WO2019010947A1 - 一种浮筒及其制造方法和应用该浮筒的风电机组 - Google Patents

一种浮筒及其制造方法和应用该浮筒的风电机组 Download PDF

Info

Publication number
WO2019010947A1
WO2019010947A1 PCT/CN2018/073440 CN2018073440W WO2019010947A1 WO 2019010947 A1 WO2019010947 A1 WO 2019010947A1 CN 2018073440 W CN2018073440 W CN 2018073440W WO 2019010947 A1 WO2019010947 A1 WO 2019010947A1
Authority
WO
WIPO (PCT)
Prior art keywords
pontoon
buoy
steel
cylinder
wind turbine
Prior art date
Application number
PCT/CN2018/073440
Other languages
English (en)
French (fr)
Inventor
张国学
卢娟
Original Assignee
佛山科学技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山科学技术学院 filed Critical 佛山科学技术学院
Publication of WO2019010947A1 publication Critical patent/WO2019010947A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a wind power system, and more particularly to a pontoon, a method of manufacturing the same, and a wind turbine to which the pontoon is applied.
  • the present invention provides a pontoon having high structural strength, corrosion resistance, and durability, and a wind turbine to which the pontoon is applied and a method of manufacturing the pontoon.
  • a pontoon includes a cylindrical cylinder, the cylinder wall of the cylinder is a concrete structure, and the inside of the concrete structure is uniformly dispersed with graphene and basalt fibers, and the concrete structure is also wrapped with stainless steel reinforcement inside, the stainless steel
  • the reinforcing bar includes a plurality of reinforcing ribs and a plurality of stirrups, the force-receiving ribs are distributed along the circumferential direction of the cylindrical body, and the stirrups are annularly arranged and spaced perpendicularly to the axial direction of the cylindrical body.
  • the inside of the cylinder is further provided with a magazine plate, which partitions the inside of the cylinder into a plurality of mutually communicating chambers.
  • the upper and lower covers of the cylindrical cylinder 11 are provided with two steel meshes which are vertically arranged and woven by a plurality of basic steel bars.
  • the storage panel includes horizontal storage panels and vertical storage panels that are connected to each other.
  • a wind turbine to which the pontoon is applied comprising a tower, a fan mounted at an upper end of the tower, a floating assembly supporting the tower, the floating assembly including at least 4 of the pontoons,
  • One of the buoys is a middle buoy, the other of the buoys is an edge buoy; the upper end of the middle buoy is connected to the tower, the side buoys are circumferentially surrounded by the middle buoy, and the side buoys are connected by a connecting member. Said the buoy.
  • the connecting member comprises a profiled steel, one end of which is connected to the steel plate of the middle buoy, and the other end is connected to the steel plate of the side buoy.
  • a vent hole is formed in the top of the barrel of all the pontoons, and the connecting member includes a steel pipe, and the bottom of the pontoon and the bottom of the middle pontoon are connected to each other through the steel pipe.
  • a bottom of the side wall of the cylinder of all the buoys is pre-buried with a steel ring, one end of the steel tube passes through and connects the steel ring of the middle buoy, and the other end passes through and connects the side buoys.
  • the steel ring is pre-buried with a steel ring, one end of the steel tube passes through and connects the steel ring of the middle buoy, and the other end passes through and connects the side buoys.
  • a water pressure plate is connected to the bottom of the side buoy.
