WO2014013097A1 - Plataforma semisumergible triangular para aplicaciones en mar abierto - Google Patents

Plataforma semisumergible triangular para aplicaciones en mar abierto Download PDF

Info

Publication number
WO2014013097A1
WO2014013097A1 PCT/ES2013/000164 ES2013000164W WO2014013097A1 WO 2014013097 A1 WO2014013097 A1 WO 2014013097A1 ES 2013000164 W ES2013000164 W ES 2013000164W WO 2014013097 A1 WO2014013097 A1 WO 2014013097A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
base
column
exterior
columns
Prior art date
Application number
PCT/ES2013/000164
Other languages
English (en)
French (fr)
Other versions
WO2014013097A4 (es
Inventor
Instituto De Hidráulica Ambiental De Cantabria Fundación
Raul GUANCHE GARCÍA
Javier LÓPEZ LÓPEZ
César VIDAL PASCUAL
Iñigo LOSADA RODRIGUEZ
Original Assignee
Universidad De Cantabria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Cantabria filed Critical Universidad De Cantabria
Publication of WO2014013097A1 publication Critical patent/WO2014013097A1/es
Publication of WO2014013097A4 publication Critical patent/WO2014013097A4/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/14Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B75/00Building or assembling floating offshore structures, e.g. semi-submersible platforms, SPAR platforms or wind turbine platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B2001/128Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising underwater connectors between the hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention belongs to the naval construction and technology sector related to marine structures in the open sea, also called offshore structures and, more specifically, to the offshore floating structures of the semi-submersible type that serve to give physical support to the development of activities of industrial, energy, researcher, etc.
  • FPSO Floating Production Storage & Offloading
  • the offshore floating structures that are currently being developed for the wind industry are, in general, expensive and have certain characteristics that make them less operational, flexible and safe. In most cases, they have excessively expensive anchoring or anchoring systems as they are inherited from the O&G industry, and their stability conditions are, in many cases, insufficient for the state of maximum operational load or extreme events.
  • the design and sizing process of the floating structures that support them is very different from that of platforms dedicated to drilling, extracting and producing crude oil.
  • Platforms for offshore wind are subject to their own weight and to the loads induced by the waves, the current and the wind, to other loads of considerable magnitude that the O&G platforms do not have: the horizontal thrust and the torsor moment originated by the wind turbine and transmitted to the floating structure through the tower that supports it.
  • Another major drawback presented by the current concepts for the offshore wind industry are slow and expensive construction methods, not adapted to the needs of this industry, in addition to a logistic cost in the trailer, installation and anchoring too high.
  • the other types of structures are those composed of fixed offshore structures. These are structures directly fixed or piloted to the seabed and are used in waters whose depth makes them economically attractive. At present it is said that the fixed offshore structures of the monopiloted type, that is; those formed by a tower directly piloted to the seabed on which the wind turbine is installed, are used in shallow waters whose maximum depth is about 20 meters. Between 25 and 45 meters, the fixed Jacket-type structures, constituted by sections of joined steel lattices, are the ones that present the best technical-economic characteristics. It is from 45-50 meters when the floating structures begin to present better characteristics than the fixed structures mentioned above. These depths are denominated in the offshore colic industry as deep water.
  • HyW ⁇ nd, SPAR typology An example of this type of offshore floating system for deep water is described in international patent application No. WO2010 / 122316A1.
  • This structure has been designed in steel and has the handicap that it needs a large amount of ballast at a great depth in order to ensure minimum stability and safety conditions. Otherwise, the center of gravity (KG) of the whole set would be too high resulting in zero or even negative metacentric heights (GM) making the whole set unstable.
  • KG center of gravity
  • GM metacentric heights
  • the SPARs are characterized by presenting vertical movements of altered (I have seen), more cushioned than the rest of the concepts. However, they have larger pitch and roll movements. They are, as described in the previous publication, technically unfeasible to operate in waters with a depth of around 45 meters and it is estimated that they can begin to be technically competitive from depths of around 120m. Another drawback presented by this structure, and in general those of the SPAR type, is that the towing and installation operation is excessively expensive and complex due to the logistic deployment it needs.
  • This structure is also designed in steel and is characterized as a floating structure with a bottom anchor system based on tense systems with steel cables and / or elastomers or tendons that rigidly connect the structure to the bottom anchor, mainly composed of a dead weight.
  • This structure, and in general those of the TLP type, are characterized by having movements of response to the environmental loads and those of the wind turbine very buffered due to its special tense anchoring system, which by itself dampens all response movements.
  • WindSea Floater An example of this type of floating system is described in US Patent Application No. US2011 / 0006539A 1. These are floating steel and triangular construction structures. This structure can operate in water 50m deep and allows the installation of up to 3 turbines on the same platform. Composed of 3 large cylinders connected to each other. Its main feature is the anchoring system that is connected to the platform in the barycenter of the lower triangle. This may not be the most stable solution in terms of stiffness at a global torque. Another uniqueness of this design is to be a multi-turbine platform. Which has limitations depending on the size of installed turbine, since due to the little separation between them the performance can be seriously affected by the effects of wake and turbulence derived from the operation of the wind turbines. This concept is, a priori, excessively large and with an inefficient funding system.
  • Trifloater Semisub Steel construction structure and triangular plant. This type of structures can operate in 50m deep waters, its trailer and installation on the high seas being relatively simple. You can exit the port with the tower and turbine already installed and it has a correct stability in any condition. It is composed of 3 large cylinders connected to each other. The tower and the wind turbine are arranged in the barycenter of the triangular plant. The main problem it presents is that it has a structural weakness in the junction zone between the tower and the platform, an area especially sensitive to the stresses generated by the operating loads of the wind turbine itself. The dimensioning of this area of union between tower and platform requires the use of a lot of material, the guarantees necessary for its correct operation during a useful life of 20 or 25 years being very demanding.
  • WindFloater An example of this type of floating system is described in US Patent Application No. US201 1 / 0037264A1. It is a structure designed in steel and triangular plan. This concept can operate in 50m deep waters, its trailer and installation on the high seas being relatively simple. You can leave port with the tower and turbine already installed. The main singularity of this concept is the fact of having the tower with the turbine, that is to say the most important weights and that are of the order of 850 tons, arranged at one end of the triangle that form the 3 main cylinders that make up the platform. This motivates a permanent heel that reduces its stability.
  • this design is required to have a special and automatic ballast control and transfer system between the tanks arranged in each column to permanently correct the different heels that are produced by the incorrect distribution of weights, environmental loads and wind turbine
  • This system is especially sensitive to faults whose origin is in the ballast system, which can significantly reduce its operability.
  • the heel correction system must be adequately sized to move huge amounts of water between the tanks in a very short time, which will result in an expensive water management system and correction of heels in acquisition, installation and over all in its maintenance throughout a useful life of 20 or 25 years.
  • the present invention tries to solve the aforementioned drawbacks by means of a semi-submersible platform and a construction method that does not need large infrastructures, such as shipyards or naval factories.
  • a semi-submersible platform comprising: an inner column configured to provide greater buoyancy to the platform and three outer columns, where each of the inner and outer columns comprise a sturdy base and a trunk, and where each column comprises a section of greater resistance at a certain height and a plurality of beams that join each outer column with the inner column and each outer column with the other two outer columns.
  • the inner and outer columns are made of reinforced concrete.
  • the semi-submersible platform further comprises a lower plate on which the inner and outer columns are fixed, configured to increase the damping of vertical movements.
  • that bottom plate is made of reinforced concrete.
  • the bottom plate is reinforced by a plurality of beams that connect the base of each outer column with the base of the inner column and the base of each outer column with the base of the other two outer columns.
  • the semi-submersible platform further comprises a anchoring system comprising a plurality of anchoring lines configured to be anchored to the section of greatest resistance of each outer column.
  • the inner column has at least one tower, a nacelle, a rotor and a plurality of blades mounted.
  • a method of construction of a semi-submersible platform comprising the steps of: placing an internal resistant base and three external resistant bases on the basis of a floating dock;
  • a climbing formwork configured to build an inner column and three outer columns on resistant base paths; advance of the climb until reaching a certain level, so that a trunk is constructed on each resistant base, simultaneously with which the floating dock is submerged;
  • the method further comprises, before placement of the resistant bases: placement of a plurality of reinforcement beams on the base of the floating dock; placement of a sturdy base armor on the base of the floating dock; formwork of said base; concreting of said base; disassembly of the formwork of the base.
  • At least one equipment is installed on the dock on the platform.
  • the at least one equipment is a tower, a gondola, a wind turbine rotor or an auxiliary equipment.
  • the described invention has a remarkable, but not unique, application in the marine wind industry sector as a floating platform that supports and on which multi-megawatt wind turbines installed for the use of wind energy are installed in areas whose waters have a depth that makes the use of the invention technically and economically viable here proposed to the detriment of the use of other types of floating or fixed offshore structures directly piloted or fixed to the bottom.
  • Figure 1 illustrates a 3D perspective view of a scheme of a platform that has a tower and other equipment installed, in accordance with a possible embodiment of the invention.
  • Figure 2 illustrates an enlarged 3D perspective view of a schematic of the platform illustrated in Figure 1.
  • Figure 3 illustrates a 3D perspective view of the structural ring of the platform of Figure 2, to which the anchoring lines are fixed to the platform.
  • Figure 4 illustrates a profile view of the platform that has a tower and other equipment installed, of Figure 1, with an anchoring system without initial claim.
  • Figure 5 illustrates a profile view of the platform with a tower and other equipment installed, of Figure 1, with an anchoring system with initial claim.
  • Figure 6 illustrates a plan view of the platform and tower of Figure 1, in which the arrangement of the funding system is constituted by 6 funding lines.
  • Figure 7 illustrates a plan view of the platform and tower of Figure 1, in which the arrangement of the anchoring system consists of 3 anchoring lines.
  • Figure 8 illustrates a plan view of the platform and tower of Figure 1, in which the arrangement of the anchoring system consists of 4 anchoring lines.
  • Figure 9 shows the Amplitude in Response Operator (RAO) of vertical displacements or degree of freedom HEAVE of the triangular concrete platform with exemplified heave plate.
  • RAO Amplitude in Response Operator
  • Figure 10 shows the Amplitude in Response Operator (RAO) of the vertical displacements or degree of freedom ROLL and PITCH of the triangular concrete platform with exemplified heave plate.
  • RAO Amplitude in Response Operator
  • Figure 1 shows a structure formed by a semi-submersible platform 16, which is detailed below, on which a tower 3, a nacelle 1, a rotor 10 and blades 2 that form the offshore turbine or wind turbine are mounted.
  • the tower is preferably made of steel.
  • the equipment that is mounted on the platform (tower, nacelle, rotor, blades, etc.) are conventional and not subject to the invention.
