交流−直流変換装置
EP1479157B1 (de) 2002-02-13 2006-12-06 Continental Teves AG & Co. oHG Verfahren zur fehlererkennung für elektromotoren
JP3961868B2 (ja) 2002-04-09 2007-08-22 東芝プラントシステム株式会社 電力変換装置
GB2404100A (en) * 2003-07-17 2005-01-19 Bombardier Transp Model-based monitoring an operation of a converter
JP2006050707A (ja) 2004-08-02 2006-02-16 Hitachi Ltd 電動機駆動装置
DE102008055012A1 (de) 2008-12-19 2010-06-24 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Überwachung einer Ansteuereinrichtung eines 3-strängigen Elektromotors und/oder des Elektromotors
JP5369818B2 (ja) 2009-03-27 2013-12-18 株式会社明電舎 インバータ装置の故障検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176571A (ja) * 2003-12-15 2005-06-30 Mitsubishi Electric Corp 電気車制御装置
JP2006203958A (ja) * 2005-01-18 2006-08-03 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2011139559A (ja) * 2009-12-28 2011-07-14 Hitachi Ltd インバータ制御装置
JP2012029347A (ja) * 2010-07-20 2012-02-09 Nissan Motor Co Ltd 欠相診断装置及び欠相診断方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143988B1 (ja) * 2016-09-05 2017-06-07 三菱電機株式会社 モータ制御装置
WO2018042672A1 (ja) * 2016-09-05 2018-03-08 三菱電機株式会社 モータ制御装置
US10389290B2 (en) 2016-09-05 2019-08-20 Mitsubishi Electric Corporation Motor control apparatus
WO2019155585A1 (ja) * 2018-02-08 2019-08-15 三菱電機株式会社 電動機の制御装置およびケーブル断線検出方法
JPWO2019155585A1 (ja) * 2018-02-08 2020-07-27 三菱電機株式会社 電動機の制御装置およびケーブル断線検出方法

Also Published As

Publication number Publication date
JP5296942B1 (ja) 2013-09-25
US20150188473A1 (en) 2015-07-02
DE112012006581T5 (de) 2015-03-19
US9793843B2 (en) 2017-10-17
JPWO2014013614A1 (ja) 2016-06-30

Similar Documents

Publication Publication Date Title
US8278855B2 (en) Controller of motor preventing an increase in inverter loss
US9515583B2 (en) Rotary electric machine control system and rotary electric machine control method
JP5296942B1 (ja) 制御装置
KR101044896B1 (ko) 교류 회전기의 제어 장치 및 교류 회전기의 제어 방법
EP2808454B1 (en) Motor Controller and Construction Machine Provided Therewith
JP2013078200A (ja) 同期電動機の制御装置及び制御方法
JP2010200430A (ja) 電動機の駆動制御装置
JP6589492B2 (ja) インバータ制御装置
JPWO2011070651A1 (ja) 電力変換装置
US10236814B2 (en) Motor controller and method for controlling motor
US11005405B2 (en) Rotating-electric-machine control apparatus and electric power steering control apparatus equipped with the rotating-electric-machine control apparatus
WO2019171836A1 (ja) 車両制御装置
KR100944320B1 (ko) 전기차의 전력 변환 장치
JP5349121B2 (ja) 車両用同期機制御装置
KR20140121858A (ko) 모터 제어 장치 및 그 제어 방법
CN102694502A (zh) 电机逆变器的控制方法和控制装置
JP4543720B2 (ja) 速度センサレスベクトル制御装置
JP2005130638A (ja) 電気自動車用電力変換装置
JP2007312462A (ja) モータ制御装置
JP6409966B2 (ja) モータ制御装置とモータ制御方法
JP7288872B2 (ja) 車輌制御装置
JP4425818B2 (ja) 誘導電動機の駆動制御装置
JP2011166960A (ja) 鉄道車両駆動制御装置
KR20140141502A (ko) 모터 제어 장치 및 그것을 구비한 건설 기계
JP2016202594A (ja) 洗濯機のモータ制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013504042

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14415303

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012006581

Country of ref document: DE

Ref document number: 1120120065816

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881491

Country of ref document: EP

Kind code of ref document: A1