  • a method for manufacturing the buoy adding graphene as a dispersing agent to water to obtain a mixed liquid, uniformly mixing the mixed liquid and the basalt fiber into the concrete, and pouring the cylinder wall of the cylinder with the agitated concrete.
  • the invention has the beneficial effects that the graphene and the basalt fiber are uniformly dispersed in the concrete structure of the cylinder body of the cylinder, and the graphene can significantly improve the strength of the concrete, and the basalt fiber can significantly improve the crack resistance of the concrete;
  • the stainless steel bar is used as the structural skeleton of the cylinder wall of the pontoon, and the stainless steel rib is not only corrosion resistant, but also has excellent mechanical properties such as impact resistance; therefore, the pontoon and the wind turbine of the present invention are present. Compared with the technology, it has better corrosion resistance, durability and structural strength, and can adapt to the working environment with complex sea conditions, high humidity and high salt spray.
  • Figure 1 is a schematic axial sectional view showing the pontoon of the present invention
  • Figure 2 is a schematic cross-sectional view showing the pontoon of the present invention
  • Figure 3 is a view showing the internal reinforcement of the cylinder wall of the present invention.
  • Figure 4 is a schematic structural view of the magazine board in the present invention.
  • Fig. 5 is a schematic structural view of the wind turbine of the present invention.
  • a pontoon of the present invention includes a cylindrical cylinder 11 having a concrete wall 12 in which the interior of the concrete structure 12 is uniformly dispersed with graphene and basalt fibers.
  • the inside of the concrete structure 12 is also wrapped with stainless steel reinforcing bars, and the stainless steel reinforcing bars include a plurality of reinforcing ribs 13 and a plurality of stirrups 14 distributed along the circumferential direction of the cylindrical body 11,
  • the stirrups 14 are each annular and are spaced perpendicular to the axial spacing of the barrel 11.
  • the pontoon constitutes the concrete structure 12 of the cylinder 11 of the cylinder 11 and the graphene and basalt fibers are uniformly dispersed, and the graphene can significantly improve the strength of the concrete, the basalt fiber can significantly improve the crack resistance of the concrete;
  • the cylinder of the pontoon 11 is made of stainless steel reinforced steel as the structural skeleton, and the stainless steel rib is not only corrosion resistant, but also has excellent mechanical properties such as impact resistance; therefore, the pontoon has better corrosion resistance, durability and structural strength. It can adapt to the working environment with complex sea conditions, high humidity and high salt spray.
  • the graphene In order to uniformly disperse graphene and basalt fibers inside the concrete structure 12, when manufacturing the buoy, the graphene should be added as a dispersing agent to the water to obtain a mixed liquid, and then the mixed liquid and the basalt fiber are uniformly stirred together.
  • the wall of the cylinder 11 is poured by using the concrete after the agitation.
  • the upper and lower covers of the cylindrical cylinder 11 are provided with two steel meshes which are vertically arranged and woven by a plurality of basic reinforcing bars, so that both the upper cover and the lower cover have high strength.
  • the stainless steel reinforcing bar is made of austenitic stainless steel or duplex stainless steel. Meanwhile, in order to improve the balance of the force, it is preferable that the force rib 13 and the stirrup 14 are evenly distributed.