  • the semi-submersible platform 16 shown in detail in Figure 2, is triangular in shape.
  • This platform 16 is constituted by three large vertical columns 14, preferably cylindrical, closed at their coronation and arranged at the vertices of the triangle that constitutes the plant, and by a fourth central column 15, preferably cylindrical, which may be larger, equal or smaller diameter than the other three columns 14.
  • On this fourth central column 15 is mounted, directly or by means of a transition piece 4 (illustrated in figure 1) the tower 3, the nacelle 1, the rotor 10 and the blades 2 that form the turbine or offshore wind turbine.
  • the cylindrical columns 14 15 endow the assembly with the necessary thrust to be able to support the weights derived from all installed equipment and systems, which are normally, but not limited to, all or any of the following: the proper weight of the columns 14 15, support structure , described below, tower 3, wind turbine or turbine 1 2 10, transition piece 4 if any, ballast, electrical and electronic equipment, access, auxiliary platforms, etc.
  • the vertical columns 14 15 have a preferably hollow part (6a 6b in the external columns 14 and 5a 5b in the central column 15) and internally compartmentalized.
  • the columns 14 15 have a resistant base 12 designed to provide more resistance to the assembly, which may be of greater, lesser or equal diameter and section (than those of the part mentioned above 5a 5b 6a 6b) on which the trunk is constructed or main part 5a 5b 6a 6b.
  • a resistant section 7 is included at a certain height H of each column 14 15 . The objective of this is to increase the structural strength, improving the overall behavior of the structure since in this area the anchorages of the anchoring lines 1 1 are fixed (illustrated schematically in Figure 1) and are the most requested areas of the entire structure.
  • the height H may vary depending on the optimal anchoring position of the anchoring lines 1 1 to the platform.
  • the logs or preferably hollow portions 5 to 5b 6a 6b of the columns 14 15 are preferably made of reinforced concrete.
  • the reinforced concrete used must be suitable for marine environments, as one skilled in the art knows.
  • the resistant section 7 is produced at the same height in all the columns. In turn, these areas of greater resistance 7 are joined together by beams 8, preferably hollow.
  • the section of these beams 8 can be, for example, square, rectangular or cylindrical. These beams 8 can be constructed both in reinforced concrete and in steel or in any other material or combination of materials.
  • the beams 8 together with the areas of the column of greatest resistance 7 form a structural ring that gives the whole a great resistance.
  • the assembly formed by the areas of the column of greatest resistance 7 and the beams 8 is illustrated in detail in Figure 3.
  • the semi-submersible platform 16 further comprises a lower plate or altered plate (heavé plate) 9 that increases the damping of vertical movements.
  • the beams 13 are in solidarity with the heave plate 9 and are connected with the reinforced base 12 of the columns 14 15.
  • the heave plate 9 which functions as a damping device for vertical movement, is made of reinforced concrete and on it the four columns 14 15 are raised.
  • the arrangement of this plate 9 improves the performance and response performance at sea of the platform .
  • This plate 9 can be homogeneous or have holes.
  • the trunk or preferably hollow part 5a 5b 6a 6b of the columns 14 15 is internally compartmentalized and preferably these parts 5a 5b 6a 6b have ballast tanks, which are filled once the platform leaves the waters of the port , or backup zone where it has been built, in order to lower the center of gravity and increase its stability.
  • the funding system consists of several funding lines 1 1; for example, by 3, 6 or 4 lines of anchorage in the form of catenaries made for example of chain of steel with link without corte, of marine stake or combination of both.
  • the anchoring lines 1 1 can be arranged with or without forced initial pretension by adding concrete blocks or elements 14 (see diagram of Figure 5) arranged at a variable distance L from the anchoring position on the platform.
  • the anchoring system is specially adapted for this application, significantly reducing the resulting stresses and being especially recommended for shallow water, although not excluding its use in deep water.
  • the anchoring lines 1 1 are joined to the platform by means of a piece, for example of steel, or lug firmly connected to the concrete assembly at that height.
  • the anchoring lines 1 1 are firmly attached to the seabed by the use of a device for anchor that can be for example: an anchor, a dead person, a pile or a suction pile.
  • Figure 6 illustrates a possible embodiment of an anchoring system 1 1, formed by 6 catenaries, arranged two for each of the three outer columns 14.
  • the lines are firmly connected to the platform at the height of the structural ring formed by the zones of greater resistance 7 and the beams 8.
  • the 4 leeward lines form 45 ° to each other and 22.5 ° with the local coordinate axes of each of the columns, as it can can be seen in figure 6.
  • the 2 windward lines form 45 ° to each other and 67.5 ° with the coordinate axes of the column to which they are fixed.
  • This anchoring system is recommended in especially severe seas, those where significant heights of greater waves are reached for the survival condition and in addition there is no direction or sector of predominant incidence thereof.
  • Figure 7 illustrates an alternative embodiment of anchoring system 11, consisting of 3 catenaries, providing a line for each of the outer columns 14.
  • Lines 1 1 are firmly connected to the platform at the height of the structural ring formed by the zones of greater resistance 7 and the beams 8.
  • the 2 leeward lines form 45 ° with the local coordinate axes of each of the columns and the windward line forms 90 ° with the axes of local coordinates of the column to which it is fixed, as can be seen in Figure 7.
  • This anchoring system is recommended for areas with mild and / or severe maritime climates, where the design condition in survival is sufficiently Soft so as not to have to contemplate the installation of 6 catenaries.
  • FIG 9 illustrates another alternative embodiment of the anchoring system 11, consisting of 4 catenaries.
  • This funding system is designed for those areas whose maritime climate, severe in conditions of survival, presents a direction or sector characteristic of the incidence of waves and wind; in such a way that it is necessary to increase the security of funding only in this direction or predominant sector of incidence.
  • the lines are firmly connected to the platform at the height of the structural ring formed by the areas of greatest resistance 7 and the beams 8.
  • the leeward lines form 45 ° with the local coordinate axes of each of the columns to which they are subject, while the windward lines form 45 ° to each other and 67.5 ° with the local coordinate axes of the column to which they are attached, as can be seen in the figure 8.
  • the semi-submersible platform has a series of advantageous features compared to the platforms of the current state of the art. These characteristics are, among others:
  • a concrete plate at the base on which the whole assembly is constructed which also serves to significantly dampen vertical displacements during operation and in any sea condition.
  • This vertical plate causes, when moving vertically, an extra displacement of water around it, called added mass, which increases the period itself to heave, generates a damping effect on the structure and significantly reduces the amplitude of vertical displacements by increasing notably its operational performance compared to any other design.
  • This floating offshore concrete structure with heave plate can, depending on the application to which it is intended, mount on the four main columns (exterior and central) a work deck or successive superstructure covers necessary for the correct performance of its mission and that allow to install all the necessary equipment for this, for example: housing modules, substations, support equipment for offshore farms of all kinds, etc.
  • This versatility distinguishes it, also, clearly from the rest of the solutions proposed by the state of the art.
  • the anchoring system is optimized to reduce the maximum tensions in the anchoring lines.
  • the device is equipped with sufficient stability to allow the tower and the wind turbine to be installed in port, afloat and with minimum draft; so that it can be towed to the installation site with all the equipment and systems already installed.
  • An area on land adjacent to the armament dock for the collection and / or construction of the platform and wind turbine facilities.
  • the platform construction process continues the following stages:
  • the base of the platform is built following the following stages:
  • the semi-floating platform under construction has been designed to include a heave plate 9 and also so that it is reinforced with beams 13:
  • STAGE 2 Construction of the trunks of the trunks up to the level of the bracing beams.
  • bracing sections 7 are built on the trunks 5b 6b following the following steps:
  • This phase has the following stages:
  • the auxiliary equipment of the platform may include ballast control systems in the perimeter and central cylinders (pumps and pipes), backup power equipment, communications, air conditioning and navigation aids.
  • STEP 9 Wind turbine tower, gondola and rotor installation
  • Wind turbine installation is carried out at the armament dock and includes the conventional stages of installing a wind turbine.
  • the construction of the platform in the floating dock requires an approximate period of two months, sufficient time for the installation of equipment and wind turbine at the armament dock. This means that through the process described above, each platform-wind turbine assembly can be completed in two months, except the first, which requires a somewhat longer period of 4 months.
  • EXAMPLE A device according to the described embodiment of the invention has been designed and simulated. To define the optimal dimensions of the proposed design, its direct application in the offshore wind industry has been considered. The main dimensions of the device depend on the characteristics of the equipment you install, and especially on the size of the wind turbine. A 5MW type wind turbine has been selected as an application example. It should be noted that the greater the installed power, the greater the weight of the wind turbine and the larger the diameter of the blades of the same. That is, as the technology and state of the art of offshore wind turbines progress, it will be necessary to resize the platform, to optimize its design based on the new requirements of thrust, stability and behavior at sea derived from the new and higher loads caused by these new wind turbines.
  • table 1 summarizes the weights and centers of gravity considered in the example of the application developed.
  • the blades of this wind turbine have a diameter of 126 meters and the rotor HUB is at a height of 90m with respect to the floating design at rest, or what is the same: at 1 12 meters from the base of the platform.
  • the triangular concrete platform has the following main dimensions and weights, optimized the set for the horizontal thrust requirement of the wind turbine considered and that is 190 tons at 1 12m high in the worst calculation conditions .
  • the platform may vary the dimensions described below:
  • Diameter of the central column 1 1, 0 m
  • the maximum load capacity is 1,100 tons with the dimensions specified here.
  • the platform has a minimum draft, with the tower and turbine mounted, 15.5 meters and an operation draft, after ballasting the tanks arranged in the lower part of the cylindrical columns, 22 meters with the center of gravity of the whole set located vertically at 15.6 meters from the base and centered with the central cylinder.
  • This design allows to leave with the condition of minimum ballast and minimum draft without any stability problem carrying the tower and turbine installed. to. Behavior at sea
  • the design has been technically evaluated by means of numerical simulations with coupling between the platform and its funding system, both in the domain of time and frequency, using commercial numerical models widely used in the offshore industry such as: WAMIT, WADAM and SIMO-RIFLEX.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Una plataforma semisumergible (16) que comprende: una columna interior (15) configurada para dotar de mayor flotabilidad y tres columnas exteriores (14), donde cada una de dichas columnas interior y exteriores (14, 15) son de hormigón armado y comprenden una base resistente (12), un tronco (5 a, 5b, 6a, 6b) y una sección de mayor resistencia (7) a una determinada altura. La plataforma semisumergible comprende además una pluralidad de vigas (8) a dicha determinada altura que unen cada columna exterior (14) con la columna interior (15) y con las otras dos columnas exteriores, y una pluralidad de líneas de fondeo (1 1) configuradas para ser ancladas a la sección de mayor resistencia (7) de cada columna exterior (14). La plataforma semisumergible (16) comprende además una placa inferior (9) sobre la que se fijan las columnas (14, 15) reforzada por una pluralidad de vigas (13) que conectan la base (12) de cada columna exterior (14) con la base de la columna interior (15) y con la base (12) de las otras dos columnas exteriores. Un método de construcción de una plataforma semisumergible.