  • the inside of the cylinder 11 is further provided with a magazine plate 15, which partitions the inside of the cylinder 11 into a plurality of mutually communicating chambers.
  • the storage panel 15 includes a horizontal storage panel 151 and a vertical storage panel 152 which are connected to each other.
  • the horizontal storage panel 151 has two blocks
  • the vertical storage panel 152 has four blocks.
  • Four of the vertical storage plates 152 are disposed between the two horizontal storage plates 151; the two horizontal storage plates 151 are the same size and round, and the four vertical storage plates 152 are two
  • the axes of the horizontal magazine plates 151 are symmetrically distributed.
  • the magazine plate 15 is welded by a stainless steel plate 16.
  • a wind turbine to which the pontoon is applied includes a tower 2, a fan 3 mounted at an upper end of the tower 2, and a floating assembly supporting the tower 2.
  • the floating assembly includes at least 4 of the buoys, one of which is a middle buoy 1a, the other of which is an edge buoy 1b; the upper end of the intermediate buoy 1a is connected to the tower 2, and the side buoy 1b is spaced around the middle buoy Around the 1a, the side buoy 1b is connected to the intermediate buoy 1a by a connecting member.
  • the wind turbine directly applies the buoy to construct the floating component, so that it has better corrosion resistance, durability and structural strength than the conventional wind turbine, and is more suitable for adapting to the situation of high sea force and high humidity. High working environment with salt spray.
  • the outer side wall of the barrel 11 of all the buoys is pre-embedded with a steel plate 16;
  • the connecting member comprises a profiled steel 41, the section steel One end 41 is connected to the steel plate 16 of the intermediate buoy 1a, and the other end is connected to the steel plate 16 of the side buoy 1b.
  • the top of the barrel 11 of all the pontoons is provided with a vent hole 17, and the connecting member includes a steel pipe 42, and the bottom pontoon 1b and the bottom of the cylinder 11 of the middle pontoon 1a communicate with each other through the steel pipe 42.
  • all of the pontoons will constitute a connector structure, and the back and forth flow of the water body can be utilized to reduce the sloshing of the floating assembly, so that even if there is a large wind and wave, the wind turbine can be prevented from being overturned.
  • each of the steel rings 18 on the buoy has two One is pre-buried outside the side wall of the cylindrical body 11, and one is embedded inside the side wall of the cylindrical body 11. It should be noted that when the steel plate 16 and the steel ring 18 are embedded, welding or lashing should be performed between the stainless steel ribs inside the cylinder wall of the cylinder 11 to avoid the steel plate 16 and the steel ring in use.
  • connection between the steel 41 and the steel plate 16 is welded or bolted, and the connection between the steel pipe 42 and the steel ring 18 is For welding, and in order to improve corrosion resistance, the steel plate 16, the steel ring 18, the steel 41 and the steel pipe 42 are all made of stainless steel.
  • the above connection mode is only a preferred embodiment of the present invention.
  • a pre-embedded connection may be adopted on the middle buoy 1a and the side buoy 1b. Bolts, connecting rods and other connections.
  • the bottom of the side pontoon 1b is connected with a water pressure plate 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种浮筒及其制造方法和应用该浮筒的风电机组,浮筒包括有柱形筒体(11),筒体(11)的筒壁为混凝土结构(12),混凝土结构(12)内部均匀分散有石墨烯和玄武岩纤维,混凝土结构(12)内部还包裹有不锈钢钢筋,不锈钢钢筋包括有多根受力筋(13)和多根箍筋(14),受力筋(13)沿筒体(11)的周向间隔分布,箍筋(14)均呈环形且垂直于筒体(11)的轴向间隔分布。该浮筒与风电机组,具有更好的耐腐蚀性、耐久性和结构强度,能够适应海上受力情况复杂、湿度高、盐雾高的工作环境。