Description

PLATAFORMA SEMISUMERGIBLE TRIANGULAR PARA APLICACIONES EN MAR ABIERTO
CAMPO DE LA INVENCIÓN
La presente invención pertenece al sector de la construcción y tecnología naval relacionada con las estructuras marinas en mar abierto, también denominadas estructuras offshore y, más concretamente, al de las estructuras flotantes offshore del tipo semisumergible que sirven para dar soporte físico al desarrollo de actividades de carácter industrial, energético, investigador, etc.
ANTECEDENTES DE LA INVENCIÓN
El diseño de estructuras flotantes en aguas profundas (en adelante offshore) está ligado a la carrera tecnológica desarrollada en los últimos 60 años por la industria petrolera (Oil & Gas ó O&G), y su esfuerzo por explotar de manera rentable yacimientos de petróleo y gas cada vez más lejanos de la costa y a mayor profundidad. A la hora de identificar cuáles son las distintas tecnologías, cabe mencionar las siguientes grandes familias:
1. Plataformas tipo SP AR
2. Plataformas tipo TLP (Tensión Leg Platform)
3. Plataformas Semisumergibles o Semis
4. FPSO (Floating Production Storage & Offloading), las cuales se caracterizan por tener forma de barco.
Estas estructuras se fijan al fondo mediante sistemas compuestos, principalmente, por líneas de fondeo formadas por catenarias de cadena de acero, estacha de fibra, etc. o por líneas de fondeo con sistemas tensos, también denominados TLP (Tensión Leg Platform), compuestos por elastómeros, tendones, cables de acero, etc. En los últimos años se han unido a esta carrera tecnológica empresas con interés en aprovechar y explotar el recurso eólico marino offshore, como fuente de energía renovable {Offshore Wind) siendo en todos los casos, diseños que han heredado sus características y filosofía de los de la industria O&G añadiendo los requerimientos propios de la industria eólica terrestre.
En general, son diseños de menor tamaño, escalados en función de las necesidades (a menor capacidad de carga se requiere menor empuje) y en los que se repiten, en mayor o menor medida, las características de diseño y fabricación de las estructuras flotantes de la industria O&G.
1 ) Plataforma Semisumergible
2) Plataforma tipo SPAR
3) Plataforma tipo TLP
4) Concepto SWAY (híbrido entre una SPAR y una TLP)
Las estructuras flotantes offshore que actualmente se están desarrollando para la industria eólica son, en general, caras y presentan ciertas características que las hacen poco operativas, flexibles y seguras. Disponen, en la mayoría de casos, de sistemas de fondeo o anclaje excesivamente caros al estar heredados de la industria del O&G, y sus condiciones de estabilidad son, en muchos casos, insuficientes para el estado de máxima carga operacional o eventos extremos. Para aplicaciones flotantes de eólica marina, el proceso de diseño y dimensionamiento de las estructuras flotantes que las soportan es muy distinto del de las plataformas dedicadas a la perforación, extracción y producción de crudo. Las plataformas destinadas a la eólica offshore están sometidas además de al peso propio y a las cargas inducidas por el oleaje, la corriente y el viento, a otras cargas de magnitud considerable que no presentan las plataformas del O&G: el empuje horizontal y el momento torsor originados por el aerogenerador y transmitidas a la estructura flotante a través de la torre que lo sustenta. Otro gran inconveniente que presentan los actuales conceptos para la industria eólica marina son unos métodos constructivos lentos y caros, no adaptados a las necesidades de esta industria, además de un coste logístico en el remolque, instalación y fondeo demasiado alto.
Los otros tipos de estructuras, extensamente empleadas en la industria cólica marina, son las compuestas por estructuras fijas offshore. Éstas son estructuras directamente fijadas o pilotadas al fondo marino y se emplean en aguas cuya profundidad las hace económicamente atractivas. Actualmente se habla que las estructuras fijas offshore del tipo monopilotadas, es decir; las formadas por una torre directamente pilotada al fondo marino sobre la que se instala el aerogenerador, se emplean en aguas someras cuya profundidad máxima es de unos 20 metros. Entre los 25 y los 45 metros las estructuras fijas tipo Jacket, constituidas por tramos de celosías de acero unidas, son las que presentan las mejores características técnico-económicas. Es a partir de los 45-50 metros cuando las estructuras flotantes comienzan a presentar mejores características que las estructuras fijas anteriormente citadas. Estas profundidades son denominadas en la industria cólica offshore como aguas profundas.
De entre todos los conceptos y diseños que actualmente están en vías de desarrollo, dentro de los sistemas flotantes offshore para aguas profundas, cabe mencionar los siguientes:
HyWínd, tipología SPAR.Un ejemplo de este tipo de sistema flotante offshore para aguas profundas se describe en la solicitud de patente internacional n° WO2010/122316A1. Esta estructura ha sido diseñada en acero y tiene el hándicap de que necesita una gran cantidad de lastre a mucha profundidad para poder asegurar las condiciones de estabilidad y seguridad mínimas. De no hacerlo, el centro de gravedad (KG) de todo el conjunto estaría demasiado alto dando lugar a alturas metacéntricas (GM) nulas o incluso negativas haciendo inestable a todo el conjunto. Esto origina que el calado mínimo necesario de la parte sumergida de esta estructura sea de 100m para instalar un aerogenerador de 2,3 MW. Lo que hace inviable que pueda operar a profundidades de 50m. En cuanto a los movimientos de respuesta, las SPAR se caracterizan por presentar movimientos verticales de alteada (he ve), más amortiguados que el resto de conceptos. Sin embargo presentan movimientos de cabeceo (pitch) y balance (roll) mayores. Son, por lo descrito en la publicación anterior, inviables técnicamente para operar en aguas con una profundidad de entorno a 45 metros y se estima que puedan empezar a ser competitivas técnicamente a partir de profundidades de entorno a los 120m. Otro inconveniente que presenta esta estructura, y en general las del tipo SPAR, es que la operación de remolque e instalación es excesivamente cara y compleja por el despliegue logístico que necesita. Dado su elevado calado no pueden salir de puerto ni en posición vertical ni en condición de lastre y esto impide que puedan llevar instalada la turbina eólica, haciendo imprescindible su instalación en alta mar una vez que la plataforma ya esté debidamente fondeada y lastrada o preparada para recibir el peso elevado del aerogenerador. Esto complica mucho técnicamente el proceso de instalación y puesta en marcha del sistema, pero sobre todo incrementa notablemente los costes asociados.
Blue H, tipología TLP.Un ejemplo de este tipo de sistema flotante offshore para aguas profundas se describe en la solicitud de patente estadounidense n° US2012/0014752A 1. Esta estructura también se ha diseñado en acero y se caracteriza por ser una estructura flotante con un sistema de anclaje al fondo basado en sistemas tensos con cables de acero y/o elastómeros o tendones que conectan rígidamente la estructura al anclaje del fondo, compuesto principalmente por un peso muerto. Esta estructura, y en general las del tipo TLP, se caracterizan por tener movimientos de respuesta ante las cargas ambientales y las propias del aerogenerador muy amortiguadas debido a su especial sistema tenso de fondeo, que por sí mismo amortigua todos los movimientos de respuesta. No presentan el problema de estabilidad derivado de las variaciones de lastre y centros de gravedad que tienen las SPAR y a priori, aunque en condición de salida de puerto puedan tener cierta precariedad en su condición de estabilidad, podrían llevar instalada la turbina eólica desde puerto, lo que hace menos cara y compleja la operativa de remolque, instalación y puesta en marcha. El principal problema que tienen este tipo de tipologías, y que las hace mucho menos competitivas, es su costoso y complejo sistema de fondeo; principal hándicap de las estructuras tipo TLP. La instalación del sistema de fondeo requiere del empleo de medios muy sofisticados y caros. Otros inconvenientes derivados principalmente del sistema de fondeo, es el más que posible acoplamiento de las frecuencias propias de los tendones empleados en unir la estructura al fondo y la frecuencia propia de la estructura lo que deriva en fenómenos resonantes muy perjudiciales para la operación del sistema. Además, el mantenimiento del sistema de fondeo resulta muy costoso.
SWAY Floating Tower, tecnología híbrida entre SPAR y TLP. Esta estructura está construida en acero. Esta tecnología mezcla la tipología SPAR con el sistema de fondeo tenso característico de las TLP. El principal inconveniente de esta tecnología radica en que es inviable en profundidades de 45m, por lo ya expuesto para las tipologías SPAR. Podría empezar a utilizarse a partir de los 80m. Además, sus costes de remolque, instalación y fondeo son muy elevados al no permitir salir de puerto ni en posición vertical ni con la turbina montada, como ya se explicó para las SPAR. Además, el sistema de fondeo extremadamente caro de instalar y de mantener, presentando los mismos problemas que los TLP.
PLATAFORMAS SEMISUMERGIBLES. Dentro de esta familia destacan varios conceptos:
WindSea Floater. Un ejemplo de este tipo de sistema flotante se describe en la solicitud de patente estadounidense n° US2011/0006539A 1. Se trata de estructuras flotantes de construcción en acero y planta triangular. Esta estructura puede operar en aguas de 50m de profundidad y permite la instalación de hasta 3 turbinas sobre la misma plataforma. Compuesta por 3 grandes cilindros conectados entre sí. Su principal característica es el sistema de fondeo que está conectado a la plataforma en el baricentro del triángulo inferior. Esta puede no ser la solución más estable en lo que se refiere a rigidez a momento torsor global. Otra singularidad de este diseño es ser una plataforma multi -turbina. Lo cual tiene limitaciones en función del tamaño de turbina instalada, ya que debido a la poca separación entre ellas el rendimiento puede verse afectado gravemente por los efectos de estela y turbulencias derivados del funcionamiento de los aerogeneradores. Este concepto es, a priori, excesivamente grande y con un sistema de fondeo poco eficaz.
Trifloater Semisub,. Estructura de construcción en acero y planta triangular. Este tipo de estructuras puede operar en aguas de 50m profundidad siendo relativamente sencillo su remolque e instalación en alta mar. Puede salir de puerto con la torre y la turbina ya instaladas y presenta una correcta estabilidad en cualquier condición. Está compuesta por 3 grandes cilindros conectados entre sí. La torre y el aerogenerador están dispuestos en el baricentro de la planta triangular. El principal problema que presenta es que tiene un punto débil estructural en la zona de unión entre la torre y la plataforma, zona especialmente sensible a las solicitaciones generadas por las cargas de operación del propio aerogenerador. El dimensionamiento de esta zona de unión entre torre y plataforma requiere la utilización de mucho material, siendo muy exigentes las garantías necesarias para su correcta operación durante una vida útil de 20 o 25 años.
WindFloater. Un ejemplo de este tipo de sistema flotante se describe en la solicitud de patente estadounidense n° US201 1/0037264A1. Se trata de una estructura diseñada en acero y planta triangular. Este concepto puede operar en aguas de 50m profundidad siendo relativamente sencillo su remolque e instalación en alta mar. Puede salir de puerto con la torre y la turbina ya instaladas. La principal singularidad de este concepto es el hecho de tener la torre con la turbina, es decir los pesos más importantes y que son del orden de 850 toneladas, dispuestos en un extremo del triángulo que forman los 3 cilindros principales que componen la plataforma. Esto motiva una escora permanente que merma su estabilidad. Por lo tanto, este diseño está obligado a disponer de un sistema especial y automático de control y trasiego de lastre entre los tanques dispuestos en cada columna para corregir permanentemente las distintas escoras que se producen por la incorrecta distribución de pesos, las cargas ambientales y del aerogenerador. Este sistema es especialmente sensible a fallos cuyo origen esté en el sistema de lastre, lo cual puede reducir significativamente su operatividad. Es preciso señalar que el sistema de corrección de escoras debe estar adecuadamente dimensionado para mover enormes cantidades de agua entre los tanques en muy poco tiempo, por lo que resultará en un sistema de gestión de agua y corrección de escoras caro en adquisición, instalación y sobre todo en su mantenimiento a lo largo de una vida útil de 20 o 25 años.
Cabe destacar ciertos aspectos negativos que comparten todos los diseños actuales de plataformas flotantes para la industria eólica offshore, con independencia de su tipología estructural, y especialmente las plataformas semisumergibles.
1) Al ser diseños de dimensiones considerables y fabricados en acero, necesitan ser construidas en grandes infraestructuras terrestres especialmente dedicadas a ello, como pueden ser astilleros o grandes factorías. Esta dependencia dificulta su fabricación y encarece enormemente los costes de inversión al tener que afrontar el transporte de la estructura flotante desde estas factorías hasta el lugar de instalación / operación, generalmente a cientos de millas náuticas de distancia. Cuando se trata de pequeñas estructuras flotantes con rendimientos debidos a su explotación de carácter marginal o reducido, este hecho es suficiente para desestimar su fabricación.
2) La construcción de todas las estructuras flotantes offshore se realiza en acero, lo cual encarece el producto final debido al proceso de elaboración que requiere. Además el precio del acero es otro factor variable que puede encarecer el producto final en un momento dado sin capacidad de maniobra para el promotor o fabricante.
3) Los plazos de fabricación empleando acero son largos lo cual encarece también los costes totales de la inversión. A su vez, los tiempos de llegada a mercado se alargan con la consecuente pérdida de competitividad. Se estima que una plataforma de entorno a 2.100 toneladas de acero requiere del orden de 84.000 horas de trabajo en factorías especializadas como pueden ser los astilleros. 4) La fabricación en acero de este tipo de estructuras tiene como consecuencia la necesidad de un plan de mantenimiento de las estructuras muy exigente, ya que el acero presenta un problema de corrosión en ambiente marino muy importante. El coste de mantenimiento de la estructura de acero es muy elevado porque requiere en la mayoría ocasiones de su retirada del lugar de operación y su traslado y entrada en dique para el adecuado mantenimiento y limpieza del casco, generalmente en un astillero. Los costes derivados de esta necesidad pueden hacer que los costes de operación y mantenimiento sean altos e inasumibles para el proyecto en su conjunto. 5) Por cuestiones económicas, muchas de las aplicaciones actuales de las estructuras offshore están limitadas a emplazamientos no lejanos a la costa y con profundidades relativamente bajas, en aguas en donde la tecnología actual de plataformas fijas deja de ser competitiva, es decir; a unos 45-50m de profundidad. Eso provoca que las tipologías del tipo SPAR no pueden emplearse de manera masiva y competitiva por moti vo s téc nicos .
6) En general todas las plataformas se mi sumergibles, y especialmente el concepto WindFloat, son dependientes de los sistemas de lastre y trasiego de lastre necesarios para la corrección automática de las escoras que producen los desiguales repartos de peso y las acciones de las cargas ambientales y propias. Lo que las hace muy sensibles a los fallos de este sistema, además de incrementar los costes de mantenimiento.
7) Las tipologías SPAR y algunas TLP no pueden salir de puerto con el aerogenerador ya instalado, lo cual encarece mucho los costes de remolque, instalación y puesta en marcha en alta mar.
8) La tipología de plataformas TLP presentan unos costes derivados de la instalación y mantenimiento de su complejo sistema de fondeo que puede hacer inasumible la inversión. RESUMEN DE LA INVENCIÓN
La presente invención trata de resolver los inconvenientes mencionados anteriormente mediante una plataforma semisumergible y un método de construcción de la misma que no necesita grandes infraestructuras, como son los astilleros o factorías navales.
Concretamente, en un primer aspecto de la presente invención, se proporciona una plataforma semisumergible que comprende: una columna interior configurada para dotar de mayor flotabilidad a la plataforma y tres columnas exteriores, donde cada una de las columnas interior y exteriores comprenden una base resistente y un tronco, y donde cada columna comprende una sección de mayor resistencia a una determinada altura y una pluralidad de vigas que unen cada columna exterior con la columna interior y cada columna exterior con las otras dos columnas exteriores. Preferentemente, las columnas interior y exteriores son de hormigón armado.
Preferentemente, la plataforma semisumergible comprende además una placa inferior sobre la que se fijan las columnas interior y exteriores, configurada para incrementar el amortiguamiento de los movimientos verticales. Preferentemente, esa placa inferior es de hormigón armado. También preferentemente, la placa inferior está reforzada por una pluralidad de vigas que conectan la base de cada columna exterior con la base de la columna interior y la base de cada columna exterior con la base de las otras dos columnas exteriores. En una realización particular, la plataforma semisumergible comprende además un sistema de fondeo que comprende una pluralidad de líneas de fondeo configuradas para ser ancladas a la sección de mayor resistencia de cada columna exterior.
En una realización particular, la columna interior lleva montados al menos una torre, una nacelle, un rotor y una pluralidad de palas. En otro aspecto de la presente invención, se proporciona un método de construcción de una plataforma semisumergible, que comprende las etapas de: colocación de una base resistente interior y tres bases resistentes exteriores sobre la base de un dique flotante;
instalación de un encofrado trepante configurado para construir una columna interior y tres columnas exteriores sobre sendas bases resistentes; avance de la trepa hasta alcanzar un determinado nivel, de forma que queden construidos un tronco sobre cada base resistente, simultáneamente con lo cual se va sumergiendo el dique flotante;
instalación de encofrados que tapan las bocas de dichos troncos; colocación de una pluralidad de vigas de arriostramiento que unen cada tronco exterior con el tronco interior y cada tronco exterior con los otros dos troncos exteriores; instalación de encofrados verticales para construir zonas de mayor resistencia; colocación de armaduras de dichas zonas de mayor resistencia, hormigonado de las mismas y desmontaje de los encofrados; tras la construcción de las secciones de mayor resistencia sobre cada tronco: instalar encofrados trepantes sobre las mismas, trepar hasta un cierto nivel hasta construir los troncos por encima de las secciones de mayor resistencia, simultáneamente con lo cual se va sumergiendo el dique flotante, y desmontaje de los encofrados trepantes; remate de la parte superior de cada tronco; hundimiento del dique flotante hasta dejar a flote la plataforma; traslado de la plataforma hasta el muelle de armamento; postensado vertical de los troncos.
Preferentemente, el método comprende además, antes de la colocación de las bases resistentes: colocación de una pluralidad de vigas de refuerzo sobre la base del dique flotante; colocación de una armadura de una base resistente sobre la base del dique flotante; encofrado de dicha base; hormigonado de dicha base; desmontaje de los encofrados de la base.
En una realización particular, tras el postensado vertical de los troncos, se procede a la instalación en el muelle de armamento de al menos un equipo sobre la plataforma. Preferentemente, el al menos un equipo es una torre, una góndola, un rotor de aerogenerador o un equipo auxiliar. La invención descrita tiene una aplicación destacable, pero no única, en el sector de la industria eólica marina como plataforma flotante que da soporte y sobre la que se instalan aerogeneradores multi-megawatio empleados para el aprovechamiento de la energía eólica en zonas cuyas aguas tienen una profundidad que hace viable técnica y económicamente el empleo de la invención aquí propuesta en detrimento del empleo de otro tipo de estructuras flotantes o fijas offshore directamente pilotadas o fijadas al fondo.
Las ventajas de la invención se harán evidentes en la descripción siguiente.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica del mismo, y para complementar esta descripción, se acompaña como parte integrante de la misma, un juego de dibujos, cuyo carácter es ilustrativo y no limitativo. En estos dibujos:
La figura 1 ilustra una vista en perspectiva 3D de un esquema de una plataforma que lleva instalada una torre y demás equipos, de acuerdo con una posible realización de la invención.
La figura 2 ilustra una vista ampliada en perspectiva 3D de un esquema de la plataforma ilustrada en la figura 1.
La figura 3 ilustra una vista en perspectiva 3D del anillo estructural de la plataforma de la figura 2, al que se fijan las líneas de fondeo a la plataforma. La figura 4 ilustra una vista de perfil de la plataforma que lleva instalada una torre y demás equipos, de la figura 1, con sistema de fondeo sin pretensión inicial.
La figura 5 ilustra una vista de perfil de la plataforma lleva instalada una torre y demás equipos, de la figura 1, con sistema de fondeo con pretensión inicial.
La figura 6 ilustra una vista en planta de la plataforma y torre de la figura 1, en la que la disposición del sistema de fondeo está constituido por 6 líneas de fondeo.
La figura 7 ilustra una vista en planta de la plataforma y torre de la figura 1 , en la que la disposición del sistema de fondeo está constituido por 3 líneas de fondeo.
La figura 8 ilustra una vista en planta de la plataforma y torre de la figura 1, en la que la disposición del sistema de fondeo está constituido por 4 líneas de fondeo.
La figura 9 muestra el Operador de Amplitud en Respuesta (RAO) de los desplazamientos verticales o grado de libertad HEAVE de la plataforma triangular de hormigón con placa de heave ejemplificada.
La figura 10 muestra el Operador de Amplitud en Respuesta (RAO) de los desplazamientos verticales o grado de libertad ROLL y PITCH de la plataforma triangular de hormigón con placa de heave ejemplificada.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En este texto, el término "comprende" y sus variantes no deben entenderse en un sentido excluyente, es decir, estos términos no pretenden excluir otras características técnicas, aditivos, componentes o pasos.
Además, los términos "aproximadamente", "sustancialmente", "alrededor de", "unos", etc. deben entenderse como indicando valores próximos a los que dichos términos acompañen, ya que por errores de cálculo o de medida, resulte imposible conseguir esos valores con total exactitud.
Las siguientes realizaciones preferidas se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención.
La figura 1 muestra una estructura formada por una plataforma semisumergible 16, que se detalla a continuación, sobre la que va montada una torre 3, una nacelle 1 , un rotor 10 y unas palas 2 que forman la turbina o aerogenerador offshore. La torre es preferentemente de acero. Los equipos que se montan sobre la plataforma (torre, nacelle, rotor, palas, etc.) son convencionales y no son objeto de la invención.
La plataforma semisumergible 16, mostrada en detalle en la figura 2, tiene forma triangular. Esta plataforma 16 está constituida por tres grandes columnas verticales 14, preferentemente cilindricas, cerradas en su coronación y dispuestas en los vértices del triángulo que constituye la planta, y por una cuarta columna central 15, preferentemente cilindrica, que puede ser de mayor, igual o menor diámetro que las otras tres columnas 14. Sobre esta cuarta columna central 15 va montada, directamente o por medio de una pieza de transición 4 (ilustrada en la figura 1) la torre 3, la nacelle 1 , el rotor 10 y las palas 2 que forman la turbina o aerogenerador offshore.
Las columnas cilindricas 14 15dotan al conjunto del empuje necesario para poder soportar los pesos derivados de todos los equipos y sistemas instalados, que son normalmente, aunque no limitativamente, todos o alguno de los siguientes: el peso propio de las columnas 14 15, estructura soporte, que se describe más adelante, torre 3, aerogenerador o turbina 1 2 10, pieza de transición 4 si la hubiera, sistema de lastre, equipos eléctricos y electrónicos, accesos, plataformas auxiliares, etc..
Las columnas verticales 14 15 tienen una parte preferentemente hueca (6a 6b en las columnas externas 14 y 5a 5b en la columna central 15) y compartimentadas internamente. Las columnas 14 15 tienen una base resistente 12 diseñada para dotar de más resistencia al conjunto, que puede ser de mayor, menor o igual diámetro y sección (que los de la parte citada anteriormente 5a 5b 6a 6b) sobre la que se construye el tronco o parte principal 5a 5b 6a 6b. A una determinada altura H de cada columna 14 15 se incluye una sección resistente 7. El objetivo de ésta es aumentar la resistencia estructural, mejorando el comportamiento global de la estructura ya que en esta zona van fijados los anclajes de las líneas de fondeo 1 1 (ilustradas de forma esquematizada en la figura 1 ) y son las zonas más solicitadas de toda la estructura. La altura H puede variar en función de la posición óptima del anclaje de las líneas de fondeo 1 1 a la plataforma. Los troncos o partes preferentemente huecas 5 a 5b 6a 6b de las columnas 14 15 están hechos preferentemente de hormigón armado. El hormigón armado utilizado debe ser adecuado para ambientes marinos, como un experto en la materia sabe.
La sección resistente 7 se produce a la misma altura en todas las columnas. A su vez, estas zonas de mayor resistencia 7 se unen entre sí por medio de vigas 8, preferentemente huecas. La sección de estas vigas 8 puede ser, por ejemplo, cuadrada, rectangular o cilindrica. Estas vigas 8 pueden ser construidas tanto en hormigón armado como en acero o en cualquier otro material o combinación de materiales. Las vigas 8 junto con las zonas de la columna de mayor resistencia 7 forman un anillo estructural que dota al conjunto de una gran resistencia. El conjunto formado por las zonas de la columna de mayor resistencia 7 y las vigas 8 se ilustra en detalle en la figura 3.