Description

一种浮筒及其制造方法和应用该浮筒的风电机组 说 明 书
技术领域
本发明涉及风电系统,特别是针对一种浮筒及其制造方法和应用该浮筒的风电机组。
背景技术
近些年,我国陆地风电场建设快速发展,但是陆地风能利用受到一些限制,于是人们将目光逐渐转向了风速大、风向较稳定的海上风能。但是在海洋风能的开发利用中,由于海上高湿度、高盐雾的环境,会遇到很多技术难题, 其中海上风电机组的腐蚀与防护问题就是难点之一。由于浮基风电系统重心高,受到风、浪、流及冰荷载等的影响,受力情况复杂,使得浮基风电平台的设计面临很多技术上的挑战。以往海上风电机浮筒采用普通钢筋混凝土结构,抗腐蚀性能差,降低了结构的耐久性。
发明内容
为了克服现有技术的不足,本发明提供了一种具有结构强度高、耐腐蚀性、耐久性能好的浮筒以及应用该浮筒的风电机组和制造该浮筒的方法。
本发明解决其技术问题所采用的技术方案是:
一种浮筒,包括有柱形筒体,所述筒体的筒壁为混凝土结构,所述混凝土结构内部均匀分散有石墨烯和玄武岩纤维,所述混凝土结构内部还包裹有不锈钢钢筋,所述不锈钢钢筋包括有多根受力筋和多根箍筋,所述受力筋沿所述筒体的周向间隔分布,所述箍筋均呈环形且垂直于所述筒体的轴向间隔分布。
作为上述技术方案的改进,所述筒体内部还设置有仓板,所述仓板将所述筒体内部分隔为多个相互连通的腔室。柱形筒体11的上盖和下盖内设有呈上下设置的两个由多根基础钢筋纵横交错编织而成的钢筋网。
进一步,所述仓板包括有相互连接的水平仓板和竖直仓板。
一种应用所述的浮筒的风电机组,包括有塔架、安装在所述塔架上端的风机、支撑所述塔架的漂浮组件,所述漂浮组件包括有至少4个所述浮筒, 其中一个所述浮筒为中浮筒,其他所述浮筒为边浮筒;所述中浮筒上端连接所述塔架,所述边浮筒间隔环绕在所述中浮筒四周,所述边浮筒通过连接构件连接所述中浮筒。
作为上述技术方案的改进,所有所述浮筒的筒体外侧壁上均预埋有钢板。
进一步,所述连接构件包括有型钢,所述型钢一端连接在所述中浮筒的所述钢板上,另一端连接在所述边浮筒的所述钢板上。
进一步,所有所述浮筒的筒体顶部均开设有通气孔,所述连接构件包括有钢管,所述边浮筒和中浮筒的筒体底部通过所述钢管相互连通。
进一步,所有所述浮筒的筒体侧壁底部均预埋有有钢环,所述钢管的一端穿过并连接所述中浮筒的所述钢环,另一端穿过并连接所述边浮筒的所述钢环。
进一步,所述边浮筒底部均连接有压水板。
一种制造所述浮筒的方法,将石墨烯作为分散剂加入水中搅拌得到混合液体,将混合液体和玄武岩纤维一起均匀搅拌到混凝土中,采用搅拌后的混凝土浇筑所述筒体的筒壁。
本发明的有益效果是:由于所述浮筒构成其筒体筒壁的混凝土结构中均匀分散有石墨烯和玄武岩纤维,而石墨烯可以显著提高混凝土的强度,玄武岩纤维可以显著提高混凝土抗裂性能;同时,由于所述浮筒其筒体筒壁采用不锈钢钢筋作为结构骨架,而不锈钢筋不仅耐腐蚀,而且还具有抗冲击等优良的力学性能;因此本发明中的所述浮筒与风电机组,与现有技术相比,具有更好的耐腐蚀性、耐久性和结构强度,能够适应海上受力情况复杂、湿度高、盐雾高的工作环境。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明中所述浮筒的轴向剖切结构示意图;
图2是本发明中所述浮筒的横向剖切结构示意图;
图3是本发明中所述筒体筒壁的内部布筋图;
图4是本发明中所述仓板的结构示意图;
图5是本发明中所述风电机组的结构示意图。
具体实施方式
参照图1至3,本发明的一种浮筒,包括有柱形筒体11,所述筒体11的筒壁为混凝土结构12,所述混凝土结构12内部均匀分散有石墨烯和玄武岩纤维,所述混凝土结构12内部还包裹有不锈钢钢筋,所述不锈钢钢筋包括有多根受力筋13和多根箍筋14,所述受力筋13沿所述筒体11的周向间隔分布,所述箍筋14均呈环形且垂直于所述筒体11的轴向间隔分布。由于所述浮筒构成其筒体11筒壁的混凝土结构12中均匀分散有石墨烯和玄武岩纤维,而石墨烯可以显著提高混凝土的强度,玄武岩纤维可以显著提高混凝土抗裂性能;同时,由于所述浮筒其筒体11的筒壁采用不锈钢钢筋作为结构骨架,而不锈钢筋不仅耐腐蚀,而且还具有抗冲击等优良的力学性能;因此所述浮筒具有更好的耐腐蚀性、耐久性和结构强度,能够适应海上受力情况复杂、湿度高、盐雾高的工作环境。