Preferentemente, la plataforma semisumergible 16 comprende además una placa inferior o placa de alteada (placa de heavé) 9 que incrementa el amortiguamiento de los movimientos verticales. La placa de heave 9, ubicada en la base de la plataforma, se halla a su vez reforzada por vigas 13, que pueden ser huecas o macizas, preferentemente macizas, y cuya sección puede ser de diversos tipos, tales como cuadrada o rectangular. Estas vigas 13 pueden construirse en diversos materiales, tales como acero u hormigón armado, u otros. Las vigas 13 son solidarias con la placa de heave 9 y están conectadas con la base reforzada 12 de las columnas 14 15.
La placa de heave 9, que funciona como dispositivo amortiguador del movimiento vertical, está fabricada en hormigón armado y sobre ella se elevan las cuatro columnas 14 15. La disposición de esta placa 9 mejora las prestaciones de comportamiento y respuestas en la mar de la plataforma. Esta placa 9 puede ser homogénea o tener agujeros.
Como se ha dicho, el tronco o parte preferentemente hueca 5a 5b 6a 6b de las columnas 14 15 está interiormente compartimentada y preferentemente estas partes 5a 5b 6a 6b tienen tanques de lastre, los cuales se llenan una vez la plataforma sale de las aguas del puerto, o zona de resguardo en donde se ha construido, con el fin de bajar el centro de gravedad e incrementar su estabilidad.
El sistema de fondeo está constituido por varias líneas de fondeo 1 1; por ejemplo, por 3, 6 o 4 líneas de fondeo con forma de catenarias hechas por ejemplo de cadena de acero con eslabón sin contrete, de estacha marina o combinación de ambos. Además, las líneas de fondeo 1 1 pueden ser dispuestas con o sin pretensión inicial forzada mediante la adición de bloques o elementos de hormigón 14 (ver esquema de la figura 5) dispuestos a una distancia variable L desde la posición de anclaje en la plataforma. El sistema de fondeo está especialmente adaptado para esta aplicación, reduciendo significativamente las tensiones resultantes y siendo especialmente recomendable para aguas de poca profundidad, aunque sin excluir su uso en aguas de gran profundidad. En uno de sus extremos, las líneas de fondeo 1 1 se unen a la plataforma mediante una pieza, por ejemplo de acero, u orejeta conectada firmemente con el armado del hormigón a esa altura. En el otro extremo, las líneas de fondeo 1 1 están firmemente sujetas al fondo marino mediante el empleo de un dispositivo de anclaje que puede ser por ejemplo: un ancla, un muerto, un pilote o un pilote de succión.
A continuación se describen varios posibles sistemas de fondeo:
La figura 6 ilustra una posible realización de un sistema de fondeo 1 1, formado por 6 catenarias, dispuestas dos por cada uno de las tres columnas exteriores 14. Las líneas se encuentran firmemente unidas a la plataforma a la altura del anillo estructural formado por las zonas de mayor resistencia 7 y las vigas 8. En un ejemplo concreto de esta realización, las 4 líneas de sotavento forman 45° entre sí y 22,5° con los ejes de coordenadas locales de cada uno de las columnas, tal y como puede apreciarse en la figura 6. Las 2 líneas de barlovento forman 45° entre sí y 67,5° con los ejes de coordenadas de la columna a la que se fijan. Este sistema de fondeo es recomendable en mares especialmente severos, aquellos en donde se alcanzan las alturas significantes de oleaje mayores para la condición de supervivencia y además no hay una dirección o sector de incidencia predominante de los mismos.
La figura 7 ilustra una realización alternativa de sistema de fondeo 11, constituido por 3 catenarias, disponiendo una línea por cada una de las columnas exteriores 14. Las líneas 1 1 se encuentran firmemente unidas a la plataforma a la altura del anillo estructural formado por las zonas de mayor resistencia 7 y las vigas 8. En un ejemplo concreto de esta realización, las 2 líneas de sotavento forman 45° con los ejes de coordenadas locales de cada uno de las columnas y la línea de barlovento forma 90° con los ejes de coordenadas locales de la columna a la que se fija, tal y como puede apreciarse en la figura 7. Este sistema de fondeo es el recomendado para zonas con climas marítimos suaves y/o poco severos, en donde la condición de diseño en supervivencia es suficientemente suave como para no tener que contemplar la instalación de 6 catenarias. Por último, la figura 9 ilustra otra realización alternativa del sistema de fondeo 11, constituido por 4 catenarias. Este sistema de fondeo está diseñado para aquellas zonas cuyo clima marítimo, severo en condiciones de supervivencia, presenta una dirección o sector característico de incidencia de oleaje y viento; de tal forma que es necesario incrementar la seguridad del fondeo únicamente en esta dirección o sector predominante de incidencia. Esto da lugar a un sistema resultante mixto de los dos anteriormente descritos, formando una línea por cada uno de las columnas exteriores 14 que quedan a sotavento de la dirección predominante y dos líneas en la columna exterior 14 que queda a barlovento de la dirección predominante. Las líneas se encuentran firmemente unidas a la plataforma a la altura del anillo estructural formado por las zonas de mayor resistencia 7 y las vigas 8. En un ejemplo concreto de esta realización, las líneas de sotavento forman 45° con los ejes de coordenadas locales de cada uno de las columnas a las que van sujetos, mientras que las líneas de barlovento forman 45° entre sí y 67,5° con los ejes de coordenadas locales de la columna a la que se unen, tal y como puede apreciarse en la figura 8.
Como un experto en la materia puede apreciar, la plataforma semisumergible presenta una serie de características ventajosas frente a las plataformas del estado de la técnica actual. Estas características son, entre otras:
• El empleo de hormigón como material de construcción principal.
• La disposición de 4 columnas verticales, 3 de ellas en los vértices formando una disposición de planta triangular y 1 central sobre la que se monta el equipamiento (por ejemplo, la torre y el aerogenerador).
• Preferentemente, una placa de hormigón en la base sobre la que se construye todo el conjunto que sirve, además, para amortiguar significativamente los desplazamientos verticales durante su operación y en cualquier condición de mar. Esta placa vertical provoca, al moverse en sentido vertical, un desplazamiento extra de agua a su alrededor, denominado masa añadida, que aumenta el periodo propio a heave, genera un efecto de amortiguamiento sobre la estructura y reduce significativamente la amplitud de los desplazamientos verticales incrementando notablemente sus prestaciones operacionales respecto de cualquier otro diseño. • El empleo de un anillo estructural ubicado a una altura intermedia (H) que sirve como elemento rigidizador y que dota de extraordinaria resistencia estructural al diseño. A este anillo estructural se fijan las líneas de fondeo incrementando la seguridad de la plataforma.
· Los elementos de hormigón empleados para generar una pretensión inicial en las líneas de fondeo y que permiten reducir las tensiones dinámicas máximas sobre las mismas.
• El empleo de vigas de unión que pueden ser construidas en acero u hormigón.
« La separación lograda entre las columnas exteriores, ubicados en los vértices del conjunto, dota al sistema de una elevada estabilidad en cualquier situación al incrementar, esta separación, la inercia de la flotación y con ello su par restaurador o adrizante.
• Esta estructura flotante offshore de hormigón con placa de heave puede, en función de la aplicación a la que se destine, montar sobre las cuatro columnas principales (exteriores y central) una cubierta de trabajo o cubiertas sucesivas de superestructura necesarias para el correcto desempeño de su misión y que permitan instalar todo el equipamiento necesario para ello, por ejemplo: módulos habitacionales, subestaciones, equipos de apoyo a explotaciones offshore de toda índole, etc. Esta versatilidad la distingue, también, claramente del resto de soluciones propuestas por el estado de la técnica actual.
Y por lo tanto:
• El sistema de fondeo está optimizado para lograr la reducción de las tensiones máximas en las líneas de fondeo.
• Presenta unas necesidades de mantenimiento considerablemente menores que el resto de diseños del estado de la técnica, al emplear hormigón como material de construcción.
• El dispositivo está dotado de la suficiente estabilidad como para permitir instalar en puerto, a flote y con el calado mínimo, la torre y el aerogenerador; de tal forma que puede ser remolcado al lugar de instalación con todos los equipos y sistemas ya instalados.
A continuación se describe el procedimiento constructivo de una plataforma semi sumergible de las anteriormente descritas. Como se ha indicado anteriormente, se ha observado que el hormigón armado, por ser un material industrial izable, es una buena alternativa al acero para la construcción de plataformas semisumergibles. Entre otras ventajas, se pueden apuntar las siguientes: resistencia y durabilidad del hormigón al ambiente marino; rapidez de construcción; coste del hormigón frente al acero. Para asegurar la no apertura de fisuras de tracción se puede realizar el post- tesado del hormigón.
En el método constructivo que se describe a continuación, se detalla las diferentes etapas del proceso de construcción de una plataforma de hormigón armado y post- tesado, que sirva como soporte, por ejemplo, a la torre de un aerogenerador.
En el método constructivo que se describe, se asume la disponibilidad de un dique flotante de características similares a los que se utilizan para la construcción de cajones celulares de hormigón armado para obras marítimas, adaptada a las dimensiones y cargas que requiere la construcción de la plataforma. Dado que el método constructivo de las columnas de la plataforma es por encofrado autotrepante, no es necesaria la instalación del paraguas que caracteriza a los diques flotantes para cajones celulares de hormigón. Las operaciones de izado se realizan, por ejemplo, con una grúa ringer autopropulsada situada en el muelle, con capacidad suficiente para las operaciones a realizar.
Además del dique flotante, son necesarias las siguientes estructuras e infraestructuras:
Un muelle con profundidad de agua superior al calado de la plataforma en rosca más el puntal de la base del dique flotante. Un área de tierra cercana al muelle del dique flotante para los almacenes de áridos y la planta de hormigonado.
Un área de tierra cercana al muelle del dique flotante para el taller y almacenamiento de la ferralla.
Un área cercana en tierra para el acopio de las vigas pretensadas de refuerzo de la base y de arriostramiento.
Un muelle en el mismo puerto para el armamento de la plataforma y sus equipos y la instalación de la torre, góndola y rotor del aerogenerador.
Un área en tierra adyacente al muelle de armamento para el acopio y/o la construcción de las instalaciones de la plataforma y del aerogenerador.
ETAPAS DEL PROCESO CONSTRUCTIVO
Una vez establecidos los parques de áridos (nótese que el hormigón comprende árido, cemento y armadura pasiva y/o activa), el parque de ferralla y la planta de hormigonado y amarrado al muelle el dique flotante, el proceso de construcción de la plataforma sigue las siguientes etapas:
ETAPA 1 - Construcción de la base de la plataforma
La base de la plataforma se construye siguiendo las siguientes etapas:
1.1. En el taller de ferralla se construyen los diferentes elementos que constituyen la armadura de la base.
En el caso de que la plataforma semiflotante bajo fabricación se haya diseñado para incluir una placa de heave 9 y además para que ésta esté reforzada con vigas 13:
1.2. Colocación de las vigas pretensadas 13 de refuerzo de la placa de heave 9 de la plataforma sobre la base del dique flotante.
1.3. Colocación de la armadura de la placa de heave 9 de la plataforma sobre la base del dique flotante.
1.4. Construcción del encofrado de la placa de heave 9 de la plataforma. En la zona de los troncos verticales se dejan preparados los cajones para la recepción de los cables de post-tensado vertical de los troncos.
1.5. Hormigonado de la placa de heave 9 de la plataforma.
1.6. Desmontaje de los encofrados de la placa de heave 9.
Nótese que las etapas destinadas a colocar la placa de heave 9 y las vigas de refuerzo 13 solo se realizan en caso de que se haya diseñado una plataforma semisumergible que incluya esos elementos.
ETAPA 2 - Construcción de los fustes de los troncos hasta el nivel de las vigas de arriostramiento.
Una vez hormigonada la base se procede a instalar los encofrados trepantes de los troncos 5 6 e iniciar el proceso de trepa hasta alcanzar el nivel de las vigas de arriostramiento 7. Las etapas de esta fase son:
2.1. Construcción de las armaduras de los troncos 5 6 en el taller de ferralla.
2.2. Instalación de los encofrados trepantes.
2.3. Avance de la trepa, hasta alcanzar el nivel de apoyo de las vigas de arriostramiento 7 (es decir, construir 5b 6b). Acompañando al proceso de trepa, se va sumergiendo el dique flotante, para que parte de las cargas sean tomadas por los empujes hidrostáticos sobre la plataforma.
2.4. Desmontaje de los encofrados trepantes.
ETAPA 3 - Construcción de las secciones de arriostramiento