为了使石墨烯和玄武岩纤维均匀分散在所述混凝土结构12内部,在制造所述浮筒时,应先将石墨烯作为分散剂加入水中搅拌得到混合液体,然后将混合液体和玄武岩纤维一起均匀搅拌到混凝土中,采用搅拌后的混凝土浇筑所述筒体11的筒壁。柱形筒体11的上盖和下盖内设有呈上下设置的两个由多根基础钢筋纵横交错编织而成的钢筋网,这样可以让上盖和下盖均具有较高的强度。
在本实施例中,优选地,所述不锈钢钢筋采用奥氏体型不锈钢或双相不锈钢。同时,为了提高受力的均衡性,优选地,所述受力筋13与箍筋14都均匀分布。
参照图4,为了方便控制所述浮筒内部的注水量,所述筒体11内部还设置有仓板15,所述仓板15将所述筒体11内部分隔为多个相互连通的腔室。 在本实施例中,所述仓板15包括有相互连接的水平仓板151和竖直仓板152,具体地,所述水平仓板151共有两块,所述竖直仓板152共有四块,四块所述竖直仓板152设置在两块所述水平仓板151之间;两块所述水平仓板151大小相同且为圆形,四块所述竖直仓板152关于两块所述水平仓板151的轴线中心对称分布。为了保证连接的牢靠性以及提高所述仓板15的耐腐蚀性,所述仓板15采用不锈钢板16焊接制成。
参照图5,一种应用所述的浮筒的风电机组,包括有塔架2、安装在所述塔架2上端的风机3、支撑所述塔架2的漂浮组件,所述漂浮组件包括有至少4个所述浮筒,其中一个所述浮筒为中浮筒1a,其他所述浮筒为边浮筒1b;所述中浮筒1a上端连接所述塔架2,所述边浮筒1b间隔环绕在所述中浮筒1a四周,所述边浮筒1b通过连接构件连接所述中浮筒1a。所述风电机组直接应用所述浮筒构造所述漂浮组件,因此与传统风电机组相比也将具有更好的耐腐蚀性、耐久性和结构强度,更容易适应海上受力情况复杂、湿度高、盐雾高的工作环境。
为了便于实现所述连接构件与所述边浮筒1b和中浮筒1a的连接,所有所述浮筒的筒体11外侧壁上均预埋有钢板16;所述连接构件包括有型钢41,所述型钢41一端连接在所述中浮筒1a的所述钢板16上,另一端连接在所述边浮筒1b的所述钢板16上。同时,所有所述浮筒的筒体11顶部均开设有通气孔17,所述连接构件包括有钢管42,所述边浮筒1b和中浮筒1a的筒体11底部通过所述钢管42相互连通。这样所有的所述浮筒之间将构成连通器结构,可以利用水体的来回流动减小所述漂浮组件的晃动,因此即使存在较大的风浪时,也可以防止所述风电机组出现倾覆的情况。为了实现所述钢管42与所述浮筒之间的连接,在本实施例中,具体地,所有所述浮筒的筒体11侧壁底部均预埋有有钢环18,所述钢管42的一端穿过并连接所述中浮筒1a的所述钢环18,另一端穿过并连接所述边浮筒1b的所述钢环18;优选地,每个所述浮筒上的钢环18均有两个,一个预埋在所述筒体11的侧壁外侧,一个预埋在所述筒体11的侧壁内侧。值得注意的是,在预埋所述钢板16和钢环18时,应当要与所述筒体11筒壁内部的不锈钢筋之间进行焊接或绑扎,以免在使用中所述钢板16和钢环18从所述筒体11的筒壁上拉出。并且为了保证连接的牢靠性,在本实施例中,优选地,所述型钢41与所述钢板16之间的连接为焊接或螺栓连接,所述钢管42与所述钢环18之间的连接为焊接,同时为了提高耐腐蚀性,所述钢板16、钢环18、型钢41和钢管42均采用不锈钢制成。当然上述连接方式只是本实用新型的较佳实施方式,为了实现所述连接构件与所述边浮筒1b和中浮筒1a的连接,还可以采用在所述中浮筒1a和边浮筒1b上预埋连接螺栓、连接拉杆等其他连接的方式。
为了进一步减轻所述漂浮组件的晃动,所述边浮筒1b底部均连接有压水板5。
以上所述只是本发明的较佳实施方式,但本发明并不限于上述实施例,只要其以任何相同或相似手段达到本发明的技术效果,都应落入本发明的保护范围之内。