Terminado el proceso de trepado, se procede a la construcción de las secciones de arriostramiento 7 sobre los troncos 5b 6b siguiendo las siguientes etapas:
3.1. Construcción en el taller de ferralla de las armaduras de las secciones de arriostramiento 7. Estas armaduras incluyen los ganchos de anclaje de la plataforma a las líneas de fondeo 1 1.
3.2. Instalación de las plataformas auxiliares de acceso a los troncos.
3.3. Instalación de los encofrados horizontales que tapan las bocas de los troncos.
3.4. Colocación de las vigas pretensadas de arriostramiento 8.
3.5. Instalación de los encofrados verticales de las secciones de arriostramiento, incluido el bloque de acceso 7 que comunica los troncos superiores 5a 6a con los inferiores 5b 6b y con el alma de las vigas de arriostramiento 8, por donde llegarán las conducciones que facilitarán los trasvases de lastre y las comunicaciones del personal entre los cilindros.
3.6. Colocación de las armaduras de las secciones de arriostramiento.
3.7. Hormigonado de las secciones de arriostramiento.
3.8. Desmontaje de las secciones de arriostramiento
ETAPA 4 -Construcción de los fustes de los troncos hasta la coronación (es decir, construir 5a 6a)
Una vez construidas las secciones de arriostramiento 7 de los troncos, se procede a continuar el proceso de trepado de los troncos 5 6 hasta su coronación (5a 6a). Las etapas de esta fase son:
4.1. Construcción de las armaduras de los fustes en el taller de ferralla.
4.2. Instalación de los encofrados trepantes.
4.3. Avance de la trepa hasta alcanzar el nivel de apoyo de la parte superior de los troncos 5a 6a. Acompañando al proceso de trepa, se va sumergiendo el dique flotante, para que parte de las cargas sean tomadas por los empujes hidrostáticos sobre la plataforma.
4.4. Desmontaje de los encofrados trepantes. ETAPA 5 - Remate de la parte superior de los troncos
Finalizado el proceso de trepado de las columnas, se procede al remate de sellado de los troncos perimetrales y central. Esta fase tiene las siguientes etapas:
5.1. Construcción en el parque de ferralla de las armaduras de las tapas de sellado de los troncos perimetrales y central. Esta armadura incluye las barras roscadas de unión con la base (por ejemplo, de acero) de la torre del aerogenerador.
5.2. Instalación de una plataforma de trabajo sobre las tapas de los cilindros.
5.3. Colocación de los encofrados horizontales y verticales del remate de los troncos perimetrales y central 6a 5a. En la tapa del tronco central se deja una boca de acceso para equipos y canalizaciones.
5.4. Colocación de las armaduras de las tapas sobre los troncos. 5.5. Hormigonado de las tapas de los troncos.
5.6. Desmontaje de los encofrados de las tapas de los troncos.
ETAPA 6 - Traslado de la plataforma al muelle de armamento
Una vez terminado el proceso de trepado, se procede al traslado de la plataforma hasta el muelle de armamento, donde se realiza la instalación de la torre del aerogenerador y resto de instalaciones. Esta fase se divide en las siguientes etapas:
6.1. Hundimiento del dique flotante, hasta dejar a flote la plataforma.
6.2. Traslado con remolcador de la plataforma hasta el muelle de armamento y amarre de la misma al muelle.
ETAPA 7 - Post-tensado vertical de los troncos
Durante todo el proceso de trepado, construcción de las secciones de arriostramiento y tapas de los troncos verticales se ha mantenido la continuidad de las vainas que alojarán los tendones de post-tensado. En esta fase, se procede a la colocación de los tendones y a su tesado, siguiendo las etapas:
7.1. Enhebrado de los tendones en las vainas de post-tensado
7.2. Colocación en la base de las cabezas de fijación de los tendones.
7.3. Tesado desde la tapa superior de los troncos.
7.4. Sellado de las cabezas de fijación de los tendones y sellado de las vainas. ETAPA 8 - Instalación de los equipos auxiliares
Los equipos auxiliares de la plataforma pueden incluir los sistemas de control de lastre en los cilindros perimetrales y central (bombas y conducciones), los equipos de energía de reserva, comunicaciones, climatización y ayudas a la navegación.
ETAPA 9 - Instalación de la torre, góndola y rotor del aerogenerador
La instalación del aerogenerador se realiza en el muelle de armamento y comprende las etapas convencionales de instalación de un aerogenerador. La construcción de la plataforma en el dique flotante requiere un periodo aproximado de dos meses, tiempo suficiente para la instalación de equipos y aerogenerador en el muelle de armamento. Quiere esto decir que mediante el proceso anteriormente descrito, cada conjunto plataforma-aerogenerador puede ser completado en dos meses, salvo el primero, que requiere un periodo algo mayor, de 4 meses.
Algunas ventajas de estas estructuras o plataformas semisumergibles se indican a continuación.
La construcción de estructuras semisumergibles flotantes de hormigón, frente a las estructuras convencionales de acero, preferentemente con la citada placa de amortiguamiento vertical o placa de heave, proporciona de manera clara y directa las siguientes ventajas competitivas:
1) Permite emplear las técnicas y procesos de construcción civil utilizados extensamente en obras marítimas y portuarias, basadas en la utilización de cajoneros flotantes. Mediante esta técnica de construcción deja de ser necesario el empleo de grandes infraestructuras dedicadas especialmente para la construcción en acero de estos artefactos, como son los astilleros o factorías navales. Este hecho es de vital importancia para acercar la construcción de estas unidades al lugar de operación, y por lo tanto, reducir drásticamente los costes de transporte, mejorando sustancial mente la rentabilidad de la inversión y por lo tanto su atractivo.
2) Se reducen radicalmente los plazos de fabricación. A modo de ejemplo decir que una unidad flotante offshore de unas 10.000 toneladas, construida en hormigón armado, tiene un plazo de fabricación y entrega de entorno a los 40 días. Lo que supone una reducción en el plazo de entrega, respecto de una unidad similar construida en acero, de unos 3,5 meses.
3) El precio del hormigón es relativamente constante y no se ve afectado, de una manera tan clara y directa por la presión de la demanda del mercado como en el caso del acero. Esto permite realizar presupuestos y previsiones económicas más realistas y seguras, además de conocer con mayor exactitud los costes reales de inversión. Esto hace más segura, rentable y atractiva la inversión.
4) El empleo de la placa de amortiguamiento a heave, en caso de usarse, reduce drásticamente los movimientos de la estructura en el mar, lo que permite diseñar sistemas de fondeo menos robustos y por lo tanto menos costosos.
Además de mejorar la operatividad de todo el conjunto.
5) Los costes de operación y mantenimiento son menores que los de cualquier estructura marina de acero, incrementando la rentabilidad de la explotación.
6) Esta plataforma semisumergible no es dependiente de los sistemas de lastre y trasiego comúnmente empleados para la corrección automática de escoras en las plataformas semisumergibles que conforman el estado de la técnica actual.
7) La instalación de todos los sistemas y equipos, incluidos la torre y el aerogenerador, puede realizarse a flote en el lugar en el que se construya la plataforma. Esto permite reducir drásticamente la complejidad de la operativa de remolque, instalación y puesta en marcha de la plataforma, reduciendo significativamente los costes asociados a estas operaciones.
8) Se facilita la tecnología de construcción de obras marinas en hormigón, desarrollando la metodología necesaria para realizar la construcción de las plataformas localmente, o al menos de manera cercana a los emplazamientos objetivos en puertos convencionales.
9) El precio del hormigón es significativamente más económico que el del acero.
El empleo de hormigón como material de construcción permite la industrialización masiva de este tipo de plataformas offshore, lo que sin duda contribuirá a la reducción de costes y por lo tanto a una mejor competitividad de la industria eólica offshore.
A continuación se describe un ejemplo de platafaforma semisumergida de acuerdo con la realización descrita: EJEMPLO Se ha diseñado y simulado un dispositivo de acuerdo con la realización descrita de la invención. Para definir las dimensiones óptimas del diseño propuesto se ha considerado su aplicación directa en la industria eólica offshore. Las dimensiones principales del dispositivo dependen de las características de los equipos que instale, y sobre todo del tamaño del aerogenerador. Se ha seleccionado un aerogenerador tipo de 5MW como ejemplo de aplicación. Es preciso señalar que a mayor potencia instalada, mayor es el peso del aerogenerador y mayor el diámetro que abarquen las palas del mismo. Es decir, a medida que avance la tecnología y el estado de la técnica de los aerogeneradores offshore, será necesario redimensionar la plataforma, para optimizar su diseño en función de los nuevos requerimientos de empuje, estabilidad y comportamiento en la mar derivados de las nuevas y mayores cargas originadas por estos nuevos aerogeneradores.
A continuación, en la tabla 1 se resumen los pesos y centros de gravedad considerados en el ejemplo de aplicación desarrollado.
Componente Peso (Toneladas) VCG (m)
Aerogenerador (nacelle + rotor) 365 1 12
Torre 400 72,3
Equipos y Sistemas 180 30
Total 945 78,24
TABLA 1
Otras dos características clave para este diseño es que las palas de este aerogenerador tienen un diámetro de 126 metros y el HUB del rotor está a una altura de 90m respecto de la flotación de diseño en reposo, o lo que es lo mismo: a 1 12 metros respecto de la base de la plataforma. Para este aerogenerador de 5MW, la plataforma triangular de hormigón tiene las siguientes dimensiones principales y pesos, optimizado el conjunto para el requerimiento de empuje horizontal del aerogenerador considerado y que es de 190 toneladas a 1 12m de altura en la peor de las condiciones de cálculo. Para otros requerimientos de carga, la plataforma puede variar las dimensiones descritas a continuación:
Valor Unidades
Eslora 50 m
Manga 56 m
Puntal o Altura Total 30 m
Área de la Placa de Heave 716 m2
Calado por debajo de la flotación 22 m
Francobordo 8 m
Desplazamiento (calado de 22m) 1 1.219 ton
Diámetro de las 3 columnas exteriores 12,0 m
Diámetro de la columna central 1 1 ,0 m
Altura metacéntrica inicial (GM0) 5,4 m
Máximo Brazo Adrizante (GZ) 1,95 m a 19,5°
TABLA 2
La capacidad máxima de carga es de 1.100 toneladas con las dimensiones aquí especificadas. La plataforma tiene un calado mínimo, con la torre y turbina montadas, de 15,5 metros y un calado de operación, tras efectuar el lastrado de los tanques dispuestos en la parte inferior de las columnas cilindricas, de 22 metros con el centro de gravedad de todo el conjunto localizado verticalmente a 15,6 metros respecto de la base y centrado con el cilindro central. Este diseño permite salir con la condición de mínimo lastre y mínimo calado sin ningún problema de estabilidad llevando instalados la torre y la turbina. a. Comportamiento en la mar
El diseño ha sido evaluado técnicamente mediante simulaciones numéricas con acoplamiento entre la plataforma y su sistema de fondeo, tanto en el dominio del tiempo como en el de la frecuencia, empleando para ello modelos numéricos comerciales extensamente utilizados en la industria offshore como son: WAMIT, WADAM y SIMO-RIFLEX.
Del conjunto de ensayos y simulaciones realizados, con diferentes estados de mar, han resultado los siguientes datos que caracterizan la plataforma semisumergible de hormigón de planta triangular:
(1) Periodos Propios de la estructura sin acoplamiento del sistema de fondeo y con placa de heave:
Grado de Libertad Valor Unidades
Período Propio a Heave (Alteada) 21 ,6 s
Período Propio a Roll (Balanceo) 26,3 s
Período Propio a Pitch (Cabeceo) 26,1 s
TABLA 3
(2) Response amplitude operator (RAO):
A continuación, en las figuras 7 y 8, se muestran los operadores de respuesta de la estructura obtenidos a partir del modelo hidrodinámico WAMIT- WADAM. De ellas se puede concluir que la estructura muestra un comportamiento más que notable, no mostrando situaciones de resonancia en los periodos más comunes del oleaje (T<20s)
(3) Movimientos con oleaje irregular:
La caracterización de las respuestas más importantes de la plataforma semisumergible triangular de hormigón con oleaje irregular queda definida por los siguientes valores:
Valor Valor Valor
Estado de Mar
Medio Mínimo Máximo
SURGE (m)
Estado de mar de Operación (Hs =2.4m, Tp=I0s, Vm = l2.5m/s. C=0.3m/s) -6.62 -8.9
-4.7
Estado de mar Severo (Hs=llm, Tp=I6s, Vm=12.5m/s, C=0.59m/s) -9.8 -15 -6.4
Estado de mar Extremo de Supervivencia (Hs=13m, Tp=I7s, Vm=17m/s, C=0.8m/s) -14.5 -24.2 -9.4
TABLA 6
Valor Valor Valor
Estado de Mar
Medio Mínimo Máximo
HEAVE (m)
Estado de mar de Operación (Hs=2.4m, Tp= 10s, Vm=I2.5m/s, C=0.3m/s) -0.04 -1.59 1.5
Estado de mar Severo (Hs=l l m, Tp=16s, Vm=12.5m/s, C=0.59m/s) -0.1 -4.3 4.89
Estado de mar Extremo de Supervivencia (H =13m, Tp=17s, Vm=l 7m/s, C=0.8m/s) -0.2 -5.4 4.4
TABLA 7
Valor Valor Valor
Estado de Mar
Medio Mínimo Máximo
PITCH (")
Estado de mar de Operación (Hs=2.4m, Tp=l Os, Vm=l 2.5m/s, C=0.3m s) -5.56 -9.9 -2.6
Estado de mar Severo (Hs=l Im, Tp=l 6s, Vm=l 2.5m s, C=0.59m/s) -5.1 -7.9 - 1.71
Estado de mar Extremo de Supervivencia (H5=13m, Tp=17s, Vm=17m s, C=0.8m/s) -9 -14.8 -3.75
TABLA 8

Claims

REIVINDICACIONES
1. Una plataforma semisumergible (16) que comprende: una columna interior ( 15) configurada para dotar de mayor flotabilidad y tres columnas exteriores (14), donde cada una de dichas columnas interior y exteriores (14, 15) comprenden una base resistente (12) y un tronco (5a, 5b, 6a, 6b), estando la plataforma semisumergible (16) caracterizada por que dichas columna interior (15) y tres columnas exteriores (14) son de hormigón armado, cada columna
(14, 15) comprende una sección de mayor resistencia (7) a una determinada altura, comprendiendo además la plataforma semisumergible una pluralidad de vigas (8) a dicha determinada altura que unen cada columna exterior (14) con la columna interior (15) y cada columna exterior (14) con las otras dos columnas exteriores, y además una pluralidad de líneas de fondeo (11) configuradas para ser ancladas a la sección de mayor resistencia (7) de cada columna exterior (14), y donde la plataforma semisumergible (16) comprende además una placa inferior (9) sobre la que se fijan dichas columna interior (15) y tres columnas exteriores (14), configurada para incrementar el amortiguamiento de los movimientos verticales y donde dicha placa inferior (9) está reforzada por una pluralidad de vigas (13) que conectan la base (12) de cada columna exterior (14) con la base de la columna interior (15) y la base (12) de cada columna exterior (14) con la base (12) de las otras dos columnas exteriores.
2. La plataforma semisumergible (16) de la reivindicación 2, donde dicha placa inferior (9) es de hormigón armado.
3. La plataforma semisumergible (16) de cualquiera de las reivindicaciones anteriores, donde dicha columna interior (15) lleva montados al menos una torre (3), una nacelle (1), un rotor (10) y una pluralidad de palas (2).
4, Un método de construcción de una plataforma semisumergible, caracterizado por las etapas de:
-colocación de una base resistente (12) interior y tres bases resistentes ( 12) exteriores sobre la base de un dique flotante;
-instalación de un encofrado trepante configurado para construir una columna interior (15) y tres columnas exteriores (14) sobre sendas bases resistentes (12);
-avance de la trepa hasta alcanzar un determinado nivel, de forma que queden construidos un tronco (5b, 6b) sobre cada base resistente (12), simultáneamente con lo cual se va sumergiendo el dique flotante;
-instalación de encofrados que tapan las bocas de dichos troncos (5b, 6b);
-colocación de una pluralidad de vigas de arriostramiento (8) que unen cada tronco exterior (6b) con el tronco interior (5b) y cada tronco exterior (6b) con los otros dos troncos exteriores;
-instalación de encofrados verticales para construir zonas de mayor resistencia (7); -colocación de armaduras de dichas zonas de mayor resistencia (7), hormigonado de las mismas y desmontaje de los encofrados;
-tras la construcción de las secciones de mayor resistencia (7) sobre cada tronco (5b, 6b): instalar encofrados trepantes sobre las mismas, trepar hasta un cierto nivel hasta construir los troncos (5a, 6a) por encima de las secciones de mayor resistencia (7), simultáneamente con lo cual se va sumergiendo el dique flotante, y desmontaje de los encofrados trepantes;
-remate de la parte superior de cada tronco (5a, 6a);
-hundimiento del dique flotante hasta dejar a flote la plataforma;
-traslado de la plataforma hasta el muelle de armamento;
-postensado vertical de los troncos (5a, 5b; 6a, 6b).
5. El método de la reivindicación 6, que comprende además, antes de la colocación de las bases resistentes (12):
-colocación de una pluralidad de vigas (13) de refuerzo sobre la base del dique flotante; -colocación de una armadura de una base resistente (9) sobre la base del dique flotante; -encofrado de dicha base (9);
-hormigonado de dicha base (9);
-desmontaje de los encofrados de la base (9).
6. El método de cualquiera de las reivindicaciones 6 ó 7, que comprende, tras el postensado vertical de los troncos (5a, 5b; 6a, 6b), la instalación en el muelle de armamento de al menos un equipo sobre la plataforma.
7. El método de la reivindicación 8, donde dicho al menos un equipo es una torre, una góndola, un rotor de aerogenerador o un equipo auxiliar.
PCT/ES2013/000164 2012-07-18 2013-07-05 Plataforma semisumergible triangular para aplicaciones en mar abierto WO2014013097A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201200759A ES2387342B2 (es) 2012-07-18 2012-07-18 Plataforma semisumergible triángular para aplicaciones en mar abierto
ESP201200759 2012-07-18