Claims (10)

  1. 一种浮筒,包括有柱形筒体(11),其特征在于:所述筒体(11)的筒壁为混凝土结构(12),所述混凝土结构(12)内部均匀分散有石墨烯和玄武岩纤维,所述混凝土结构(12)内部还包裹有不锈钢钢筋,所述不锈钢钢筋包括有多根受力筋(13)和多根箍筋(14),所述受力筋(13)沿所述筒体(11)的周向间隔分布,所述箍筋(14)均呈环形且垂直于所述筒体(11)的轴向间隔分布。
  2. 根据权利要求1所述的一种浮筒,其特征在于:所述筒体(11)内部还设置有仓板(15),所述仓板(15)将所述筒体(11)内部分隔为多个相互连通的腔室;柱形筒体(11)的上盖和/或下盖内设有呈上下设置的两个由多根基础钢筋纵横交错编织而成的钢筋网。
  3. 根据权利要求2所述的一种浮筒,其特征在于:所述仓板(15)包括有相互连接的水平仓板(151)和竖直仓板(152)。
  4. 一种应用权利要求1-4任一所述的浮筒的风电机组,包括有塔架(2)、安装在所述塔架(2)上端的风机(3)、支撑所述塔架(2)的漂浮组件,其特征在于:所述漂浮组件包括有至少4个所述浮筒, 其中一个所述浮筒为中浮筒(1a),其他所述浮筒为边浮筒(1b);所述中浮筒(1a)上端连接所述塔架(2),所述边浮筒(1b)间隔环绕在所述中浮筒(1a)四周,所述边浮筒(1b)通过连接构件连接所述中浮筒(1a)。
  5. 根据权利要求4所述的一种风电机组,其特征在于:所有所述浮筒的筒体(11)外侧壁上均预埋有钢板(16)。
  6. 根据权利要求5所述的一种风电机组,其特征在于:所述连接构件包括有型钢(41),所述型钢(41)一端连接在所述中浮筒(1a)的所述钢板(16)上,另一端连接在所述边浮筒(1b)的所述钢板(16)上。
  7. 根据权利要求4所述的一种风电机组,其特征在于:所有所述浮筒的筒体(11)顶部均开设有通气孔(17),所述连接构件包括有钢管(42),所述边浮筒(1b)和中浮筒(1a)的筒体(11)底部通过所述钢管(42)相互连通。
  8. 根据权利要求7所述的一种风电机组,其特征在于:所有所述浮筒的筒体(11)侧壁底部均预埋有有钢环(18),所述钢管(42)的一端穿过并连接所述中浮筒(1a)的所述钢环(18),另一端穿过并连接所述边浮筒(1b)的所述钢环(18)。
  9. 根据权利要求4所述的一种风电机组,其特征在于:所述边浮筒(1b)底部均连接有压水板(5)。
  10. 一种制造权利要求1-3任一所述的浮筒的方法,其特征在于:将石墨烯作为分散剂加入水中搅拌得到混合液体,将混合液体和玄武岩纤维一起均匀搅拌到混凝土中,采用搅拌后的混凝土浇筑所述筒体(11)的筒壁。
PCT/CN2018/073440 2017-07-10 2018-01-19 一种浮筒及其制造方法和应用该浮筒的风电机组 WO2019010947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710556854.1A CN107269472A (zh) 2017-07-10 2017-07-10 一种浮筒及其制造方法和应用该浮筒的风电机组
CN201710556854.1 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019010947A1 true WO2019010947A1 (zh) 2019-01-17

Family

ID=60072330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073440 WO2019010947A1 (zh) 2017-07-10 2018-01-19 一种浮筒及其制造方法和应用该浮筒的风电机组

Country Status (2)

Country Link
CN (1) CN107269472A (zh)
WO (1) WO2019010947A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269472A (zh) * 2017-07-10 2017-10-20 佛山科学技术学院 一种浮筒及其制造方法和应用该浮筒的风电机组
CN109444981A (zh) * 2018-11-30 2019-03-08 天津大学 一种水气自控式海底勘探平台和勘探方法
CN111042995B (zh) * 2019-12-30 2020-11-24 浙江大学 一种自驱动海上风电轴承防盐雾装置
CN113772034A (zh) * 2021-09-06 2021-12-10 上海电气风电集团股份有限公司 海上风机及基础

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970938A1 (fr) * 2011-02-01 2012-08-03 Technip France Ensemble de support d'une eolienne de production d'electricite en mer
CN103010415A (zh) * 2011-09-22 2013-04-03 黄灿光 支撑海上风机和海洋能发电机的预应力混凝土浮式平台
CN103282274A (zh) * 2010-11-04 2013-09-04 缅因大学系统理事会 浮置混合复合材料风力涡轮机平台和塔架系统
WO2014013097A1 (es) * 2012-07-18 2014-01-23 Universidad De Cantabria Plataforma semisumergible triangular para aplicaciones en mar abierto
CN104058676A (zh) * 2014-07-15 2014-09-24 宏峰集团(福建)有限公司 一种高韧性混凝土及其制备方法
CN105408550A (zh) * 2013-04-30 2016-03-16 Acs服务通信与能源公司 在近海设施中用于支撑涡轮塔、变电站或其他类似元件的可潜的主动式支撑结构
CN107269472A (zh) * 2017-07-10 2017-10-20 佛山科学技术学院 一种浮筒及其制造方法和应用该浮筒的风电机组
CN206942935U (zh) * 2017-07-10 2018-01-30 佛山科学技术学院 一种浮筒及应用该浮筒的风电机组