Publications (2)

Publication Number Publication Date
WO2014013097A1 true WO2014013097A1 (es) 2014-01-23
WO2014013097A4 WO2014013097A4 (es) 2014-03-13

Family

ID=46759141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/000164 WO2014013097A1 (es) 2012-07-18 2013-07-05 Plataforma semisumergible triangular para aplicaciones en mar abierto

Country Status (2)

Country Link
ES (1) ES2387342B2 (es)
WO (1) WO2014013097A1 (es)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104806675A (zh) * 2015-03-31 2015-07-29 张志雄 一种焊接阀锌合金活塞缓冲海风发电器械
WO2017191019A1 (fr) * 2016-05-03 2017-11-09 Dcns Flotteur d'éolienne offshore
FR3064694A1 (fr) * 2017-03-28 2018-10-05 Dcns Energies Flotteur hybride d'eolienne
FR3064695A1 (fr) * 2017-03-28 2018-10-05 Dcns Energies Flotteur hybride d'eolienne offshore
WO2018185309A1 (fr) * 2017-04-07 2018-10-11 Naval Energies Flotteur par exemple d'éolienne offshore
FR3064973A1 (fr) * 2017-04-10 2018-10-12 Dcns Energies Flotteur d'eolienne offshore hybride
WO2018189084A1 (fr) * 2017-04-10 2018-10-18 Naval Energies Flotteur notamment d'eolienne offshore
WO2019010947A1 (zh) * 2017-07-10 2019-01-17 佛山科学技术学院 一种浮筒及其制造方法和应用该浮筒的风电机组
FR3087187A1 (fr) * 2018-10-16 2020-04-17 Naval Energies Flotteur semi-submersible notamment d'eolienne offshore comportant une piece de fixation
FR3109924A1 (fr) * 2020-05-05 2021-11-12 Naval Energies Flotteur notamment d’eolienne offshore
WO2022231511A1 (en) * 2021-04-29 2022-11-03 Sembcorp Marine Integrated Yard Pte. Ltd. A buoyant structure for receiving a tower of a wind turbine in offshore deployment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3904674B1 (en) 2018-12-28 2024-01-31 Dragados, S.A. Floating platform for high-power wind turbines
EP3902995A4 (en) * 2019-02-15 2022-09-14 Northeastern University WIDE BASE SHORT DRAFT FLOATING WIND TURBINE WITHOUT NACELLE
GB202110980D0 (en) * 2021-07-30 2021-09-15 Aker Offshore Wind As Floating wind turbine platform

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1488065A (en) * 1974-10-15 1977-10-05 Armerad Betong Ab Method of constructing drilling and production platforms for the oil industry
WO2002031270A1 (en) * 2000-10-10 2002-04-18 Cso Aker Maritime, Inc. Heave suppressed offshore drilling and production platform
US20040253060A1 (en) * 2003-06-11 2004-12-16 Horton Edward E. Semi-submersible multicolumn floating offshore platform
WO2005009838A1 (en) * 2003-06-25 2005-02-03 Exxonmobile Upstream Research Company Method for fabricating a reduced-heave floating structure
US20120034034A1 (en) * 2010-08-03 2012-02-09 Technip France Truss heave plate system for offshore platform
WO2012061710A2 (en) * 2010-11-04 2012-05-10 University Of Maine System Board Of Trustees Floating hybrid composite wind turbine platform and tower system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1005565B (el) * 2006-02-24 2007-06-19 Ευσταθης πλωτη διαταξη με περιορισμενες ταλαντωσεις
NO327871B1 (no) * 2007-11-19 2009-10-12 Windsea As Flytende vindkraftanordning
PT2727813T (pt) * 2008-04-23 2017-10-26 Principle Power Inc Resumo
WO2010096060A1 (en) * 2009-02-19 2010-08-26 Nagan Srinivasan Dry tree semi-submersible platform for harsh environment and ultra deepwater applications
US20120103244A1 (en) * 2010-10-28 2012-05-03 Jin Wang Truss Cable Semi-submersible Floater for Offshore Wind Turbines and Construction Methods
FR2967642B1 (fr) * 2010-11-22 2013-08-16 Nass&Wind Ind Dispositif d'eolienne offshore avec flotteur semi-submersible particulier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1488065A (en) * 1974-10-15 1977-10-05 Armerad Betong Ab Method of constructing drilling and production platforms for the oil industry
WO2002031270A1 (en) * 2000-10-10 2002-04-18 Cso Aker Maritime, Inc. Heave suppressed offshore drilling and production platform
US20040253060A1 (en) * 2003-06-11 2004-12-16 Horton Edward E. Semi-submersible multicolumn floating offshore platform
WO2005009838A1 (en) * 2003-06-25 2005-02-03 Exxonmobile Upstream Research Company Method for fabricating a reduced-heave floating structure
US20120034034A1 (en) * 2010-08-03 2012-02-09 Technip France Truss heave plate system for offshore platform
WO2012061710A2 (en) * 2010-11-04 2012-05-10 University Of Maine System Board Of Trustees Floating hybrid composite wind turbine platform and tower system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104806675A (zh) * 2015-03-31 2015-07-29 张志雄 一种焊接阀锌合金活塞缓冲海风发电器械
CN104806675B (zh) * 2015-03-31 2016-08-31 张志雄 一种焊接阀锌合金活塞缓冲海风发电器械
WO2017191019A1 (fr) * 2016-05-03 2017-11-09 Dcns Flotteur d'éolienne offshore
FR3051022A1 (fr) * 2016-05-03 2017-11-10 Dcns Flotteur d'eolienne offshore
FR3064694A1 (fr) * 2017-03-28 2018-10-05 Dcns Energies Flotteur hybride d'eolienne
FR3064695A1 (fr) * 2017-03-28 2018-10-05 Dcns Energies Flotteur hybride d'eolienne offshore
WO2018185309A1 (fr) * 2017-04-07 2018-10-11 Naval Energies Flotteur par exemple d'éolienne offshore
FR3065038A1 (fr) * 2017-04-07 2018-10-12 Dcns Energies Flotteur par exemple d'eolienne offshore
FR3064973A1 (fr) * 2017-04-10 2018-10-12 Dcns Energies Flotteur d'eolienne offshore hybride
WO2018189084A1 (fr) * 2017-04-10 2018-10-18 Naval Energies Flotteur notamment d'eolienne offshore
WO2019010947A1 (zh) * 2017-07-10 2019-01-17 佛山科学技术学院 一种浮筒及其制造方法和应用该浮筒的风电机组
FR3087187A1 (fr) * 2018-10-16 2020-04-17 Naval Energies Flotteur semi-submersible notamment d'eolienne offshore comportant une piece de fixation
WO2020079048A1 (fr) * 2018-10-16 2020-04-23 Naval Energies Flotteur semi-submersible notamment d'éolienne offshore comportant une pièce de fixation
FR3109924A1 (fr) * 2020-05-05 2021-11-12 Naval Energies Flotteur notamment d’eolienne offshore
WO2022231511A1 (en) * 2021-04-29 2022-11-03 Sembcorp Marine Integrated Yard Pte. Ltd. A buoyant structure for receiving a tower of a wind turbine in offshore deployment

Also Published As

Publication number Publication date
WO2014013097A4 (es) 2014-03-13
ES2387342B2 (es) 2014-02-10
ES2387342A1 (es) 2012-09-20

Similar Documents

Publication Publication Date Title
ES2387342B2 (es) Plataforma semisumergible triángular para aplicaciones en mar abierto
ES2387232B2 (es) Plataforma semisumergible para aplicaciones en mar abierto
JP5745688B2 (ja) エネルギー貯蔵設備を備えた浮体式風力発電施設
ES2516590B1 (es) Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
ES2952964T3 (es) Estructura marítima para la cimentación de edificaciones y su método de instalación
CN102015435B (zh) 用于支撑近海风力涡轮机的不对称系泊系统和带有水收集板的支柱稳定式近海平台
ES2718934T3 (es) Base de turbina eólica flotante con patas de tensión de tipo abocinado, turbina eólica marina y método de construcción
US20170218919A1 (en) Wind tracing, rotational, semi-submerged raft for wind power generation and a construction method thereof
EP2933381B1 (en) Gravity system foundation
US9004819B2 (en) Installation method and recovery method for offshore wind turbine
BR112016018088B1 (pt) Método de montagem de plataformas de uma turbina eólica flutuante
RU2675349C1 (ru) Плавающая платформа для использования энергии ветра
CN108248783B (zh) 一种海上风电潜式浮式基础的施工方法
CN111942533A (zh) 一种三立柱型式海上风力发电平台系统
CN104313999A (zh) 一种桥墩结构
CN106741689A (zh) 一种Spar型装配式预应力钢筋混凝土浮式海上风机基础
ES2876053B2 (es) Plataforma flotante de hormigon armado de aplicacion a la industria del sector de la eolica marina
WO2020136288A1 (es) Plataforma flotante para aerogeneradores de gran potencia
Wong Wind tracing rotational semi-submerged raft for multi-turbine wind power generation
WO2020201605A1 (es) Procedimiento de instalación de un aerogenerador de torre mar adentro
CN112977743A (zh) 一种半潜式风机基座及漂浮式风机
Busetto et al. Modular Platforms for Early Production/Full Field Applications
BR112016017971B1 (pt) Parque de turbina eólica flutuantes
Ospina et al. Design and Construction of a Bunker Fuel Transfer Pier at Melones Island, Panama
NO20150509A1 (no) Flytebru og plattform som er bygd på forankret dyptflytende undervannsfundament

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819903

Country of ref document: EP

Kind code of ref document: A1