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921094B (zh) * 2010-08-30 2012-08-29 武汉海剑工贸有限责任公司 一种高铁磨细钢渣轻质高韧性吸波混凝土及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282274A (zh) * 2010-11-04 2013-09-04 缅因大学系统理事会 浮置混合复合材料风力涡轮机平台和塔架系统
FR2970938A1 (fr) * 2011-02-01 2012-08-03 Technip France Ensemble de support d'une eolienne de production d'electricite en mer
CN103010415A (zh) * 2011-09-22 2013-04-03 黄灿光 支撑海上风机和海洋能发电机的预应力混凝土浮式平台
WO2014013097A1 (es) * 2012-07-18 2014-01-23 Universidad De Cantabria Plataforma semisumergible triangular para aplicaciones en mar abierto
CN105408550A (zh) * 2013-04-30 2016-03-16 Acs服务通信与能源公司 在近海设施中用于支撑涡轮塔、变电站或其他类似元件的可潜的主动式支撑结构
CN104058676A (zh) * 2014-07-15 2014-09-24 宏峰集团(福建)有限公司 一种高韧性混凝土及其制备方法
CN107269472A (zh) * 2017-07-10 2017-10-20 佛山科学技术学院 一种浮筒及其制造方法和应用该浮筒的风电机组
CN206942935U (zh) * 2017-07-10 2018-01-30 佛山科学技术学院 一种浮筒及应用该浮筒的风电机组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENG, LU ET AL.: "Conceptual Design and Performance Analysis of a Reinforced Concrete Platform for Floating Wind Turbines", JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY ( NATURAL SCIENCE EDITION), vol. 44, no. 1, 31 January 2016 (2016-01-31), ISSN: 1671-4512 *

Also Published As

Publication number Publication date
CN107269472A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2019010947A1 (zh) 一种浮筒及其制造方法和应用该浮筒的风电机组
CN106638662B (zh) 一种混凝土支撑结构的三个筒型基础组合式基础结构体系
CN106906839A (zh) 一种带裙板的组合式筒型基础及其施工方法
CN111391988B (zh) 一种浮力分散式漂浮风机基础
JP3238760U (ja) 洋上風力発電用エネルギー貯蔵システム
CN106759445A (zh) 一种带裙板的复合式筒型基础及其施工方法
WO2012169723A1 (ko) 수상 지지축 설치방법
WO2024011956A1 (zh) 一种多功能综合平台
CN115465418B (zh) 一种集四浮体半潜式风机基础与可折叠式网箱一体的平台
CN113734369A (zh) 半潜式钢混浮式风机基础
CN203924100U (zh) 一种带支撑的四个筒型基础组合式基础结构体系
CN110453715A (zh) 可气液置换的组合式筒型导管架基础结构及其施工方法
WO2024037269A1 (zh) 用于水上光伏器件的消浪装置
CN106638661B (zh) 一种混凝土支撑结构的四个筒型基础组合式基础结构体系
CN113772034A (zh) 海上风机及基础
CN103981889B (zh) 一种带支撑的三个筒型基础组合式基础结构体系
CN215594101U (zh) 一种桁架组合式钢混筒型风电基础
CN215684228U (zh) 一种深水网箱用抗风浪弯头
CN213038418U (zh) 一种新型海上风电全钢筒型基础结构
CN108980532A (zh) 反应堆支承基础装置
CN114635447A (zh) 一种海上光伏固定式多筒基础结构及其施工方法
CN103981884A (zh) 一种三个筒型基础组合的基础结构体系
CN208982894U (zh) 反应堆支承基础装置
CN203924093U (zh) 一种带支撑的三个筒型基础组合式基础结构体系
CN217679022U (zh) 一种风电安装船桩腿

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831464

Country of ref document: EP

Kind code of ref document: A1